MATH 281C Spring 2017

Completion of the Proof of the Forcing Theorem

Recall the statements (*) and (**) from the lecture.

(*) The following are equivalent.

- (i) $p \Vdash_{\mathbb{P}} \varphi(x_1, \ldots, x_\ell)$.
- (ii) $M[G] \models \varphi(x_1^G, \dots, x_\ell^G)$ whenever G is a filter generic for \mathbb{P} over M such that $p \in G$.

and

$$(**)_G \quad \text{If } M[G] \models \varphi(x_1^G, \dots, x_\ell^G) \text{ then there is some } p \in G \text{ such that} \\ p \Vdash_{\mathbb{P}} \varphi(x_1, \dots, x_\ell).$$

We want to prove (**) for the formula " $v_1 = v_2$ " by recursion on \in . We thus assume that we are given sets x and y, and both (*) and (**) hold for the statement "x' = y'" whenever rank $(x') \leq \operatorname{rank}(x)$ and rank $(y') \leq \operatorname{rank}(y)$.

Claim. $(**)_G$ holds for the statement "x = y", that is, given a filter G generic for \mathbb{P} over M,

$$x^G = y^G \implies (\exists p \in G)(p \Vdash x = y),$$

Proof. Let $\Phi(p, x, y)$ be the formula

 $(\forall (q, z) \in x) (\forall p' < p) [p' < q \implies (\exists \bar{p} < p') (\exists (q', z') \in y) (\bar{p} < q' \land \bar{p} \Vdash z = z')]$

Standard arguments similar to those done in lecture show that the following are equivalent.

• $M \models \Phi(p, x, y)$

• If H is a filter generic for \mathbb{P} over M then $x^H \subseteq y^H$.

So $M \models \Phi(p, x, y) \land \Phi(p, y, x)$ iff $p \Vdash_{\mathbb{P}}^{M} x = y$. So one can also define the forcing relation " $p \Vdash x = y$ " this way, which is a bit more polished and easier to negate. Define a set $D \subseteq \mathbb{P}$ as follows.

$$D = \{ p \in \mathbb{P} \mid (a) \lor (b) \lor (c) \}$$

where (a),(b) and (c) are as follows.

- (a) $\Phi(p, x, y) \wedge \Phi(p, y, x)$
- (b) $\neg \Phi(\tilde{p}, x, y)$ holds for densely many $\tilde{p} \leq p$
- (c) $\neg \Phi(\tilde{p}, y, x)$ holds for densely many $\tilde{p} \leq p$.

The set D is dense in \mathbb{P} . To see this, consider an arbitrary $p_0 \in \mathbb{P}$. If there is some $p \leq p_0$ such that $\Phi(p, x, y) \wedge \Phi(p, y, x)$ then we are done. From now on assume that $\neg \Phi(p, x, y) \lor \neg \Phi(p, y, x)$ holds for every $p \le p_0$. If $\neg \Phi(p, x, y)$ holds for densely many $p \leq p_0$ then $p_0 \in D$ and we are done. In the remaining case there is some $p \leq p_0$ such that for all $\tilde{p} \leq p$ we have $\Phi(\tilde{p}, x, y)$. But then $\neg \Phi(\tilde{p}, y, x)$ must hold for every $\tilde{p} \leq p$, so $p \in D$. This completes the proof of density of D.

We are now ready to prove $(**)_G$. Since G is generic, there is some $p \in G \cap D$. We show that options (b) and (c) are not possible, which will complete the proof. By symmetricity, we may consider option (b) only. So assume p is such that (b) holds, that is, $\neg \Phi(\tilde{p}, x, y)$ holds for densely many $\tilde{p} \leq p$. By calculating the negation and looking more closely at the meaning of the statement, we conclude that for densely many $p' \leq p$ the following holds.

 $(1) \quad (\exists (q,z) \in x) [p' \le q \land (\forall (q',z') \in y) (\forall \bar{p} \le p') (\bar{p} \le q' \implies \bar{p} \not\Vdash z = z')]$

As G is generic and $p \in G$, there is some $p' \leq p$ as in (1) in G. Fix such a p' and pick some $(q, z) \in x$ witnessing this. Then $q \in G$ as $p' \leq q$, and $z^G \in x^G$. Now we are assuming $x^G = y^G$, so $z^G \in y^G$, which means that there is some $(q', z') \in y$ such that $q' \in G$ and $z^G = (z')^G$. But then, using (*) for the statement "z = z'", we can find some $\bar{p} \in G$ such that $\bar{p} \Vdash z = z'$, and since $p', q' \in G$, we can arrange that $\bar{p} \leq p', q'$. But this contradicts the conclusion in (1) which must hold for p'. \Box