Springer Series in
Operations Research

Jorge Nocedal
Stephen J. Wright

Second Edition

et

Jorge Nocedal Stephen J. Wright

Numerical Optimization

Second Edition

@ Springer

Jorge Nocedal

EECS Department
Northwestern University
Evanston, IL 60208-3118

USA
nocedal@eecs.northwestern.edu

Series Editors:

Thomas V. Mikosch

University of Copenhagen
Laboratory of Actuarial Mathematics
DK-1017 Copenhagen

Denmark

mikosch@act.ku.dk

Sidney I. Resnick

Cornell University

School of Operations Research and
Industrial Engineering

Ithaca, NY 14853

USA

sirl@cornell.edu

Stephen J. Wright

Computer Sciences Department
University of Wisconsin

1210 West Dayton Street
Madison, WI 53706-1613

USA

swright@cs.wisc.edu

Stephen M. Robinson

Department of Industrial and Systems
Engineering

University of Wisconsin

1513 University Avenue

Madison, WI 53706—1539

USA

smrobins@facstaff.wise.edu

Mathematics Subject Classification (2000): 90B30, 90C11, 90-01, 90-02

Library of Congress Control Number: 2006923897

ISBN-10: 0-387-30303-0

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now

known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary

rights.
Printed in the United States of America.
987654321

springer.com

ISBN-13: 978-0387-30303-1

To Sue, Isabel and Martin
and
To Mum and Dad

Contents

Preface xvii
Preface to the Second Edition xxi

1 Introduction
Mathematical Formulation
Example: A Transportation Problem
Continuous versus Discrete Optimization
Constrained and Unconstrained Optimization
Global and Local Optimization
Stochastic and Deterministic Optimization
Convexity e
Optimization Algorithms
Notesand References

O 00 N N NN U N -

2 Fundamentals of Unconstrained Optimization 10
2.1 WhatIsaSolution? 12

viii

CONTENTS

Recognizing a Local Minimum
Nonsmooth Problems
2.2 Overview of Algorithms
Two Strategies: Line Search and Trust Region
Search Directions for Line Search Methods
Models for Trust-Region Methods
Scaling

Exercises e e e e e e

3 Line Search Methods
31 StepLength
The Wolfe Conditions
The Goldstein Conditions
Sufficient Decrease and Backtracking
3.2 Convergence of Line Search Methods
33 RateofConvergence,
Convergence Rate of Steepest Descent
Newton’s Method
Quasi-NewtonMethods
3.4 Newton’s Method with Hessian Modification
Eigenvalue Modification
Adding a Multiple of the Identity
Modified Cholesky Factorization
Modified Symmetric Indefinite Factorization
3.5 Step-Length Selection Algorithms
Interpolation
Initial StepLength L
A Line Search Algorithm for the Wolfe Conditions
Notesand References
EXercises

4 Trust-Region Methods
Outline of the Trust-Region Approach
4.1 Algorithms Based on the Cauchy Point
The CauchyPoint
Improving on the CauchyPoint
The DoglegMethod
Two-Dimensional Subspace Minimization
42 Global Convergence
Reduction Obtained by the Cauchy Point
Convergence to Stationary Points
4.3 Tterative Solution of the Subproblem

14
17
18
19
20
25
26
27

30
31
33
36
37
37
41
42
44
46
48
49
51
52
54
56
57
59
60
62
63

66
68
71
71
73
73
76
77
77
79
83

CONTENTS

TheHardCase 87
Proofof Theorem 4.1 89
Convergence of Algorithms Based on Nearly Exact Solutions 91

4.4 Local Convergence of Trust-Region Newton Methods 92
4.5 Other Enhancements 95
Scaling 95

Trust Regionsin Other Norms 97
Notesand References 98
Exercises e 98
Conjugate Gradient Methods 101
5.1 The Linear Conjugate Gradient Method 102
Conjugate Direction Methods 102

Basic Properties of the Conjugate Gradient Method 107

A Practical Form of the Conjugate Gradient Method 111
Rateof Convergenceo v vt 112
Preconditioning 118
Practical Preconditioners 120

5.2 Nonlinear Conjugate Gradient Methods 121
The Fletcher—Reeves Method 121

The Polak—Ribi¢re Method and Variants 122
Quadratic Terminationand Restarts 124
Behavior of the Fletcher—Reeves Method 125
Global Convergence 127
Numerical Performance 131
Notesand References 132
EXercises o e e 133
Quasi-Newton Methods 135
6.1 The BFGSMethod 136
Properties of the BFGS Method 141
Implementation 142

62 TheSR1Method 144
Properties of SR1 Updating 147

6.3 TheBroydenClass e 149
6.4 Convergence Analysis 153
Global Convergence of the BEGSMethod 153
Superlinear Convergence of the BEGS Method 156
Convergence Analysis of the SRI Method 160
Notesand References 161
Exercises o e 162

X CONTENTS

7 Large-Scale Unconstrained Optimization

7.1

7.2

7.3
7.4
7.5

Inexact Newton Methods
Local Convergence of Inexact Newton Methods
Line Search Newton—-CG Method
Trust-Region Newton-CG Method
Preconditioning the Trust-Region Newton-CG Method
Trust-Region Newton-Lanczos Method
Limited-Memory Quasi-Newton Methods
Limited-Memory BEGS
Relationship with Conjugate Gradient Methods
General Limited-Memory Updating
Compact Representation of BFGS Updating
Unrollingthe Update
Sparse Quasi-Newton Updates
Algorithms for Partially Separable Functions
Perspectives and Software L.

Notesand References o v i i i i i e e
Exercises e e e e e e

8 Calculating Derivatives

8.1

8.2

Finite-Difference Derivative Approximations
Approximating the Gradient
Approximating a Sparse Jacobian Lo
Approximating the Hessian
Approximatinga Sparse Hessian
Automatic Differentiation Lo L.
AnExample
TheForwardMode
TheReverse Mode
Vector Functions and Partial Separability
Calculating Jacobians of Vector Functions
Calculating Hessians: Forward Mode
Calculating Hessians: Reverse Mode
Current Limitations o o .

Notesand References i i i i

EXercises e e e e e e e

9 Derivative-Free Optimization

9.1
9.2

Finite Differencesand Noise
Model-Based Methods
Interpolation and Polynomial Bases
Updating the Interpolation Set

164
165
166
168
170
174
175
176
177
180
181
181
184
185
186
189
190
191

193
194
195
197
201
202
204
205
206
207
210
212
213
215
216
217
217

10

11

12 Theory of Constrained Optimization
Local and Global Solutions

A Method Based on Minimum-Change Updating
Coordinate and Pattern-Search Methods
Coordinate Search Method
Pattern-Search Methods
A Conjugate-Direction Method
Nelder—-Mead Method
Implicit Filtering
Notes and References

Least-Squares Problems
Background
10.2 Linear Least-Squares Problems
10.3 Algorithms for Nonlinear Least-Squares Problems
The Gauss—Newton Method
Convergence of the Gauss—Newton Method
The Levenberg—Marquardt Method
Implementation of the Levenberg—Marquardt Method
Convergence of the Levenberg—Marquardt Method
Methods for Large-Residual Problems
10.4 Orthogonal Distance Regression
Notes and References

Nonlinear Equations

Local Algorithms
Newton’s Method for Nonlinear Equations
Inexact Newton Methods
Broyden’s Method
Tensor Methods

Practical Methods
Merit Functions

Line Search Methods
Trust-Region Methods
Continuation/Homotopy Methods

Practical Continuation Methods
Notes and References

CONTENTS

Xi

xii CONTENTS

13

Smoothness
121 Examples e e
A Single Equality Constraint
A Single Inequality Constraint
Two Inequality Constraints
12.2 Tangent Cone and Constraint Qualifications
12.3 First-Order Optimality Conditions
12.4 First-Order Optimality Conditions: Proof
Relating the Tangent Cone and the First-Order Feasible Direction Set . .
A Fundamental Necessary Condition
Farkas’ Lemma
Proofof Theorem 12.1
12.5 Second-Order Conditions
Second-Order Conditions and Projected Hessians
12.6 Other Constraint Qualifications
12.7 A Geometric Viewpointo
12.8 Lagrange Multipliers and Sensitivity
129 Duality o e
Notesand References
Exercises

Linear Programming: The Simplex Method
Linear Programming,
13.1 Optimalityand Duality
Optimality Conditions,
The Dual Problem
13.2 Geometryofthe FeasibleSet
Bases and Basic Feasible Points
Vertices of the Feasible Polytope
13.3 TheSimplexMethod o L
Outline
A Single Step of the Method L.
13.4 Linear Algebra in the Simplex Method
13.5 OtherImportantDetails
Pricing and Selection of the EnteringIndex
Starting the Simplex Method
Degenerate Stepsand Cycling
13.6 The Dual SimplexMethod
13.7 Presolving e
13.8 Where Does the Simplex Method Fit?
Notesand References
Exercises e

14

15

16

CONTENTS

Linear Programming: Interior-Point Methods 392
14.1 Primal-DualMethods 393
Outline e 393
TheCentralPath 397
Central Path Neighborhoods and Path-Following Methods 399

14.2 Practical Primal-Dual Algorithms 407
Corrector and Centering Steps 407
StepLengths L 409
StartingPoint L 410

A Practical Algorithm L 411
Solving the Linear Systems 411

14.3 Other Primal-Dual Algorithms and Extensions 413
Other Path-Following Methods 413
Potential-Reduction Methods 414
Extensions 415

14.4 Perspectivesand Software 416
Notesand References 417
Exercises e 418
Fundamentals of Algorithms for Nonlinear Constrained Optimization 421
15.1 Categorizing Optimization Algorithms 422
15.2 The Combinatorial Difficulty of Inequality-Constrained Problems 424
15.3 Eliminationof Variables, 426
Simple Elimination using Linear Constraints 428
General Reduction Strategies for Linear Constraints 431

Effect of Inequality Constraints 434

154 Merit Functionsand Filters 435
Merit Functions 435

Filters o 437

155 TheMaratosEffect. L. 440
15.6 Second-Order Correction and Nonmonotone Techniques 443
Nonmonotone (Watchdog) Strategy 444
Notesand References 446
Exercises e 446
Quadratic Programming 448
16.1 Equality-Constrained Quadratic Programs 451
Properties of Equality-Constrained QPs 451

16.2 Direct Solution of the KKT System 454
Factoring the Full KKT System 454
Schur-Complement Method 455
Null-Space Method 457

xiii

xiv CONTENTS

17

16.3 Iterative Solution of the KKT System 459
CG Applied to the Reduced System 459
The Projected CGMethod 461
16.4 Inequality-Constrained Problems 463
Optimality Conditions for Inequality-Constrained Problems 464
Degeneracy e 465
16.5 Active-Set Methodsfor ConvexQPs 467
Specification of the Active-Set Method for Convex QP 472
Further Remarks on the Active-Set Method 476
Finite Termination of Active-Set Algorithm on Strictly Convex QPs . . . 477
Updating Factorizations 478
16.6 Interior-PointMethods 480
Solving the Primal-Dual System 482
Step Length Selection, 483
A Practical Primal-Dual Method 484
16.7 The Gradient Projection Method 485
Cauchy Point Computation 486
Subspace Minimization 488
16.8 Perspectivesand Software L. 490
Notesand References 492
EXercises o oo e e 492
Penalty and Augmented Lagrangian Methods 497
17.1 The Quadratic Penalty Method 498
Motivation o e 498
Algorithmic Framework L. 501
Convergence of the Quadratic Penalty Method 502
Il Conditioning and Reformulations 505
17.2 Nonsmooth Penalty Functions 507
A Practical £; Penalty Method 511
A General Class of Nonsmooth Penalty Methods 513
17.3 Augmented Lagrangian Method: Equality Constraints 514
Motivation and Algorithmic Framework 514
Properties of the Augmented Lagrangian 517
17.4 Practical Augmented Lagrangian Methods 519
Bound-Constrained Formulation 519
Linearly Constrained Formulation 522
Unconstrained Formulation 523
17.5 Perspectivesand Software 525
Notesand References 526

Exercises o e e e e e e e e e e 527

18 Sequential Quadratic Programming
Local SQP Method
SQP Framework
Inequality Constraints
Preview of Practical SQP Methods
IQP and EQP
Enforcing Convergence
Algorithmic Development
Handling Inconsistent Linearizations

19

Full Quasi-Newton Approximations
Reduced-Hessian Quasi-Newton Approximations
Merit Functions
Second-Order Correction
A Practical Line Search SQP Method
Trust-Region SQP Methods
A Relaxation Method for Equality-Constrained Optimization
S€,QP (Sequential £; Quadratic Programming)
Sequential Linear-Quadratic Programming (SLQP)
A Technique for Updating the Penalty Parameter
Nonlinear Gradient Projection
Convergence Analysis
Rate of Convergence

Perspectives and Software
Notes and References

Interior-Point Methods for Nonlinear Programming
Two Interpretations
19.2 A Basic Interior-Point Algorithm
19.3 Algorithmic Development
Primal vs. Primal-Dual System

Solving the Primal-Dual System
Updating the Barrier Parameter
Handling Nonconvexity and Singularity
Step Acceptance: Merit Functions and Filters
Quasi-Newton Approximations
Feasible Interior-Point Methods
A Line Search Interior-Point Method

A Trust-Region Interior-Point Method
An Algorithm for Solving the Barrier Problem
Step Computation
Lagrange Multipliers Estimates and Step Acceptance

CONTENTS

Xv

xvi

CONTENTS

A2

Description of a Trust-Region Interior-Point Method

19.6 The Primal Log-Barrier Method
19.7 Global Convergence Properties
Failure of the Line Search Approach
Modified Line Search Methods
Global Convergence of the Trust-Region Approach
19.8 Superlinear Convergence
19.9 Perspectives and Software L.
Notesand References
EXercises o oo e
A Background Material
A1l Elementsof Linear Algebra
Vectorsand Matrices
NOrms e
Subspaces

Eigenvalues, Eigenvectors, and the Singular-Value Decomposition
Determinantand Trace
Matrix Factorizations: Cholesky, LU,QR
Symmetric Indefinite Factorization
Sherman—Morrison-Woodbury Formula
Interlacing Eigenvalue Theorem
Error Analysis and Floating-Point Arithmetic
Conditioning and Stability 000,
Elements of Analysis, Geometry, Topology
Sequences
Ratesof Convergence,
Topology of the Euclidean Space R”
Convex SetsinR"
Continuityand Limits
Derivatives o e
Directional Derivatives
Mean Value Theorem
Implicit Function Theorem
Order Notation v,
Root-Finding for Scalar Equations

B A Regularization Procedure
References

Index

598
598
598
600
602
603
605
606
610
612
613
613
616
617
617
619
620
621
623
625
628
629
630
631
633

635

637

653

Preface

This is a book for people interested in solving optimization problems. Because of the wide
(and growing) use of optimization in science, engineering, economics, and industry, it is
essential for students and practitioners alike to develop an understanding of optimization
algorithms. Knowledge of the capabilities and limitations of these algorithms leads to a better
understanding of their impact on various applications, and points the way to future research
on improving and extending optimization algorithms and software. Our goal in this book
is to give a comprehensive description of the most powerful, state-of-the-art, techniques
for solving continuous optimization problems. By presenting the motivating ideas for each
algorithm, we try to stimulate the reader’s intuition and make the technical details easier to
follow. Formal mathematical requirements are kept to a minimum.

Because of our focus on continuous problems, we have omitted discussion of impor-
tant optimization topics such as discrete and stochastic optimization. However, there are a
great many applications that can be formulated as continuous optimization problems; for
instance,

finding the optimal trajectory for an aircraft or a robot arm;

identifying the seismic properties of a piece of the earth’s crust by fitting a model of
the region under study to a set of readings from a network of recording stations;

3

-

-

PREFACE

designing a portfolio of investments to maximize expected return while maintaining
an acceptable level of risk;

controlling a chemical process or a mechanical device to optimize performance or
meet standards of robustness;

computing the optimal shape of an automobile or aircraft component.

Every year optimization algorithms are being called on to handle problems that
are much larger and complex than in the past. Accordingly, the book emphasizes large-
scale optimization techniques, such as interior-point methods, inexact Newton methods,
limited-memory methods, and the role of partially separable functions and automatic
differentiation. It treats important topics such as trust-region methods and sequential
quadratic programming more thoroughly than existing texts, and includes comprehensive
discussion of such “core curriculum” topics as constrained optimization theory, Newton
and quasi-Newton methods, nonlinear least squares and nonlinear equations, the simplex
method, and penalty and barrier methods for nonlinear programming.

The Audience

We intend that this book will be used in graduate-level courses in optimization, as of-
fered in engineering, operations research, computer science, and mathematics departments.
There is enough material here for a two-semester (or three-quarter) sequence of courses.
We hope, too, that this book will be used by practitioners in engineering, basic science, and
industry, and our presentation style is intended to facilitate self-study. Since the book treats
anumber of new algorithms and ideas that have not been described in earlier textbooks, we
hope that this book will also be a useful reference for optimization researchers.

Prerequisites for this book include some knowledge of linear algebra (including nu-
merical linear algebra) and the standard sequence of calculus courses. To make the book as
self-contained as possible, we have summarized much of the relevant material from these ar-
eas in the Appendix. Our experience in teaching engineering students has shown us that the
material is best assimilated when combined with computer programming projects in which
the student gains a good feeling for the algorithms—their complexity, memory demands,
and elegance—and for the applications. In most chapters we provide simple computer
exercises that require only minimal programming proficiency.

Emphasis and Writing Style

We have used a conversational style to motivate the ideas and present the numerical
algorithms. Rather than being as concise as possible, our aim is to make the discussion flow
in a natural way. As a result, the book is comparatively long, but we believe that it can be
read relatively rapidly. The instructor can assign substantial reading assignments from the
text and focus in class only on the main ideas.

A typical chapter begins with a nonrigorous discussion of the topic at hand, including
figures and diagrams and excluding technical details as far as possible. In subsequent sections,

PREFACE

the algorithms are motivated and discussed, and then stated explicitly. The major theoretical
results are stated, and in many cases proved, in a rigorous fashion. These proofs can be
skipped by readers who wish to avoid technical details.

The practice of optimization depends not only on efficient and robust algorithms,
but also on good modeling techniques, careful interpretation of results, and user-friendly
software. In this book we discuss the various aspects of the optimization process—modeling,
optimality conditions, algorithms, implementation, and interpretation of results—but not
with equal weight. Examples throughout the book show how practical problems are formu-
lated as optimization problems, but our treatment of modeling is light and serves mainly
to set the stage for algorithmic developments. We refer the reader to Dantzig [86] and
Fourer, Gay, and Kernighan [112] for more comprehensive discussion of this issue. Our
treatment of optimality conditions is thorough but not exhaustive; some concepts are dis-
cussed more extensively in Mangasarian [198] and Clarke [62]. As mentioned above, we are
quite comprehensive in discussing optimization algorithms.

Topics Not Covered

We omit some important topics, such as network optimization, integer programming,
stochastic programming, nonsmooth optimization, and global optimization. Network and
integer optimization are described in some excellent texts: for instance, Ahuja, Magnanti, and
Orlin [1] in the case of network optimization and Nemhauser and Wolsey [224], Papadim-
itriou and Steiglitz [235], and Wolsey [312] in the case of integer programming. Books on
stochastic optimization are only now appearing; we mention those of Kall and Wallace [174],
Birge and Louveaux [22]. Nonsmooth optimization comes in many flavors. The relatively
simple structures that arise in robust data fitting (which is sometimes based on the £, norm)
are treated by Osborne [232] and Fletcher [101]. The latter book also discusses algorithms
for nonsmooth penalty functions that arise in constrained optimization; we discuss these
briefly, too, in Chapter 18. A more analytical treatment of nonsmooth optimization is given
by Hiriart-Urruty and Lemaréchal [170]. We omit detailed treatment of some important
topics that are the focus of intense current research, including interior-point methods for
nonlinear programming and algorithms for complementarity problems.

Additional Resource

The material in the book is complemented by an online resource called the NEOS
Guide, which can be found on the World-Wide Web at

http://www.mcs.anl.gov/otc/Guide/

The Guide contains information about most areas of optimization, and presents a number
of case studies that describe applications of various optimization algorithms to real-world
problems such as portfolio optimization and optimal dieting. Some of this material is
interactive in nature and has been used extensively for class exercises.

XX

PREFACE

For the most part, we have omitted detailed discussions of specific software packages,
and refer the reader to Moré and Wright [217] or to the Software Guide section of the NEOS
Guide, which can be found at

http://www.mcs.anl.gov/otc/Guide/SoftwareGuide/

Users of optimization software refer in great numbers to this web site, which is being
constantly updated to reflect new packages and changes to existing software.

Acknowledgments

We are most grateful to the following colleagues for their input and feedback on various
sections of this work: Chris Bischof, Richard Byrd, George Corliss, Bob Fourer, David Gay,
Jean-Charles Gilbert, Phillip Gill, Jean-Pierre Goux, Don Goldfarb, Nick Gould, Andreas
Griewank, Matthias Heinkenschloss, Marcelo Marazzi, Hans Mittelmann, Jorge Moré, Will
Naylor, Michael Overton, Bob Plemmons, Hugo Scolnik, David Stewart, Philippe Toint,
Luis Vicente, Andreas Wichter, and Ya-xiang Yuan. We thank Guanghui Liu, who provided
help with many of the exercises, and Jill Lavelle who assisted us in preparing the figures. We
also express our gratitude to our sponsors at the Department of Energy and the National
Science Foundation, who have strongly supported our research efforts in optimization over
the years.

One of us (JN) would like to express his deep gratitude to Richard Byrd, who has taught
him so much about optimization and who has helped him in very many ways throughout
the course of his career.

Final Remark

In the preface to his 1987 book [101], Roger Fletcher described the field of optimization
as a “fascinating blend of theory and computation, heuristics and rigor.” The ever-growing
realm of applications and the explosion in computing power is driving optimization research
in new and exciting directions, and the ingredients identified by Fletcher will continue to
play important roles for many years to come.

Jorge Nocedal Stephen J. Wright
Evanston, IL Argonne, IL

Preface to the
Second Edition

During the six years since the first edition of this book appeared, the field of continuous
optimization has continued to grow and evolve. This new edition reflects a better under-
standing of constrained optimization at both the algorithmic and theoretical levels, and of
the demands imposed by practical applications. Perhaps most notably, new chapters have
been added on two important topics: derivative-free optimization (Chapter 9) and interior-
point methods for nonlinear programming (Chapter 19). The former topic has proved to
be of great interest in applications, while the latter topic has come into its own in recent
years and now forms the basis of successful codes for nonlinear programming.

Apart from the new chapters, we have revised and updated throughout the book,
de-emphasizing or omitting less important topics, enhancing the treatment of subjects of
evident interest, and adding new material in many places. The first part (unconstrained opti-
mization) has been comprehensively reorganized to improve clarity. Discussion of Newton’s
method—the touchstone method for unconstrained problems—is distributed more nat-
urally throughout this part rather than being isolated in a single chapter. An expanded
discussion of large-scale problems appears in Chapter 7.

Some reorganization has taken place also in the second part (constrained optimiza-
tion), with material common to sequential quadratic programming and interior-point
methods now appearing in the chapter on fundamentals of nonlinear programming

-

PREFACE TO THE SECOND EDITION

algorithms (Chapter 15) and the discussion of primal barrier methods moved to the new
interior-point chapter. There is much new material in this part, including a treatment of
nonlinear programming duality, an expanded discussion of algorithms for inequality con-
strained quadratic programming, a discussion of dual simplex and presolving in linear
programming, a summary of practical issues in the implementation of interior-point linear
programming algorithms, a description of conjugate-gradient methods for quadratic pro-
gramming, and a discussion of filter methods and nonsmooth penalty methods in nonlinear
programming algorithms.

In many chapters we have added a Perspectives and Software section near the end, to
place the preceding discussion in context and discuss the state of the art in software. The
appendix has been rearranged with some additional topics added, so that it can be used
in a more stand-alone fashion to cover some of the mathematical background required
for the rest of the book. The exercises have been revised in most chapters. After these
many additions, deletions, and changes, the second edition is only slightly longer than the
first, reflecting our belief that careful selection of the material to include and exclude is an
important responsibility for authors of books of this type.

A manual containing solutions for selected problems will be available to bona fide
instructors through the publisher. A list of typos will be maintained on the book’s web site,
which is accessible from the web pages of both authors.

We acknowledge with gratitude the comments and suggestions of many readers of the
first edition, who sent corrections to many errors and provided valuable perspectives on the
material, which led often to substantial changes. We mention in particular Frank Curtis,
Michael Ferris, Andreas Griewank, Jacek Gondzio, Sven Leyffer, Philip Loewen, Rembert
Reemtsen, and David Stewart.

Our special thanks goes to Michael Overton, who taught from a draft of the second
edition and sent many detailed and excellent suggestions. We also thank colleagues who
read various chapters of the new edition carefully during development, including Richard
Byrd, Nick Gould, Paul Hovland, Gabo Lopéz-Calva, Long Hei, Katya Scheinberg, Andreas
Waichter, and Richard Waltz. We thank Jill Wright for improving some of the figures and for
the new cover graphic.

We mentioned in the original preface several areas of optimization that are not
covered in this book. During the past six years, this list has only grown longer, as the field
has continued to expand in new directions. In this regard, the following areas are particularly
noteworthy: optimization problems with complementarity constraints, second-order cone
and semidefinite programming, simulation-based optimization, robust optimization, and
mixed-integer nonlinear programming. All these areas have seen theoretical and algorithmic
advances in recent years, and in many cases developments are being driven by new classes
of applications. Although this book does not cover any of these areas directly, it provides a
foundation from which they can be studied.

Jorge Nocedal — Stephen J. Wright
Evanston, IL Madison, WI

CHAPTER

Introduction

People optimize. Investors seek to create portfolios that avoid excessive risk while achieving a
high rate of return. Manufacturers aim for maximum efficiency in the design and operation
of their production processes. Engineers adjust parameters to optimize the performance of
their designs.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules
in an isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

CHAPTER 1. [INTRODUCTION

Optimization is an important tool in decision science and in the analysis of physical
systems. To make use of this tool, we must first identify some objective, a quantitative measure
of the performance of the system under study. This objective could be profit, time, potential
energy, or any quantity or combination of quantities that can be represented by a single
number. The objective depends on certain characteristics of the system, called variables or
unknowns. Our goal is to find values of the variables that optimize the objective. Often the
variables are restricted, or constrained, in some way. For instance, quantities such as electron
density in a molecule and the interest rate on a loan cannot be negative.

The process of identifying objective, variables, and constraints for a given problem is
known as modeling. Construction of an appropriate model is the first step—sometimes the
most important step—in the optimization process. If the model is too simplistic, it will not
give useful insights into the practical problem. If it is too complex, it may be too difficult to
solve.

Once the model has been formulated, an optimization algorithm can be used to
find its solution, usually with the help of a computer. There is no universal optimization
algorithm but rather a collection of algorithms, each of which is tailored to a particular type
of optimization problem. The responsibility of choosing the algorithm that is appropriate
for a specific application often falls on the user. This choice is an important one, as it may
determine whether the problem is solved rapidly or slowly and, indeed, whether the solution
is found at all.

After an optimization algorithm has been applied to the model, we must be able to
recognize whether it has succeeded in its task of finding a solution. In many cases, there
are elegant mathematical expressions known as optimality conditions for checking that the
current set of variables is indeed the solution of the problem. If the optimality conditions are
not satisfied, they may give useful information on how the current estimate of the solution
can be improved. The model may be improved by applying techniques such as sensitivity
analysis, which reveals the sensitivity of the solution to changes in the model and data.
Interpretation of the solution in terms of the application may also suggest ways in which the
model can be refined or improved (or corrected). If any changes are made to the model, the
optimization problem is solved anew, and the process repeats.

MATHEMATICAL FORMULATION

Mathematically speaking, optimization is the minimization or maximization of a
function subject to constraints on its variables. We use the following notation:

- x is the vector of variables, also called unknowns or parameters;

- f is the objective function, a (scalar) function of x that we want to maximize or
minimize;

- ¢; are constraint functions, which are scalar functions of x that define certain equations
and inequalities that the unknown vector x must satisfy.

Long Chen

Long Chen

Long Chen

Long Chen

CHAPTER 1. [INTRODUCTION 3

X
c
“ N _ contours of f
feasible
region , 4
N

;xg

Figure 1.1 Geometrical representation of the problem (1.2).

Using this notation, the optimization problem can be written as follows:

. . c(x)=0, ie€ég,
min f(x) subject to (1.1)
xeR” ci(x)>0, iel

Here 7 and & are sets of indices for equality and inequality constraints, respectively.
As a simple example, consider the problem

. 2 2 . .Xf — X2 = 0,
min (x; —2)°+ (x, — 1) subject to (1.2)
X1 +x; <2,

We can write this problem in the form (1.1) by defining

fx) = (x1 —2)" + (x; — 1), x=|:X1i|,

X2

42
c(x)=|:q(X):|=|: e } I={L2), £=0.

c(x) —x;—x+2

Figure 1.1 shows the contours of the objective function, that is, the set of points for which
f(x) has a constant value. It also illustrates the feasible region, which is the set of points
satisfying all the constraints (the area between the two constraint boundaries), and the point

CHAPTER 1. [INTRODUCTION

x*, which is the solution of the problem. Note that the “infeasible side” of the inequality
constraints is shaded.

The example above illustrates, too, that transformations are often necessary to express
an optimization problem in the particular form (1.1). Often it is more natural or convenient
to label the unknowns with two or three subscripts, or to refer to different variables by
completely different names, so that relabeling is necessary to pose the problem in the form
(1.1). Another common difference is that we are required to maximize rather than minimize
/> but we can accommodate this change easily by minimizing — f in the formulation (1.1).
Good modeling systems perform the conversion to standardized formulations such as (1.1)
transparently to the user.

EXAMPLE: A TRANSPORTATION PROBLEM

We begin with a much simplified example of a problem that might arise in manufac-
turing and transportation. A chemical company has 2 factories F; and F, and a dozen retail
outlets Ry, Ry, ..., Ryp. Each factory F; can produce g; tons of a certain chemical product
each week; a; is called the capacity of the plant. Each retail outlet R; has a known weekly
demand of b; tons of the product. The cost of shipping one ton of the product from factory
F; to retail outlet R; is ¢;;.

