MATH 281A FALL 2016 HOMEWORK 2

Due date: Monday, November 14

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do not reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

1. Work in ZF. A Borel code is a pair $c=(T, u)$ where
(a) T is a countable well-founded tree with a single root $r=r_{c}$; we denote the corresponding tree ordering by $<_{T}$.
(b) $u: \min (T) \rightarrow{ }^{<\omega} \omega$ where $\min (T)$ is the set of all minimal elements of T.

Notice that if $c=(T, u)$ is a Borel code and $t \in T$ then $c_{t}=\left(T^{t}, u \upharpoonright \min \left(T^{t}\right)\right)$ is also a Borel code; here $T^{t}=\left\{t^{\prime} \in T \mid t \leq_{T} t^{\prime}\right\}$. Notice also that $r\left(c_{t}\right)=t$.

Given a Borel code $c=(T, u)$, we define an evaluation $B(c)$ of c recursively as follows.
(i) If T consists of only a root, i.e. $T=\left\{r_{c}\right\}$ then $B(c)=B_{u\left(r_{c}\right)}$ where recall that for every $s \in{ }^{<\omega} \omega$, the set B_{s} is the basic open neighborhood in \mathcal{N} determined by the sequence s.
(ii) If r_{c} has exactly one immediate successor in T, call it t, then

$$
B(c)=\mathcal{N} \backslash B\left(c_{t}\right)
$$

(iii) If r_{c} has more than one immediate successors in T then

$$
B(c)=\bigcup\left\{B\left(c_{t}\right) \mid t \text { is and immediate successor of } r_{c} \text { in } T\right\}
$$

A. Prove the following. For (A3) you may use the Axiom of Choice.
(A1) (1/3 page) Every Borel code has an evaluation.
(A2) (1/3 page) For every Borel code c, the evaluation $B(c)$ is a Borel subset of \mathcal{N}.
(A3) (1/2 page) If $B \subseteq \mathcal{N}$ is a Borel set then there is a Borel code c such that $B=B(c)$.
Now make the things more uniform. Given a Borel code $c=(T, u)$, we can code c via some $\tilde{c} \in \mathcal{N}$ as follows.

- $(\tilde{c})_{0}$ codes a tree ordering $<_{\tilde{c}}$ on ω isomorphic to T.
- $(\tilde{c})_{1}$ codes the function u; this time as a function from the set of minimal nodes with respect to the ordering $<_{\tilde{c}}$ into SEQ such that $(\tilde{c})_{1}(k)$ is the code of the sequence $u(t)$ where t is the minimal node in T corresponding to k under the above isomorphism.

From now on, when we talk about Borel Codes we mean elements of \mathcal{N} coding Borel codes in the previous sense.
B. Prove the following
(B1) (1/2 page) (A3) can be proved using merely $\mathrm{AC}_{\omega}(\mathbb{R})$.
(B2) (1 page) The set BC of all Borel Codes is a Π_{1}^{1}-subset of \mathcal{N}.
2. We proved in the lecture that there is a universal Σ_{1}^{0}-set $G \subseteq \omega \times \omega \times \mathcal{N}$ (lightface!) in the sense that if $A \subseteq \omega \times \mathcal{N}$ is Σ_{1}^{0} then there is some $e \in \omega$ such that

$$
A(n, x) \Longleftrightarrow G(e, n, x)
$$

whenever $n \in \omega$ and $x \in \mathcal{N}$.
(a) (1/3 page) Use this fact to construct a universal Σ_{1}^{1} set $H \subseteq \omega \times \omega$ for all Σ_{1}^{1}-subsets of ω.
(b) $\left(1 / 3\right.$ page) Use (a) to construct a Π_{1}^{1}-subset of ω which is not Σ_{1}^{1}.
(c) $\left(\mathbf{1} / \mathbf{3}\right.$ page) We proved in the lecture that there is a Π_{1}^{1}-subset of \mathcal{N} which is not $\boldsymbol{\Sigma}_{1}^{1}$. Is there a Π_{1}^{1}-subset of ω which is not $\boldsymbol{\Sigma}_{1}^{1}$?
3. (2/3 page) If $a \in \mathrm{WO}$ we let $\operatorname{otp}(a)$ be the order-type of the well-ordering coded by a. Define

$$
\delta_{1}^{1}=\sup \left\{\operatorname{otp}(a) \mid a \in \mathrm{WO} \wedge a \text { is a } \Delta_{1}^{1} \text {-subset of } \omega\right\}
$$

Prove that $\delta_{1}^{1}=\omega_{1}^{C K}$.
Hint. For the non-trivial part, use Exercise 2.
4. (2/3 page) Let $A \subseteq \mathrm{WO}$ be a Σ_{1}^{1}-set. Prove that there is a countable ordinal α such that $\operatorname{otp}(a)<\alpha$ for all $a \in A$.

Hint. Use Exercise 2.

