MATH 281C SPRING 2017 HOMEWORK 1

Target date: Wednesday, May 24

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

1. (1/2 page) Assume $A \subseteq \mathbf{On}$ is such that $A \subseteq \omega_1^{\mathbf{L}[A]}$. Prove that $\mathbf{L}[A] \models \mathsf{CH}$.

2. (a) (10 lines) Construct a set $A \subseteq \omega_2^{\mathbf{V}}$ such that $\omega_1^{\mathbf{L}[A]} = \omega_1^{\mathbf{V}}$ and $\omega_2^{\mathbf{L}[A]} = \omega_2^{\mathbf{V}}$. (Notice that if M is a proper class inner model and $\omega_2^M = \omega_2^{\mathbf{V}}$ then $\omega_1^M = \omega_1^{\mathbf{V}}$, although this observation is not needed for the task.)

(b) (10 lines) Assume CH fails in V. Construct a set A satisfying the requirements in (a) such that additionally we have $\mathbf{L}[A] \models \neg \mathsf{CH}$.

3. (1/2 page) This exercise is not limited to L; the result hold in any model of ZFC. Fix a large regular θ and a well-ordering $<_{\theta}$ of H_{θ} . Work in the language $\mathcal{L} = \mathsf{LST} \cup \{\dot{<}\}$ and consider the \mathcal{L} -structure $(H_{\theta}, \in, <_{\theta})$ where $\dot{<}$ is interpreted as $<_{\theta}$. In the following we will write " H_{θ} " for both this structure and for the set H_{θ} alone; what we mean will be clear from the context. It should be stressed that unless specified otherwise, all structures used in this exercise are \mathcal{L} -structures. In particular, all elementary substructures of H_{θ} are calculated with respect to \mathcal{L} , i.e. they are elementary also with respect to the well-ordering $<_{\theta}$.

Let $\nu < \omega_2$. Assume X, Y are countable elementary substructures of H_{θ} such that

- $\nu \in X, Y$, and
- $\omega_1 \cap X = \omega_1 \cap Y.$

(a) Prove that $\nu \cap X = \nu \cap Y$.

In particular, then $otp(\nu \cap X) = otp(\nu \cap Y)$.

For each $\nu < \omega_2$ and each elementary chain $\vec{X} = (X_{\xi} \mid \xi < \omega_1)$ such that each X_{ξ} is a countable elementary substructure of H_{θ} , let $\alpha_{\xi}^{\vec{X}} = \omega_1 \cap X_{\xi}$ whenever $\xi < \omega_1$ and $C_{\vec{X}} = \{\alpha_{\xi}^{\vec{X}} \mid \xi < \omega_1\}$. Notice that $C_{\vec{X}}$ is a closed unbounded subset of ω_1 . Define a function $h_{\vec{X}} : C_{\vec{X}} \to \omega_1$ by

$$h_{\vec{X}}(\alpha_{\xi}^{\vec{X}}) = \mathsf{otp}(\nu \cap X_{\xi})$$

Prove that if \vec{X}, \vec{Y} are two elementary chains as above then there is a closed unbounded set $C \subseteq C_{\vec{X}} \cap C_{\vec{Y}}$ such that for every $\alpha \in C$:

(b) There is some $\xi < \omega_1$ such that $\alpha_{\xi}^{\vec{X}} = \alpha = \alpha_{\xi}^{\vec{Y}}$, and

(c) $h_{\vec{X}}(\alpha) = h_{\vec{V}}(\alpha)$.

Thus, the function $h_{\vec{X}}$ "almost" does not depend on \vec{X} : For \vec{X}, \vec{Y} functions $h^{\vec{X}}, h^{\vec{Y}}$ disagree only on a non-stationary set, i.e. a set contained in the complement of a closed unbounded set.