The problem is to determine how much of the product to ship from each factory
to each outlet so as to satisfy all the requirements and minimize cost. The variables of the
problem are x;;, i = 1,2, j = 1, ..., 12, where x;; is the number of tons of the product
shipped from factory F; to retail outlet R;; see Figure 1.2. We can write the problem as

mianijxij (133)
ij
12
subject ton,-j <a, =12, (1.3b)
j=1
2
Y oxijzby j=1....12, (1.3¢)
i=1
x>0, i=12 j=1,...,12 (1.3d)

This type of problem is known as a linear programming problem, since the objective function
and the constraints are all linear functions. In a more practical model, we would also include
costs associated with manufacturing and storing the product. There may be volume discounts
in practice for shipping the product; for example the cost (1.3a) could be represented by
Zi ; Cij \/W , where § > 0 is a small subscription fee. In this case, the problem is a
nonlinear program because the objective function is nonlinear.

CHAPTER 1. [INTRODUCTION

® R

® R
X, 2

Ny

® R

oy

® R,

Figure 1.2 A transportation problem.

CONTINUOUS VERSUS DISCRETE OPTIMIZATION

In some optimization problems the variables make sense only if they take on integer
values. For example, a variable x; could represent the number of power plants of type i
that should be constructed by an electicity provider during the next 5 years, or it could
indicate whether or not a particular factory should be located in a particular city. The
mathematical formulation of such problems includes integrality constraints, which have
the form x; € Z, where Z is the set of integers, or binary constraints, which have the form
x; € {0, 1}, in addition to algebraic constraints like those appearing in (1.1). Problems of
this type are called integer programming problems. If some of the variables in the problem
are not restricted to be integer or binary variables, they are sometimes called mixed integer
programming problems, or MIPs for short.

Integer programming problems are a type of discrete optimization problem. Generally,
discrete optimization problems may contain not only integers and binary variables, but also
more abstract variable objects such as permutations of an ordered set. The defining feature
of a discrete optimization problem is that the unknown x is drawn from a a finite (but often
very large) set. By contrast, the feasible set for continuous optimization problems—the class
of problems studied in this book—is usually uncountably infinite, as when the components
of x are allowed to be real numbers. Continuous optimization problems are normally easier
to solve because the smoothness of the functions makes it possible to use objective and
constraint information at a particular point x to deduce information about the function’s
behavior at all points close to x. In discrete problems, by constrast, the behavior of the
objective and constraints may change significantly as we move from one feasible point to
another, even if the two points are “close” by some measure. The feasible sets for discrete
optimization problems can be thought of as exhibiting an extreme form of nonconvexity, as
a convex combination of two feasible points is in general not feasible.

5

CHAPTER 1. [INTRODUCTION

Discrete optimization problems are not addressed directly in this book; we refer the
reader to the texts by Papadimitriou and Steiglitz [235], Nemhauser and Wolsey [224], Cook
etal. [77],and Wolsey [312] for comprehensive treatments of this subject. We note, however,
that continuous optimization techniques often play an important role in solving discrete
optimization problems. For instance, the branch-and-bound method for integer linear
programming problems requires the repeated solution of linear programming “relaxations,”
in which some of the integer variables are fixed at integer values, while for other integer
variables the integrality constraints are temporarily ignored. These subproblems are usually
solved by the simplex method, which is discussed in Chapter 13 of this book.

CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Problems with the general form (1.1) can be classified according to the nature of the
objective function and constraints (linear, nonlinear, convex), the number of variables (large
or small), the smoothness of the functions (differentiable or nondifferentiable), and so on.
An important distinction is between problems that have constraints on the variables and
those that do not. This book is divided into two parts according to this classification.

Unconstrained optimization problems, for which we have £ = Z = @ in (1.1), arise
directly in many practical applications. Even for some problems with natural constraints
on the variables, it may be safe to disregard them as they do not affect on the solution and
do not interfere with algorithms. Unconstrained problems arise also as reformulations of
constrained optimization problems, in which the constraints are replaced by penalization
terms added to objective function that have the effect of discouraging constraint violations.

Constrained optimization problems arise from models in which constraints play an
essential role, for example in imposing budgetary constraints in an economic problem or
shape constraints in a design problem. These constraints may be simple bounds such as
0 < x; < 100, more general linear constraints such as). x; < 1, or nonlinear inequalities
that represent complex relationships among the variables.

When the objective function and all the constraints are linear functions of x, the
problem is a linear programming problem. Problems of this type are probably the most
widely formulated and solved of all optimization problems, particularly in management,
financial, and economic applications. Nonlinear programming problems, in which at least
some of the constraints or the objective are nonlinear functions, tend to arise naturally in
the physical sciences and engineering, and are becoming more widely used in management
and economic sciences as well.

GLOBAL AND LOCAL OPTIMIZATION

Many algorithms for nonlinear optimization problems seek only a local solution, a
point at which the objective function is smaller than at all other feasible nearby points. They
do not always find the global solution, which is the point with lowest function value among all
feasible points. Global solutions are needed in some applications, but for many problems they

Long Chen

Long Chen

Long Chen

CHAPTER 1. [INTRODUCTION

are difficult to recognize and even more difficult to locate. For convex programmingproblems,
and more particularly for linear programs, local solutions are also global solutions. General
nonlinear problems, both constrained and unconstrained, may possess local solutions that
are not global solutions.

In this book we treat global optimization only in passing and focus instead on the
computation and characterization oflocal solutions. We note, however, that many successful
global optimization algorithms require the solution of many local optimization problems,
to which the algorithms described in this book can be applied.

Research papers on global optimization can be found in Floudas and Pardalos [109]
and in the Journal of Global Optimization.

STOCHASTIC AND DETERMINISTIC OPTIMIZATION

In some optimization problems, the model cannot be fully specified because it depends
on quantities that are unknown at the time of formulation. This characteristic is shared by
many economic and financial planning models, which may depend for example on future
interest rates, future demands for a product, or future commodity prices, but uncertainty
can arise naturally in almost any type of application.

Rather than just use a “best guess” for the uncertain quantities, modelers may obtain
more useful solutions by incorporating additional knowledge about these quantities into
the model. For example, they may know a number of possible scenarios for the uncertain
demand, along with estimates of the probabilities of each scenario. Stochastic optimization
algorithms use these quantifications of the uncertainty to produce solutions that optimize
the expected performance of the model.

Related paradigms for dealing with uncertain data in the model include chance-
constrained optimization, in which we ensure that the variables x satisfy the given constraints
to some specified probability, and robust optimization, in which certain constraints are
required to hold for all possible values of the uncertain data.

We do not consider stochastic optimization problems further in this book, focusing
instead on deterministic optimization problems, in which the model is completely known.
Many algorithms for stochastic optimization do, however, proceed by formulating one or
more deterministic subproblems, each of which can be solved by the techniques outlined
here.

Stochastic and robust optimization have seen a great deal of recent research activity.
For further information on stochastic optimization, consult the books of Birge and
Louveaux [22] and Kall and Wallace [174]. Robust optimization is discussed in Ben-Tal
and Nemirovski [15].

CONVEXITY

The concept of convexity is fundamental in optimization. Many practical problems
possess this property, which generally makes them easier to solve both in theory and practice.

CHAPTER 1. [INTRODUCTION

The term “convex” can be applied both to sets and to functions. A set S € R" is a
convex set if the straight line segment connecting any two points in S lies entirely inside S.
Formally, for any two points x € Sandy € S, wehaveax + (1 —«a)y € Sforalla € [0, 1].
The function f is a convex function if its domain S is a convex set and if for any two points
x and y in S, the following property is satisfied:

flax+ (1 —a)y) <af(x)+ (1 —a)f(y), forala e [0,1]. (1.4)

Simple instances of convex sets include the unit ball {y € R" | ||y||, < 1}; and any

polyhedron, which is a set defined by linear equalities and inequalities, that is,
{xeR"|Ax =b, Cx <d},

where A and C are matrices of appropriate dimension, and b and d are vectors. Simple
instances of convex functions include the linear function f(x) = ¢’ x + «, for any constant
vector ¢ € R" and scalar o; and the convex quadratic function f(x) = x Hx, where H is
a symmetric positive semidefinite matrix.

We say that f is strictly convex if the inequality in (1.4) is strict whenever x # y and
« is in the open interval (0, 1). A function f is said to be concave if — f is convex.

If the objective function in the optimization problem (1.1) and the feasible region are
both convex, then any local solution of the problem is in fact a global solution.

The term convex programming is used to describe a special case of the general
constrained optimization problem (1.1) in which

o the objective function is convex,
o the equality constraint functions ¢;(-), i € &, are linear, and

e the inequality constraint functions ¢;(-), i € Z, are concave.

OPTIMIZATION ALGORITHMS

Optimization algorithms are iterative. They begin with an initial guess of the variable
x and generate a sequence of improved estimates (called “iterates”) until they terminate,
hopefully at a solution. The strategy used to move from one iterate to the next distinguishes
one algorithm from another. Most strategies make use of the values of the objective function
/> the constraint functions ¢;, and possibly the first and second derivatives of these functions.
Some algorithms accumulate information gathered at previous iterations, while others use
only local information obtained at the current point. Regardless of these specifics (which
will receive plenty of attention in the rest of the book), good algorithms should possess the
following properties:

e Robustness. They should perform well on a wide variety of problems in their class,
for all reasonable values of the starting point.

Long Chen

CHAPTER 1. [INTRODUCTION

e Efficiency. They should not require excessive computer time or storage.

e Accuracy. They should be able to identify a solution with precision, without being
overly sensitive to errors in the data or to the arithmetic rounding errors that occur
when the algorithm is implemented on a computer.

These goals may conflict. For example, a rapidly convergent method for a large uncon-
strained nonlinear problem may require too much computer storage. On the other hand,
a robust method may also be the slowest. Tradeoffs between convergence rate and storage
requirements, and between robustness and speed, and so on, are central issues in numerical
optimization. They receive careful consideration in this book.

The mathematical theory of optimization is used both to characterize optimal points
and to provide the basis for most algorithms. It is not possible to have a good understanding
of numerical optimization without a firm grasp of the supporting theory. Accordingly,
this book gives a solid (though not comprehensive) treatment of optimality conditions, as
well as convergence analysis that reveals the strengths and weaknesses of some of the most
important algorithms.

NOTES AND REFERENCES

Optimization traces its roots to the calculus of variations and the work of Euler and
Lagrange. The development of linear programming n the 1940s broadened the field and
stimulated much of the progress in modern optimization theory and practice during the
past 60 years.

Optimization is often called mathematical programming, a somewhat confusing term
coined in the 1940s, before the word “programming” became inextricably linked with
computer software. The original meaning of this word (and the intended one in this context)
was more inclusive, with connotations of algorithm design and analysis.

Modeling will not be treated extensively in the book. It is an essential subject in its
own right, as it makes the connection between optimization algorithms and software on
the one hand, and applications on the other hand. Information about modeling techniques
for various application areas can be found in Dantzig [86], Ahuja, Magnanti, and Orlin [1],
Fourer, Gay, and Kernighan [112], Winston [308], and Rardin [262].

Long Chen

Junda

\/

Optimizat

In unconstrained optimization, we minimize an objective function that depends on real
variables, with no restrictions at all on the values of these variables. The mathematical

CHAPTER

mner

NCOI

formulation is

where x € R” is a real vector with n > 1 components and f : R* — R is a smooth

function.

stra

*

tals of
ned

*

On

min fx),

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION 11

y
y3 L]
[]
yz """"""" A d
yl 777777 hd L]
\ L L \ !
ot t

Figure 2.1 Least squares data fitting problem.

Usually, we lack a global perspective on the function f. All we know are the values
of f and maybe some of its derivatives at a set of points xg, X1, X2, Fortunately, our
algorithms get to choose these points, and they try to do so in a way that identifies a solution
reliably and without using too much computer time or storage. Often, the information
about f does not come cheaply, so we usually prefer algorithms that do not call for this
information unnecessarily.

(d EXAMPLE 2.1

Suppose that we are trying to find a curve that fits some experimental data. Figure 2.1
plots measurements y1, ¥, . . ., ¥, Of a signal taken at times#,, 5, . . ., ;. From the data and
our knowledge of the application, we deduce that the signal has exponential and oscillatory
behavior of certain types, and we choose to model it by the function

o(t;x) =x1 + xze’("r’)z/)‘4 + x5 cos(xgt).
The real numbers x;,i = 1,2, ..., 6, are the parameters of the model; we would like to
choose them to make the model values ¢(¢;; x) fit the observed data y; as closely as possible.

To state our objective as an optimization problem, we group the parameters x; into a vector
of unknowns x = (x1, xa, ..., x¢)7, and define the residuals

ri(x) =y; — ¢(tj; x), j=12,...,m, (2.2)

which measure the discrepancy between the model and the observed data. Our estimate of

Long Chen

12

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

x will be obtained by solving the problem
min f(x) = rE(x) () 4 (X). (2.3)
xXe

This is a nonlinear least-squares problem, a special case of unconstrained optimization.

It illustrates that some objective functions can be expensive to evaluate even when the

number of variables is small. Here we have n = 6, but if the number of measurements

m is large (10°, say), evaluation of f(x) for a given parameter vector x is a significant
computation.

O

Suppose that for the data given in Figure 2.1 the optimal solution of (2.3) is ap-
proximately x* = (1.1, 0.01, 1.2, 1.5,2.0,1.5) and the corresponding function value is
f(x*) = 0.34. Because the optimal objective is nonzero, there must be discrepancies be-
tween the observed measurements y; and the model predictions ¢(¢;, x*) for some (usually
most) values of j—the model has not reproduced all the data points exactly. How, then,
can we verify that x* is indeed a minimizer of f? To answer this question, we need to
define the term “solution” and explain how to recognize solutions. Only then can we discuss
algorithms for unconstrained optimization problems.

2.1 WHAT IS A SOLUTION?

Generally, we would be happiest if we found a global minimizer of f, a point where the
function attains its least value. A formal definition is

A point x* is a global minimizer if f(x*) < f(x) for all x,

where x ranges over all of R" (or at least over the domain of interest to the modeler). The
global minimizer can be difficult to find, because our knowledge of f is usually only local.
Since our algorithm does not visit many points (we hope!), we usually do not have a good
picture of the overall shape of f, and we can never be sure that the function does not take a
sharp dip in some region that has not been sampled by the algorithm. Most algorithms are
able to find only a local minimizer, which is a point that achieves the smallest value of f in
its neighborhood. Formally, we say:

A point x* is a local minimizer if there is a neighborhood A of x* such that f(x*) <
f(x)forallx e NV.

(Recall thata neighborhood of x* is simply an open set that contains x*.) A point that satisfies
this definition is sometimes called a weak local minimizer. This terminology distinguishes

Long Chen

2.1. WHAT IS A SOLUTION?

it from a strict local minimizer, which is the outright winner in its neighborhood.
Formally,

A point x* is a strict local minimizer (also called a strong local minimizer) if there is a
neighborhood N of x* such that f(x*) < f(x) forallx € A with x # x*.

For the constant function f(x) = 2, every point x is a weak local minimizer, while the
function f(x) = (x — 2)* has a strict local minimizer at x = 2.
A slightly more exotic type of local minimizer is defined as follows.

A point x* is an isolated local minimizer if there is a neighborhood A/ of x* such that
x* is the only local minimizer in \V.

Some strict local minimizers are not isolated, as illustrated by the function
f(x) =x*cos(1/x)+2x*, f(0) =0,

which is twice continuously differentiable and has a strict local minimizer at x* = 0.
However, there are strict local minimizers at many nearby points x;, and we can label these
points so that x; — 0as j — oo.

While strict local minimizers are not always isolated, it is true that all isolated local
minimizers are strict.

Figure 2.2 illustrates a function with many local minimizers. It is usually difficult
to find the global minimizer for such functions, because algorithms tend to be “trapped”
at local minimizers. This example is by no means pathological. In optimization problems
associated with the determination of molecular conformation, the potential function to be
minimized may have millions of local minima.

Figure 2.2 A difficult case for global minimization.

13

14 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Sometimes we have additional “global” knowledge about f that may help in identi-
fying global minima. An important special case is that of convex functions, for which every
local minimizer is also a global minimizer.

RECOGNIZING A LOCAL MINIMUM

From the definitions given above, it might seem that the only way to find out whether
a point x* is a local minimum is to examine all the points in its immediate vicinity, to
make sure that none of them has a smaller function value. When the function f is smooth,
however, there are more efficient and practical ways to identify local minima. In particular, if
f is twice continuously differentiable, we may be able to tell that x* is alocal minimizer (and
possibly a strict local minimizer) by examining just the gradient V f(x*) and the Hessian
V2 f(x*).

The mathematical tool used to study minimizers of smooth functions is Taylor’s
theorem. Because this theorem is central to our analysis throughout the book, we state it
now. Its proof can be found in any calculus textbook.

Theorem 2.1 (Taylor's Theorem).
Suppose that f : R" — R is continuously differentiable and that p € R". Then we have
that

fx+p)=fx)+Vfx+1p)p, (2.4)

for somet € (0, 1). Moreover, if f is twice continuously differentiable, we have that

Vilx+p)=Vfx)+ /01 V2 f(x +tp)pdt, (2.5)
and that
fa+p)= @)+ V) p+ip"VEF(x +1p)p, (2.6)
for somet € (0, 1).

Necessary conditions for optimality are derived by assuming that x* is a local minimizer
and then proving facts about V f (x*) and V2 f (x*).

Theorem 2.2 (First-Order Necessary Conditions).

If x* is a local minimizer and f is continuously differentiable in an open neighborhood
ofx*, then V f (x*) = 0.

2.1. WHAT Is A SoLuTiON? 15

PROOF. Suppose for contradiction that V f(x*) # 0. Define the vector p = —V f(x*) and
note that p”V f(x*) = —||[Vf(x*)]|> < 0. Because V f is continuous near x*, there is a
scalar T > 0 such that

pIVF(x*+1tp) <0, forallz € [0, T].
For any 7 € (0, T'], we have by Taylor’s theorem that
fx*+ip) = f(x*) +ip" Vf(x* +1p), for some t € (0, 7).

Therefore, f(x* + fp) < f(x*) for all € (0, T]. We have found a direction leading
away from x* along which f decreases, so x* is not a local minimizer, and we have a
contradiction. d

We call x* a stationary point if V f(x*) = 0. According to Theorem 2.2, any local
minimizer must be a stationary point.

For the next result we recall that a matrix B is positive definite if p” Bp > 0 for all
p # 0, and positive semidefinite if p” Bp > 0 for all p (see the Appendix).

Theorem 2.3 (Second-Order Necessary Conditions).
Ifx* is a local minimizer of f and V* f exists and is continuous in an open neighborhood
of x*, then V f (x*) = 0 and V2 f (x*) is positive semidefinite.

PrOOF. We know from Theorem 2.2 that V f(x*) = 0. For contradiction, assume
that V2 f(x*) is not positive semidefinite. Then we can choose a vector p such that
pIV2f(x*)p < 0, and because V?f is continuous near x*, there is a scalar T > 0
such that pT V2 f(x* +tp)p < Oforallt € [0, T].

By doing a Taylor series expansion around x*, we have for all 7 € (0, T'] and some
t € (0, 1) that

f*+1p) = fO*) +ip" V(&) +37p" V2 f(x* +1p)p < fx¥).

As in Theorem 2.2, we have found a direction from x* along which f is decreasing, and so
again, x* is not a local minimizer. O

We now describe sufficient conditions, which are conditions on the derivatives of f at
the point z* that guarantee that x* is a local minimizer.

16 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Theorem 2.4 (Second-Order Sufficient Conditions).
Suppose that V2 f is continuous in an open neighborhood of x* and that V f (x*) = 0
and V? f (x*) is positive definite. Then x* is a strict local minimizer of f.

PROOF. Because the Hessian is continuous and positive definite at x*, we can choose a radius
r > 0so that V2 f(x) remains positive definite for all x in the open ball D = {z | |z —x*| <
r}. Taking any nonzero vector p with || p|| < r, we have x* 4+ p € D and so

FO&F+p)=f&") 4+ p' V) +1p TV f(2)p
= f(x*)+1ip"V?f(@)p.

where z = x* +1p forsomet € (0, 1). Since z € D, we have p” V2 f(z)p > 0,and therefore
f(x* 4+ p) > f(x*), giving the result. 0

Note that the second-order sufficient conditions of Theorem 2.4 guarantee something
stronger than the necessary conditions discussed earlier; namely, that the minimizer is a strict
local minimizer. Note too that the second-order sufficient conditions are not necessary: A
point x* may be a strict local minimizer, and yet may fail to satisfy the sufficient conditions.
A simple example is given by the function f(x) = x*, for which the point x* = 0 is a
strict local minimizer at which the Hessian matrix vanishes (and is therefore not positive
definite).

When the objective function is convex, local and global minimizers are simple to
characterize.

Theorem 2.5.
When f is convex, any local minimizer x* is a global minimizer of f. If in addition f is
differentiable, then any stationary point x* is a global minimizer of f .

PROOF. Suppose that x* is a local but not a global minimizer. Then we can find a point
z € R" with f(z) < f(x*). Consider the line segment that joins x* to z, that is,

x =Az+ (1 —2r)x", for some A € (0, 1]. (2.7)
By the convexity property for f, we have
J) =A@ +A =1 f(") < f(x7). (2.8)

Any neighborhood A of x* contains a piece of the line segment (2.7), so there will always
be points x € N at which (2.8) is satisfied. Hence, x* is not a local minimizer.

2.1. WHAT IS A SOLUTION?

For the second part of the theorem, suppose that x* is not a global minimizer and
choose z as above. Then, from convexity, we have

Vi) (z —x*) = %f(x* + Az —x)) |p=0 (see the Appendix)
S+ Az —x") = f(x7)

= lim

240 A
<1 A (2)+ (1= 2) f(x*) = f(x*)
< lim

240 A

= f(z) = f(x) <0.
Therefore, V f(x*) # 0, and so x* is not a stationary point. O

These results, which are based on elementary calculus, provide the foundations for
unconstrained optimization algorithms. In one way or another, all algorithms seek a point
where V f () vanishes.

NONSMOOTH PROBLEMS

This book focuses on smooth functions, by which we generally mean functions whose
second derivatives exist and are continuous. We note, however, that there are interesting
problems in which the functions involved may be nonsmooth and even discontinuous. It is
not possible in general to identify a minimizer of a general discontinuous function. If, how-
ever, the function consists of a few smooth pieces, with discontinuities between the pieces,
it may be possible to find the minimizer by minimizing each smooth piece individually.

If the function is continuous everywhere but nondifferentiable at certain points,
as in Figure 2.3, we can identify a solution by examing the subgradient or generalized

x* X

Figure 2.3 Nonsmooth function with minimum at a kink.

17

18

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

gradient, which are generalizations of the concept of gradient to the nonsmooth case.
Nonsmooth optimization is beyond the scope of this book; we refer instead to Hiriart-
Urruty and Lemaréchal [170] for an extensive discussion of theory. Here, we mention
only that the minimization of a function such as the one illustrated in Figure 2.3 (which
contains a jump discontinuity in the first derivative f’(x) at the minimum) is difficult
because the behavior of f is not predictable near the point of nonsmoothness. That
is, we cannot be sure that information about f obtained at one point can be used
to infer anything about f at neighboring points, because points of nondifferentiabil-
ity may intervene. However, minimization of certain special nondifferentiable functions,
such as

J&x) = lr(olh, Jx) = 1llr()lle (2.9)

(where r(x) is a vector function), can be reformulated as smooth constrained optimiza-
tion problems; see Exercise 12.5 in Chapter 12 and (17.31). The functions (2.9) are
useful in data fitting, where r(x) is the residual vector whose components are defined
in (2.2).

2.2 OVERVIEW OF ALGORITHMS

The last forty years have seen the development of a powerful collection of algorithms for
unconstrained optimization of smooth functions. We now give a broad description of their
main properties, and we describe them in more detail in Chapters 3, 4, 5, 6, and 7. All
algorithms for unconstrained minimization require the user to supply a starting point,
which we usually denote by xg. The user with knowledge about the application and the
data set may be in a good position to choose x, to be a reasonable estimate of the solution.
Otherwise, the starting point must be chosen by the algorithm, either by a systematic
approach or in some arbitrary manner.

Beginning at xy, optimization algorithms generate a sequence of iterates {x;}p2,
that terminate when either no more progress can be made or when it seems that a so-
lution point has been approximated with sufficient accuracy. In deciding how to move
from one iterate x; to the next, the algorithms use information about the function f at
Xk, and possibly also information from earlier iterates x¢, x1, ..., x¢—1. They use this in-
formation to find a new iterate x;4; with a lower function value than xj. (There exist
nonmonotone algorithms that do not insist on a decrease in f at every step, but even these
algorithms require f to be decreased after some prescribed number m of iterations, that is,
J) < f (Kk=m)-)

There are two fundamental strategies for moving from the current point x; to a new
iterate x;41. Most of the algorithms described in this book follow one of these approaches.

2.92. OVERVIEW OF ALGORITHMS

TWO STRATEGIES: LINE SEARCH AND TRUST REGION

In the line search strategy, the algorithm chooses a direction p; and searches along
this direction from the current iterate x; for a new iterate with a lower function value.
The distance to move along p; can be found by approximately solving the following one-
dimensional minimization problem to find a step length «:

mig f(xx +apy). (2.10)

By solving (2.10) exactly, we would derive the maximum benefit from the direction py, but
an exact minimization may be expensive and is usually unnecessary. Instead, the line search
algorithm generates a limited number of trial step lengths until it finds one that loosely
approximates the minimum of (2.10). At the new point, a new search direction and step
length are computed, and the process is repeated.

In the second algorithmic strategy, known as trust region, the information gathered
about f is used to construct a model function m; whose behavior near the current point
Xy is similar to that of the actual objective function f. Because the model m; may not be a
good approximation of f when x is far from x;, we restrict the search for a minimizer of m;
to some region around x;. In other words, we find the candidate step p by approximately
solving the following subproblem:

min my(x; + p), where x; + p lies inside the trust region. (2.11)
P

If the candidate solution does not produce a sufficient decrease in f, we conclude that the
trust region is too large, and we shrink it and re-solve (2.11). Usually, the trust region is a
ball defined by || p|l, < A, where the scalar A > 0 is called the trust-region radius. Elliptical
and box-shaped trust regions may also be used.

The model my in (2.11) is usually defined to be a quadratic function of the form

m(x + p) = fi + p"V fi + 30" Bep, (2.12)

where fi, V fi,and By are a scalar, vector, and matrix, respectively. As the notation indicates,
S and V f; are chosen to be the function and gradient values at the point xy, so that my
and f are in agreement to first order at the current iterate x;. The matrix By is either the
Hessian V? f; or some approximation to it.

Suppose that the objective function is given by f(x) = 10(x; — x7)* + (1 — x1)*. At
the point x; = (0, 1) its gradient and Hessian are

or [2 g | <30
=15 | =0 0 |

19

20 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

contours

of f

unconstrained
minimizer

contours
of model

Figure2.4 Two possible trust regions (circles) and their corresponding steps pi. The
solid lines are contours of the model function my.

The contour lines of the quadratic model (2.12) with By = V? f; are depicted in Figure 2.4,
which also illustrates the contours of the objective function f and the trust region. We
have indicated contour lines where the model m; has values 1 and 12. Note from Figure 2.4
that each time we decrease the size of the trust region after failure of a candidate iterate,
the step from x; to the new candidate will be shorter, and it usually points in a different
direction from the previous candidate. The trust-region strategy differs in this respect from
line search, which stays with a single search direction.

In a sense, the line search and trust-region approaches differ in the order in which they
choose the direction and distance of the move to the next iterate. Line search starts by fixing
the direction p; and then identifying an appropriate distance, namely the step length . In
trust region, we first choose a maximum distance—the trust-region radius Ay—and then
seek a direction and step that attain the best improvement possible subject to this distance
constraint. If this step proves to be unsatisfactory, we reduce the distance measure Ay and
try again.

The line search approach is discussed in more detail in Chapter 3. Chapter 4 discusses
the trust-region strategy, including techniques for choosing and adjusting the size of the re-
gion and for computing approximate solutions to the trust-region problems (2.11). We now
preview two major issues: choice of the search direction py inline search methods, and choice
of the Hessian By in trust-region methods. These issues are closely related, as we now observe.

SEARCH DIRECTIONS FOR LINE SEARCH METHODS

The steepest descent direction —V f; is the most obvious choice for search direction
for a line search method. It is intuitive; among all the directions we could move from xy,

2.9. OVERVIEW OF ALGORITHMS

it is the one along which f decreases most rapidly. To verify this claim, we appeal again
to Taylor’s theorem (Theorem 2.1), which tells us that for any search direction p and
step-length parameter o, we have

fOx+ap) = fx) +ap"V fi + 32’ p" V2 f(xp +tp)p, forsomer € (0,)

(see (2.6)). The rate of change in f along the direction p at x; is simply the coefficient of
o, namely, pTv [k Hence, the unit direction p of most rapid decrease is the solution to the
problem

min p’V fi, subject to || p|| = 1. (2.13)
P

Since pTV fi = | pll IV fill cos@ = ||V fi|| cos 8, where 6 is the angle between p and V f;,
it is easy to see that the minimizer is attained when cos® = —1 and

P ==Vi/IVfil,

as claimed. As we illustrate in Figure 2.5, this direction is orthogonal to the contours of the
function.

The steepest descent method is a line search method that moves along py = —V f; at
every step. It can choose the step length o in a variety of ways, as we discuss in Chapter 3. One
advantage of the steepest descent direction is that it requires calculation of the gradient V f;
but not of second derivatives. However, it can be excruciatingly slow on difficult problems.

Line search methods may use search directions other than the steepest descent direc-
tion. In general, any descent direction—one that makes an angle of strictly less than 7 /2
radians with —V f;—is guaranteed to produce a decrease in f, provided that the step length

Figure 2.5 Steepest descent direction for a function of two variables.

21

22 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Figure 2.6
A downhill direction py.

is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem.
From (2.6), we have that

[+ epe) = f(xx) + epp V fi + O(€2).
When py is a downbhill direction, the angle 6; between p; and V f; has cos 9y < 0, so that

PiV fi = Ilpel IV fell cos 6 < 0.

