MATH 281A FALL 2016 HOMEWORK 3

Due date: Friday December 2

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

1. (1 page) A function $g: {}^{<\omega}\omega \to {}^{<\omega}\omega$ is called monotonic iff the following two conditions are satisfied.

(a) $s \subseteq t \implies g(s) \subseteq g(t)$, and

(b) for every $x \in \mathcal{N}$ the lengths $\mathsf{lh}(g(x \upharpoonright n))$ converge to ω as n converges to ω . Given a monotonic function $g : {}^{<\omega}\omega \to {}^{<\omega}\omega$ we can define a function $g^* : \mathcal{N} \to \mathcal{N}$ by

$$g^*(x) = \bigcup_n g(x \upharpoonright n).$$

Prove the following.

- (i) If $g: {}^{<\omega}\omega \to {}^{<\omega}\omega$ is monotonic then $g^*: \mathcal{N} \to \mathcal{N}$ is continuous.
- (ii) If $g : {}^{<\omega}\omega \to {}^{<\omega}\omega$ is monotonic then $g^* : \mathcal{N} \to \mathcal{N}$ is Σ_1^0 -recursive in a_g where $a_g \in \mathcal{N}$ is a natural coding of g.
- (iii) If $f: \mathcal{N} \to \mathcal{N}$ is continuous then there is a monotonic $g: {}^{<\omega}\omega \to {}^{<\omega}\omega$ such that $f = g^*$.

Remark. Recall that if Γ is a pointclass then a function $f : \mathcal{N} \to \mathcal{N}$ is Γ -recursive iff the relation $P^f \subseteq \mathcal{N} \times \omega$ defined by

$$P^f(x,s) \iff \mathsf{SEQ}(s) \land s \subseteq f(x)$$

is in Γ .

Thus, every continuous function $f : \mathcal{N} \to \mathcal{N}$ is Σ_1^0 -recursive in some $a \in \mathcal{N}$. Consider the following analogy: The function g in (iii) relates to f in an analogous way as the restriction of f to rationals, should f be considered as a function from reals to reals.

2. (1/3 page) Recall that if $A \subseteq$ is a Π_1^1 -set then there is a recursive tree T on $\omega \times \omega$ such that for every $x \in \mathcal{N}$,

$$A(x) \iff <_x^T \in \mathsf{WO}.$$

We proved in the lecture that A is Δ_1^1 iff the function $x \mapsto \mathsf{otp}(<_x^T)$ is bounded below ω_1^{CK} .

Prove that there is a Π_1^1 -set (lightface!) $A \subseteq \mathcal{N}$ such that the values $\mathsf{otp}(<_x^T)$ are unbounded in ω_1 (this is the true ω_1 !) as x ranges over A.

3. A pointclass Γ has the reduction property iff for any sets $A, B \in \Gamma$ such that $A, B \subseteq \mathcal{N}$ there are sets $A^*, B^* \in \Gamma$ such that

- (r1) $A^* \subseteq A$ and $B^* \subseteq B$.
- (r2) $A^* \cap B^* = \emptyset$ and $A^* \cup B^* = A \cup B$.
- A point class Γ has the separation property iff for any sets $A, B \in \Gamma$ such that $A, B \subseteq \mathcal{N}$ there are sets $A', B' \in \Gamma$ such that
 - (s1) $A \subseteq A'$ and $B \subseteq B'$.
 - (s2) $A' \cap B' = A \cap B$ and $A' \cup B' = \mathcal{N}$.

Prove the following

- (a) (5 lines) If $A, B \subseteq \mathcal{N}$ are in Γ and $A \cap B = \emptyset$ then the separation property for A, B is equivalent to the statement that there is a set $D \in \Delta = \Gamma \cap \check{\Gamma}$ such that $A \subseteq D$ and $B \cap D = \emptyset$. (This is the form of separation property we considered in Math 280.)
- (b) (8 lines) Γ has the reduction property iff $\dot{\Gamma}$ has the separation property.
- (c) (1/3 page) If Γ is normed then Γ has the reduction property. Conclude that Π₁¹ has the reduction property and Σ₁¹ has the separation property. Similarly for relativized and boldface pointclasses. This gives a lightface version of the separation theorem for analytic sets we proved in Math 280.

Recall that Γ is ω -parametrized iff there is a universal set $G \in \Gamma$ such that $G \subseteq \omega \times \mathcal{N}$ and for every $P \in \Gamma$ there is $e \in \omega$ such that $P(x) \iff G(e, x)$ for all $x \in \mathcal{N}$.

(d) (2/3 page) Prove that if Γ is ω -parametrized then Γ cannot have both the reduction property and the separation property. In fact, Γ cannot have both the reduction property and the weak form of separation property for disjoint sets discussed in (a) above.

It follows that if n is such that Σ_n^1/Π_n^1 is normed then Π_n^1/Σ_n^1 is not normed. In particular, Σ_1^1 and Π_2^1 are not normed (and therefore not scaled) pointclasses.

Hint. For (d), fix a universal Γ -set $G \subseteq \omega \times \mathcal{N}$. Let $A, B \subseteq \mathcal{N}$ be defined by

$$A(x) \equiv G(x(0), x)$$
 and $B(x) \equiv G(x(1), x)$.

Let A^*, B^* reduce A, B and A', B' separate A^*, B^* . Let $i, j \in \omega$ be such that

 $A'(x) \iff G(i,x)$ and $B'(x) \iff G(j,x)$,

and let $a \in \mathcal{N}$ be such that a(0) = j and a(1) = i. Since $A' \cup B' = \mathcal{N}$ and $A' \cap B' = \emptyset$, the sequence a is an element of exactly one of A' or B'. Use this to get a contradiction.