MATH 281B WINTER 2017 HOMEWORK 1

Due date: Monday February 6

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

In this collection if exercises Γ is a pointclass with the following properties.

- (a) Γ contains all Δ_0^0 -recursive sets, is closed under \wedge and \vee and number quantifiers, and has the substitution property.
- (b) Γ is ω -parametrized.
- (c) Γ is normed.

Recall that Γ has the substitution property iff Γ is closed under substitution of functions which are Γ -recursive on their domains. Also, a function $f : \mathcal{N} \to \mathcal{N}$ is Γ -recursive on its domain iff there is a set $P \subseteq \mathcal{N} \times \text{Seq}$ such that $P \in \Gamma$ and $P^f \subseteq P$, where recall that

$$P^f(x,s) \iff s \subseteq f(x).$$

It is easy to see that f is Γ -recursive iff there is a set $Q \subseteq \mathcal{N} \times \omega$ such that $Q \in \Gamma$ and for all $x \in \text{dom}(f)$ and all $m, n \in \omega$,

(1)
$$Q(x,m,n) \iff f(x)(m) = n$$

The formulation in (1) will be useful in the exercises below.

Given an $a \in \mathcal{N}$, a point $x \in \mathcal{N}$ is Γ -recursive in a, briefly x is a $\Gamma(a)$ -point or $x \in \Gamma(a)$, iff $\{s \in \mathsf{Seq} \mid s \subseteq x\} \in \Gamma(a)$. Alternatively, following (1), x is a $\Gamma(a)$ -point iff $\{(m, n) \in \omega \times \omega \mid x(m) = n\} \in \Gamma(a)$.

Finally recall that $\Delta = \Gamma \cap \check{\Gamma}$.

The following set of exercises gives a comprehensive answer to the uniformization problem for subsets of \mathcal{N}^k under enough determinacy.

0. (1/2 page) Assume $\mathsf{Det}((\Delta)_{2n})$. Let $a \in \mathcal{N}$. Prove that every $\Pi^1_{2n+1}(a)$ -subset of $\mathcal{N} \times \mathcal{N}$ can be uniformized by a $\Pi^1_{2n+1}(a)$ -subset of $\mathcal{N} \times \mathcal{N}$ and every $\Sigma^1_{2n+2}(a)$ -subset of $\mathcal{N} \times \mathcal{N}$ can be uniformized by a $\Sigma^1_{2n+2}(a)$ -subset of $\mathcal{N} \times \mathcal{N}$. **Hint.** Look at the periodicity theorems.

HINT. Look at the periodicity theorems.

1. (2/3 page) Prove that there is a partial function $d : \omega \times \mathcal{N}$ which is Γ -recursive on its domain such that for every $x, y \in \mathcal{N}$,

(2)
$$y \text{ is a } \Delta(x)\text{-point } \iff (\exists i \in \omega)d(i, x) = y.$$

Note that the right hand side in (2) implicitly requires that $(i, x) \in \text{dom}(d)$.

Hint. Let $G \subseteq \omega \times \mathcal{N} \times \omega \times \omega$ be a universal Γ -set. Look at the Γ -uniformization G^* of G such that for all $(i, x, m) \in \omega \times \mathcal{N} \times \omega$,

 $(\exists n)G(i, x, m, n) \implies (\exists n)G^*(i, x, m, n).$

2. (3 lines) Let f be a partial function that is $\Gamma(a)$ -recursive on its domain. Prove that $\operatorname{dom}(f) \in \Gamma(a)$.

3. (1/2 page) (Restricted quantification) Let $A \subseteq \mathcal{N} \times \mathcal{N} \times \mathcal{N}$ be such that $A \in \Gamma$. Consider the set $B \subseteq \mathcal{N} \times \mathcal{N}$ defined by

$$B(x,y) \iff (\exists z \in \Delta(y))A(x,y,z).$$

Prove that $B \in \Gamma$.

Hint. Use the previous exercises.

In the following two exercises note that if n = 0 then no assumption on determinacy is needed.

4. (1/2 page) Assume $\mathsf{Det}(\Delta_{2n}^1)$. Given an $x \in \mathcal{N}$, prove that there is a nonempty $\Pi_{2n}^1(a)$ -subset of \mathcal{N} which has no $\Delta_{2n+1}^1(a)$ element. **Hint.** Look at set $A \subseteq \mathcal{N}$ which is $\Sigma_{2n+1}^1(a)$ but not $\Pi_{2n+1}^1(a)$. Use the previous

exercises.

5. (1/3 page) Assume $\mathsf{Det}(\Delta_{2n}^1)$. Given an $a \in \mathcal{N}$, prove that there is a $\Pi_{2n}^1(a)$ subset of $\mathcal{N} \times \mathcal{N}$ which cannot be uniformized by any Σ_{2n+1}^1 -set.