It follows that f(x; + €pr) < f(xx) for all positive but sufficiently small values of €.

Another important search direction—perhaps the most important one of all—
is the Newton direction. This direction is derived from the second-order Taylor series
approximation to f(x; + p), which is

def
fGe+p)~ fi+ P Vi+1p"V fip = mi(p). (2.14)

Assuming for the moment that V2 fi is positive definite, we obtain the Newton direction
by finding the vector p that minimizes my (p). By simply setting the derivative of m;(p) to
zero, we obtain the following explicit formula:

Py =— (V)" Vi (2.15)

The Newton direction is reliable when the difference between the true function
f(xx + p) and its quadratic model my(p) is not too large. By comparing (2.14) with (2.6),
we see that the only difference between these functions is that the matrix V2 f(x; + tp) in
the third term of the expansion has been replaced by V? f;. If V2 f is sufficiently smooth,
this difference introduces a perturbation of only O(|| p||®) into the expansion, so that when
[l pll is small, the approximation f(x; + p) & my(p) is quite accurate.

2.92. OVERVIEW OF ALGORITHMS

The Newton direction can be used in a line search method when V2 f; is positive
definite, for in this case we have

VI pY = —piTV2 fipy < —arlpiII?

for some oy > 0. Unless the gradient V f; (and therefore the step p;) is zero, we have that
V I p¥ < 0, so the Newton direction is a descent direction.

Unlike the steepest descent direction, there is a “natural” step length of 1 associated
with the Newton direction. Most line search implementations of Newton’s method use the
unit step o = 1 where possible and adjust « only when it does not produce a satisfactory
reduction in the value of f.

When V2 f; is not positive definite, the Newton direction may not even be defined,
since (VZ fk) - may not exist. Even when it is defined, it may not satisfy the descent property
v fkT pr < 0, in which case it is unsuitable as a search direction. In these situations, line
search methods modify the definition of p; to make it satisfy the descent condition while
retaining the benefit of the second-order information contained in V2 f;. We describe these
modifications in Chapter 3.

Methods that use the Newton direction have a fast rate of local convergence, typically
quadratic. After a neighborhood of the solution is reached, convergence to high accuracy
often occurs in just a few iterations. The main drawback of the Newton direction is the
need for the Hessian V2 f(x). Explicit computation of this matrix of second derivatives
can sometimes be a cumbersome, error-prone, and expensive process. Finite-difference and
automatic differentiation techniques described in Chapter 8 may be useful in avoiding the
need to calculate second derivatives by hand.

Quasi-Newton search directions provide an attractive alternative to Newton’s method
in that they do not require computation of the Hessian and yet still attain a superlinear rate
of convergence. In place of the true Hessian V2 f;, they use an approximation By, which is
updated after each step to take account of the additional knowledge gained during the step.
The updates make use of the fact that changes in the gradient g provide information about
the second derivative of f along the search direction. By using the expression (2.5) from our
statement of Taylor’s theorem, we have by adding and subtracting the term V2 f(x)p that

1
Vix+p) =Vfx)+Vifx)p+ / [V2f(x +1p) = V2 f(x)] pdr.
0

Because V f () is continuous, the size of the final integral term is o(]| p||). By setting x = x;
and p = x4y — X, we obtain

V fis1 = Vfi + V2 fi bt — xi) + o(llxir — xell)-

When x; and x; lie in a region near the solution x*, within which V2 f is positive definite,
the final term in this expansion is eventually dominated by the V2 f; (x;41 — x) term, and

23

24

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

we can write
V2 fitirr —) 2V fir = V i (2.16)
We choose the new Hessian approximation Bjy; so that it mimics the property (2.16) of

the true Hessian, that is, we require it to satisfy the following condition, known as the secant
equation:

Biiisk = i, (2.17)

where
Sk = Xp41 — Xk, Yk =V fix1 — Vi

Typically, we impose additional conditions on Bjyi, such as symmetry (motivated by
symmetry of the exact Hessian), and a requirement that the difference between successive
approximations By and By have low rank.

Two of the most popular formulae for updating the Hessian approximation By are
the symmetric-rank-one (SR1) formula, defined by

(yk — Bisk)(ye — Bisi)™
(v — Bisi)Tsi

Biy1 = By + , (2.18)

and the BFGS formula, named after its inventors, Broyden, Fletcher, Goldfarb, and Shanno,
which is defined by

Bisksi Be iyl

Biy1 = By — (2.19)

T T,
S Brsk Vi Sk

Note that the difference between the matrices By and By, is a rank-one matrix in the
case of (2.18) and a rank-two matrix in the case of (2.19). Both updates satisfy the secant
equation and both maintain symmetry. One can show that BFGS update (2.19) generates
positive definite approximations whenever the initial approximation B, is positive definite
and s yr > 0. We discuss these issues further in Chapter 6.

The quasi-Newton search direction is obtained by using By in place of the exact
Hessian in the formula (2.15), that is,

P =—B 'V fi. (2.20)

Some practical implementations of quasi-Newton methods avoid the need to factorize By
at each iteration by updating the inverse of By, instead of By itself. In fact, the equivalent

2.92. OVERVIEW OF ALGORITHMS

formula for (2.18) and (2.19), applied to the inverse approximation Hj def B, Uis

1

T
Yk Sk

Hir = (I — pescyl) He (I = peysy) + oesesy o = (2.21)

Calculation of py can then be performed by using the formula py = —HV fi.. This matrix—
vector multiplication is simpler than the factorization/back-substitution procedure that is
needed to implement the formula (2.20).

Two variants of quasi-Newton methods designed to solve large problems—partially
separable and limited-memory updating—are described in Chapter 7.

The last class of search directions we preview here is that generated by nonlinear
conjugate gradient methods. They have the form

P ==V f(xk) + Brpr—1,

where B is a scalar that ensures that p; and p;_; are conjugate—an important concept
in the minimization of quadratic functions that will be defined in Chapter 5. Conjugate
gradient methods were originally designed to solve systems of linear equations Ax = b,
where the coefficient matrix A is symmetric and positive definite. The problem of solving
this linear system is equivalent to the problem of minimizing the convex quadratic function
defined by

P(x) = %xTAx —bTx,
so it was natural to investigate extensions of these algorithms to more general types of
unconstrained minimization problems. In general, nonlinear conjugate gradient directions
are much more effective than the steepest descent direction and are almost as simple to
compute. These methods do not attain the fast convergence rates of Newton or quasi-
Newton methods, but they have the advantage of not requiring storage of matrices. An
extensive discussion of nonlinear conjugate gradient methods is given in Chapter 5.

All of the search directions discussed so far can be used directly in a line search
framework. They give rise to the steepest descent, Newton, quasi-Newton, and conjugate
gradient line search methods. All except conjugate gradients have an analogue in the trust-
region framework, as we now discuss.

MODELS FOR TRUST-REGION METHODS

If we set By = 0 in (2.12) and define the trust region using the Euclidean norm, the
trust-region subproblem (2.11) becomes

min fi + p"Vfi subjectto | pll, < Ax.
»

25

26

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

We can write the solution to this problem in closed form as

AV
IV fill”

Pr =

This is simply a steepest descent step in which the step length is determined by the trust-
region radius; the trust-region and line search approaches are essentially the same in this case.

A more interesting trust-region algorithm is obtained by choosing Bj to be the
exact Hessian V2 f; in the quadratic model (2.12). Because of the trust-region restriction
lpll2 < Ay, the subproblem (2.11) is guaranteed to have a solution even when V2 f; is not
positive definite py, as we see in Figure 2.4. The trust-region Newton method has proved to
be highly effective in practice, as we discuss in Chapter 7.

If the matrix By in the quadratic model function my of (2.12) is defined by means of
a quasi-Newton approximation, we obtain a trust-region quasi-Newton method.

SCALING

The performance of an algorithm may depend crucially on how the problem is formu-
lated. One important issue in problem formulation is scaling. In unconstrained optimization,
aproblem is said to be poorly scaled if changes to x in a certain direction produce much larger
variations in the value of f than do changes to x in another direction. A simple example is
provided by the function f(x) = 10°x7 + xZ, which is very sensitive to small changes in x;
but not so sensitive to perturbations in x,.

Poorly scaled functions arise, for example, in simulations of physical and chemical
systems where different processes are taking place at very different rates. To be more specific,
consider a chemical system in which four reactions occur. Associated with each reaction is
a rate constant that describes the speed at which the reaction takes place. The optimization
problem is to find values for these rate constants by observing the concentrations of each
chemical in the system at different times. The four constants differ greatly in magnitude, since
the reactions take place at vastly different speeds. Suppose we have the following rough esti-
mates for the final values of the constants, each correct to within, say, an order of magnitude:

x0T a1, x A~ 100

Before solving this problem we could introduce a new variable z defined by

X 107 0 0 o 21
X2 0 1 0 0 2
x| 0 0 1 0 |
X4 0 0 0 10° 2

and then define and solve the optimization problem in terms of the new variable z. The

2.92. OVERVIEW OF ALGORITHMS

_ka

Figure 2.7 Poorly scaled and well scaled problems, and performance of the steepest
descent direction.

optimal values of z will be within about an order of magnitude of 1, making the solution
more balanced. This kind of scaling of the variables is known as diagonal scaling.

Scaling is performed (sometimes unintentionally) when the units used to represent
variables are changed. During the modeling process, we may decide to change the units of
some variables, say from meters to millimeters. If we do, the range of those variables and
their size relative to the other variables will both change.

Some optimization algorithms, such as steepest descent, are sensitive to poor scaling,
while others, such as Newton’s method, are unaffected by it. Figure 2.7 shows the contours
of two convex nearly quadratic functions, the first of which is poorly scaled, while the second
is well scaled. For the poorly scaled problem, the one with highly elongated contours, the
steepest descent direction does not yield much reduction in the function, while for the
well-scaled problem it performs much better. In both cases, Newton’s method will produce
a much better step, since the second-order quadratic model (m; in (2.14)) happens to be a
good approximation of f.

Algorithms that are not sensitive to scaling are preferable, because they can handle
poor problem formulations in a more robust fashion. In designing complete algorithms, we
try to incorporate scale invariance into all aspects of the algorithm, including the line search
or trust-region strategies and convergence tests. Generally speaking, it is easier to preserve
scale invariance for line search algorithms than for trust-region algorithms.

& EXERCISES

& 2.1 Compute the gradient V £ (x) and Hessian V2 f(x) of the Rosenbrock function

F(x) =100(x; — x2)? + (1 — x))>. (2.22)

27

28 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Show that x* = (1, 1)7 is the only local minimizer of this function, and that the Hessian
matrix at that point is positive definite.

& 2.2 Show that the function f(x) = 8x; + 12x, + x7 — 2x7 has only one stationary
point, and that it is neither a maximum or minimum, but a saddle point. Sketch the contour
lines of f.

& 2.3 Leta beagiven n-vector, and A be a given n x n symmetric matrix. Compute the
gradient and Hessian of fi(x) = a”x and f5(x) = xT Ax.

& 2.4 Write the second-order Taylor expansion (2.6) for the function cos(1/x) around
a nonzero point x, and the third-order Taylor expansion of cos(x) around any point x.
Evaluate the second expansion for the specific case of x = 1.

& 2.5 Consider the function f : R* — R defined by f(x) = |x||?. Show that the
sequence of iterates {x;} defined by

. 1 cosk
= + 2k sink

satisfies f(x;4+1) < f(xx) for k = 0,1, 2,.... Show that every point on the unit circle
{x | Ix]I> = 1} is a limit point for {x;}. Hint: Every value # € [0, 277] is a limit point of the
subsequence {£} defined by

& =k(mod2rm) =k —2n {iJ ,

2

where the operator |-| denotes rounding down to the next integer.

& 2.6 Prove that all isolated local minimizers are strict. (Hint: Take an isolated local
minimizer x* and a neighborhood N. Show that for any x € N, x # x* we must have

fx) > fx%).)

& 2.7 Suppose that f(x) = xT Qx, where Q isann x n symmetric positive semidefinite
matrix. Show using the definition (1.4) that f(x) is convex on the domain R”. Hint: It may
be convenient to prove the following equivalent inequality:

fy+alx—y)—af(x) =1 —-a)f(y) <0,

foralla € [0, 1] and all x, y € R".

& 2.8 Suppose that f is a convex function. Show that the set of global minimizers of f
is a convex set.

2.92. OVERVIEW OF ALGORITHMS

& 2.9 Consider the function f(xj,x;) = (x1 ~|—x§)2. At the point xT = (1,0) we
consider the search direction p” = (—1, 1). Show that p is a descent direction and find all
minimizers of the problem (2.10).

& 2.10 Suppose that f(z) = f(x), where x = Sz + s for some S € R"*" and s € R".
Show that

Vi) =S8"Vfx), V'f(z)=STV2f(x)S.

(Hint: Use the chain rule to express df/dzj in terms of df/dx; and dx;/dz; for all
ij=1,2,...,n)

& 2.11 Show that the symmetric rank-one update (2.18) and the BFGS update (2.19)
are scale-invariant if the initial Hessian approximations By are chosen appropriately. That
is, using the notation of the previous exercise, show that if these methods are applied to
f(x) starting from xo = Szo + s with initial Hessian By, and to f (z) starting from zo with
initial Hessian S” B, S, then all iterates are related by x; = Sz; + 5. (Assume for simplicity
that the methods take unit step lengths.)

& 2.12 Suppose that a function f of two variables is poorly scaled at the solution x*.
Write two Taylor expansions of f around x*—one along each coordinate direction—and
use them to show that the Hessian V2 f(x*) is ill-conditioned.

& 2.13 (Por this and the following three questions, refer to the material on “Rates of
Convergence” in Section A.2 of the Appendix.) Show that the sequence x; = 1/k is not
Q-linearly convergent, though it does converge to zero. (This is called sublinear convergence.)

& 2.14 Show that the sequence x; = 1 + (O.S)Zk is Q-quadratically convergent to 1.
& 2.15 Does the sequence x; = 1/k! converge Q-superlinearly? Q-quadratically?

& 2.16 Consider the sequence {x;} defined by

(i)zk, k even,

(xk—1)/k, kodd.

X =

Is this sequence Q-superlinearly convergent? Q-quadratically convergent? R-quadratically
convergent?

29

CHAPTER

Line Search
Methods

Each iteration of a line search method computes a search direction p; and then decides how
far to move along that direction. The iteration is given by

Xi41 = Xk + O Prs (3.1)

where the positive scalar o is called the step length. The success of a line search method
depends on effective choices of both the direction p; and the step length ay.

Most line search algorithms require p; to be a descent direction—one for which
PLV fi < 0O—Dbecause this property guarantees that the function f can be reduced along

3.1. STEP LENGTH

this direction, as discussed in the previous chapter. Moreover, the search direction often has
the form

pr=—B. 'V fi, (3.2)

where By is a symmetric and nonsingular matrix. In the steepest descent method, By is
simply the identity matrix I, while in Newton’s method, By is the exact Hessian V2 f (x;).
In quasi-Newton methods, By is an approximation to the Hessian that is updated at every
iteration by means of a low-rank formula. When py, is defined by (3.2) and By is positive
definite, we have

PiVfi==ViB'Vfi <0,

and therefore py is a descent direction.

In this chapter, we discuss how to choose «; and py to promote convergence from
remote starting points. We also study the rate of convergence of steepest descent, quasi-
Newton, and Newton methods. Since the pure Newton iteration is not guaranteed to produce
descent directions when the current iterate is not close to a solution, we discuss modifications
in Section 3.4 that allow it to start from any initial point.

We now give careful consideration to the choice of the step-length parameter o.

3.1 STEP LENGTH

In computing the step length oy, we face a tradeoff. We would like to choose o to give
a substantial reduction of f, but at the same time we do not want to spend too much
time making the choice. The ideal choice would be the global minimizer of the univariate
function ¢ (-) defined by

¢(a) = flxx +apr), a>0, (3.3)

but in general, it is too expensive to identify this value (see Figure 3.1). To find even a local
minimizer of ¢ to moderate precision generally requires too many evaluations of the objec-
tive function f and possibly the gradient V f. More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for «, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until Section 3.5.

31

32 CHAPTER 3. LINE SEARCH METHODS

o ()

first local
minimizer

first
stationary
point

global minimizer

Figure 3.1 The ideal step length is the global minimizer.

We now discuss various termination conditions for line search algorithms and show
that effective step lengths need not lie near minimizers of the univariate function ¢ (o)
defined in (3.3).

A simple condition we could impose on «; is to require a reduction in f, that is,
S + axpr) < f(x). That this requirement is not enough to produce convergence to
x* is illustrated in Figure 3.2, for which the minimum function value is f* = —1, but a
sequence of iterates {x;} for which f(x;) = 5/k, k = 0,1, ... yields a decrease at each
iteration but has a limiting function value of zero. The insufficient reduction in f at each
step causes it to fail to converge to the minimizer of this convex function. To avoid this
behavior we need to enforce a sufficient decrease condition, a concept we discuss next.

Sf(x)

Figure 3.2 Insufficient reduction in f.

3.1. STEP LENGTH

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates that o should first of all give

sufficient decrease in the objective function f, as measured by the following inequality:

[+apy) < fa) +aaV fl p, (3.4)
for some constant ¢; € (0, 1). In other words, the reduction in f should be proportional to
both the step length o and the directional derivative V fkT Dr- Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by /(«). The function /(-) has negative slope
1V £ pi, but because ¢; € (0, 1), it lies above the graph of ¢ for small positive values of
a. The sufficient decrease condition states that « is acceptable only if ¢(o) < I(x). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c; is chosen
to be quite small, say ¢; = 107%.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress because, as we see from Figure 3.3, it is satisfied for all sufficiently
small values of .. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires o to satisfy

V£ +owp) pe = eV £ e, (3.5)
for some constant ¢, € (c1, 1), where ¢y is the constant from (3.4). Note that the left-hand-
side is simply the derivative ¢’(c;), so the curvature condition ensures that the slope of ¢ at
o, is greater than ¢, times the initial slope ¢'(0). This makes sense because if the slope ¢’ ()

o(0) =flx,+oup,)

R (Y]

acceptable acceptable

Figure 3.3 Sulfficient decrease condition.

33

34 CHAPTER 3. LINE SEARCH METHODS

o(o) =f(xk+0€1’k)

A{/ desired
slope

tangent

acceptable acceptable

Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if ¢'(o) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of ¢, are
0.9 when the search direction py is chosen by a Newton or quasi-Newton method, and 0.1
when py is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

A

FOo+axp) < fO) + oV L pr, (3.6a)
V £+ axp)’ pi = eV £ b, (3.6b)

v

with0 <c¢; < ¢y < 1.

A step length may satisfy the Wolfe conditions without being particularly close to a
minimizer of ¢, as we show in Figure 3.5. We can, however, modify the curvature condition
to force oy to lie in at least a broad neighborhood of a local minimizer or stationary point
of ¢. The strong Wolfe conditions require o, to satisfy

FOx +arpr) <) + iV i, (3.7a)
IV f o+ axpi)” pil < 2l VAL pil, (3.7b)

with 0 < ¢; < ¢; < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative ¢’(a) to be too positive. Hence, we exclude points that are far from
stationary points of ¢.

3.1. STEP LENGTH

o (o) =fx,+ap,)

line of sufficient
decrease

RN

| acceptable | | acceptable |
-_— _—

Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.

Suppose that f : R" — R is continuously differentiable. Let py be a descent direction at
Xy, and assume that f is bounded below along the ray {x; + aprla > 0}. Then if 0 < ¢; <
¢y < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PrOCF. Note that ¢p(a) = f(xx + apx) is bounded below for all « > 0. Since 0 < ¢; < 1,

the line /(a) = f(xx) + aciV £ py is unbounded below and must therefore intersect the
graph of ¢ at least once. Let o’ > 0 be the smallest intersecting value of &, that is,

FOx+d' pe) = flx) + eV L pr. (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than «'.
By the mean value theorem (see (A.55)), there exists «” € (0, &’) such that

FO+a'pe) — flx) =a'V f(xi+ " pi)’ pi. (3.9)
By combining (3.8) and (3.9), we obtain

Vi +a" p) p= Vi > eV (3.10)
sincec; < ¢; and V fkT pr < 0. Therefore, o satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f, there is an interval around «” for which the Wolfe conditions hold. Moreover, since

35

36

CHAPTER 3. LINE SEARCH METHODS

the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. O

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 6.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions ensure that the step length «
achieves sufficient decrease but is not too short. The Goldstein conditions can also be stated
as a pair of inequalities, in the following way:

F) + 0=V pe < foa +apr) < fa) +carV L p, (3.11)

with 0 < ¢ < 1/2. The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-a-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of ¢. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

o (o) =f(xk+apk)

|

ol

acceptable steplengths

Figure 3.6 The Goldstein conditions.

3.2. CONVERGENCE OF LINE SEARCH METHODS

SUFFICIENT DECREASE AND BACKTRACKING

We have mentioned that the sufficient decrease condition (3.6a) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the given search direction.
However, if the line search algorithm chooses its candidate step lengths appropriately, by
using a so-called backtracking approach, we can dispense with the extra condition (3.6b)
and use just the sufficient decrease condition to terminate the line search procedure. In its
most basic form, backtracking proceeds as follows.

Algorithm 3.1 (Backtracking Line Search).
Choose@ > 0, p € (0,1),c € (0,1); Setx < &;
repeat until f(x; + apy) < f(xx) +caV fil pi

o < po;
end (repeat)
Terminate with o, = «.

In this procedure, the initial step length & is chosen to be 1 in Newton and quasi-
Newton methods, but can have different values in other algorithms such as steepest descent
or conjugate gradient. An acceptable step length will be found after a finite number of
trials, because o will eventually become small enough that the sufficient decrease condition
holds (see Figure 3.3). In practice, the contraction factor p is often allowed to vary at each
iteration of the line search. For example, it can be chosen by safeguarded interpolation, as
we describe later. We need ensure only that at each iteration we have p € [pjo, phi], for some
fixed constants 0 < pj, < pni < 1.

The backtracking approach ensures either that the selected step length oy, is some fixed
value (the initial choice &), or else that it is short enough to satisfy the sufficient decrease
condition but not too short. The latter claim holds because the accepted value o is within
a factor p of the previous trial value, o/ p, which was rejected for violating the sufficient
decrease condition, that is, for being too long.

This simple and popular strategy for terminating a line search is well suited for Newton
methods but is less appropriate for quasi-Newton and conjugate gradient methods.

3.2 CONVERGENCE OF LINE SEARCH METHODS

To obtain global convergence, we must not only have well chosen step lengths but also well
chosen search directions py. We discuss requirements on the search direction in this section,
focusing on one key property: the angle 6, between p; and the steepest descent direction
—V fi, defined by

—V il pe

—_— 3.12
IV fill Il Pl 12

cosby =

37

38 CHAPTER 3. LINE SEARCH METHODS

The following theorem, due to Zoutendijk, has far-reaching consequences. It quantifies
the effect of properly chosen step lengths oy, and shows, for example, that the steepest descent
method is globally convergent. For other algorithms, it describes how far p; can deviate
from the steepest descent direction and still produce a globally convergent iteration. Various
line search termination conditions can be used to establish this result, but for concreteness
we will consider only the Wolfe conditions (3.6). Though Zoutendijk’s result appears at first
to be technical and obscure, its power will soon become evident.

Theorem 3.2.

Consider any iteration of the form (3.1), where py is a descent direction and oy, satisfies
the Wolfe conditions (3.6). Suppose that f is bounded below in R" and that f is continuously
differentiable in an open set N containing the level set L df {x: f(x) < f(x9)}, where xq is
the starting point of the iteration. Assume also that the gradient V f is Lipschitz continuous on
N, that is, there exists a constant L > 0 such that

IVf(x)—=Vf@&E)| <Llx—%|, foralx, ¥eN. (3.13)
Then
> cos? O |V £ill? < oo (3.14)
k>0

ProOF. From (3.6b) and (3.1) we have that
(Vfirr = VI pe = (2 = DV f pr
while the Lipschitz condition (3.13) implies that
(Vfirt = V) pe < e LI il
By combining these two relations, we obtain

¢ —1VfT
o > 2 Ji IZk.
L p«l

By substituting this inequality into the first Wolfe condition (3.6a), we obtain

1—¢ (kaTPk)z
L | Prcll?

Jirni < fi —a
From the definition (3.12), we can write this relation as

fer1 < fi — ccos® OV fill?

3.2. CONVERGENCE OF LINE SEARCH METHODS

where ¢ = ¢1(1 — ¢;)/L. By summing this expression over all indices less than or equal to
k, we obtain

k
fes1 < fo—cY_cos?0;|IV £, (3.15)

Jj=0

Since f is bounded below, we have that fy — fi41 is less than some positive constant, for all
k. Hence, by taking limits in (3.15), we obtain

oo

2 2
D cos’ IV fill” < oo,
k=0

which concludes the proof. O

Similar results to this theorem hold when the Goldstein conditions (3.11) or strong
Wolfe conditions (3.7) are used in place of the Wolfe conditions. For all these strategies, the
step length selection implies inequality (3.14), which we call the Zoutendijk condition.

Note that the assumptions of Theorem 3.2 are not too restrictive. If the function f were
not bounded below, the optimization problem would not be well defined. The smoothness
assumption—Lipschitz continuity of the gradient—is implied by many of the smoothness
conditions that are used in local convergence theorems (see Chapters 6 and 7) and are often
satisfied in practice.

The Zoutendijk condition (3.14) implies that

cos® O ||V fill> — 0. (3.16)
This limit can be used in turn to derive global convergence results for line search algorithms.
If our method for choosing the search direction py in the iteration (3.1) ensures that
the angle 6y defined by (3.12) is bounded away from 90°, there is a positive constant § such
that
cosf, >8>0, forallk. (3.17)
It follows immediately from (3.16) that

lim ||V fi]l = 0. (3.18)
k—00

In other words, we can be sure that the gradient norms ||V f;|| converge to zero, provided
that the search directions are never too close to orthogonality with the gradient. In particular,
the method of steepest descent (for which the search direction py is parallel to the negative

39

40

CHAPTER 3. LINE SEARCH METHODS

gradient) produces a gradient sequence that converges to zero, provided that it uses a line
search satisfying the Wolfe or Goldstein conditions.

We use the term globally convergent to refer to algorithms for which the property
(3.18) is satisfied, but note that this term is sometimes used in other contexts to mean
different things. For line search methods of the general form (3.1), the limit (3.18) is the
strongest global convergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by stationary points. Only
by making additional requirements on the search direction py—by introducing negative
curvature information from the Hessian V2 f (x;), for example—can we strengthen these
results to include convergence to a local minimum. See the Notes and References at the end
of this chapter for further discussion of this point.

Consider now the Newton-like method (3.1), (3.2) and assume that the matrices By
are positive definite with a uniformly bounded condition number. That is, there is a constant
M such that

IBell 1Bl < M, forall k.
It is easy to show from the definition (3.12) that
costy > 1/M (3.19)
(see Exercise 3.5). By combining this bound with (3.16) we find that
Am IV fill = 0. (3.20)

Therefore, we have shown that Newton and quasi-Newton methods are globally convergent
if the matrices By have a bounded condition number and are positive definite (which is
needed to ensure that py is a descent direction), and if the step lengths satisfy the Wolfe
conditions.

For some algorithms, such as conjugate gradient methods, we will be able to prove
the limit (3.18), but only the weaker result

k— 00

In other words, just a subsequence of the gradient norms ||V f;, || converges to zero, rather
than the whole sequence (see Appendix A). This result, too, can be proved by using Zou-
tendijk’s condition (3.14), but instead of a constructive proof, we outline a proof by
contradiction. Suppose that (3.21) does not hold, so that the gradients remain bounded
away from zero, that is, there exists y > 0 such that

IV fill =y, forall k sufficiently large. (3.22)

3.3. RATE OF CONVERGENCE

Then from (3.16) we conclude that
cosfy — 0, (3.23)

that is, the entire sequence {cos 6;} converges to 0. To establish (3.21), therefore, it is enough
to show that a subsequence {cos 6, } is bounded away from zero. We will use this strategy in
Chapter 5 to study the convergence of nonlinear conjugate gradient methods.

By applying this proof technique, we can prove global convergence in the sense of
(3.20) or (3.21) for a general class of algorithms. Consider any algorithm for which (i) every
iteration produces a decrease in the objective function, and (ii) every mth iteration is a
steepest descent step, with step length chosen to satisfy the Wolfe or Goldstein conditions.
Then, since cos 9y = 1 for the steepest descent steps, the result (3.21) holds. Of course, we
would design the algorithm so that it does something “better" than steepest descent at the
other m — 1 iterates. The occasional steepest descent steps may not make much progress,
but they at least guarantee overall global convergence.

Note that throughout this section we have used only the fact that Zoutendijk’s condi-
tion implies the limit (3.16). In later chapters we will make use of the bounded sum condition
(3.14), which forces the sequence {cos? 6; ||V fi||?} to converge to zero at a sufficiently rapid
rate.

3.3 RATE OF CONVERGENCE

It would seem that designing optimization algorithms with good convergence properties is
easy, since all we need to ensure is that the search direction p; does not tend to become
orthogonal to the gradient V f}, or that steepest descent steps are taken regularly. We could
simply compute cos 6y, at every iteration and turn p; toward the steepest descent direction if
cos 6 is smaller than some preselected constant § > 0. Angle tests of this type ensure global
convergence, but they are undesirable for two reasons. First, they may impede a fast rate of
convergence, because for problems with an ill-conditioned Hessian, it may be necessary to
produce search directions that are almost orthogonal to the gradient, and an inappropriate
choice of the parameter § may cause such steps to be rejected. Second, angle tests destroy
the invariance properties of quasi-Newton methods.

Algorithmic strategies that achieve rapid convergence can sometimes conflict with
the requirements of global convergence, and vice versa. For example, the steepest descent
method is the quintessential globally convergent algorithm, but it is quite slow in practice,
as we shall see below. On the other hand, the pure Newton iteration converges rapidly when
started close enough to a solution, but its steps may not even be descent directions away
from the solution. The challenge is to design algorithms that incorporate both properties:
good global convergence guarantees and a rapid rate of convergence.

We begin our study of convergence rates of line search methods by considering the
most basic approach of all: the steepest descent method.

41

42

CHAPTER 3. LINE SEARCH METHODS

Figure 3.7 Steepest descent steps.

