MATH 281C SPRING 2017 HOMEWORK 2

Target date: Monday, June 5

Rules: Write as efficiently as possible: Include all relevant points and think carefully what to write and what not. Use common sense to determine what is the appropriate amount of details for a course at this level. Quote any result from the lecture you are referring to; do <u>not</u> reprove the result. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt.

I will not grade any text that exceeds the specified length.

1. (1 page) Recall the Boolean algebra $\mathcal{P}(\omega)/\mathcal{I}$ where $\mathcal{I} = [\omega]^{<\omega}$ from Math 281A, Homework assignment 1, Problem 2. In part 2(e) you proved that if $(b_n \mid n \in \omega)$ is a strictly decreasing chain in $\mathcal{P}(\omega)/\mathcal{I}$ then $(b_n \mid n \in \omega)$ has a lower bound in $\mathcal{P}(\omega)/\mathcal{I}$.

Prove that $\mathsf{MA}(\kappa)$ implies the following: If $(b_{\xi} | \xi < \kappa)$ is a strictly decreasing chain in $\mathcal{P}(\omega)/\mathcal{I}$ then $(b_{\xi} | \xi < \kappa)$ has a lower bound in $\mathcal{P}(\omega)/\mathcal{I}$.

2. (1/2 page + 1/2 page) Prove that $MA(\kappa)$ implies the following "generalization" of the Baire Category Theorem.

(1) If X is a compact Hausdorff c.c.c. topological space and $(A_{\xi} | \xi < \kappa)$ is a family of open dense subsets of X then $\bigcap_{\xi < \kappa} A_{\xi}$ is a dense subset of X.

We say that a topological space is c.c.c. if every family of open pairwise disjoint sets is countable.

Note that if $\kappa = \omega$ then a stronger form of statement (1), where we drop the condition on X being c.c.c., can be proved in ZFC alone.

The converse to statement (1) holds, too. For the moment we address just a restricted verson where the posets in question are of the form $\mathbb{B} \setminus \{0_{\mathbb{B}}\}$ where \mathbb{B} is a Boolean algebra. Assume (1) holds. Prove:

(2) If \mathbb{P} is a c.c.c. poset of the form $\mathbb{B} \setminus \{0_{\mathbb{B}}\}$ where \mathbb{B} is a Boolean algebra and $\mathcal{D} = (D_{\xi} | \xi < \kappa)$ is a family of dense subsets of \mathbb{P} then there is a \mathcal{D} -generic filter on \mathbb{P} .

3. (2/3 page) Prove that $MA(\kappa)$ is equivalent with the following superficially weaker statement

 $\mathsf{MA}^w(\kappa)$: If \mathbb{P} is a c.c.c. poset of cardinality $\leq \kappa$ and $\mathcal{D} = (D_{\xi} | \xi < \kappa)$ is a family of dense subsets of \mathbb{P} then there is a \mathcal{D} -generic filter on \mathbb{P} .

The next exercise is another step toward the converse of (1) in Problem 2.

- 4. (1 page) Let X be a topological space. Recall that if $A \subseteq X$ then:
 - \overline{A} is the closure of A, that is, the smallest closed set with respect to the inclusion containing A as a subset. Equivalently, \overline{A} is the intersection of all closed sets in X which contain A as a subset.
 - A° is the interior of A, that is, the largest open subset of A. Equivalently, A° is the union of all open subsets of A.

Notice that if A is open in X then $A \subseteq \overline{A}^{\circ}$, and if $A \subseteq B$ are arbitrary subsets of X then $\overline{A} \subseteq \overline{B}$ and $A^{\circ} \subseteq B^{\circ}$.

- A set $A \subseteq X$ is called **regular open** iff $A = \overline{A}^{\circ}$. Prove the following.
- (a) If $A \subseteq X$ then \overline{A}° is regular open. An immediate consequence is: The interior of any closed set is regular open.
- (b) If $A, B \subseteq X$ are regular open then $\overline{A \cup B}^{\circ}$ is the smallest regulr open set in X containing both A and B as subsets.
- (c) If $A, B \subseteq X$ are regular open then $A \cap B$ is the largest regular open set in X which is a subset of both A and B.
- (d) Prove that if X is a topological space then the structure

$$\mathbb{B} = (\mathsf{RO}(X), \land, \lor, ', \varnothing, X)$$

is a Boolean algebra such that the associated partial ordering $\leq_{\mathbb{B}}$ is the inclusion, that is, $A \leq_{\mathbb{B}} B$ iff $A \subseteq B$, where

- $\mathsf{RO}(X)$ is the family of all sets which are regular open in X,
- $-A \wedge B = A \cap B$ and $A \vee B = \overline{A \cup B}^{\circ}$, and
- $-A' = (X \setminus A)^{\circ}.$

Warning: The proof of distributivity takes some work.

Then prove that \mathbb{B} is a complete Boolean algebra, where the general join and meet are defined as follows. Given $\mathcal{A} \subseteq \mathsf{RO}(X)$,

(3)
$$\bigvee \mathcal{A} = \left(\overline{\bigcup \mathcal{A}}\right)^{\circ} \text{ and } \bigwedge \mathcal{A} = \left(\bigcap \mathcal{A}\right)^{\circ}$$

Remark. The Boolean algebra \mathbb{B} is called the **regular open algebra of** X and denoted by $\mathbb{RO}(X)$.