- **4.** Work in **L**.
 - (a) (5 lines) Let X be a countable elementary substructure of J_{ω_2} , let J_{β} be its transitive collapse, and $\alpha = X \cap \omega_1$. Let J_{γ} be the smallest elementary substructure of J_{ω_1} such that $\alpha < \gamma$. Prove that $\beta < \gamma$.
 - (b) (5 lines) Define a function $f: \omega_1 \to \omega_1$ by

 $f(\alpha)$ = the least $\beta > \alpha$ such that α is not a cardinal in $J_{\beta+1}$.

Notice that f is a well-defined total function on ω_1 . Prove that for every $\nu < \omega_2$ and every elementary chain \vec{X} as in Problem 3 there is a closed unbounded set $C \subseteq \omega_1$ such that

$$h_{\vec{\mathbf{x}}}(\alpha) < f(\alpha)$$
 whenever $\alpha \in C$.

What would be the well-ordering $<_{\theta}$ in this case?

(c) (5 lines) Prove that in fact there is a closed unbounded set $C \subseteq \omega_1$ such that

$$g_{\vec{X}}(\alpha) < f(\alpha)$$
 whenever $\alpha \in C$

where $g: C_{\vec{X}} \to \omega_1$ is defined by

$$g(\alpha_{\xi}) = \mathsf{otp}(\omega_2 \cap X_{\xi})$$

5. (1/2 page) In this exercise, h_{α} is the uniform Σ_1 -Skolem function for J_{α} . Recall also that $<^*$ is the canonical ordering on $[\mathbf{On}]^{<\omega}$ where $s <^* t$ iff $s \subseteq t$ or s, t are incompatible and $s <_{\text{lex}} t$ when s, t are viewed as descending sequences of ordinals.

Assume $p \in [\omega \alpha]^{<\omega}$ is such that:

(a) There is a Σ_1 -formula $\varphi(v, w)$ such that $a_{p,\varphi} \notin J_{\alpha}$ where

$$a_{p,\varphi} = \{ i \in \omega \mid J_{\alpha} \models \varphi(i,p) \},\$$

and

(b) p is the $<^*$ -least element of $[\omega\alpha]^{<\omega}$ satisfying (a), that is, if $q \in [\omega\alpha]^{<\omega}$ is such that $q <^* p$ then $a_{q,\varphi} \in J_{\alpha}$ for every Σ_1 -formula $\varphi(v, w)$.

Prove that $J_{\alpha} = \{h_{\alpha}(i, s \cup p) \mid i \in \omega \& s \in [\omega]^{<\omega}\}$, that is, J_{α} is the canonical Σ_1 -Skolem hull of $[\omega \alpha]^{<\omega} \cup \{p\}$.

6. (5 lines) We proved in the lecture that $\mathsf{PSP}(\Pi_1^1)$, the perfect set property for all boldface coanalytic sets, implies that $\omega_1^{\mathbf{V}}$ is strongly inaccessible in \mathbf{L} . Thus, the implication $\mathsf{Con}(\mathsf{ZFC}) \Longrightarrow \mathsf{Con}(\mathsf{ZFC} + \mathsf{PSP}(\Pi_1^1))$ is not provable, at least if we believe that the theory $\mathsf{Con}(\mathsf{ZFC} + \text{``There is an inaccessible cardinal''}$ is consistent.

On the other hand, the implication $\mathsf{Con}(\mathsf{ZFC}) \implies \mathsf{Con}(\mathsf{ZFC} + \mathsf{PSP}(\Pi_1^1))$ is provable (and similarly for relativized pointclasses $\Pi_1^1(a)$ for any fixed $a \in \mathcal{N}$). This follows from this exercise and the fact that we can arrange $\omega_1^{\mathbf{L}} < \omega_1^{\mathbf{V}}$ relative to $\mathsf{Con}(\mathsf{ZFC})$ (we will see this latter fact later). Use appropriate theorems from the lecture to prove the following.

Assume $\omega_1^{\mathbf{L}} < \omega_1^{\mathbf{V}}$. Then $\mathsf{PSP}(\Pi_1^1)$, and in fact $\mathsf{PSP}(\Sigma_2^1)$ holds.