CONVERGENCE RATE OF STEEPEST DESCENT

We can learn much about the steepest descent method by considering the ideal case, in
which the objective function is quadratic and the line searches are exact. Let us suppose that

flx)= %xTQx —bTx, (3.24)

where Q is symmetric and positive definite. The gradient is given by V f (x) = Qx — b and
the minimizer x* is the unique solution of the linear system Qx = b.

Itis easy to compute the step length o that minimizes f (x; —a'V f;). By differentiating
the function

Fl —a¥ i) = 5~ @V)T Ol — ¥ i) = b (¢ — ¥ fo)

with respect to «, and setting the derivative to zero, we obtain

T
o = Vi (3.25)

VoV

If we use this exact minimizer oy, the steepest descent iteration for (3.24) is given by

vflv
Xp+1 = X — <%) V fi. (3.26)

Since V fi = Oxi — b, this equation yields a closed-form expression for x4, in terms of x.
In Figure 3.7 we plot a typical sequence of iterates generated by the steepest descent method
on a two-dimensional quadratic objective function. The contours of f are ellipsoids whose

3.3. RATE OF CONVERGENCE

axes lie along the orthogonal eigenvectors of Q. Note that the iterates zigzag toward the
solution.

To quantify the rate of convergence we introduce the weighted norm ||x[|3, = x” Qx.
By using the relation Qx* = b, we can show that

U —x*13 = £x) = £(x*), (3.27)

so this norm measures the difference between the current objective value and the optimal
value. By using the equality (3.26) and noting that V f; = Q(x; — x™*), we can derive the
equality

VAV
Vi V) }nxk—x*nz (3.28)

— x* 2 — —
llxk+1 — x ||Q {1 (kaTQvfk) (kaTQ71ka)

(see Exercise 3.7). This expression describes the exact decrease in f at each iteration, but
since the term inside the brackets is difficult to interpret, it is more useful to bound it in
terms of the condition number of the problem.

Theorem 3.3.
When the steepest descent method with exact line searches (3.26) is applied to the strongly
convex quadratic function (3.24), the error norm (3.27) satisfies

o < (=l 12 (3.29)
1 = xllg = { 57—) e = x7llg, :

where0 < Ly < Ay < --- < X, are the eigenvalues of Q.

The proof of this result is given by Luenberger [195]. The inequalities (3.29) and (3.27)
show that the function values f; converge to the minimum f, at a linear rate. As a special
case of this result, we see that convergence is achieved in one iteration if all the eigenvalues
are equal. In this case, Q is a multiple of the identity matrix, so the contours in Figure 3.7
are circles and the steepest descent direction always points at the solution. In general, as the
condition number x(Q) = X, /A; increases, the contours of the quadratic become more
elongated, the zigzagging in Figure 3.7 becomes more pronounced, and (3.29) implies that
the convergence degrades. Even though (3.29) is a worst-case bound, it gives an accurate
indication of the behavior of the algorithm when n > 2.

The rate-of-convergence behavior of the steepest descent method is essentially the
same on general nonlinear objective functions. In the following result we assume that the
step length is the global minimizer along the search direction.

Theorem 3.4.
Suppose that f : R" — R is twice continuously differentiable, and that the iterates
generated by the steepest-descent method with exact line searches converge to a point x* at

43

44 CHAPTER 3. LINE SEARCH METHODS

which the Hessian matrix V2 f (x*) is positive definite. Let r be any scalar satisfying

Ay — A1
r e , 1),
Ap + A
whered; < Ay < --- < A, are the eigenvalues of V> f (x*). Then for all k sufficiently large, we
have

S Gagn) = F() < P2 [f () = fx)].

In general, we cannot expect the rate of convergence to improve if an inexact line
search is used. Therefore, Theorem 3.4 shows that the steepest descent method can have an
unacceptably slow rate of convergence, even when the Hessian is reasonably well conditioned.
For example, if x(Q) = 800, f(x;) = 1, and f(x*) = 0, Theorem 3.4 suggests that the
function value will still be about 0.08 after one thousand iterations of the steepest descent
method with exact line search.

NEWTON'S METHOD

We now consider the Newton iteration, for which the search is given by
P = -V 'V fi. (3.30)

Since the Hessian matrix V2 f; may not always be positive definite, p} may not always
be a descent direction, and many of the ideas discussed so far in this chapter no longer
apply. In Section 3.4 and Chapter 4 we will describe two approaches for obtaining a globally
convergent iteration based on the Newton step: a line search approach, in which the Hessian
V2 fi is modified, if necessary, to make it positive definite and thereby yield descent, and a
trust region approach, in which V2 f; is used to form a quadratic model that is minimized
in a ball around the current iterate xy.

Here we discuss just the local rate-of-convergence properties of Newton’s method.
We know that for all x in the vicinity of a solution point x* such that V2 f(x*) is positive
definite, the Hessian V2 f(x) will also be positive definite. Newton’s method will be well
defined in this region and will converge quadratically, provided that the step lengths o are
eventually always 1.

Theorem 3.5.
Supposethat f is twice differentiable and that the Hessian V?* f (x) is Lipschitz continuous
(see (A.42)) in a neighborhood of a solution x* at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration xy11 = Xy + pi, where py is given by (3.30). Then
(i) if the starting point x is sufficiently close to x*, the sequence of iterates converges to x*;

(ii) the rate of convergence of {xy} is quadratic; and

(iii) the sequence of gradient norms {||V fi ||} converges quadratically to zero.

3.3. RATE OF CONVERGENCE

PROOF. From the definition of the Newton step and the optimality condition V f, = 0 we
have that

X+ pl—xF=x—x* = VIV
=V Vi il —x) = (Vi = VI (3.31)

Since Taylor’s theorem (Theorem 2.1) tells us that

1
Vi —Vf = / V2 £ (4 10" —) (xe — x)
0

we have
|V2F () (i = x*) = (V fi = V£ (x)]
1
/ [sz(xk) — V2 +t(x* — xk))] (xx — x*)dt
0

1
< [192500 = V2 10 =) | = 2*
0
1
< o= [Lede=4Lin - xR (332)
0

where L is the Lipschitz constant for V2 f (x) for x near x*. Since V2 f(x*) is nonsingular,
there is a radius 7 > 0 such that | V2 ;|| < 2|V f(x*)7!| for all x; with |lx — x*|| <.
By substituting in (3.31) and (3.32), we obtain

e + pi — ™ < LIV £) Mo — x*11F = Lo — x|, (3.33)

where L = L|[V2f(x*)~!||. Choosing xo so that ||xo — x*|| < min(r, 1/(2L)), we can use
this inequality inductively to deduce that the sequence converges to x*, and the rate of
convergence is quadratic.

By using the relations x;+1 — x; = p} and V fi + V2 fi p;’ = 0, we obtain that

IV £ s) = IV f (1) = Vi — V2 F () i
1
= ‘ / V2 (xx + tpY) (Xegr — xx) dt — V f(xi) p}
0

1
< / [V G+ 1p) = V2 £ G| 1y de
0

< 3LIPI?

< SLIVZ F Q) HPIV fell?
< 2L|VEF) TPV £l

proving that the gradient norms converge to zero quadratically. O

45

46

CHAPTER 3. LINE SEARCH METHODS

As the iterates generated by Newton’s method approach the solution, the Wolfe (or
Goldstein) conditions will accept the step length p = 1 for all large k. This observation
follows from Theorem 3.6 below. Indeed, when the search direction is given by Newton’s
method, the limit (3.35) is satisfied—the ratio is zero for all k! Implementations of Newton’s
method using these line search conditions, and in which the line search always tries the unit
step length first, will set oy = 1 for all large k and attain a local quadratic rate of convergence.

QUASI-NEWTON METHODS

Suppose now that the search direction has the form
pe =B 'V fi, (3.34)

where the symmetric and positive definite matrix By is updated at every iteration by a
quasi-Newton updating formula. We already encountered one quasi-Newton formula, the
BFGS formula, in Chapter 2; others will be discussed in Chapter 6. We assume here that the
step length oy is computed by an inexact line search that satisfies the Wolfe or strong Wolfe
conditions, with the same proviso mentioned above for Newton’s method: The line search
algorithm will always try the step length o = 1 first, and will accept this value if it satisfies
the Wolfe conditions. (We could enforce this condition by setting @ = 1 in Algorithm 3.1,
for example.) This implementation detail turns out to be crucial in obtaining a fast rate of
convergence.

The following result shows that if the search direction of a quasi-Newton method
approximates the Newton direction well enough, then the unit step length will satisfy the
Wolfe conditions as the iterates converge to the solution. It also specifies a condition that
the search direction must satisfy in order to give rise to a superlinearly convergent iteration.
To bring out the full generality of this result, we state it first in terms of a general descent
iteration, and then examine its consequences for quasi-Newton and Newton methods.

Theorem 3.6.

Suppose that f : R" — R is twice continuously differentiable. Consider the iteration
Xk+1 = Xg + o pr, where py. is a descent direction and ay satisfies the Wolfe conditions (3.6)
withc, < 1/2. Ifthe sequence {x;} converges to a point x* such thatV f (x*) = 0 and V* f (x*)
is positive definite, and if the search direction satisfies

lim IV fi + V2 fipill _

0, (3.35)
k=00 Il

then

(i) the step length o, = 1 is admissible for all k greater than a certain index ky; and

(ii) ifox =1 forallk > ko, {xi} converges to x* superlinearly.

3.3. RATE OF CONVERGENCE

It is easy to see that if ¢; > 1/2, then the line search would exclude the minimizer of
a quadratic, and unit step lengths may not be admissible.
If py is a quasi-Newton search direction of the form (3.34), then (3.35) is equivalent to

lin 1Bk — V) pell
m =
k—o00 Il Pl

0. (3.36)

Hence, we have the surprising (and delightful) result that a superlinear convergence rate
can be attained even if the sequence of quasi-Newton matrices By does not converge to
V2 f(x*); it suffices that the By become increasingly accurate approximations to V2 f (x*)
along the search directions py. Importantly, condition (3.36) is both necessary and sufficient
for the superlinear convergence of quasi-Newton methods.

Theorem 3.7.

Suppose that f : R" — R is twice continuously differentiable. Consider the iteration
Xk+1 = Xy + pr (that s, the step length oy, is uniformly 1) and that py is given by (3.34). Let us
assume also that {x;} converges to a point x* such that V f (x*) = 0 and V?* f(x*) is positive
definite. Then {x;} converges superlinearly if and only if (3.36) holds.

PROOF. We first show that (3.36) is equivalent to

pr — py = o(llpill), (3.37)

where pf = —V? fk_lv S is the Newton step. Assuming that (3.36) holds, we have that

pe—py =V (VP fipe + Y i)
= V2NV fo — B pr
= O(I(V* f — B pill)
= o(llpl).
where we have used the fact that || V2 f,:1 || is bounded above for x; sufficiently close to x*,
since the limiting Hessian V2 f(x*) is positive definite. The converse follows readily if we

multiply both sides of (3.37) by V2 f; and recall (3.34).
By combining (3.33) and (3.37), we obtain that

Ik + px — x*1 < x4+ pf = x* 1 + llpx =PIl = Ollxe — x*11*) + o(ll pell).-
A simple manipulation of this inequality reveals that || pr|| = O(||xx — x*||), so we obtain
lxx + pr — x*| < o(llxx — x™|),

giving the superlinear convergence result. (]

47

48

CHAPTER 3. LINE SEARCH METHODS

We will see in Chapter 6 that quasi-Newton methods normally satisfy condition (3.36)
and are therefore superlinearly convergent.

3.4 NEWTON'S METHOD WITH HESSIAN MODIFICATION

Away from the solution, the Hessian matrix V2 f(x) may not be positive definite, so the
Newton direction p} defined by

V2 f(xi)pY = =V f(xz) (3.38)

(see (3.30)) may not be a descent direction. We now describe an approach to overcome this
difficulty when a direct linear algebra technique, such as Gaussian elimination, is used to
solve the Newton equations (3.38). This approach obtains the step p; from a linear system
identical to (3.38), except that the coefficient matrix is replaced with a positive definite
approximation, formed before or during the solution process. The modified Hessian is
obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian
V2 f(xi). A general description of this method follows.

Algorithm 3.2 (Line Search Newton with Modification).
Given initial point x;
for k=0,1,2,...

Factorize the matrix By = V2 f(x;) + Ej, where E;, = 0if V2 f(x;)
is sufficiently positive definite; otherwise, Ey is chosen to
ensure that By is sufficiently positive definite;

Solve Bypr = —V f(x1);

Set xp11 < X + oy pr, where a; satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions;

end

Some approaches do not compute Ej explicitly, but rather introduce extra steps and
tests into standard factorization procedures, modifying these procedures “on the fly” so
that the computed factors are the factors of a positive definite matrix. Strategies based on
modifying a Cholesky factorization and on modifying a symmetric indefinite factorization
of the Hessian are described in this section.

Algorithm 3.2 is a practical Newton method that can be applied from any starting
point. We can establish fairly satisfactory global convergence results for it, provided that
the strategy for choosing E; (and hence By) satisfies the bounded modified factorization
property. This property is that the matrices in the sequence { By} have bounded condition
number whenever the sequence of Hessians {V? f (x;)} is bounded; that is,

k(By) = |Bell IB{'| < C, someC >0andallk=0,1,2,.... (3.39)

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

If this property holds, global convergence of the modified line search Newton method follows
from the results of Section 3.2.

Theorem 3.8.

Let f be twice continuously differentiable on an open set D, and assume that the starting
point xq of Algorithm 3.2 is such that the level set L = {x € D : f(x) < f(x0)} is compact.
Then if the bounded modified factorization property holds, we have that

k]in’l Vf(xk) =0.

For a proof this result see [215].

We now consider the convergence rate of Algorithm 3.2. Suppose that the sequence
of iterates x; converges to a point x* where V2 f(x*) is sufficiently positive definite in the
sense that the modification strategies described in the next section return the modification
E; = 0 for all sufficiently large k. By Theorem 3.6, we have that oy = 1 for all sufficiently
large k, so that Algorithm 3.2 reduces to a pure Newton method, and the rate of convergence
is quadratic.

For problems in which V f* is close to singular, there is no guarantee that the mod-
ification Ej will eventually vanish, and the convergence rate may be only linear. Besides
requiring the modified matrix By to be well conditioned (so that Theorem 3.8 holds), we
would like the modification to be as small as possible, so that the second-order information
in the Hessian is preserved as far as possible. Naturally, we would also like the modified
factorization to be computable at moderate cost.

To set the stage for the matrix factorization techniques that will be used in Al-
gorithm 3.2, we will begin by assuming that the eigenvalue decomposition of V2 f(x;) is
available. This is not realistic for large-scale problems because this decomposition is generally
too expensive to compute, but it will motivate several practical modification strategies.

EIGENVALUE MODIFICATION

Consider a problem in which, at the current iterate xi, V f(x¢) = (1, =3, 2)T and
V2 f(x:) = diag(10, 3, —1), which is clearly indefinite. By the spectral decomposition
theorem (see Appendix A) we can define Q = I and A = diag(Xq, X2, A3), and write

V() = QA0 =) higiq]. (3.40)
i=1

The pure Newton step—the solution of (3.38)—is p; = (—0.1, 1, 2)T, which is not a de-
scent direction, since V f (x;)” p¥ > 0. One might suggest a modified strategy in which we
replace V2 f (x;) by a positive definite approximation By, in which all negative eigenvalues
in V2 f(x;) are replaced by a small positive number § that is somewhat larger than ma-
chine precision u; say § = /u. For a machine precision of 107!, the resulting matrix in

49

50

CHAPTER 3. LINE SEARCH METHODS

our example is

2
B =) hqiq! +8qsq] = diag (10,3,107%), (3.41)

i=1

which is numerically positive definite and whose curvature along the eigenvectors ¢; and
q> has been preserved. Note, however, that the search direction based on this modified
Hessian is

2

pk=—B'Vfi = —Z

i=1

~ —(2 x 10%)gs. (3.42)

1 1
P (¢! V1) — 3% (g3 V f(x1))

For small §, this step is nearly parallel to g5 (with relatively small contributions from ¢, and
¢>) and quite long. Although f decreases along the direction py, its extreme length violates
the spirit of Newton’s method, which relies on a quadratic approximation of the objective
function that is valid in a neighborhood of the current iterate x;. It is therefore not clear
that this search direction is effective.

Various other modification strategies are possible. We could flip the signs of the
negative eigenvalues in (3.40), which amounts to setting § = 1 in our example. We could
set the last term in (3.42) to zero, so that the search direction has no components along
the negative curvature directions. We could adapt the choice of § to ensure that the length
of the step is not excessive, a strategy that has the flavor of trust-region methods. As this
discussion shows, there is a great deal of freedom in devising modification strategies, and
there is currently no agreement on which strategy is best.

Setting the issue of the choice of § aside for the moment, let us look more closely at the
process of modifying a matrix so that it becomes positive definite. The modification (3.41)
to the example matrix (3.40) can be shown to be optimal in the following sense. If A is a
symmetric matrix with spectral decomposition A = QA Q7, then the correction matrix
A A of minimum Frobenius norm that ensures that Anin(A + AA) > § is given by

0,)

(3.43)
s —)\.i,)"i <34

AA = Q diag (7;)Q7, with T = {

Here, Amin(A) denotes the smallest eigenvalue of A, and the Frobenius norm of a matrix is
n

defined as ||A||% = Zi’j:l aizj (see (A.9)). Note that A A is not diagonal in general, and that
the modified matrix is given by

A+ AA = Q(A + diag(r;)) Q7.

By using a different norm we can obtain a diagonal modification. Suppose again that
A is a symmetric matrix with spectral decomposition A = QA Q7. A correction matrix

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

A A with minimum Euclidean norm that satisfies Apn (A + AA) > § is given by
AA=r1l, with T = max(0, 8 — Amin(A)). (3.44)
The modified matrix now has the form
A+1l, (3.45)

which happens to have the same form as the matrix occurring in (unscaled) trust-region
methods (see Chapter 4). All the eigenvalues of (3.45) have thus been shifted, and all are
greater than §.

These results suggest that both diagonal and nondiagonal modifications can be con-
sidered. Even though we have not answered the question of what constitutes a good
modification, various practical diagonal and nondiagonal modifications have been pro-
posed and implemented in software. They do not make use of the spectral decomposition of
the Hessian, since it is generally too expensive to compute. Instead, they use Gaussian elim-
ination, choosing the modifications indirectly and hoping that somehow they will produce
good steps. Numerical experience indicates that the strategies described next often (but not
always) produce good search directions.

ADDING A MULTIPLE OF THE IDENTITY

Perhaps the simplestideaisto findascalar t > Osuchthat V2 f(x;) + 71 issufficiently
positive definite. From the previous discussion we know that t must satisfy (3.44), but a good
estimate of the smallest eigenvalue of the Hessian is normally not available. The following
algorithm describes a method that tries successively larger values of 7. (Here, a;; denotes a
diagonal element of A.)

Algorithm 3.3 (Cholesky with Added Multiple of the Identity).
Choose 8 > 0;
if mini aii > 0
set g < 0;
else
79 = —min(g;) + B;
end (if)
fork=0,1,2,...
Attempt to apply the Cholesky algorithm to obtain LLT = A + 7 [;
if the factorization is completed successfully
stop and return L;
else
Tp1 < max(2ty, B);
end (if)
end (for)

51

52

CHAPTER 3. LINE SEARCH METHODS

The choice of B is heuristic; a typical value is 8 = 107>. We could choose the first
nonzero shift 7y to be proportional to be the final value of 7 used in the latest Hessian
modification; see also Algorithm B.1. The strategy implemented in Algorithm 3.3 is quite
simple and may be preferable to the modified factorization techniques described next, but
it suffers from one drawback. Every value of 7; requires a new factorization of A + 7,7, and
the algorithm can be quite expensive if several trial values are generated. Therefore it may
be advantageous to increase T more rapidly, say by a factor of 10 instead of 2 in the last else
clause.

MODIFIED CHOLESKY FACTORIZATION

Another approach for modifying a Hessian matrix that is not positive definite is
to perform a Cholesky factorization of V2 f(x;), but to increase the diagonal elements
encountered during the factorization (where necessary) to ensure that they are sufficiently
positive. This modified Cholesky approach is designed to accomplish two goals: It guarantees
that the modified Cholesky factors exist and are bounded relative to the norm of the actual
Hessian, and it does not modify the Hessian if it is sufficiently positive definite.

We begin our description of this approach by briefly reviewing the Cholesky
factorization. Every symmetric positive definite matrix A can be written as

A=LDLT, (3.46)
where L is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix

with positive elements on the diagonal. By equating the elements in (3.46), column by
column, it is easy to derive formulas for computing L and D.

(d ExampLE 3.1

Consider the case n = 3. The equation A = LDLT is given by

ai axn as 10 0 d 0 0 1 by Iy
an an ap |=| 1l 1 0 0 4 0 0 1 I
as asx as Iy In 1 0 0 ds 0 0 1

(The notation indicates that A is symmetric.) By equating the elements of the first column,
we have

ay =dj,
ay =dily = b =ay/d,
a1 =dilsy = 31 =a3/d.

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

Proceeding with the next two columns, we obtain

ay = dllzzl + dz = dz =day — dllzzlv
asy = dll31121 + d2132 = 132 = ((,132 - dll31121) /d27
as3 = dll§1 + d21§2 + d3 = d3 = ds33 — d11§1 — d2[§2.

This procedure is generalized in the following algorithm.

Algorithm 3.4 (Cholesky Factorization, LDLT Form).
for j=1,2,...,n
cjj < aj— Y12 dl3;
dj < cjj;
for i=j+1,...,n
Cij < aij — Zf;ll dglisljs;
lij < cij/dj
end
end

One can show (see, for example, Golub and Van Loan [136, Section 4.2.3]) that the
diagonal elements d;; are all positive whenever A is positive definite. The scalars ¢;; have
been introduced only to facilitate the description of the modified factorization discussed
below. We should note that Algorithm 3.4 differs a little from the standard form of the
Cholesky factorization, which produces a lower triangular matrix M such that

A=MMT. (3.47)

In fact, we can make the identification M = LD'? to relate M to the factors L and D
computed in Algorithm 3.4. The technique for computing M appears as Algorithm A.2 in
Appendix A.

If A is indefinite, the factorization A = LDL” may not exist. Even if it does exist,
Algorithm 3.4 is numerically unstable when applied to such matrices, in the sense that the
elements of L and D can become arbitrarily large. It follows that a strategy of computing
the LDLT factorization and then modifying the diagonal after the fact to force its elements
to be positive may break down, or may result in a matrix that is drastically different from A.

Instead, we can modify the matrix A during the course of the factorization in such
a way that all elements in D are sufficiently positive, and so that the elements of D and
L are not too large. To control the quality of the modification, we choose two positive
parameters § and S, and require that during the computation of the jth columns of L and
D in Algorithm 3.4 (that is, for each j in the outer loop of the algorithm) the following

53

54

CHAPTER 3. LINE SEARCH METHODS

bounds be satisfied:
deS, |m,~j|§ﬂ, i=j+1,j4+2,...,n, (3.48)
where m;; = l;;,/d;. To satisfy these bounds we only need to change one step in Algo-

rithm 3.4: The formula for computing the diagonal element d; in Algorithm 3.4 is replaced
by

0. 2
dj = max <|ij|, (é) ,(S) s with Qj = mnax |C,’j|. (349)
j<i<n

To verify that (3.48) holds, we note from Algorithm 3.4 that ¢;; = [;;d;, and therefore

|mlj| - |lljf| - \/;— |c”|ﬁ ,3, foralli >]

We note that 6; can be computed prior to d; because the elements ¢;; in the second

for loop of Algorithm 3.4 do not involve d;. In fact, this is the reason for introducing the
quantities ¢;; into the algorithm.

These observations are the basis of the modified Cholesky algorithm described in detail
in Gill, Murray, and Wright [130], which introduces symmetric interchanges of rows and
columns to try to reduce the size of the modification. If P denotes the permutation matrix
associated with the row and column interchanges, the algorithm produces the Cholesky
factorization of the permuted, modified matrix PAPT + E, that is,

PAPT + E=LDLT = MMT, (3.50)

where E is a nonnegative diagonal matrix that is zero if A is sufficiently positive definite.
One can show (Moré and Sorensen [215]) that the matrices By obtained by this modified
Cholesky algorithm to the exact Hessians V2 f (x;) have bounded condition numbers, that
is, the bound (3.39) holds for some value of C.

MODIFIED SYMMETRIC INDEFINITE FACTORIZATION

Another strategy for modifying an indefinite Hessian is to use a procedure based on
a symmetric indefinite factorization. Any symmetric matrix A, whether positive definite or
not, can be written as

PAPT = LBLT, (3.51)

where L is unit lower triangular, B is a block diagonal matrix with blocks of dimension 1
or 2, and P is a permutation matrix (see our discussion in Appendix A and also Golub and

3.4. NEWTON’'S METHOD WITH HESSIAN MODIFICATION

Van Loan [136, Section 4.4]). We mentioned earlier that attempting to compute the LDLT
factorization of an indefinite matrix (where D is a diagonal matrix) is inadvisable because
even if the factors L and D are well defined, they may contain entries that are larger than the
original elements of A, thus amplifying rounding errors that arise during the computation.
However, by using the block diagonal matrix B, which allows 2 x 2 blocks as well as 1 x 1
blocks on the diagonal, we can guarantee that the factorization (3.51) always exists and can
be computed by a numerically stable process.

(J EXAMPLE 3.2

The matrix

w N = O
NS (SR S
W W NN
> W N W

can be written in the form (3.51) with P = [ey, ¢4, €3, €3],

1 0 0 0 03 0 0
0 1 0 0 3 4 0 0
|1 2 — 7 5
L=| 1 2 0 B=|, . 7 5| (3.52)
9 3 9 9
2 1 5 10
S - 01 00 = —
9 3 9 9

Note that both diagonal blocks in B are 2 x 2. Several algorithms for computing symmetric
indefinite factorizations are discussed in Section A.1 of Appendix A. a

The symmetric indefinite factorization allows us to determine the inertia of a matrix,
that is, the number of positive, zero, and negative eigenvalues. One can show that the inertia
of B equals the inertia of A. Moreover, the 2 x 2 blocks in B are always constructed to
have one positive and one negative eigenvalue. Thus the number of positive eigenvalues in
A equals the number of positive 1 x 1 blocks plus the number of 2 x 2 blocks.

As for the Cholesky factorization, an indefinite symmetric factorization algorithm
can be modified to ensure that the modified factors are the factors of a positive definite
matrix. The strategy is first to compute the factorization (3.51), as well as the spectral
decomposition B = QA QT, which is inexpensive to compute because B is block diagonal

55

56

CHAPTER 3. LINE SEARCH METHODS

(see Exercise 3.12). We then construct a modification matrix F such that
LB+ F)L”

is sufficiently positive definite. Motivated by the modified spectral decomposition (3.43),
we choose a parameter § > 0 and define F to be

F = Q diag(z;) OT 0 MEO (3.53)
= 1ag(T; s T = 1=1,2,...,n, .
8 8—)\.1‘,)\.,‘<5,

where X; are the eigenvalues of B. The matrix F is thus the modification of minimum
Frobenius norm that ensures that all eigenvalues of the modified matrix B + F are no less
than §. This strategy therefore modifies the factorization (3.51) as follows:

P(A+E)PT = L(B+ F)LT, where E = PTLFLTP.

(Note that E will not be diagonal, in general.) Hence, in contrast to the modified Cholesky
approach, this modification strategy changes the entire matrix A, not just its diagonal. The
aim of strategy (3.53) is that the modified matrix satisfies Apnin(A + E) & § whenever the
original matrix A has Apin(A) < 8. It is not clear, however, whether it always comes close
to attaining this goal.

3.5 STEP-LENGTH SELECTION ALGORITHMS

We now consider techniques for finding a minimum of the one-dimensional function

¢(a) = f o +api), (3.54)

or for simply finding a step length o satisfying one of the termination conditions described
in Section 3.1. We assume that p; is a descent direction—that is, ¢’(0) < 0—so that our
search can be confined to positive values of «.

If f is a convex quadratic, f(x) = %xT Ox — bT x, its one-dimensional minimizer
along the ray x; + apy can be computed analytically and is given by

iy
= Vhepe (3.55)
Pi Ok
For general nonlinear functions, it is necessary to use an iterative procedure. The line search
procedure deserves particular attention because it has a major impact on the robustness and
efficiency of all nonlinear optimization methods.

Long Chen

3.5. STEP-LENGTH SELECTION ALGORITHMS

Line search procedures can be classified according to the type of derivative information
they use. Algorithms that use only function values can be inefficient since, to be theoretically
sound, they need to continue iterating until the search for the minimizer is narrowed down
to a small interval. In contrast, knowledge of gradient information allows us to determine
whether a suitable step length has been located, as stipulated, for example, by the Wolfe
conditions (3.6) or Goldstein conditions (3.11). Often, particularly when x; is close to the
solution, the very first choice of o satisfies these conditions, so the line search need not
be invoked at all. In the rest of this section, we discuss only algorithms that make use of
derivative information. More information on derivative-free procedures is given in the notes
at the end of this chapter.

All line search procedures require an initial estimate ¢y and generate a sequence {o;}
that either terminates with a step length satisfying the conditions specified by the user (for
example, the Wolfe conditions) or determines that such a step length does not exist. Typical
procedures consist of two phases: a bracketing phase that finds an interval [a, b] containing
acceptable step lengths, and a selection phase that zooms in to locate the final step length.
The selection phase usually reduces the bracketing interval during its search for the desired
step length and interpolates some of the function and derivative information gathered on
earlier steps to guess the location of the minimizer. We first discuss how to perform this
interpolation.

In the following discussion we let oty and o1 denote the step lengths used at iterations
k and k — 1 of the optimization algorithm, respectively. On the other hand, we denote the
trial step lengths generated during the line search by «; and «;—; and also orj. We use g to
denote the initial guess.

INTERPOLATION

We begin by describing a line search procedure based on interpolation of known
function and derivative values of the function ¢. This procedure can be viewed as an
enhancement of Algorithm 3.1. The aim is to find a value of « that satisfies the sufficient
decrease condition (3.6a), without being “too small.” Accordingly, the procedures here
generate a decreasing sequence of values ¢; such that each value ¢; is not too much smaller
than its predecessor «; ;.

Note that we can write the sufficient decrease condition in the notation of (3.54) as

d(ar) < ¢(0) + o’ (0), (3.56)

and that since the constant c; is usually chosen to be small in practice (c; = 107, say), this
condition asks for little more than descent in f. We design the procedure to be “efficient”
in the sense that it computes the derivative V f(x) as few times as possible.

Suppose that the initial guess o is given. If we have

¢(eg) < ¢(0) + c1009'(0),

57

Long Chen

Long Chen

58

CHAPTER 3. LINE SEARCH METHODS

this step length satisfies the condition, and we terminate the search. Otherwise, we know that
the interval [0, op] contains acceptable step lengths (see Figure 3.3). We form a quadratic
approximation ¢, () to ¢ by interpolating the three pieces of information available—¢(0),
¢’'(0), and ¢(ay)—to obtain

P(0) — #(0) — o9’(0)

2
)

¢q(a) = () o +¢'(0)e + ¢(0). (3.57)

(Note that this function is constructed so that it satisfies the interpolation conditions
¢4(0) = ¢(0), qb; (0) = ¢(0), and ¢, () = P(ep).) The new trial value o, is defined as the
minimizer of this quadratic, that is, we obtain

@' (0)org

a : 3.58
2 [¢(arg) — ¢(0) — ¢ (0)axp] (3.58)

o) =

If the sufficient decrease condition (3.56) is satisfied at «;, we terminate the search. Oth-
erwise, we construct a cubic function that interpolates the four pieces of information ¢(0),
@'(0), ¢(p), and ¢(e;), obtaining

dc(a) = aa® + ba® + ag'(0) + $(0),
where
a | _ 1 ap = [¢ler) —(0) - ¢'(0)y
b | et —a0) | -} o ¢(a0) — $(0) — ¢’ 0oty |
By differentiating ¢, (x), we see that the minimizer «, of ¢, lies in the interval [0, ;] and is
given by

—b + /b? — 3a¢’'(0)
Oy = .

If necessary, this process is repeated, using a cubic interpolant of ¢(0), ¢’(0) and the two
most recent values of ¢, until an « that satisfies (3.56) is located. If any «; is either too
close to its predecessor o;_; or else too much smaller than ¢;_;, we reset o; = «;_1/2. This
safeguard procedure ensures that we make reasonable progress on each iteration and that
the final « is not too small.

The strategy just described assumes that derivative values are significantly more ex-
pensive to compute than function values. It is often possible, however, to compute the
directional derivative simultaneously with the function, at little additional cost; see Chap-
ter 8. Accordingly, we can design an alternative strategy based on cubic interpolation of the
values of ¢ and ¢’ at the two most recent values of .

Long Chen

Long Chen

3.5. STEP-LENGTH SELECTION ALGORITHMS

Cubic interpolation provides a good model for functions with significant changes of
curvature. Suppose we have an interval [@, b] known to contain desirable step lengths, and
two previous step length estimates ;_; and ¢; in this interval. We use a cubic function to
interpolate ¢ (o;—1), ¢’ (@i—1), ¢(e;), and ¢ (e;). (This cubic function always exists and is
unique; see, for example, Bulirsch and Stoer [41, p. 52].) The minimizer of this cubic in
[@, b] is either at one of the endpoints or else in the interior, in which case it is given by

e ¢ () +dy — dy
ip1 =0 — (o — o) |:¢/(Oli) T 2d2] , (3.59)
with
dy = ¢ (i) + ¢ (o) — 3M,
Qi1 —

dy = sign(a; — ;1) [df — ¢/(0li—1)¢/(05i)]1/2 .

The interpolation process can be repeated by discarding the data at one of the step
lengths o;_; or «; and replacing it by ¢(¢;+1) and ¢'(@;+1). The decision on which of o; 4
and «; should be kept and which discarded depends on the specific conditions used to
terminate the line search; we discuss this issue further below in the context of the Wolfe
conditions. Cubic interpolation is a powerful strategy, since it usually produces a quadratic
rate of convergence of the iteration (3.59) to the minimizing value of «.

INITIAL STEP LENGTH

For Newton and quasi-Newton methods, the step cp = 1 should always be used as
the initial trial step length. This choice ensures that unit step lengths are taken whenever
they satisfy the termination conditions and allows the rapid rate-of-convergence properties
of these methods to take effect.

For methods that do not produce well scaled search directions, such as the steepest de-
scent and conjugate gradient methods, it is important to use current information about the
problem and the algorithm to make the initial guess. A popular strategy is to assume that the
first-order change in the function at iterate x; will be the same as that obtained at the previ-
ous step. In other words, we choose the initial guess o so that aOkaT Dk = 01 kaT_lpk,l,
that is,

Vil P
N

Another useful strategy is to interpolate a quadratic to the data f(x;—1), f(x¢), and
\vJ fkT_1 Pi—1 and to define oy to be its minimizer. This strategy yields

Qp = Ug—1

2/~ fio)

59

60

CHAPTER 3. LINE SEARCH METHODS

It can be shown that if x; — x* superlinearly, then the ratio in this expression converges to
1. If we adjust the choice (3.60) by setting

oy < min(1, 1.01«y),

we find that the unit step length oy = 1 will eventually always be tried and accepted, and the
superlinear convergence properties of Newton and quasi-Newton methods will be observed.

A LINE SEARCH ALGORITHM FOR THE WOLFE CONDITIONS

The Wolfe (or strong Wolfe) conditions are among the most widely applicable and
useful termination conditions. We now describe in some detail a one-dimensional search
procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions (3.7)
for any parameters ¢; and c; satisfying 0 < ¢; < ¢, < 1. As before, we assume that p is a
descent direction and that f is bounded below along the direction p.

The algorithm has two stages. This first stage begins with a trial estimate o, and keeps
increasing it until it finds either an acceptable step length or an interval that brackets the
desired step lengths. In the latter case, the second stage is invoked by calling a function called
zoom (Algorithm 3.6, below), which successively decreases the size of the interval until an
acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer to (3.7a) as the
sufficient decrease condition and to (3.7b) as the curvature condition. The parameter o/max
is a user-supplied bound on the maximum step length allowed. The line search algorithm
terminates with o, set to a step length that satisfies the strong Wolfe conditions.

Algorithm 3.5 (Line Search Algorithm).
Set oy < 0, choose oy > 0and o € (0, Xmax);
I < 1;
repeat
Evaluate ¢ («;);
if p(o;) > ¢(0) + c10:¢'(0) or [P(e;) > Pp(at;—1) and i > 1]
o, <—zoom(w;_1, ;) and stop;
Evaluate ¢’ (o;);
if |¢' ()| < —c29(0)
set o, < o; and stop;
if (o) >0
set o, <—zoom(«;, ;1) and stop;
Choose @; 11 € (&0, tmax);
I <—i+1;
end (repeat)

3.5. STEP-LENGTH SELECTION ALGORITHMS

Note that the sequence of trial step lengths {¢;} is monotonically increasing, but that
the order of the arguments supplied to the zoom function may vary. The procedure uses
the knowledge that the interval («;_;, ;) contains step lengths satisfying the strong Wolfe
conditions if one of the following three conditions is satisfied:

(i) o; violates the sufficient decrease condition;
(ii) ¢(ai) = P(ai1)s
(iii) ¢'(a;) > 0.

The last step of the algorithm performs extrapolation to find the next trial value ;. To
implement this step we can use approaches like the interpolation procedures above, or
we can simply set ¢;4; to some constant multiple of «;. Whichever strategy we use, it is
important that the successive steps increase quickly enough to reach the upper limit @y in
a finite number of iterations.

We now specify the function zoom, which requires a little explanation. The order of
its input arguments is such that each call has the form zoom (oo, i), where

(a) the interval bounded by ¢, and ay,; contains step lengths that satisfy the strong Wolfe
conditions;

(b) «j is, among all step lengths generated so far and satisfying the sufficient decrease
condition, the one giving the smallest function value; and

(c) ap; is chosen so that ¢’ (o) (arn; — 1) < 0.

Each iteration of zoom generates an iterate r; between o, and oy, and then replaces one
of these endpoints by «; in such a way that the properties (a), (b), and (c) continue to hold.

Algorithm 3.6 (zoom).
repeat
Interpolate (using quadratic, cubic, or bisection) to find
a trial step length «; between o, and oy;
Evaluate ¢(«;);
if $()) > $(0) + cra;¢/(0) or plar;) = (o)
Ohi < O3
else
Evaluate ¢'(;);
if ¢ ()] < —2¢9(0)
Set o, <— o and stop;
if ¢ (o) (oni — a10) = 0
Ohi < Qo3
Qo < O3
end (repeat)

61

62

CHAPTER 3. LINE SEARCH METHODS

If the new estimate «; happens to satisfy the strong Wolfe conditions, then zoom has served
its purpose of identifying such a point, so it terminates with o, = «;. Otherwise, if o;
satisfies the sufficient decrease condition and has a lower function value than xj,, then we
set o, <— or; to maintain condition (b). If this setting results in a violation of condition (c),
we remedy the situation by setting op; to the old value of o,. Readers should sketch some
graphs to see for themselves how zoom works!

As mentioned earlier, the interpolation step that determines o ; should be safeguarded
to ensure that the new step length is not too close to the endpoints of the interval. Practical
line search algorithms also make use of the properties of the interpolating polynomials to
make educated guesses of where the next step length should lie; see [39, 216]. A problem
that can arise is that as the optimization algorithm approaches the solution, two consecutive
function values f(x;) and f(x;—;) may be indistinguishable in finite-precision arithmetic.
Therefore, the line search must include a stopping test if it cannot attain a lower function
value after a certain number (typically, ten) of trial step lengths. Some procedures also
stop if the relative change in x is close to machine precision, or to some user-specified
threshold.

A line search algorithm that incorporates all these features is difficult to code. We
advocate the use of one of the several good software implementations available in the
public domain. See Dennis and Schnabel [92], Lemaréchal [189], Fletcher [101], Moré and
Thuente [216] (in particular), and Hager and Zhang [161].

One may ask how much more expensive it is to require the strong Wolfe conditions
instead of the regular Wolfe conditions. Our experience suggests that for a “loose” line
search (with parameters such as ¢; = 107* and ¢, = 0.9), both strategies require a similar
amount of work. The strong Wolfe conditions have the advantage that by decreasing ¢, we
can directly control the quality of the search, by forcing the accepted value of « to lie closer
to a local minimum. This feature is important in steepest descent or nonlinear conjugate
gradient methods, and therefore a step selection routine that enforces the strong Wolfe
conditions has wide applicability.

NOTES AND REFERENCES

For an extensive discussion of line search termination conditions see Ortega and
Rheinboldt [230]. Akaike [2] presents a probabilistic analysis of the steepest descent method
with exact line searches on quadratic functions. He shows that when n > 2, the worst-case
bound (3.29) can be expected to hold for most starting points. The case n = 2 can be
studied in closed form; see Bazaraa, Sherali, and Shetty [14]. Theorem 3.6 is due to Dennis
and Moré.

Some line search methods (see Goldfarb [132] and Moré and Sorensen [213]) compute
a direction of negative curvature, whenever it exists, to prevent the iteration from converging
to nonminimizing stationary points. A direction of negative curvature p_ is one that satisfies
pIV2 f(xi)p— < 0.These algorithms generate a search direction by combining p_ with the
steepest descent direction —V f, often performing a curvilinear backtracking line search.

3.5. STEP-LENGTH SELECTION ALGORITHMS

It is difficult to determine the relative contributions of the steepest descent and negative
curvature directions. Because of this fact, the approach fell out of favor after the introduction
of trust-region methods.

For a more thorough treatment of the modified Cholesky factorization see Gill,
Murray, and Wright [130] or Dennis and Schnabel [92]. A modified Cholesky factorization
based on Gershgorin disk estimates is described in Schnabel and Eskow [276]. The modified
indefinite factorization is from Cheng and Higham [58].

Another strategy for implementing a line search Newton method when the Hessian
contains negative eigenvalues is to compute a direction of negative curvature and use it to
define the search direction (see Moré and Sorensen [213] and Goldfarb [132]).

Derivative-free line search algorithms include golden section and Fibonacci search.
They share some of the features with the line search method given in this chapter. They
typically store three trial points that determine an interval containing a one-dimensional
minimizer. Golden section and Fibonacci differ in the way in which the trial step lengths are
generated; see, for example, [79, 39].

Our discussion of interpolation follows Dennis and Schnabel [92], and the algorithm
for finding a step length satisfying the strong Wolfe conditions can be found in Fletcher
[101].

& EXERCISES

& 3.1 Program the steepest descent and Newton algorithms using the backtracking line
search, Algorithm 3.1. Use them to minimize the Rosenbrock function (2.22). Set the initial
step length oy = 1 and print the step length used by each method at each iteration. First try
the initial point xo = (1.2, 1.2)7 and then the more difficult starting point xo = (—1.2, 1)7.

& 3.2 Showthatif0 < ¢, < ¢1 < 1, there may be no step lengths that satisfy the Wolfe
conditions.

& 3.3 Show that the one-dimensional minimizer of a strongly convex quadratic function
is given by (3.55).

& 3.4 Show that the one-dimensional minimizer of a strongly convex quadratic function
always satisfies the Goldstein conditions (3.11).

& 3.5 Prove that ||Bx| > |x||/||B~!| for any nonsingular matrix B. Use this fact to
establish (3.19).

& 3.6 Consider the steepest descent method with exact line searches applied to the
convex quadratic function (3.24). Using the properties given in this chapter, show that if the
initial point is such that x, — x* is parallel to an eigenvector of Q, then the steepest descent
method will find the solution in one step.

63

Long Chen

64

CHAPTER 3. LINE SEARCH METHODS

& 3.7 Prove the result (3.28) by working through the following steps. First, use (3.26)
to show that

e — 1% = Ixegs — x7 1% = 20V T Qi — x*) — a2V £T OV fi,
where || - || o is defined by (3.27). Second, use the fact that V fi = Q(x; — x*) to obtain

AVAVR?E (VAIVAY?
(VAIOVS) (VA OV fo)

2 2
e = x* g = lxkr — x*llp =

and
lxe —x* Iy = VA Q7' fi

& 3.8 Let Q be a positive definite symmetric matrix. Prove that for any vector x, we
have
(xTx)? - AA,)
TOX)(xTQ71x) T (A + A1)

where X, and A; are, respectively, the largest and smallest eigenvalues of Q. (This relation,
which is known as the Kantorovich inequality, can be used to deduce (3.29) from (3.28).)

& 3.9 Program the BFGS algorithm using the line search algorithm described in this
chapter that implements the strong Wolfe conditions. Have the code verify that y/ s, is
always positive. Use it to minimize the Rosenbrock function using the starting points given
in Exercise 3.1.

& 3.10 Compute the eigenvalues of the 2 diagonal blocks of (3.52) and verify that each
block has a positive and a negative eigenvalue. Then compute the eigenvalues of A and verify
that its inertia is the same as that of B.

& 3.11 Describe the effect that the modified Cholesky factorization (3.50) would have
on the Hessian V2 f (x;) = diag(—2, 12, 4).

& 3.12 Consider a block diagonal matrix B with 1 x 1 and 2 x 2 blocks. Show that the
eigenvalues and eigenvectors of B can be obtained by computing the spectral decomposition
of each diagonal block separately.

& 3.13 Show that the quadratic function that interpolates ¢(0), ¢'(0), and ¢(a) is
given by (3.57). Then, make use of the fact that the sufficient decrease condition (3.6a) is
not satisfied at oy to show that this quadratic has positive curvature and that the minimizer
satisfies

240}

< —
50—

Long Chen

Long Chen

Long Chen

3.5. STEP-LENGTH SELECTION ALGORITHMS

Since ¢; is chosen to be quite small in practice, this inequality indicates that «; cannot be
much greater than % (and may be smaller), which gives us an idea of the new step length.

& 3.14 If ¢(ayp) is large, (3.58) shows that o can be quite small. Give an example of a
function and a step length & for which this situation arises. (Drastic changes to the estimate
of the step length are not desirable, since they indicate that the current interpolant does not
provide a good approximation to the function and that it should be modified before being
trusted to produce a good step length estimate. In practice, one imposes a lower bound—
typically, p = 0.1—and defines the new step length as o; = max(pa;_1, @;), where &; is the
minimizer of the interpolant.)

& 3.15 Suppose that the sufficient decrease condition (3.6a) is not satisfied at the step
lengths 0, and «;, and consider the cubic interpolating ¢(0), ¢'(0), ¢(xo) and ¢(a;).
By drawing graphs illustrating the two situations that can arise, show that the mini-
mizer of the cubic lies in [0, «;]. Then show that if ¢(0) < ¢(a;), the minimizer is
less than %al.

65

Long Chen

CHAPTER

Trust-Region
Methods

Line search methods and trust-region methods both generate steps with the help of a
quadratic model of the objective function, but they use this model in different ways. Line
search methods use it to generate a search direction, and then focus their efforts on finding
a suitable step length o along this direction. Trust-region methods define a region around
the current iterate within which they trust the model to be an adequate representation of
the objective function, and then choose the step to be the approximate minimizer of the
model in this region. In effect, they choose the direction and length of the step simul-
taneously. If a step is not acceptable, they reduce the size of the region and find a new

CHAPTER 4. TRUST-REGION METHODS

minimizer. In general, the direction of the step changes whenever the size of the trust region
is altered.

The size of the trust region is critical to the effectiveness of each step. If the region is
too small, the algorithm misses an opportunity to take a substantial step that will move it
much closer to the minimizer of the objective function. If too large, the minimizer of the
model may be far from the minimizer of the objective function in the region, so we may have
to reduce the size of the region and try again. In practical algorithms, we choose the size of
the region according to the performance of the algorithm during previous iterations. If the
model is consistently reliable, producing good steps and accurately predicting the behavior
of the objective function along these steps, the size of the trust region may be increased to
allow longer, more ambitious, steps to be taken. A failed step is an indication that our model
is an inadequate representation of the objective function over the current trust region. After
such a step, we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point x; and the minimizer x* lie at opposite ends of a curved valley.
The quadratic model function my, whose elliptical contours are shown as dashed lines, is
constructed from function and derivative information at x; and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of m; (shown), but this direction will yield at most
a small reduction in f, even if the optimal steplength is used. The trust-region method
steps to the minimizer of m; within the dotted circle (shown), yielding a more significant
reduction in f and better progress toward the solution.

In this chapter, we will assume that the model function m; that is used at each
iterate x; is quadratic. Moreover, m; is based on the Taylor-series expansion of f around

-... Trust region

Line search direction

contours of m;

Trust region step

contours of f

Figure 4.1 Trust-region and line search steps.

67

68

CHAPTER 4. TRUST-REGION METHODS

Xy, which is

fO+p)=fi+glp+3p" Vil +1ip)p, (4.1)

where f; = f(xx)and g = V f(xx), and 7 is some scalar in the interval (0, 1). By using an
approximation By, to the Hessian in the second-order term, my, is defined as follows:

me(p) = fi+g p+ip"Bip, (4.2)

where By is some symmetric matrix. The difference between m;(p) and f(x; + p) is
o (||p||2), which is small when p is small.

When B is equal to the true Hessian V? f (x;), the approximation error in the model
function my is O (|| p ||3), so this model is especially accurate when || p|| is small. This choice
By = V% f(x;) leads to the trust-region Newton method, and will be discussed further in
Section 4.4. In other sections of this chapter, we emphasize the generality of the trust-region
approach by assuming little about By except symmetry and uniform boundedness.

To obtain each step, we seek a solution of the subproblem

min mi(p) = fi+gip+3p Bip st llpll = Ax, (4.3)

where Ay > 0 is the trust-region radius. In most of our discussions, we define || - || to be
the Euclidean norm, so that the solution p; of (4.3) is the minimizer of m, in the ball of
radius A;. Thus, the trust-region approach requires us to solve a sequence of subproblems
(4.3) in which the objective function and constraint (which can be written as p” p < A,%)
are both quadratic. When B is positive definite and || B, Yerll < Ay, the solution of (4.3) is
easy to identify—it is simply the unconstrained minimum p? = — B, ' g; of the quadratic
my(p). In this case, we call p; the full step. The solution of (4.3) is not so obvious in other
cases, but it can usually be found without too much computational expense. In any case,
as described below, we need only an approximate solution to obtain convergence and good
practical behavior.

OUTLINE OF THE TRUST-REGION APPROACH

One of the key ingredients in a trust-region algorithm is the strategy for choosing the
trust-region radius Ay at each iteration. We base this choice on the agreement between the
model function m; and the objective function f at previous iterations. Given a step p; we
define the ratio

_ S = flut o)
my(0) — my(py)

(4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction
(that is, the reduction in f predicted by the model function). Note that since the step pi

CHAPTER 4. TRUST-REGION METHODS

is obtained by minimizing the model m; over a region that includes p = 0, the predicted
reduction will always be nonnegative. Hence, if p; is negative, the new objective value
f(xx + pr) is greater than the current value f(xi), so the step must be rejected. On the
other hand, if p; is close to 1, there is good agreement between the model my and the
function f over this step, so it is safe to expand the trust region for the next iteration. If p
is positive but significantly smaller than 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region by reducing Ay at the next iteration.
The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given A > 0, Ay € (0, A), andn € [O, i):
fork=0,1,2,...
Obtain py by (approximately) solving (4.3);
Evaluate p; from (4.4);
if,Ok < 711
Apyr = 1A
else
if o > 3 and | pull = Ay
Ak+1 = min(ZAk, A)

else
App1 = Aps
ifpr >n
Xpy1 = Xk + Pk
else
X1 = X5
end (for).

Here A is an overall bound on the step lengths. Note that the radius is increased only if || py ||
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of Ay is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving the
trust-region subproblem (4.3). In discussing this matter, we sometimes drop the iteration
subscript k and restate the problem (4.3) as follows:

. def
min m(p) =f+e p+ip"Bp stpl <A (4.5)

A first step to characterizing exact solutions of (4.5) is given by the following theorem
(due to Moré and Sorensen [214]), which shows that the solution p* of (4.5) satisfies

(B+Al)p*=—¢g (4.6)

for some A > 0.

69

70

CHAPTER 4. TRUST-REGION METHODS

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

minm(p) = f + g"p+1ip"Bp, st lpll <A, (4.7)

if and only if p* is feasible and there is a scalar . > 0 such that the following conditions are
satisfied:

(B+AM)p* =—g, (4.8a)
AA —p*l) =0, (4.8b)
(B+ AI) is positive semidefinite. (4.8¢)

We delay the proof of this result until Section 4.3, and instead discuss just its key
features here with the help of Figure 4.2. The condition (4.8b) is a complementarity condition
that states that at least one of the nonnegative quantities A and (A — || p*||) must be zero.
Hence, when the solution lies strictly inside the trust region (as it does when A = A, in
Figure 4.2), we must have A = 0 and so Bp* = —g with B positive semidefinite, from (4.8a)
and (4.8¢), respectively. In the other cases A = A; and A = A3, we have || p*|| = A, and
so A is allowed to take a positive value. Note from (4.8a) that

* —_—

Ap* = —Bp* — g = —Vm(p").

Figure 4.2 Solution of trust-region subproblem for different radii A!, A2, A3,

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

Thus, when A > 0, the solution p* is collinear with the negative gradient of m and normal
to its contours. These properties can be seen in Figure 4.2.

In Section 4.1, we describe two strategies for finding approximate solutions of the
subproblem (4.3), which achieve at least as much reduction in my, as the reduction achieved
by the so-called Cauchy point. This point is simply the minimizer of m; along the steepest
descent direction —gi. subject to the trust-region bound. The first approximate strategy is
the dogleg method, which is appropriate when the model Hessian By, is positive definite. The
second strategy, known as two-dimensional subspace minimization, can be applied when By
is indefinite, though it requires an estimate of the most negative eigenvalue of this matrix.
A third strategy, described in Section 7.1, uses an approach based on the conjugate gradient
method to minimize my, and can therefore be applied when B is large and sparse.

Section 4.3 is devoted to a strategy in which an iterative method is used to identify the
value of A for which (4.6) is satisfied by the solution of the subproblem. We prove global
convergence results in Section 4.2. Section 4.4 discusses the trust-region Newton method, in
which the Hessian By, of the model function is equal to the Hessian V2 f (x;) of the objective
function. The key result of this section is that, when the trust-region Newton algorithm con-
verges to a point x* satisfying second-order sufficient conditions, it converges superlinearly.

4.1 ALGORITHMS BASED ON THE CAUCHY POINT

THE CAUCHY POINT

As we saw in Chapter 3, line search methods can be globally convergent even when the
optimal step length is not used at each iteration. In fact, the step length o; need only satisfy
fairlyloose criteria. A similar situation applies in trust-region methods. Although in principle
we seek the optimal solution of the subproblem (4.3), it is enough for purposes of global
convergence to find an approximate solution py that lies within the trust region and gives a
sufficient reduction in the model. The sufficient reduction can be quantified in terms of the
Cauchy point, which we denote by p; and define in terms of the following simple procedure.

Algorithm 4.2 (Cauchy Point Calculation).
Find the vector p; that solves a linear version of (4.3), that is,

pi = argmin fi + gip stpl <Ak (4.9)

Calculate the scalar 75 > 0 that minimizes m (7 p;) subject to
satisfying the trust-region bound, that is,

T = argmiél my(tp}) st ltpll < Ags (4.10)
>

Set p; = ;.

A

72 CHAPTER 4. TRUST-REGION METHODS

It is easy to write down a closed-form definition of the Cauchy point. For a start, the
solution of (4.9) is simply

pp = s g
Bk,
k Il gl

To obtain t; explicitly, we consider the cases of ng Bigr < 0and ng Bygr > 0 separately. For
the former case, the function my (7 p;) decreases monotonically with T whenever g; # 0,
so Tk is simply the largest value that satisfies the trust-region bound, namely, 7z = 1. For
the case ng Bigk > 0, my(T p;) is a convex quadratic in 7, so 7 is either the unconstrained

minimizer of this quadratic, || gx|I*/(Arg/ Bigx), or the boundary value 1, whichever comes
first. In summary, we have

. Ay
Py = — T8k, (4.11)
ll gkl
where
1 if g{ Bigk < 0; wi2)
min (||gclI’/(Acg{ Brgr), 1) otherwise. '

Figure 4.3 illustrates the Cauchy point for a subproblem in which By is positive
definite. In this example, p; lies strictly inside the trust region.
The Cauchy step p; is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally

.. Trust region

contours of ny,

Figure 4.3 The Cauchy point.

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

convergent if its steps py give a reduction in the model m; that is at least some fixed positive
multiple of the decrease attained by the Cauchy step.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point p; provides sufficient reduction in the model function n
to yield global convergence, and since the cost of calculating it is so small, why should
we look any further for a better approximate solution of (4.3)? The reason is that by
always taking the Cauchy point as our step, we are simply implementing the steepest
descent method with a particular choice of step length. As we have seen in Chap-
ter 3, steepest descent performs poorly even if an optimal step length is used at each
iteration.

The Cauchy point does not depend very strongly on the matrix By, which is used only
in the calculation of the step length. Rapid convergence can be expected only if B plays a
role in determining the direction of the step as well as its length, and if By contains valid
curvature information about the function.

A number of trust-region algorithms compute the Cauchy point and then try to
improve on it. The improvement strategy is often designed so that the full step p? = —B, ' gx
is chosen whenever B is positive definite and || p}|| < Aj. When By is the exact Hessian
V2 f(xx) or a quasi-Newton approximation, this strategy can be expected to yield superlinear
convergence.

We now consider three methods for finding approximate solutions to (4.3) that have
the features just described. Throughout this section we will be focusing on the internal
workings of a single iteration, so we simplify the notation by dropping the subscript “k”
from the quantities Ay, pi, My, and g, and refer to the formulation (4.5) of the subproblem.
In this section, we denote the solution of (4.5) by p*(A), to emphasize the dependence
on A.

THE DOGLEG METHOD

The first approach we discuss goes by the descriptive title of the dogleg method. It can
be used when B is positive definite.

To motivate this method, we start by examining the effect of the trust-region radius A
on the solution p*(A) of the subproblem (4.5). When B is positive definite, we have already
noted that the unconstrained minimizer of m is p® = —B~'g. When this point is feasible
for (4.5), it is obviously a solution, so we have

pr(A) = p", when A = || p®|. (4.13)

When A is small relative to p®, the restriction || p|| < A ensures that the quadratic term in
m has little effect on the solution of (4.5). For such A, we can get an approximation to p(A)

73

74 CHAPTER 4. TRUST-REGION METHODS

... Trust region

Optimal trajectory p(A)

PU (uncoristrained min along —g)g AN

dogleg path >

Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

pi(A) ~ —Aﬁ, when A is small. (4.14)
8

For intermediate values of A, the solution p*(A) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p*(A) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

=——g, (4.15)

while the second line segment runs from pV to p® (see Figure 4.4). Formally, we denote this
trajectory by p(t) for v € [0, 2], where

. pY, 0<t<l,
=1 | . (4.16)
p’+ (@ =D -p), 1 2.

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.

4.1. ALGORITHMS BASED ON THE CAUCHY POINT

Lemma 4.2.
Let B be positive definite. Then

(1) |p(z)|l is an increasing function of T, and
(ii) m(p(r)) is a decreasing function of T.
PrROOF. It is easy to show that (i) and (ii) both hold for t € [0, 1], so we restrict our
attention to the case of T € [1, 2]. For (i), define 4 («) by
h(a) = 3Ip(1 + a)|?
=3lp" +a(p® — p)I?
= 1P 1> + a(p)" (p* = p¥) + L2 p" — pUI%.

Our result is proved if we can show that 4'(«) > 0 for & € (0, 1). Now,

W(a)=—(p") (p" = p*) +alp® - p'I?
- (p¥ = p)

T T
_ gggr< ggg+31g)

v

g’ Bg ¢TBg
_oTg88 8 [1 o (gTe)? }
g"Bg (g"Bg)(g"B'g)
>0

where the final inequality is a consequence of the Cauchy-Schwarz inequality. (We leave the
details as an exercise.)

For (ii), we define i(a) = m(p(1 + «)) and show that A'(a) < 0 for & € (0, 1).
Substitution of (4.16) into (4.5) and differentiation with respect to the argument leads to

h(a)=(p* - p") (g + Bp") +a(p’ — p") B(p* — p')
<(p"=p")'(g+ Bp"+ B(p"— p"))
=(p*—p") (g + Bp") =0,

giving the result. O

It follows from this lemma that the path p(7) intersects the trust-region boundary
lpll = A at exactly one point if || p®|| > A, and nowhere otherwise. Since m is decreasing
along the path, the chosen value of p will be at p® if || p®|| < A, otherwise at the point of
intersection of the dogleg and the trust-region boundary. In the latter case, we compute the
appropriate value of 7 by solving the following scalar quadratic equation:

P’ + (t — D(p" — p)I* = A”.

75

76

CHAPTER 4. TRUST-REGION METHODS

Consider now the case in which the exact Hessian V2 f (x;) is available for use in the
model problem (4.5). When V2 f (x;) is positive definite, we can simply set B = V2 f(x)
(that is, p® = (V2 f(xx)) 'gr) and apply the procedure above to find the Newton-dogleg
step. Otherwise, we can define p® by choosing B to be one of the positive definite modified
Hessians described in Section 3.4, then proceed as above to find the dogleg step. Near
a solution satisfying second-order sufficient conditions (see Theorem 2.4), p® will be set
to the usual Newton step, allowing the possibility of rapid local convergence of Newton’s
method (see Section 4.4).

The use of a modified Hessian in the Newton-dogleg method is not completely
satisfying from an intuitive viewpoint, however. A modified factorization perturbs the
diagonals of V2 £ (x;) in a somewhat arbitrary manner, and the benefits of the trust-region
approach may not be realized. In fact, the modification introduced during the factorization
of the Hessian is redundant in some sense because the trust-region strategy introduces its
own modification. As we show in Section 4.3, the exact solution of the trust-region problem
(4.3) with By = V2 f(x;) is (V2 f(xx) + AI) "' gx, where A is chosen large enough to make
(V2 f(xx) + AI) positive definite, and its value depends on the trust-region radius A;. We
conclude that the Newton-dogleg method is most appropriate when the objective function
is convex (that is, V2 f (x;) is always positive semidefinite). The techniques described below
may be more suitable for the general case.

The dogleg strategy can be adapted to handle indefinite matrices B, but there is not
much point in doing so because the full step p® is not the unconstrained minimizer of m
in this case. Instead, we now describe another strategy, which aims to include directions of
negative curvature (that is, directions d for which d TBd < 0) in the space of candidate
trust-region steps.

TWO-DIMENSIONAL SUBSPACE MINIMIZATION

When B is positive definite, the dogleg method strategy can be made slightly more
sophisticated by widening the search for p to the entire two-dimensional subspace spanned
by pY and p* (equivalently, g and —B~'g). The subproblem (4.5) is replaced by

minm(p) = f + g"p+ip"Bp st |lpll <A, p espan[g, B~'g]. (4.17)

This is a problem in two variables that is computationally inexpensive to solve. (After some
algebraic manipulation it can be reduced to finding the roots of a fourth degree polynomial.)
Clearly, the Cauchy point p° is feasible for (4.17), so the optimal solution of this subproblem
yields at least as much reduction in m as the Cauchy point, resulting in global convergence
of the algorithm. The two-dimensional subspace minimization strategy is obviously an
extension of the dogleg method as well, since the entire dogleg path lies in span[g, B~'g].
This strategy can be modified to handle the case of indefinite B in a way that is intuitive,
practical, and theoretically sound. We mention just the salient points of the handling of the

4.9, GLoBAL CONVERGENCE

indefiniteness here, and refer the reader to papers by Byrd, Schnabel, and Schultz (see [54]
and [279]) for details. When B has negative eigenvalues, the two-dimensional subspace in
(4.17) is changed to

span[g, (B +al) 'g], for some o € (—Ay, —2XA1], (4.18)

where A denotes the most negative eigenvalue of B. (This choice of & ensures that B+« is
positive definite, and the flexibility in the choice of « allows us to use a numerical procedure
such as the Lanczos method to compute it.) When ||(B + al)'g|| < A, we discard the
subspace search of (4.17), (4.18) and instead define the step to be

p=—(B+al) g+, (4.19)

where v is a vector that satisfies v/ (B + «f)~'g < 0. (This condition ensures that || p| >
(B + al)~!g|l.) When B has zero eigenvalues but no negative eigenvalues, we define the
step to be the Cauchy point p = p°.

When the exact Hessian is available, we can set B = V2 f (x;), and note that B~ g is
the Newton step. Hence, when the Hessian is positive definite at the solution x* and when
X s close to x™ and A is sufficiently large, the subspace minimization problem (4.17) will
be solved by the Newton step.

The reduction in model function m achieved by the two-dimensional subspace min-
imization strategy often is close to the reduction achieved by the exact solution of (4.5).
Most of the computational effort lies in a single factorization of B or B 4+ o/ (estimation of
« and solution of (4.17) are less significant), while strategies that find nearly exact solutions
of (4.5) typically require two or three such factorizations (see Section 4.3).

4.2 GLOBAL CONVERGENCE

REDUCTION OBTAINED BY THE CAUCHY POINT

In the preceding discussion of algorithms for approximately solving the trust-region
subproblem, we have repeatedly emphasized that global convergence depends on the ap-
proximate solution obtaining at least as much decrease in the model function m as the
Cauchy point. (In fact, a fixed positive fraction of the Cauchy decrease suffices.) We start
the global convergence analysis by obtaining an estimate of the decrease in m achieved by
the Cauchy point. We then use this estimate to prove that the sequence of gradients {g;}
generated by Algorithm 4.1 has an accumulation point at zero, and in fact converges to zero
when 7 is strictly positive.

Our first main result is that the dogleg and two-dimensional subspace minimization
algorithms and Steihaug’s algorithm (Algorithm 7.2) produce approximate solutions py of
the subproblem (4.3) that satisfy the following estimate of decrease in the model function:

. llgxll
my(0) — mi(pr) = c1llgkll min (Ak, 1) (4.20)
k

77

78 CHAPTER 4. TRUST-REGION METHODS

for some constant ¢; € (0, 1]. The usefulness of this estimate will become clear in the
following two sections. For now, we note that when Ay is the minimum value in (4.20), the
condition is slightly reminiscent of the first Wolfe condition: The desired reduction in the
model is proportional to the gradient and the size of the step.

We show now that the Cauchy point pj satisfies (4.20), with ¢; = %
Lemma 4.3.
The Cauchy point p; satisfies (4.20) with ¢, = %, that is,

i) llgll
mi(0) — my(pg) > 1|8kl min (Ak, 150 (4.21)
&

ProOF. For simplicity, we drop the iteration index k in the proof.
We consider first the case g7 Bg < 0. Here, we have

m(p®) —m(0) = m(—Ag/llgl) — f
A A2
=——|igl*+i—¢"Bg
gl 2 gl
< —Algl
<

. lgll
—llgll min <A, —) ,
1Bl
and so (4.21) certainly holds.

For the next case, consider g7 Bg > 0 and

lgll®

— < 4.22
AgTBg — ()

From (4.12), we have t = ||g|I°/ (AgTBg), and so from (4.11) it follows that

sl
g Bg
o lsll
*¢"Bg
gl
— ZBllgl?

_ o lel?
2B]

. llgll

1

—3 gl min (A, —,
: 1Bl

so (4.21) holds here too.

In the remaining case, (4.22) does not hold, and therefore

lell*
+1gTBg——2—
: (¢" Bg)?

m(p®) —m(0) =

IA

gl

T
Bg <
8 bg A

(4.23)

4.9, GLoBAL CONVERGENCE

From (4.12), we have t = 1, and using this fact together with (4.23), we obtain

A 2
m(p) —m(0) = ——||g|* + 5 " Bg
gl 2 |gli*
1 A% gl
< -Alglh+ 5 —5——
2gl* A
_ 1
= —3Allgl
. gl
< —3llgll min (A, el
? Bl
yielding the desired result (4.21) once again. O

To satisfy (4.20), our approximate solution p; has only to achieve a reduction that is
at least some fixed fraction ¢, of the reduction achieved by the Cauchy point. We state the
observation formally as a theorem.

Theorem 4.4,

Let py. be any vector such that || pi|| < Ay andmy(0) —myi(pr) > c> (mk(O) - mk(p,i)).
Then py satisfies (4.20) with c1 = c,/2. In particular, if py is the exact solution p} of (4.3),
then it satisfies (4.20) with ¢; = %

PROCF. Since || prll < Ay, we have from Lemma 4.3 that

‘ . Il gl
mi(0) — my(pi) = ¢z (me(0) — mi(p§)) > 3e2llgill min <Ak, ||§k|| ,

giving the result. O

Note that the dogleg and two-dimensional subspace minimization algorithms both
satisfy (4.20) with ¢; = %, because they all produce approximate solutions p; for which

mi(pr) < mi(py).

CONVERGENCE TO STATIONARY POINTS

Global convergence results for trust-region methods come in two varieties, depending
on whether we set the parameter 1 in Algorithm 4.1 to zero or to some small positive value.
When 1 = 0 (that is, the step is taken whenever it produces a lower value of f), we can
show that the sequence of gradients {g;} has a limit point at zero. For the more stringent
acceptance test with n > 0, which requires the actual decrease in f to be at least some small
fraction of the predicted decrease, we have the stronger result that g; — 0.

In this section we prove the global convergence results for both cases. We assume
throughout that the approximate Hessians By are uniformly bounded in norm, and that f

79

80

CHAPTER 4. TRUST-REGION METHODS

is bounded below on the level set

def

S={xlfx) = flxo)} (4.24)

For later reference, we define an open neighborhood of this set by
S(Ro) & {x|llx —y|l < Ry for some y € S},

where Ry is a positive constant.

To allow our results to be applied more generally, we also allow the length of the
approximate solution p; of (4.3) to exceed the trust-region bound, provided that it stays
within some fixed multiple of the bound; that is,

lpell < y Ay, for some constant y > 1. (4.25)

The first result deals with the case n = 0.

Theorem 4.5.

Let n = 0 in Algorithm 4.1. Suppose that ||Bi|| < B for some constant 8, that f is
bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(Ry) for some Ry > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants ¢, and y . We then have

liminf || g¢|| = 0. (4.26)
k—o00

PROOF. By performing some technical manipulation with the ratio oy from (4.4), we obtain

1] = ‘(f(xk) — [+ pir)) — (m(0) — my(pi))
mg(0) — my(pi)
B ‘mk(Pk) — f(x + pr)
| mi(0) — my(pr)

Since from Taylor’s theorem (Theorem 2.1) we have that

1
Foa+ p) = FO) + g0a) pr + / g xx + 1pe) — g(x)]T ped,
0

for some t € (0, 1), it follows from the definition (4.2) of m, that

[mi(pr) — f(xx + pr)l =

1
1p{ Bip — / [g(x + tpi) — g(x)]" prdt
0

< (B/2)pill® + Bull el (4.27)

4.9, GLoBAL CONVERGENCE

where we have used 8; to denote the Lipschitz constant for g on the set S(R)), and assumed
that || prll < Ry to ensure that x; and x; + ¢py both lie in the set S(Ry).
Suppose for contradiction that there is € > 0 and a positive index K such that

llgxll = €, forallk > K. (4.28)

From (4.20), we have for k > K that

: ll gl : €
m(0) — mi(pr) = c1llgkll min <Ak, ||§ ” > ciemin | Ay, 5) (4.29)
k

Using (4.29), (4.27), and the bound (4.25), we have

*AL(B/2
lox — 1] < M (4.30)
cr€e min(Ay, €/8)
We now derive a bound on the right-hand-side that holds for all sufficiently small values of
Ay, that is, for all A; < A, where A is defined as follows:

A = min (EL &> (4.31)
B 2y2B/2+B) v) '

The Ry/y term in this definition ensures that the bound (4.27) is valid (because || pi|| <
yA; <)/A < Ry). Note that since ¢; < 1 and y > 1, we have A < €/B. The latter
condition implies that for all A, € [0, A], we have min(Ay, €/8) = Ay, so from (4.30) and
(4.31), we have

1 < CAIBREB) VAR B) VPR
Pk - C1€Ak o C1€ - C1€

1
J— 2 .

Therefore, p; > i, and so by the workings of Algorithm 4.1, we have Az, > Ay whenever
A, falls below the threshold A. It follows that reduction of Ay (by a factor of i) can occur
in our algorithm only if

A > A,
and therefore we conclude that
Ar > min (Ag, A/4) forallk > K. (4.32)

Suppose now that there is an infinite subsequence /C such that p; > i for k € K. For

81

82 CHAPTER 4. TRUST-REGION METHODS

k € K and k > K, we have from (4.29) that

S o) = f (k1) = fx) — F G + p)
> 1 mi(0) — my(pr)]
> icle min(Ag, €/8).

Since f is bounded below, it follows from this inequality that

lim Ak = 0,
kek, k—oo

contradicting (4.32). Hence no such infinite subsequence /C can exist, and we must have
pr < 1 for all k sufficiently large. In this case, A, will eventually be multiplied by } at every
iteration, and we have lim;_, .o Ay = 0, which again contradicts (4.32). Hence, our original
assertion (4.28) must be false, giving (4.26). O

Our second global convergence result, for the case n > 0, borrows much of the analysis
from the proof above. Our approach here follows that of Schultz, Schnabel, and Byrd [279].

Theorem 4.6.

Letn € (0, 1) in Algorithm 4.1. Suppose that || By|| < B for some constant B, that f is
bounded below on the level set S (4.24) and Lipschitz continuously differentiable in S(R,) for
some Ry > 0, and that all approximate solutions py. of (4.3) satisfy the inequalities (4.20) and
(4.25) for some positive constants ¢ and y. We then have

lim g = 0. (4.33)
k—o00

PROOF. We consider a particular positive index m with g, # 0. Using B; again to denote
the Lipschitz constant for g on the set S(Ry), we have

llg(x) — gmll = Bullx — xmll,

for all x € S(Ry). We now define the scalars € and R to satisfy

€= %”gm”» R = min (i’ RO> .
B
Note that the ball
B(xm, R) = {x | llx — xull < R}
is contained in S(Ry), so Lipschitz continuity of g holds inside B(x,,, R). We have

x € Bxpn, R) = 11800l = llgmll = 18(x) = gnll = 3llgnll = €.

If the entire sequence {x¢}>, stays inside the ball B(x,,, R), we would have ||g]| > € > 0

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

for all k > m. The reasoning in the proof of Theorem 4.5 can be used to show that this
scenario does not occur. Therefore, the sequence {x };>,, eventually leaves B(x,,, R).

Let the index [> m be such that x;; is the first iterate after x,, outside B(x,,, R).
Since ||gi|| = e fork =m,m + 1, ..., 1, we can use (4.29) to write

1
fOm) = o) =) fa) = f ()

k=m

= Zi:m,xk¢Xk+1n[mk(0) - mk(pk)]

! . €
ZE neiemin | Ay, — |,
k=m X #xk 41 B

where we have limited the sum to the iterations k for which x; # x; 1, thatis, those iterations
on which a step was actually taken. If Ay <e/Bforallk =m,m +1,...,[, we have
I
. €
fxm) — fxiq1) = neje Z A > nci€R = ncie min (/3—, Ro> . (4.34)

k=m,xy#X+1 1

Otherwise, we have Ay > ¢/ forsomek =m,m + 1, ...,1,and so
€
fQm) = fxi41) = nC1€E~ (4.35)

Since the sequence { f (x;)}2, is decreasing and bounded below, we have that

fx)d fF (4.36)

for some f* > —oo. Therefore, using (4.34) and (4.35), we can write

JGom) = 5= fem) = f(x141)

RUSNCE
Z nciemin | —, —, Ky
B B

1 . Ngm Il 1Igml
—nc min ,——, Ry) > 0.
277 llgmll (28 28, 0

Since f(x,,) — f* | 0, we must have g,, — 0, giving the result. O

4.3 ITERATIVE SOLUTION OF THE SUBPROBLEM

In this section, we describe a technique that uses the characterization (4.6) of the subprob-
lem solution, applying Newton’s method to find the value of A which matches the given

83

84

CHAPTER 4. TRUST-REGION METHODS

trust-region radius A in (4.5). We also prove the key result Theorem 4.1 concerning the
characterization of solutions of (4.3).

The methods of Section 4.1 make no serious attempt to find the exact solution of
the subproblem (4.5). They do, however, make some use of the information in the model
Hessian By, and they have advantages of reasonable implementation cost and nice global
convergence properties.

When the problem is relatively small (that is, is not too large), it may be worthwhile
to exploit the model more fully by looking for a closer approximation to the solution of the
subproblem. In this section, we describe an approach for finding a good approximation at the
cost of a few factorizations of the matrix B (typically three factorization), as compared with
a single factorization for the dogleg and two-dimensional subspace minimization methods.
This approach is based on the characterization of the exact solution given in Theorem 4.1,
together with an ingenious application of Newton’s method in one variable. Essentially, the
algorithm tries to identify the value of A for which (4.6) is satisfied by the solution of (4.5).

The characterization of Theorem 4.1 suggests an algorithm for finding the solution p
of (4.7). Either A = 0 satisfies (4.8a) and (4.8¢c) with || p|| < A, or else we define

p(\) = —(B+A1D)7'g
for X sufficiently large that B 4 A1 is positive definite and seek a value A > 0 such that
P = A. (4.37)
This problem is a one-dimensional root-finding problem in the variable A.
To see that a value of A with all the desired properties exists, we appeal to the eigende-
composition of B and use it to study the properties of || p(1)]|. Since B is symmetric, there
is an orthogonal matrix Q and a diagonal matrix A such that B = QA Q7, where

A = diag(kl,)Lz, ooy)Ln)’

and A; < A, < .-+ < A, are the eigenvalues of B; see (A.16). Clearly, B + 1] = Q(A +
A1)QT, and for A # A;, we have

n T
qg; 8

) =—0(A AI‘IT:—E / : 4.38

p(x) QA+AI)" Q"¢ jZIAdeq/ (4.38)

where g; denotes the jth column of Q. Therefore, by orthonormality of g1, q», .. ., gu, we
have

" q; g)
PP =) ~——= (4.39)

. 2°
O+)

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM 85

Ipll

Figure 4.5 | p()\)|| as a function of A.

This expression tells us a lot about ||p(A)||. If A > —X;, we have A; + A > 0 for all
j=12,...,n,andso || p(1)|| is a continuous, nonincreasing function of A on the interval
(—=A1, 00). In fact, we have that

Alil?o Ip(M)] = 0. (4.40)

Moreover, we have when ¢ g # 0 that

AEIPA/ lp(M)]| = oo. (4.41)

Figure 4.5 plots || p(1)]| against A in a case in whcih ¢! g, ¢! g,and ¢! g are all nonzero.
Note that the properties (4.40) and (4.41) hold and that || p(1)|| is a nonincreasing function
of A on (—Xq, 00). In particular, as is always the case when qlT g # 0, that there is a unique
value 1* € (—Aj, 00) such that || p(A*)|| = A. (There may be other, smaller values of A for
which || p(X)]| = A, but these will fail to satisfy (4.8¢).)

We now sketch a procedure foridentifying the A* € (—1;, oo) for which || p(A*)|| = A,
which works when ¢! g # 0. (We discuss the case of ¢! g = 0 later.) First, note that when B
positive definite and || B~'g|| < A, the value A = 0 satisfies (4.8), so the procedure can be
terminated immediately with A* = 0. Otherwise, we could use the root-finding Newton’s
method (see the Appendix) to find the value of 1 > —A; that solves

o1 (A) = llp(M) — A =0. (4.42)

86

CHAPTER 4. TRUST-REGION METHODS

The disadvantage of this approach can be seen by considering the form of || p(1)| when A
is greater than, but close to, —A;. For such A, we can approximate ¢; by a rational function,
as follows:

C
A+ A

o1(A) & + Cs,

where C; > 0 and C, are constants. Clearly this approximation (and hence ¢;) is highly
nonlinear, so the root-finding Newton’s method will be unreliable or slow. Better results will
be obtained if we reformulate the problem (4.42) so that it is nearly linear near the optimal
A. By defining

$r(0) = ~ = —
PUTA T Ipol

it can be shown using (4.39) that for A slightly greater than —X,, we have

1 A4
A — -
$2(A) X G

for some C3 > 0. Hence, ¢, is nearly linear near —\; (see Figure 4.6), and the root-finding

lpl =

Figure4.6 1/| p(1)|| as a function of A.

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

Newton’s method will perform well, provided that it maintains A > —2X;. The root-finding
Newton’s method applied to ¢, generates a sequence of iterates 1(*) by setting

(&)
LD — 30 _ ¢ (» _). (4.43)
95 (+)
After some elementary manipulation, this updating formula can be implemented in the
following practical way.

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for?{=0,1,2,...
Factor B+ AT = RTR;
Solve RT Rpy = —g, RT gy = py;

Set

2
)“([+1)=)\‘([)+<”p5”) (”PK”_A); (4.44)
ligell A

end (for).

Safeguards must be added to this algorithm to make it practical; for instance, when
1 < —A,, the Cholesky factorization B 4+ AT = R” R will not exist. A slightly enhanced
version of this algorithm does, however, converge to a solution of (4.37) in most cases.

The main work in each iteration of this method is, of course, the Cholesky factorization
of B 4+ A1, Practical versions of this algorithm do not iterate until convergence to the
optimal X is obtained with high accuracy, but are content with an approximate solution that
can be obtained in two or three iterations.

THE HARD CASE

Recall that in the discussion above, we assumed that g/ g # 0. In fact, the approach
described above can be applied even when the most negative eigenvalue is a multiple
eigenvalue (thatis, 0 > A; = A, = ---), provided that Q7 g # 0, where Q; is the matrix
whose columns span the subspace corresponding to the eigenvalue A;. When this condition
does not hold, the situation becomes a little complicated, because the limit (4.41) does not
hold for A; = A; and so there may not be a value A € (—1,, 00) such that || p(A)|| = A (see
Figure 4.7). Moré and Sorensen [214] refer to this case as the hard case. At first glance, it is
not clear how p and A can be chosen to satisfy (4.8) in the hard case. Clearly, our root-finding
technique will not work, since there is no solution for A in the open interval (—A1, co0). But
Theorem 4.1 assures us that the right value of X lies in the interval [—2,, 00), so there is only

87

88 CHAPTER 4. TRUST-REGION METHODS

lipll

Figure 4.7 The hard case: ||[p(1)|| < A forall A € (—Xq, 00).

one possibility: A = —;. To find p, it is not enough to delete the terms for which A; = X,
from the formula (4.38) and set

T
q; 8
JihjFEM J

Instead, we note that (B — A,I) is singular, so there is a vector z such that ||z|| = 1 and
(B — A1)z = 0. In fact, z is an eigenvector of B corresponding to the eigenvalue X1, so by
orthogonality of Q we have quz = 0for A; # A,.It follows from this property that if we set

T

q; 8
p= Z Al’+/\qj+rz (4.45)
Jihj#En

for any scalar 7, we have

s

2
T
(a7¢)
lpl>=) ——~5+7

. 2
Jihj#Eh () +2)

so it is always possible to choose 7 to ensure that || p|| = A. It is easy to check that the
conditions (4.8) holds for this choice of p and A = —A;.

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

PROOF OF THEOREM 4.1

We now give a formal proof of Theorem 4.1, the result that characterizes the exact
solution of (4.5). The proof relies on the following technical lemma, which deals with the
unconstrained minimizers of quadratics and is particularly interesting in the case where the
Hessian is positive semidefinite.

Lemma 4.7.
Let m be the quadratic function defined by

m(p)=g"p+1ip" Bp, (4.46)

where B is any symmetric matrix. Then the following statements are true.
(i) m attains a minimum if and only if B is positive semidefinite and g is in the range of B.
If B is positive semidefinite, then every p satisfying Bp = —g is a global minimizer of m.

(ii) m has a unique minimizer if and only if B is positive definite.

PrROOF. We prove each of the three claims in turn.

(i) We start by proving the “if” part. Since g is in the range of B, thereisa p with Bp = —g.
For all w € R", we have

mp+w)=g" (p+w) +ip+wBp+w)
=" p+3p"Bp)+¢"w+ (Bp) w+ jw' Bw
=m(p) + tw’ Bw
= m(p), (4.47)

since B is positive semidefinite. Hence, p is a minimizer of m.

For the “only if” part, let p be a minimizer of m. Since Vm(p) = Bp + g = 0, we
have that g is in the range of B. Also, we have V2m(p) = B positive semidefinite, giving
the result.

(ii) For the “if” part, the same argument as in (i) suffices with the additional point that
w! Bw > 0 whenever w # 0. For the “only if” part, we proceed as in (i) to deduce that B is
positive semidefinite. If B is not positive definite, there is a vector w # 0 such that Bw = 0.
Hence, from (4.47), we have m(p + w) = m(p), so the minimizer is not unique, giving a
contradiction. |

To illustrate case (i), suppose that

89

90 CHAPTER 4. TRUST-REGION METHODS

which has eigenvalues 0, 1,2 and is therefore singular. If g is any vector whose second
component is zero, then g will be in the range of B, and the quadratic will attain a minimum.
But if the second element in g is nonzero, we can decrease m(-) indefinitely by moving along
the direction (0, —g,, 0)7.

We are now in a position to take account of the trust-region bound ||p|| < A and
hence prove Theorem 4.1.

PrOOF. (Theorem 4.1)
Assume first that there is A > 0 such that the conditions (4.8) are satisfied.
Lemma 4.7(i) implies that p* is a global minimum of the quadratic function

N A
i(p)=g"p+3p"(B+ADp=m(p)+p"p. (4.48)
Since m(p) > m(p*), we have

T

A
m(p) = m(p*) + 5((17*)Tp* —p'p). (4.49)

Because A(A — || p*||) = 0 and therefore A(A%? — (p*)T p*) = 0, we have
* A 2 T
m(p) > m(p*) + E(A - ' p).

Hence, from A > 0, we have m(p) > m(p*) for all p with || p|| < A. Therefore, p* is a
global minimizer of (4.7).

For the converse, we assume that p* is a global solution of (4.7) and show that there
isa A > 0 that satisfies (4.8).

In the case | p*|| < A, p* is an unconstrained minimizer of m, and so

Vm(p*) = Bp* + g =0, V?m(p*) = B positive semidefinite,

and so the properties (4.8) hold for A = 0.

Assume for the remainder of the proof that || p*|| = A. Then (4.8b) is immediately
satisfied, and p* also solves the constrained problem

minm(p) subjectto ||p| = A.

By applying optimality conditions for constrained optimization to this problem (see
(12.34)), we find that there is a A such that the Lagrangian function defined by

A
L(p,r) =m(p)+ 5(17TP —A?)

4.3. [TERATIVE SOLUTION OF THE SUBPROBLEM

has a stationary point at p*. By setting V,L(p*, 1) to zero, we obtain
Bp*+g+ip*=0 = (B+Al)p*=—g, (4.50)

so that (4.8a) holds. Since m(p) > m(p*) for any p with pT p = (p*)T p* = A?, we have
for such vectors p that

A
m(p) = m(p*) + 3 ((p)Tp*—p"p).

If we substitute the expression for g from (4.50) into this expression, we obtain after some
rearrangement that

Hp—pH)T"(B+A1)(p—p*) =0. (4.51)
Since the set of directions
{w w = j:&, for some p with || p|| = A}
Ilp— p*ll

is dense on the unit sphere, (4.51) suffices to prove (4.8c).

It remains to show that A > 0. Because (4.8a) and (4.8c) are satisfied by p*, we have
from Lemma 4.7(i) that p* minimizes 71, so (4.49) holds. Suppose that there are only negative
values of A that satisfy (4.8a) and (4.8c). Then we have from (4.49) that m(p) > m(p*)
whenever ||p|| > || p*|| = A. Since we already know that p* minimizes m for ||p|| < A,
it follows that m is in fact a global, unconstrained minimizer of m. From Lemma 4.7(i) it
follows that Bp = —g and B is positive semidefinite. Therefore conditions (4.8a) and (4.8¢)
are satisfied by A = 0, which contradicts our assumption that only negative values of A can
satisfy the conditions. We conclude that A > 0, completing the proof. g

CONVERGENCE OF ALGORITHMS BASED ON NEARLY EXACT SOLUTIONS

As we noted in the discussion of Algorithm 4.3, the loop to determine the optimal
values of A and p for the subproblem (4.5) does not iterate until high accuracy is achieved.
Instead, it is terminated after two or three iterations with a fairly loose approximation to
the true solution. The inexactness in this approximate solution is measured in a different
way from the dogleg and subspace minimization algorithms. We can add safeguards to the
root-finding Newton method to ensure that the key assumptions of Theorems 4.5 and 4.6
are satisfied by the approximate solution. Specifically, we require that

m(0) —m(p) = ¢;(m(0) — m(p*)), (4.52a)
Ipl <yA (4.52b)

91

92

CHAPTER 4. TRUST-REGION METHODS

(where p* is the exact solution of (4.3)), for some constants ¢; € (0, 1] and y > 0. The
condition (4.52a) ensures that the approximate solution achieves a significant fraction of the
maximum decrease possible in the model function m. (It is not necessary to know p*; there
are practical termination criteria that imply (4.52a).) One major difference between (4.52)
and the earlier criterion (4.20) is that (4.52) makes better use of the second-order part of
m(-), that is, the p” Bp term. This difference is illustrated by the case in which g = 0 while
B has negative eigenvalues, indicating that the current iterate x; is a saddle point. Here,
the right-hand-side of (4.20) is zero (indeed, the algorithms we described earlier would
terminate at such a point). The right-hand-side of (4.52) is positive, indicating that decrease
in the model function is still possible, so it forces the algorithm to move away from xy.

The close attention that near-exact algorithms pay to the second-order term is war-
ranted only if this term closely reflects the actual behavior of the function f—in fact,
the trust-region Newton method, for which B = V2 f(x), is the only case that has been
treated in the literature. For purposes of global convergence analysis, the use of the exact
Hessian allows us to say more about the limit points of the algorithm than merely that they
are stationary points. The following result shows that second-order necessary conditions
(Theorem 2.3) are satisfied at the limit points.

Theorem 4.8.

Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
continuously differentiable in the level set S. Suppose that B = V? f(x;) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then
limy o0 [l gk Il = 0.

If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point x;. at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {x;.} has a limit point x* in S at which the second-order necessary conditions hold.

We omit the proof, which can be found in Moré and Sorensen [214, Section 4].

4.4 LOCAL CONVERGENCE OF TRUST-REGION NEWTON
METHODS

Since global convergence of trust-region methods that use exact Hessians V2 f (x) is estab-
lished above, we turn our attention now to local convergence issues. The key to attaining
the fast rate of convergence usually associated with Newton’s method is to show that the
trust-region bound eventually does not interfere as we approach a solution. Specifically, we
hope that near the solution, the (approximate) solution of the trust-region subproblem is
well inside the trust region and becomes closer and closer to the true Newton step. Steps
that satisfy the latter property are said to be asymptotically similar to Newton steps.

We first prove a general result that applies to any algorithm of the form of Algo-
rithm 4.1 (see Chapter 4) that generates steps that are asymptotically similar to Newton

4.4, LocAaL CONVERGENCE OF TRUST-REGION NEWTON METHODS

steps whenever the Newton steps easily satisfy the trust-region bound. It shows that the
trust-region constraint eventually becomes inactive in algorithms with this property and
that superlinear convergence can be attained. The result assumes that the exact Hessian
By = V? f(x;) is used in (4.3) when x; is close to a solution x* that satisfies second-order
sufficient conditions (see Theorem 2.4). Moreover, it assumes that the algorithm uses an
approximate solution pj of (4.3) that achieves a similar decrease in the model function m
as the Cauchy point.

Theorem 4.9.

Let f be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {x; }
converges to x* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xx) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps py whenever ||p}| < 1A,
that is,

e — pll = o(ll Pl (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xi} converges superlinearly to x*.

PROOF. We show that [|p}|| < 1A and ||pll < Ay, for all sufficiently large &, so the
near-optimal step py in (4.53) will eventually always be taken.

We first seek a lower bound on the predicted reduction m;(0) — my(py) for all
sufficiently large k. We assume that k is large enough that the o(|| p}'||) term in (4.53) is less
than || p} . When || p} | < £ A, we then have that || || < Il p} 1l + (Il p}1) < 21l p}l, while
if | pi 1l > %Ak, we have || pr|l < Ax < 2||p{|l. In both cases, then, we have

-1
el = 2090 = 2| 92 7)™ gl

and so [lgill = 3l pxll/ [V2 f ().
We have from the relation (4.20) that

my(0) — my(py)

> c1llgkll min (Ak’ %)

> CI%ITHH ||l7k|| ||Pk||
T2 v 2 Ve reo | VR e
_ Il pecll®
=C 2 .
4] V2 £) [VRS G |

Because x; — x*, we use continuity of V2 f(x) and positive definiteness of V2 f(x*), to

93

94

CHAPTER 4. TRUST-REGION METHODS

deduce that the following bound holds for all & sufficiently large:

C1 < C1 déf
4|2 r)7 P VR F | s VR T VR Ge)|

C3,

where ¢3 > 0. Hence, we hae

mi(0) — mi(pi) > csllpell? (4.54)

for all sufficiently large k. By Lipschitz continuity of V2 f(x) near x*, and using Taylor’s
theorem (Theorem 2.1), we have

[(f () = f ek + pr)) — (mg(0) — my(pr)l

1
— LIV f oy — / TV (xk + tp) pedi
0

where L > 0 is the Lipschitz constant for V2 £ (-). Hence, by definition (4.4) of pi, we have
for sufficiently large k that

| prcll’ (L /4) L L
ok =1l = ———5— = —lpll = — A (4.55)
o3l pell 4cs 4¢3

Now, the trust-region radius can be reduced only if p; < } (or some other fixed number less
than 1), so it is clear from (4.55) that the sequence { A} is bounded away from zero. Since
X — x*, we have || p}|| = 0 and therefore || px|| — 0 from (4.53). Hence, the trust-region
bound is inactive for all k sufficiently large, and the bound || p}|| < 3 Ay is eventually always
satisfied.

To prove superlinear convergence, we use the quadratic convergence of Newton’s
method, proved in Theorem 3.5. In particular, we have from (3.33) that

lxk + py — x*Il = o (lxe — x*|1%).,
which implies that || pi’ll = O(|lxx — x*||). Therefore, using (4.53), we have

llxx + pr — x*||
< lxe+ pf = x* I + 1P} — pell = o (Ilxi — x*1?) + o1 pi 1) = o (Ilxx — x*|1),

thus proving superlinear convergence. 0

It is immediate from Theorem 3.5 that if p; = p} for all k sufficiently large, we have
quadratic convergence of {x;} to x*.

4.5, OTHER ENHANCEMENTS

Reasonable implementations of the dogleg, subspace minimization, and nearly-exact
algorithm of Section 4.3 with By = V? f(x;) eventually use the steps p;y = p} under the
conditions of Theorem 4.9, and therefore converge quadratically. In the case of the dogleg and
two-dimensional subspace minimization methods, the exact step p; is one of the candidates
for py—it lies inside the trust region, along the dogleg path, and inside the two-dimensional
subspace. Since under the assumptions of Theorem 4.9, p;’ is the unconstrained minimizer
of my, for k sufficiently large, it is certainly the minimizer in the more restricted domains,
so we have py = p}. For the approach of Section 4.3, if we follow the reasonable strategy
of checking whether pj is a solution of (4.3) prior to embarking on Algorithm 4.3, then
eventually we will also have p; = p} also.

4.5 OTHER ENHANCEMENTS

SCALING

As we noted in Chapter 2, optimization problems are often posed with poor scaling—
the objective function f is highly sensitive to small changes in certain components of
the vector x and relatively insensitive to changes in other components. Topologically, a
symptom of poor scaling is that the minimizer x* lies in a narrow valley, so that the contours
of the objective f(-) near x* tend towards highly eccentric ellipses. Algorithms that fail to
compensate for poor scaling can perform badly; see Figure 2.7 for an illustration of the poor
performance of the steepest descent approach.

Recalling our definition of a trust region—a region around the current iterate within
which the model m;(-) is an adequate representation of the true objective f(-)—it is easy
to see that a spherical trust region may not be appropriate when f is poorly scaled. Even if
the model Hessian By, is exact, the rapid changes in f along certain directions probably will
cause my, to be a poor approximation to f along these directions. On the other hand, m;
may be a more reliable approximation to f along directions in which f is changing more
slowly. Since the shape of our trust region should be such that our confidence in the model
is more or less the same at all points on the boundary of the region, we are led naturally
to consider elliptical trust regions in which the axes are short in the sensitive directions and
longer in the less sensitive directions.

Elliptical trust regions can be defined by

IDpll < A, (4.56)

where D is a diagonal matrix with positive diagonal elements, yielding the following scaled
trust-region subproblem:

. def
min mi(p) = fe+gip+3p Bip st [IDpll < Ar. (4.57)

95

96 CHAPTER 4. TRUST-REGION METHODS

When f(x) is highly sensitive to the value of the ith component x;, we set the corresponding
diagonal element d;; of D to be large, while d;; is smaller for less-sensitive components.

Information to construct the scaling matrix D may be derived from the second
derivatives 3% f/dx}. We can allow D to change from iteration to iteration; most of the
theory of this chapter will still apply with minor modifications provided that each d;; stays
within some predetermined range [d)o, dp;], where 0 < dj, < dni < o0o. Of course, we do
not need D to be a precise reflection of the scaling of the problem, so it is not necessary to
devise elaborate heuristics or to perform extensive computations to get it just right.

The following procedure shows how the Cauchy point calculation (Algorithm 4.2)
changes when we use a scaled trust region,

Algorithm 4.4 (Generalized Cauchy Point Calculation).
Find the vector pj, that solves

pi = argmin fi + gip stlDpl < An (4.58)

Calculate the scalar 7y > 0 that minimizes my (7 p}) subject to satisfying the trust-region
bound, that is,

T = argmig mi(tpy) st.ltDpll < Ag; (4.59)
>
Py = TPy
For this scaled version, we find that

Ag =
pp = ————D72g, (4.60)
T ID gl

and that the step length 7; is obtained from the following modification of (4.12):

1 if gl D*ByD g, <0

T = . D~ gill?
min 3
Ag{ D72BD~2g;

(4.61)

1) otherwise.

(The detalils are left as an exercise.)

A simpler alternative for adjusting the definition of the Cauchy point and the various
algorithms of this chapter to allow for the elliptical trust region is simply to rescale the
variables p in the subproblem (4.57) so that the trust region is spherical in the scaled
variables. By defining

5 ¥ pp,

4.5, OTHER ENHANCEMENTS

and by substituting into (4.57), we obtain
o def 1a AT e - -
min /iy (5) < fi+gi D' 5+ 35 DTBD TS st |Ipl < A
P

The theory and algorithms can now be derived in the usual way by substituting p for p,
D 'g, for g4, D™'B,D~! for By, and so on.

TRUST REGIONS IN OTHER NORMS

Trust regions may also be defined in terms of norms other than the Euclidean norm.
For instance, we may have

Iplh = Ak or [Plloo = A,
or their scaled counterparts
IDplly = Ax or [Dplloo < Ax,

where D is a positive diagonal matrix as before. Norms such as these offer no obvious ad-
vantages for small-medium unconstrained problems, but they may be useful for constrained
problems. For instance, for the bound-constrained problem

min f(x), subject to x > 0,
x€eR"
the trust-region subproblem may take the form

min mi(p) = fi+ g p+3p Bip stoxmtpz0lpl < A (4.62)

When the trust region is defined by a Euclidean norm, the feasible region for (4.62) consists of
the intersection of a sphere and the nonnegative orthant—an awkward object, geometrically
speaking. When the co-norm is used, however, the feasible region is simply the rectangular
box defined by

xx+p=0, p=>=-—»Ake, p=Age,

where e = (1, 1,..., 1)7, so the solution of the subproblem is easily calculated by using
techniques for bound-constrained quadratic programming.

For large problems, in which factorization or formation the model Hessian By, is not
computationally desirable, the use of a trust region defined by || - || will also give rise to a
bound-constrained subproblem, which may be more convenient to solve than the standard
subproblem (4.3). To our knowledge, there has not been much research on the relative
performance of methods that use trust regions of different shapes on large problems.

97

98

CHAPTER 4. TRUST-REGION METHODS

NOTES AND REFERENCES

One of the earliest works on trust-region methods is Winfield [307]. The influential
paper of Powell [244] proves a result like Theorem 4.5 for the case of = 0, where the algo-
rithm takes a step whenever it decreases the function value. Powell uses a weaker assumption
than ours on the matrices || B, but his analysis is more complicated. Moré [211] summarizes
developments in algorithms and software before 1982, paying particular attention to the
importance of using a scaled trust-region norm.

Byrd, Schnabel, and Schultz [279], [54] provide a general theory for inexact trust-
region methods; they introduce the idea of two-dimensional subspace minimization and
also focus on proper handling of the case of indefinite B to ensure stronger local convergence
results than Theorems 4.5 and 4.6. Dennis and Schnabel [93] survey trust-region methods as
part of their overview of unconstrained optimization, providing pointers to many important
developments in the literature.

The monograph of Conn, Gould, and Toint [74] is an exhaustive treatment of the state
of the art in trust-region methods for both unconstrained and constrained optimization. It
includes an comprehensive annotated bibliography of the literature in the area.

& EXERCISES

& 4.1 Let f(x) = 10(x; — x7)* + (1 — x1)%. At x = (0, —1) draw the contour lines of
the quadratic model (4.2) assuming that B is the Hessian of f. Draw the family of solutions
of (4.3) as the trust region radius varies from A = 0 to A = 2. Repeat this at x = (0, 0.5).

& 4.2 Write a program that implements the dogleg method. Choose B, to be the exact
Hessian. Apply it to solve Rosenbrock’s function (2.22). Experiment with the update rule
for the trust region by changing the constants in Algorithm 4.1, or by designing your own
rules.

& 4.3 Program the trust-region method based on Algorithm 7.2. Choose By to be the
exact Hessian, and use it to minimize the function

n

min f(x) = Z [(1 —x2i-1)* + 10(xy — x22i—1)2]

i=1

with n = 10. Experiment with the starting point and the stopping test for the CG iteration.
Repeat the computation with n = 50.

Your program should indicate, at every iteration, whether Algorithm 7.2 encountered
negative curvature, reached the trust-region boundary, or met the stopping test.

4.5, OTHER ENHANCEMENTS

& 4.4 Theorem 4.5 shows that the sequence {||g||} has an accumulation point at zero.
Show that if the iterates x stay in a bounded set 3, then there is a limit point x, of the
sequence {x;} such that g(x.,) = 0.

& 4.5 Show that 7 defined by (4.12) does indeed identify the minimizer of m; along
the direction —gy.

& 4.6 The Cauchy-Schwarz inequality states that for any vectors u and v, we have
"o < (" u) (" v),

with equality only when u and v are parallel. When B is positive definite, use this inequality
to show that

def lgll*
(¢"Bg)(gTB~'g) —

)

with equality only if g and Bg (and B~'g) are parallel.

& 4.7 When B is positive definite, the double-dogleg method constructs a path with three
line segments from the origin to the full step. The four points that define the path are

o the origin;
e the unconstrained Cauchy step p¢ = —(g7g)/(g” Bg)g;

e a fraction of the full step y p* = —y B~ g, for some y € (y, 1], where y is defined in
the previous question; and

o the full step p* = —B~'g.

Show that || p|| increases monotonically along this path.

(Note: The double-dogleg method, as discussed in Dennis and Schnabel [92, Section
6.4.2], was for some time thought to be superior to the standard dogleg method, but later
testing has not shown much difference in performance.)

& 4.8 Show that (4.43) and (4.44) are equivalent. Hints: Note that

d 1 _ i n-1/2 _1 5 ,3/21 ,
da <||p(x)||> = - (lpIP) " = =2 (Ip@)IF) ™ —llp I,

n

d - (978
Tr PP =-2)" G+

J=1

99

100

CHAPTER 4. TRUST-REGION METHODS

(from (4.39)), and

n

lgl* = IR pI> =p"(B+AD"'p=)_

J=1

(q;8)°
(hj+ A1)

& 4.9 Derive the solution of the two-dimensional subspace minimization problem in
the case where B is positive definite.

& 4.10 Show thatif B is any symmetric matrix, then there exists . > 0 such that B + A/
is positive definite.

& 4.11 Verify that the definitions (4.60) for p; and (4.61) for 74 are valid for the Cauchy
point in the case of an elliptical trust region. (Hint: Using the theory of Chapter 12, we can
show that the solution of (4.58) satisfies gx + ochp,i = 0 for some scalar & > 0.)

& 4.12 The following example shows that the reduction in the model function m
achieved by the two-dimensional minimization strategy can be much smaller than that
achieved by the exact solution of (4.5).

In (4.5), set

where € is a small positive number. Set
. 1 3
B:dlag 6—3,1,6 5 A =0.5.

Show that the solution of (4.5) has components (0(6), % + O(e), O(e))T and that the
reduction in the model m is % + O(e). For the two-dimensional minimization strategy,
show that the solution is a multiple of B~!g and that the reduction in m is O (¢).

CHAPTER

Conjugate
Gradient Methods

Our interest in conjugate gradient methods is twofold. First, they are among the most useful
techniques for solving large linear systems of equations. Second, they can be adapted to solve
nonlinear optimization problems. The remarkable properties of both linear and nonlinear
conjugate gradient methods will be described in this chapter.

The linear conjugate gradient method was proposed by Hestenes and Stiefel in the
1950s as an iterative method for solving linear systems with positive definite coefficient
matrices. It is an alternative to Gaussian elimination that is well suited for solving large
problems. The performance of the linear conjugate gradient method is determined by the

102

CHAPTER 5. CONJUGATE GRADIENT METHODS

distribution of the eigenvalues of the coefficient matrix. By transforming, or preconditioning,
the linear system, we can make this distribution more favorable and improve the convergence
of the method significantly. Preconditioning plays a crucial role in the design of practical
conjugate gradient strategies. Our treatment of the linear conjugate gradient method will
highlight those properties of the method that are important in optimization.

The first nonlinear conjugate gradient method was introduced by Fletcher and Reeves
in the 1960s. It is one of the earliest known techniques for solving large-scale nonlinear
optimization problems. Over the years, many variants of this original scheme have been
proposed, and some are widely used in practice. The key features of these algorithms are
that they require no matrix storage and are faster than the steepest descent method.

5.1 THE LINEAR CONJUGATE GRADIENT METHOD

In this section we derive the linear conjugate gradient method and discuss its essential
convergence properties. For simplicity, we drop the qualifier “linear” throughout.

The conjugate gradient method is an iterative method for solving a linear system of
equations

Ax = b, (5.1)

where A is an n X n symmetric positive definite matrix. The problem (5.1) can be stated
equivalently as the following minimization problem:

min ¢(x) def %xTAx —bTx, (5.2)

that is, both (5.1) and (5.2) have the same unique solution. This equivalence will allow us
to interpret the conjugate gradient method either as an algorithm for solving linear systems
or as a technique for minimizing convex quadratic functions. For future reference, we note
that the gradient of ¢ equals the residual of the linear system, that is,

Vo(x) = Ax — b % r(x), (5.3)

so in particular at x = x; we have
Iy = Axk —b. (5.4)

CONJUGATE DIRECTION METHODS

One of the remarkable properties of the conjugate gradient method is its ability to
generate, in a very economical fashion, a set of vectors with a property known as conjugacy. A

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

set of nonzero vectors {pg, p1, ..., pi} is said to be conjugate with respect to the symmetric
positive definite matrix A if

pl-TApj =0, foralli # j. (5.5)

It is easy to show that any set of vectors satisfying this property is also linearly independent.
(For a geometrical illustration of conjugate directions see Section 9.4.)

The importance of conjugacy lies in the fact that we can minimize ¢(-) in n steps
by successively minimizing it along the individual directions in a conjugate set. To verify
this claim, we consider the following conjugate direction method. (The distinction between
the conjugate gradient method and the conjugate direction method will become clear as we
proceed.) Given astarting point x, € R"” and a set of conjugate directions {py, p1, ..., Pn—1}>
let us generate the sequence {x;} by setting

Xk+1 = Xg + o Py, (5.6)

where o is the one-dimensional minimizer of the quadratic function ¢(-) along x; + apy,
given explicitly by

T
T Pk

; (5.7)
Pi Apk

o = —

see (3.55). We have the following result.

Theorem 5.1.
For any xo € R" the sequence {x;} generated by the conjugate direction algorithm (5.6),
(5.7) converges to the solution x* of the linear system (5.1) in at most n steps.

ProOF. Since the directions {p;} are linearly independent, they must span the whole space
R". Hence, we can write the difference between x(and the solution x* in the following way:

x* —xo=o0opo+o1p1 + -+ Ou_1Pu-1,

for some choice of scalars oy. By premultiplying this expression by p! A and using the
conjugacy property (5.5), we obtain

_pTAGT - x)

(5.8)
pi Apk

We now establish the result by showing that these coefficients o} coincide with the step
lengths «; generated by the formula (5.7).

103

104

CHAPTER 5. CONJUGATE GRADIENT METHODS

If x is generated by algorithm (5.6), (5.7), then we have
Xp = Xo+opo+o1pr+ -+ g1 Pr—1-
By premultiplying this expression by p! A and using the conjugacy property, we have that
plA(x — x0) = 0,
and therefore
plAG* = x0) = Pl A" —x) = pl (b — Ax) = —pl .

By comparing this relation with (5.7) and (5.8), we find that ox = o, giving the result. O

There is a simple interpretation of the properties of conjugate directions. If the matrix
A in (5.2) is diagonal, the contours of the function ¢(-) are ellipses whose axes are aligned

with the coordinate directions, as illustrated in Figure 5.1. We can find the minimizer of this
function by performing one-dimensional minimizations along the coordinate directions

¢

Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

Figure5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.

e1, €, ...,e, in turn. When A is not diagonal, its contours are still elliptical, but they
are usually no longer aligned with the coordinate directions. The strategy of successive
minimization along these directions in turn no longer leads to the solution in n iterations (or
even in a finite number of iterations). This phenomenon isillustrated in the two-dimensional
example of Figure 5.2 We can, however, recover the nice behavior of Figure 5.1 if we transform
the problem to make A diagonal and then minimize along the coordinate directions. Suppose
we transform the problem by defining new variables x as

£=5"x, (5.9)
where S is the n x n matrix defined by

S=1[pop1 - pual,

where {po, p2, ..., pn—1} is the set of conjugate directions with respect to A. The quadratic
¢ defined by (5.2) now becomes

$(2) & p(5%) = 127 (STAS)R — (STh) 2.
By the conjugacy property (5.5), the matrix S” AS is diagonal, so we can find the minimizing
value of ¢ by performing n one-dimensional minimizations along the coordinate directions

105

106

CHAPTER 5. CONJUGATE GRADIENT METHODS

of x. Because of the relation (5.9), however, the ith coordinate direction in X-space corre-
sponds to the direction p; in x-space. Hence, the coordinate search strategy applied to ¢ is
equivalent to the conjugate direction algorithm (5.6), (5.7). We conclude, as in Theorem 5.1,
that the conjugate direction algorithm terminates in at most n steps.

Returning to Figure 5.1, we note another interesting property: When the Hessian ma-
trix is diagonal, each coordinate minimization correctly determines one of the components
of the solution x*. In other words, after k one-dimensional minimizations, the quadratic
has been minimized on the subspace spanned by e, e, ..., e;. The following theorem
proves this important result for the general case in which the Hessian of the quadratic is not
necessarily diagonal. (Here and later, we use the notation span{po, p1, ..., px} to denote
the set of all linear combinations of the vectors py, p1, . .., pk.) In proving the result we will
make use of the following expression, which is easily verified from the relations (5.4) and
(5.6):

Pyl = Fe + apApg. (5.10)

Theorem 5.2 (Expanding Subspace Minimization).
Let xo € R” be any starting point and suppose that the sequence {x;} is generated by the
conjugate direction algorithm (5.6), (5.7). Then

rlpi=0, fori=0,1,....,k—1, (5.11)
and xy is the minimizer of p(x) = 1xT Ax — b” x over the set

{x | x = xo + span{po, p1, ..., Pk—1}}- (5.12)

PROOF. We begin by showing that a point ¥ minimizes ¢ over the set (5.12) if and only
ifr(x)Tp; = 0,foreachi = 0,1,...,k — 1. Let us define h(c) = ¢(xg + oopo + - - - +
04_1Pk—1), where 0 = (09, 01, ..., 04_1)T. Since h(o) is a strictly convex quadratic, it has
a unique minimizer o* that satisfies

oh(c™*) _

aO'i

0, i=0,1,...,k—1.

By the chain rule, this equation implies that
V¢(x0+06kp0~|—--~+o:_1pk_1)Tp,- =0, i=0,1,...,k—1.

By recalling the definition (5.3), we have for the minimizer X = xo + o po + o/ p2 +--- +
01 Pk—1 on the set (5.12) that r(%X)T pi = 0, as claimed.

We now use induction to show that x; satisfies (5.11). For the case k = 1, we have
from the fact that x; = xo + oo po minimizes ¢ along p, that r[py = 0. Let us now make

5.1. THE LINEAR CONJUGATE GRADIENT METHOD 107

the induction hypothesis, namely, that rkT_lpi =0fori =0,1,...,k— 2. By (5.10), we
have

Te = TIg—1 + Qr_1Apr—_1,

so that

plore=plna +aapl (A =0,
by the definition (5.7) of o4 ;. Meanwhile, for the other vectors p;,i = 0,1, ...,k —2, we
have

pine=pln+aipl Apry =0,

where piT re—1 = 0 because of the induction hypothesis and piT Apr_1 = 0 because of
conjugacy of the vectors p;. We have shown that rkTpi =0, fori =0,1,...,k—1,so the
proof is complete. O

The fact that the current residual r, is orthogonal to all previous search directions, as
expressed in (5.11), is a property that will be used extensively in this chapter.

The discussion so far has been general, in that it applies to a conjugate direction
method (5.6), (5.7) based on any choice of the conjugate direction set {po, p1, ..., Pn—1}-
There are many ways to choose the set of conjugate directions. For instance, the eigen-
vectors vy, vz, ..., U, of A are mutually orthogonal as well as conjugate with respect to
A, so these could be used as the vectors {po, p1, ..., pa—1}. For large-scale applications,
however, computation of the complete set of eigenvectors requires an excessive amount of
computation. An alternative approach is to modify the Gram—Schmidt orthogonalization
process to produce a set of conjugate directions rather than a set of orthogonal directions.
(This modification is easy to produce, since the properties of conjugacy and orthogonality
are closely related in spirit.) However, the Gram—Schmidt approach is also expensive, since
it requires us to store the entire direction set.

BASIC PROPERTIES OF THE CONJUGATE GRADIENT METHOD

The conjugate gradient method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector p; by
using only the previous vector pi_;. It does not need to know all the previous elements
Do, P1s - - - » Pk—2 of the conjugate set; p; is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction py is chosen to be a linear combi-
nation of the negative residual —r; (which, by (5.3), is the steepest descent direction for the

108

CHAPTER 5. CONJUGATE GRADIENT METHODS

function ¢) and the previous direction p;_;. We write

P = =1k + BrPr—1, (5.13)

where the scalar f; is to be determined by the requirement that p;_; and p; must be
conjugate with respect to A. By premultiplying (5.13) by p/_, A and imposing the condition
pi_ Apr = 0, we find that

VkTAPk—l
B = —k P
D1 ADk-1

We choose the first search direction py to be the steepest descent direction at the initial point
Xo. As in the general conjugate direction method, we perform successive one-dimensional
minimizations along each of the search directions. We have thus specified a complete
algorithm, which we express formally as follows:

Algorithm 5.1 (CG-Preliminary Version).

Given xp;
Setrg < Axg — b, pg < —1p, k < 0;
while r;, # 0
T
r
ap < — }‘pk ; (5.14a)
P APk
Xk+1 <= Xk + Ok Pics (5.14b)
Fip1 < Axpp — b; (5.14¢)
T
7o Apr
Brsr < —H——; (5.14d)
PLADPK
Pkl < —Fig1 + B Pis (5.14e)
k<—k+1; (5.14f)
end (while)

This version is useful for studying the essential properties of the conjugate gradient
method, but we present a more efficient version later. We show first that the directions
Dos P1, - -, Pu—1 are indeed conjugate, which by Theorem 5.1 implies termination in n
steps. The theorem below establishes this property and two other important properties.
First, the residuals r; are mutually orthogonal. Second, each search direction py and residual
ri is contained in the Krylov subspace of degree k for ry, defined as

K(ro; k) def span{ry, Arg, ..., Akro}. (5.15)

5.1. THE LINEAR CONJUGATE GRADIENT METHOD 109

Theorem 5.3.
Suppose that the k th iterate generated by the conjugate gradient method is not the solution
point x*. The following four properties hold:

rkTr,'zo, fori =0,1,...,k—1, (5.16)

span{rg, r1, ..., iy} = span{rg, Ary, ..., AFrol, (5.17)
span{po, p1, ..., px} = span{ry, Ary, ..., AFrol, (5.18)
plApi =0, fori =0,1,...,k—1. (5.19)

Therefore, the sequence {x;} converges to x* in at most n steps.

PrOOF. The proofis by induction. The expressions (5.17) and (5.18) hold trivially for k = 0,

while (5.19) holds by construction for k = 1. Assuming now that these three expressions are

true for some k (the induction hypothesis), we show that they continue to hold for k£ + 1.
To prove (5.17), we show first that the set on the left-hand side is contained in the set

on the right-hand side. Because of the induction hypothesis, we have from (5.17) and (5.18)
that

ry € span{ry, Ary, ..., Ay}, Pk € span{ry, Arg, ..., Ay},
while by multiplying the second of these expressions by A, we obtain
Apy € span{Ary, ..., A ro). (5.20)
By applying (5.10), we find that
rr+1 € span{rg, Arg, ..., Ak“ro}.
By combining this expression with the induction hypothesis for (5.17), we conclude that
span{rg, 71, ..., 7%, Fep1} C span{rg, Arg, ..., AXrg).

To prove that the reverse inclusion holds as well, we use the induction hypothesis on (5.18)
to deduce that

Ay = A(A*ry) € span{Apy, Apy, ..., Api).
Since by (5.10) we have Ap; = (r;41 —r;)/a; fori =0, 1,..., k, it follows that

k+1
A + rog € span{ro,rl, ...,Vk+1}.

110

CHAPTER 5. CONJUGATE GRADIENT METHODS

By combining this expression with the induction hypothesis for (5.17), we find that

span{rg, Arg, ..., AkHro} C span{rg, 11, ..., Ik, Fk+1)-

Therefore, the relation (5.17) continues to hold when k is replaced by k + 1, as claimed.
We show that (5.18) continues to hold when £ is replaced by k + 1 by the following
argument:

span{po, p1, ..., Pks Pt}
= span{po, p1, .., Pks Tk+1} by (5.14e)
= span{ry, Arg, ..., ARro, riga) by induction hypothesis for (5.18)
=span{ro, 11, ..., Fi, rk41} by (5.17)
= span{ry, Ary, ..., A r) by (5.17) for k + 1.

Next, we prove the conjugacy condition (5.19) with k replaced by k 4 1. By multiplying
(5.14e) by Ap;,i = 0,1, ..., k, we obtain

Pis1Api = =1 Api + B pi Api. (5.21)

By the definition (5.14d) of B, the right-hand-side of (5.21) vanishes when i = k. For
i < k — 1 we need to collect a number of observations. Note first that our induction
hypothesis for (5.19) implies that the directions py, p1, ..., px are conjugate, so we can
apply Theorem 5.2 to deduce that

riapi=0, fori=0,1,... k. (5.22)

Second, by repeatedly applying (5.18), we find that fori = 0, 1, ...,k — 1, the following
inclusion holds:

Ap; € Aspan{ry, Ary, ..., A'ry} = span{Ary, A%rg, ..., A7 rg)
C Span{po, Pls---, Pi+1}- (5.23)

By combining (5.22) and (5.23), we deduce that
reaApi=0, fori=0,1,....k—1,

so the first term in the right-hand-side of (5.21) vanishes for i = 0,1,...,k — 1. Be-
cause of the induction hypothesis for (5.19), the second term vanishes as well, and we

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

conclude that ka+1Ap,- =0,i =0,1,..., k.Hence, theinduction argument holds for (5.19)
also.

It follows that the direction set generated by the conjugate gradient method is indeed
a conjugate direction set, so Theorem 5.1 tells us that the algorithm terminates in at most n
iterations.

Finally, we prove (5.16) by a noninductive argument. Because the direction set is
conjugate, we have from (5.11) that rkTpi =0foralli =0,1,...,k — 1 and any k =
1,2,...,n — 1. By rearranging (5.14e), we find that

pi = —ri + Bipi-1,

so that r; € span{p;, pi—1} foralli = 1,...,k — 1. We conclude that /r; = 0 for all
i =1,...,k — 1. To complete the proof, we note that rkTro = —rkTpo = 0, by definition of
po in Algorithm 5.1 and by (5.11). O

The proof of this theorem relies on the fact that the first direction p, is the steep-
est descent direction —rg; in fact, the result does not hold for other choices of p,. Since
the gradients r; are mutually orthogonal, the term “conjugate gradient method” is ac-
tually a misnomer. It is the search directions, not the gradients, that are conjugate with
respect to A.

A PRACTICAL FORM OF THE CONJUGATE GRADIENT METHOD

We can derive a slightly more economical form of the conjugate gradient method by
using the results of Theorems 5.2 and 5.3. First, we can use (5.14¢) and (5.11) to replace the
formula (5.14a) for o by

rkTrk

pLApPC

Second, we have from (5.10) that ax Apy = rx+1 — 7%, so by applying (5.14e) and (5.11)
once again we can simplify the formula for B4, to

T

B Teg1Tk+1

k+1 = — 7 -
V{I”k

By using these formulae together with (5.10), we obtain the following standard form of the
conjugate gradient method.

111

112 CHAPTER 5. CONJUGATE GRADIENT METHODS

Algorithm 5.2 (CG).

Given xg;
Setrg < Axg — b, po < —19, k < 0;
while r;, # 0
rlr
g (5.24a)
P Apy
X1 < X + Qs (5.24b)
Tkl < Tk + o Apy; (5.24¢)
”1<T+1rk+1
Brt1 < —F— (5.24d)
l”k Ik
DPik+1 < —Ti+1 + Br+1Pxs (5.24e)
k<—k+1; (5.24f)
end (while)

At any given point in Algorithm 5.2 we never need to know the vectors x, r, and
p for more than the last two iterations. Accordingly, implementations of this algorithm
overwrite old values of these vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix—vector product Apy, calculation of
the inner products ka (Apy) and rkT +17k+1> and calculation of three vector sums. The inner
product and vector sum operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix—vector product is, of course, dependent on the
problem. The CG method is recommended only for large problems; otherwise, Gaussian
elimination or other factorization algorithms such as the singular value decomposition are
to be preferred, since they are less sensitive to rounding errors. For large problems, the CG
method has the advantage that it does not alter the coefficient matrix and (in contrast to
factorization techniques) does not produce fill in the arrays holding the matrix. Another key
property is that the CG method sometimes approaches the solution quickly, as we discuss
next.

RATE OF CONVERGENCE

We have seen that in exact arithmetic the conjugate gradient method will terminate at
the solution in at most n iterations. What is more remarkable is that when the distribution
of the eigenvalues of A has certain favorable features, the algorithm will identify the solution
in many fewer than n iterations. To explain this property, we begin by viewing the expanding
subspace minimization property proved in Theorem 5.2 in a slightly different way, using it
to show that Algorithm 5.2 is optimal in a certain important sense.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

From (5.24b) and (5.18), we have that

Xk+1 = Xo + 0oPo + -+ - + Ak Pk
= Xo + Yoro + 1Aro + - - + y Afr, (5.25)

for some constants y;. We now define P(-) to be a polynomial of degree k with coefficients
Y0s Y1 - - - » Yk. Like any polynomial, P}’ can take either a scalar or a square matrix as its
argument. For the matrix argument A, we have

PHA) = ywl + A+ -+ p Ak,
which allows us to express (5.25) as follows:
Xip1 = Xo + P (A)rg. (5.26)

We now show that among all possible methods whose first k steps are restricted to the
Krylov subspace KC(ry; k) given by (5.15), Algorithm 5.2 does the best job of minimizing the
distance to the solution after k steps, when this distance is measured by the weighted norm
measure || - || 4 defined by

Izll; = 2" Az. (5.27)

(Recall that this norm was used in the analysis of the steepest descent method of Chapter 3.)
Using this norm and the definition of ¢ (5.2), and the fact that x* minimizes ¢, it is easy to
show that

= x5 = 3(x = x)T Al = x7) = p(x) — p(x™). (5.28)

Theorem 5.2 states that x;;; minimizes ¢, and hence ||x — x*||4, over the set xo +
span{pq, p1, - .., pr}, which by (5.18) is the same as xo +span{rg, Ary, ..., A¥r}. It follows
from (5.26) that the polynomial P} solves the following problem in which the minimum is
taken over the space of all possible polynomials of degree k:

n})in lxo + Pe(A)rg — x™| 4. (5.29)
k

We exploit this optimality property repeatedly in the remainder of the section.
Since

ro = Axg —b = Axg — Ax™ = A(xg — x¥),
we have that

X1 — X =x9+ Pl (A)rg —x* = [I + P (A)A](xp — x™). (5.30)

113

114

CHAPTER 5. CONJUGATE GRADIENT METHODS

Let 0 < A; < A < --- < X, be the eigenvalues of A, and let vy, v,, ..., v, be the
corresponding orthonormal eigenvectors, so that

n
A= E AiviviT.
i=l

Since the eigenvectors span the whole space R", we can write
n
.X()—x* :ZE,‘U,‘, (531)
i=1

for some coefficients &;. It is easy to show that any eigenvector of A is also an eigenvector
of Pi(A) for any polynomial Py. For our particular matrix A and its eigenvalues A; and
eigenvectors v;, we have

P (A)v; = P(Xi)v;, i=1,2,...,n.

By substituting (5.31) into (5.30) we have
n
Xey1 — X = Z[l + X P (M))&
i=1
By using the fact that ||z||} = zT Az = Y1, A (v] 2)?, we have
n
bregr = x*1% = Y il + A PE())PE (5.32)
i=1
Since the polynomial P;* generated by the CG method is optimal with respect to this norm,
we have
n
e = 215 = min 3 A1+ 2 P Gu) P8
i=1

By extracting the largest of the terms [1 + A; P¢();)]* from this expression, we obtain that

n
Irer — x*|% < min max [1+ 4 PO | D 4s&7
j=1

P, 1<i<n

= min max [1 + A; Py (1) [lx0 — x* 13, (5.33)

P, 1<i<n

where we have used the fact that ||x) — x*||3 = > Ajéf.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

The expression (5.33) allows us to quantify the convergence rate of the CG method
by estimating the nonnegative scalar quantity

min max [1 + A; PO (5.34)

P, 1<i<n

In other words, we search for a polynomial Py that makes this expression as small as possible.
In some practical cases, we can find this polynomial explicitly and draw some interesting
conclusions about the properties of the CG method. The following result is an example.

Theorem 5.4.
If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution
in at most r iterations.

PROOF. Suppose that the eigenvalues A1, ;, ..., A, take on the r distinct values 1, < 7, <
- < T,. We define a polynomial Q, () by

0,00 =—"Y G m)o—m) (-1,
T T,

and note that Q,(A;) =0fori = 1,2,...,nand Q,(0) = 1. From the latter observation,
we deduce that O, (1) — 1 is a polynomial of degree r with a root at A = 0, so by polynomial
division, the function P,_; defined by

Proa(3) = (Q,(0) = 1)/&
is a polynomial of degree r — 1. By setting k = r — 1 in (5.34), we have

0 < min max 1 +2;F,(4))° < max[1+ 4 £, (4)]° = max Q7(x;) =0.
<i<n

Py 1<i=n <i<n

Hence, the constant in (5.34) is zero for the value k = r — 1, so we have by substituting into
(5.33) that ||x, — x* ||124 = 0, and therefore x, = x*, as claimed. O

By using similar reasoning, Luenberger [195] establishes the following estimate, which
gives a useful characterization of the behavior of the CG method.

Theorem 5.5.
If A has eigenvalues .y < Ay < --- < A, we have that

112)L"—k B)“1 ? %112
lxerr —x7[1% < m llxo — x™I%. (5.35)
n— 1

115

116 CHAPTER 5. CONJUGATE GRADIENT METHODS

Figure 5.3 Two clusters of eigenvalues.

Without giving details of the proof, we describe how this result is obtained from (5.33). One
selects a polynomial P, of degree k such that the polynomial Qy1(A) = 1 + AP;(%) has
roots at the k largest eigenvalues A,, Ay—1, ..., Ay—k+1, as well as at the midpoint between
A1 and A, _g. It can be shown that the maximum value attained by Q. ; on the remaining
eigenvalues Ay, Az, ..., A,k is precisely (A,—x — A1)/ (Ap—k + A1).

We now illustrate how Theorem 5.5 can be used to predict the behavior of the CG
method on specific problems. Suppose we have the situation plotted in Figure 5.3, where
the eigenvalues of A consist of m large values, with the remaining n — m smaller eigenvalues
clustered around 1. If we define € = A,,_,, — A, Theorem 5.5 tells us that after m + 1 steps
of the conjugate gradient algorithm, we have

lXms1 — x*[a = €llxg — x*| 4.

For a small value of €, we conclude that the CG iterates will provide a good estimate of the
solution after only m + 1 steps.

Figure 5.4 shows the behavior of CG on a problem of this type, which has five large
eigenvalues with all the smaller eigenvalues clustered between 0.95 and 1.05, and compares
this behavior with that of CG on a problem in which the eigenvalues satisfy some random
distribution. In both cases, we plot the log of ¢ after each iteration.

For the problem with clustered eigenvalues, Theorem 5.5 predicts a sharp decrease in
the error measure at iteration 6. Note, however, that this decrease was achieved one iteration
earlier, illustrating the fact that Theorem 5.5 gives only an upper bound, and that the rate of
convergence can be faster. By contrast, we observe in Figure 5.4 that for the problem with
randomly distributed eigenvalues (dashed line), the convergence rate is slower and more
uniform.

Figure 5.4 illustrates another interesting feature: After one more iteration (a total
of seven) on the problem with clustered eigenvalues, the error measure drops sharply. An
extension of the arguments leading to Theorem 5.4 explains this behavior. It is almost
true to say that the matrix A has just six distinct eigenvalues: the five large eigenvalues
and 1. Then we would expect the error measure to be zero after six iterations. Because the
eigenvalues near 1 are slightly spread out, however, the error does not become very small until
iteration 7.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

A log(lx-x*[)
5 clustered eigenvalues
o -
uniformly distributed
eigenvalues
5=
210 |—
| | | | | | | o
1 2 3 4 5 6 7

iteration

Figure5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.

To state this claim more precisely, it is generally true that if the eigenvalues occur in »
distinct clusters, the CG iterates will approximately solve the problem in about r steps (see
[136]). This result can be proved by constructing a polynomial P,_; suchthat 1+AP_; (1))
has zeros inside each of the clusters. This polynomial may not vanish at the eigenvalues A;,
i =1,2,...,n,but its value will be small at these points, so the constant defined in (5.34)
will be small for k¥ > r — 1. We illustrate this behavior in Figure 5.5, which shows the
performance of CG on a matrix of dimension #n = 14 that has four clusters of eigenvalues:
single eigenvalues at 140 and 120, a cluster of 10 eigenvalues very close to 10, with the
remaining eigenvalues clustered between 0.95 and 1.05. After four iterations, the error has
decreased significantly. After six iterations, the solution is identified to good accuracy.

Another, more approximate, convergence expression for CG is based on the Euclidean
condition number of A, which is defined by

Kk(A) = NAILIAT 2 = Au /2.

It can be shown that

A — k
V) -1 1) oo — x* . (5.36)

Xp—x"l4s <2
[|xk la < (A1

This bound often gives a large overestimate of the error, but it can be useful in those cases

117

118 CHAPTER 5. CONJUGATE GRADIENT METHODS

A tog(le-x*(12)

iteration

Figure 5.5 Performance of the conjugate gradient method on a matrix in which the
eigenvalues occur in four distinct clusters.

where the only information we have about A is estimates of the extreme eigenvalues 1,
and X,. This bound should be compared with that of the steepest descent method given by
(3.29), which is identical in form but which depends on the condition number «(A), and
not on its square root 4/« (A).

PRECONDITIONING

We can accelerate the conjugate gradient method by transforming the linear system
to improve the eigenvalue distribution of A. The key to this process, which is known as
preconditioning, is a change of variables from x to X via a nonsingular matrix C, that is,

X =Cx. (5.37)
The quadratic ¢ defined by (5.2) is transformed accordingly to
$(%) = 127(cTACTHE — (CTTh)" 1. (5.38)
If we use Algorithm 5.2 to minimize é or, equivalently, to solve the linear system

(CTAC™Hzr =CTh,

then the convergence rate will depend on the eigenvalues of the matrix C~7 AC™! rather
than those of A. Therefore, we aim to choose C such that the eigenvalues of C TACc!

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

are more favorable for the convergence theory discussed above. We can try to choose C
such that the condition number of C~7 AC~! is much smaller than the original condition
number of A, for instance, so that the constant in (5.36) is smaller. We could also try to
choose C such that the eigenvalues of C~7 AC~! are clustered, which by the discussion of
the previous section ensures that the number of iterates needed to find a good approximate
solution is not much larger than the number of clusters.

It is not necessary to carry out the transformation (5.37) explicitly. Rather, we can
apply Algorithm 5.2 to the problem (5.38), in terms of the variables X, and then invert the
transformations to reexpress all the equations in terms of x. This process of derivation results
in Algorithm 5.3 (Preconditioned Conjugate Gradient), which we now define. It happens
that Algorithm 5.3 does not make use of C explicitly, but rather the matrix M = C Tc,
which is symmetric and positive definite by construction.

Algorithm 5.3 (Preconditioned CG).
Given xg, preconditioner M;
Setry < Axg — b;
Solve Myy = ry for yp;
Set po = —yo, k < 0;

whiler;, # 0
T
,
PR L (5.392)
P APk
Xp41 < Xp + O P (5.39b)
Tkl < T + o Api; (5.39¢)
Solve Myy41 = ris1; (5.39d)
rl Yie+1
Brsr — = (5.39)
Te Yk
Pk+1 < —Yk+1 + Brr1Pks (5.39f)
k< k+1; (5.39g)
end (while)

If weset M = I in Algorithm 5.3, we recover the standard CG method, Algorithm 5.2.
The properties of Algorithm 5.2 generalize to this case in interesting ways. In particular, the
orthogonality property (5.16) of the successive residuals becomes

rIM™'rj =0 foralli # j. (5.40)

119

120

CHAPTER 5. CONJUGATE GRADIENT METHODS

In terms of computational effort, the main difference between the preconditioned
and unpreconditioned CG methods is the need to solve systems of the form My = r (step
(5.394d)).

PRACTICAL PRECONDITIONERS

No single preconditioning strategy is “best” for all conceivable types of matrices:
The tradeoff between various objectives—effectiveness of M, inexpensive computation and
storage of M, inexpensive solution of My = r—varies from problem to problem.

Good preconditioning strategies have been devised for specific types of matrices, in
particular, those arising from discretizations of partial differential equations (PDEs). Often,
the preconditioner is defined in such a way that the system My = r amounts to a simplified
version of the original system Ax = b. In the case of a PDE, My = r could represent
a coarser discretization of the underlying continuous problem than Ax = b. As in many
other areas of optimization and numerical analysis, knowledge about the structure and
origin of a problem (in this case, knowledge that the system Ax = b is a finite-dimensional
representation of a PDE) is the key to devising effective techniques for solving the problem.

General-purpose preconditioners have also been proposed, but their success varies
greatly from problem to problem. The most important strategies of this type include sym-
metric successive overrelaxation (SSOR), incomplete Cholesky, and banded preconditioners.
(See [272], [136], and [72] for discussions of these techniques.) Incomplete Cholesky is prob-
ably the most effective in general. The basic idea is simple: We follow the Cholesky procedure,
but instead of computing the exact Cholesky factor L that satisfies A = LL”, we compute
an approximate factor L that is sparser than L. (Usually, we require L to be no denser, or
not much denser, than the lower triangle of the original matrix A.) We then have A ~ LLT,
and by choosing C = L7, we obtain M = LL” and

CTAC'=L'AL T~ 1,

so the eigenvalue distribution of C~7 AC~! is favorable. We do not compute M explicitly,
but rather store the factor L and solve the system My = r by performing two triangular
substitutions with L. Because the sparsity of L is similar to that of A, the cost of solving
My = r is similar to the cost of computing the matrix—vector product Ap.

There are several possible pitfalls in the incomplete Cholesky approach. One is that
the resulting matrix may not be (sufficiently) positive definite, and in this case one may need
to increase the values of the diagonal elements to ensure that a value for L can be found.
Numerical instability or breakdown can occur during the incomplete factorization because
of the sparsity conditions we impose on the factor L. This difficulty can be remedied by
allowing additional fill-in in L, but the denser factor will be more expensive to compute and
to apply at each iteration.

5.92. NONLINEAR CONJUGATE GRADIENT METHODS

5.2 NONLINEAR CONJUGATE GRADIENT METHODS

We have noted that the CG method, Algorithm 5.2, can be viewed as a minimization
algorithm for the convex quadratic function ¢ defined by (5.2). It is natural to ask whether
we can adapt the approach to minimize general convex functions, or even general nonlinear
functions f. In fact, as we show in this section, nonlinear variants of the conjugate gradient
are well studied and have proved to be quite successful in practice.

THE FLETCHER-REEVES METHOD

Fletcher and Reeves [107] showed how to extend the conjugate gradient method to
nonlinear functions by making two simple changes in Algorithm 5.2. First, in place of
the formula (5.24a) for the step length oy (which minimizes ¢ along the search direction
Pi), we need to perform a line search that identifies an approximate minimum of the
nonlinear function f along p. Second, the residual », which is simply the gradient of ¢ in
Algorithm 5.2 (see (5.3)), must be replaced by the gradient of the nonlinear objective f.
These changes give rise to the following algorithm for nonlinear optimization.

Algorithm 5.4 (FR).
Given xg;
Evaluate fo = f(x0), V fo = V f(x0);
Set pg < —V fo, k < 0;
while V f;, #0
Compute o and set Xk+1 = Xk + O Pk

Evaluate V fi11;

VL. v
B, < M; (5.41a)
Ve Vi
P+t < =V fip1 + Bl pis (5.41b)
k< k+ 1: (5.41¢)

end (while)

If we choose f to be a strongly convex quadratic and o to be the exact minimizer, this
algorithm reduces to the linear conjugate gradient method, Algorithm 5.2. Algorithm 5.4
is appealing for large nonlinear optimization problems because each iteration requires only
evaluation of the objective function and its gradient. No matrix operations are required for
the step computation, and just a few vectors of storage are required.

To make the specification of Algorithm 5.4 complete, we need to be more precise
about the choice of line search parameter «y. Because of the second term in (5.41b), the
search direction py may fail to be a descent direction unless o satisfies certain conditions.

121

122

CHAPTER 5. CONJUGATE GRADIENT METHODS

By taking the inner product of (5.41b) (with k replacing k + 1) with the gradient vector
V f, we obtain

Vi o= =IVAI? + BEV £ pi. (5.42)

If the line search is exact, so that o;_; is a local minimizer of f along the direction py_,,
we have that V £/ py_; = 0. In this case we have from (5.42) that V £ p; < 0, so that py is
indeed a descent direction. If the line search is not exact, however, the second term in (5.42)
may dominate the first term, and we may have V f; p; > 0, implying that py is actually a
direction of ascent. Fortunately, we can avoid this situation by requiring the step length o
to satisfy the strong Wolfe conditions, which we restate here:

O+ axpr) < fO) + iV L pr, (5.43a)
IV f (e +oaup)” pel < =2V £ pr, (5.43b)

where 0 < ¢; < ¢; < % (Note that we impose ¢; < % here, in place of the looser condition
¢, < 1 that was used in the earlier statement (3.7).) By applying Lemma 5.6 below, we can
show that condition (5.43b) implies that (5.42) is negative, and we conclude that any line
search procedure that yields an oy satisfying (5.43) will ensure that all directions py are
descent directions for the function f.

THE POLAK-RIBIERE METHOD AND VARIANTS

There are many variants of the Fletcher—Reeves method that differ from each other
mainly in the choice of the parameter ;. An important variant, proposed by Polak and
Ribiere, defines this parameter as follows:

o _ VLAYV fiar = Vi)
ki IV fill?

(5.44)

We refer to the algorithm in which (5.44) replaces (5.41a) as Algorithm PR. It is identical to
Algorithm FR when f is a strongly convex quadratic function and the line search is exact,
since by (5.16) the gradients are mutually orthogonal, and so 8", = B ,. When applied
to general nonlinear functions with inexact line searches, however, the behavior of the two
algorithms differs markedly. Numerical experience indicates that Algorithm PR tends to be
the more robust and efficient of the two.

A surprising fact about Algorithm PR is that the strong Wolfe conditions (5.43) do
not guarantee that py is always a descent direction. If we define the B parameter as

By = max{B,, 0}, (5.45)

5.92. NONLINEAR CONJUGATE GRADIENT METHODS

giving rise to an algorithm we call Algorithm PR+, then a simple adaptation of the strong
Wolfe conditions ensures that the descent property holds.

There are many other choices for B¢ that coincide with the Fletcher—Reeves formula
By, in the case where the objective is quadratic and the line search is exact. The Hestenes—
Stiefel formula, which defines

s VALV = Vi)
LT (Vi - V)T

(5.46)

gives rise to an algorithm (called Algorithm HS) that is similar to Algorithm PR, both in
terms of its theoretical convergence properties and in its practical performance. Formula
(5.46) can be derived by demanding that consecutive search directions be conjugate with
respect to the average Hessian over the line segment [x;, x441], which is defined as

1
Gy = / [V2f(xx + Ty pr)ldr.
0

Recalling from Taylor’s theorem (Theorem 2.1) that V fi11 = V fi + o Gy Pk> we see that
for any direction of the form pyi; = —V fis1 + Brt1Pk> the condition P1<T+1kak =0
requires B4 to be given by (5.46).

Later, we see that it is possible to guarantee global convergence for any parameter Sy
satisfying the bound

1Bl = B (5.47)

for all k > 2. This fact suggests the following modification of the PR method, which has
performed well on some applications. For all k > 2 let

_ '31};]{ lf 'Bll:R < _ ﬂll:R
B = i IB = B (5.48)
]:R if ;{’R > ;R .

The algorithm based on this strategy will be denoted by FR-PR.
Other variants of the CG method have recently been proposed. Two choices for S
that possess attractive theoretical and computational properties are

IV fisll?

Biy1 = (5.49)

T (Vi = VO e

(see [85]) and
A T

n 1912\ V fi . R

Br+1 = ()’k —2pk—7 sy with 3 =V fip = Vi (5.50)
Vi Pk Yk Pk

123

<iAnnotate iPad User>

124

CHAPTER 5. CONJUGATE GRADIENT METHODS

(see [161]). These two choices guarantee that p; is a descent direction, provided the
steplength o satisfies the Wolfe conditions. The CG algorithms based on (5.49) or (5.50)
appear to be competitive with the Polak—Ribiere method.

QUADRATIC TERMINATION AND RESTARTS

Implementations of nonlinear conjugate gradient methods usually preserve their
close connections with the linear conjugate gradient method. Usually, a quadratic (or cubic)
interpolation along the search direction py is incorporated into the line search procedure; see
Chapter 3. This feature guarantees that when f is a strictly convex quadratic, the step length
oy is chosen to be the exact one-dimensional minimizer, so that the nonlinear conjugate
gradient method reduces to the linear method, Algorithm 5.2.

Another modification that is often used in nonlinear conjugate gradient procedures
is to restart the iteration at every n steps by setting fx = 0 in (5.41a), that is, by taking
a steepest descent step. Restarting serves to periodically refresh the algorithm, erasing old
information that may not be beneficial. We can even prove a strong theoretical result about
restarting: It leads to n-step quadratic convergence, that is,

X0 — 21 = O (llxx — x*I1) . (5.51)

After a little thought, this result is not so surprising. Consider a function f that is strongly
convex quadratic in a neighborhood of the solution, but is nonquadratic everywhere else.
Assuming that the algorithm is converging to the solution in question, the iterates will
eventually enter the quadratic region. At some point, the algorithm will be restarted in that
region, and from that point onward, its behavior will simply be that of the linear conjugate
gradient method, Algorithm 5.2. In particular, finite termination will occur within n steps
of the restart. The restart is important, because the finite-termination property and other
appealing properties of Algorithm 5.2 hold only when its initial search direction py is equal
to the negative gradient.

Even if the function f is not exactly quadratic in the region of a solution, Taylor’s
theorem (Theorem 2.1) implies that it can still be approximated quite closely by a quadratic,
provided that it is smooth. Therefore, while we would not expect termination in n steps
after the restart, it is not surprising that substantial progress is made toward the solution, as
indicated by the expression (5.51).

Though the result (5.51) is interesting from a theoretical viewpoint, it may not be
relevant in a practical context, because nonlinear conjugate gradient methods can be recom-
mended only for solving problems with large n. Restarts may never occur in such problems
because an approximate solution may be located in fewer than n steps. Hence, nonlinear
CG method are sometimes implemented without restarts, or else they include strategies for
restarting that are based on considerations other than iteration counts. The most popular
restart strategy makes use of the observation (5.16), which is that the gradients are mutually
orthogonal when f isa quadratic function. A restart is performed whenever two consecutive

<iAnnotate iPad User>

5.92. NONLINEAR CONJUGATE GRADIENT METHODS

gradients are far from orthogonal, as measured by the test

VIV fio
IV £y sz 1] - (5.52)
IV fill

where a typical value for the parameter v is 0.1.
We could also think of formula (5.45) as a restarting strategy, because py; will revert
to the steepest descent direction whenever 8;* is negative. In contrast to (5.52), these restarts

are rather infrequent because 8" is positive most of the time.

BEHAVIOR OF THE FLETCHER-REEVES METHOD

We now investigate the Fletcher—Reeves algorithm, Algorithm 5.4, a little more closely,
proving that it is globally convergent and explaining some of its observed inefficiencies.

The following result gives conditions on the line search under which all search direc-
tions are descent directions. It assumes that the level set £ = {x : f(x) < f(x¢)}is bounded
and that f is twice continuously differentiable, so that we have from Lemma 3.1 that there
exists a step length o satisfying the strong Wolfe conditions.

Lemma 5.6.

Suppose that Algorithm 5.4 is implemented with a step length oy, that satisfies the strong
Wolfe conditions (5.43) with0 < ¢; < % Then the method generates descent directions py
that satisfy the following inequalities:

1 VI 2¢;, — 1
- < Ji p’; <227 forallk=0.1,.... (5.53)
I1—c = IV 1—c

PrOOF. Note first that the function 7(&) def (2 — 1)/(1 — &) is monotonically increasing
on the interval [0, %] and that #(0) = —1 and t(%) = 0. Hence, because of ¢; € (0, %), we
have
2co — 1
1277 o, (5.54)
1— C

The descent condition V fkT Pr < 0 follows immediately once we establish (5.53).

The proof is by induction. For k = 0, the middle term in (5.53) is —1, so by using
(5.54), we see that both inequalities in (5.53) are satisfied. Next, assume that (5.53) holds
for some k > 1. From (5.41b) and (5.41a) we have

Vil P Vil P
=14 B = 1 4 L (5.55)
IV fitall IV fill

ka21pk+l
IV fesa lI?

125

126

CHAPTER 5. CONJUGATE GRADIENT METHODS

By using the line search condition (5.43b), we have

VL il < =V £ pr,

so by combining with (5.55) and recalling (5.41a), we obtain

\v/ T \v4 T \v/ T
4o Ji 171; < fk+1pk-;1 <_l-0 Jx Pl;.
IV fill IV feaall IV fell

Substituting for the term V£ pi/|IV fill> from the left-hand-side of the induction
hypothesis (5.53), we obtain

U S Vil pien <142
1—c; = |V firl? l—c
which shows that (5.53) holds for k + 1 as well. O

This result used only the second strong Wolfe condition (5.43b); the first Wolfe
condition (5.43a) will be needed in the next section to establish global convergence. The
bounds on kaTpk in (5.53) impose a limit on how fast the norms of the steps || pi| can
grow, and they will play a crucial role in the convergence analysis given below.

Lemma 5.6 can also be used to explain a weakness of the Fletcher—Reeves method.
We will argue that if the method generates a bad direction and a tiny step, then the next
direction and next step are also likely to be poor. As in Chapter 3, we let 6; denote the angle
between p; and the steepest descent direction —V fj, defined by

—kaTPk

IV fell lpill” (5.56)

cosb; =

Suppose that py is a poor search direction, in the sense that it makes an angle of nearly 90°
with —V f, that is, cos6; =~ 0. By multiplying both sides of (5.53) by |V fi ||/l px]l and
using (5.56), we obtain

L=2a VAl _ ., L IVAI
= Il

forallk =0,1,.... (5.57)

T 1—c il
From these inequalities, we deduce that cos 6; ~ 0 if and only if
IV fill < llpell.

Since py is almost orthogonal to the gradient, it is likely that the step from x; to x4, is tiny,
that is, x 1 & x. If so, we have V fi.1| & V f;, and therefore

B, ~ 1, (5.58)

5.92. NONLINEAR CONJUGATE GRADIENT METHODS

by the definition (5.41a). By using this approximation together with |V fi11|| = |V fi |l K
|l prll in (5.41b), we conclude that

Pk+1 =~ Dk,

so the new search direction will improve little (if at all) on the previous one. It follows that
if the condition cos 6, ~ 0 holds at some iteration k and if the subsequent step is small, a
long sequence of unproductive iterates will follow.

The Polak—Ribiére method behaves quite differently in these circumstances. If, as in
the previous paragraph, the search direction p; satisfies cos 6 ~ 0 for some k, and if the
subsequent step is small, it follows by substituting V fi ~ V fi.4; into (5.44) that ;% | ~ 0.
From the formula (5.41b), we find that the new search direction py.; will be close to the
steepest descent direction —V fi11, and cos 6, will be close to 1. Therefore, Algorithm PR
essentially performs a restart after it encounters a bad direction. The same argument can
be applied to Algorithms PR+ and HS. For the FR-PR variant, defined by (5.48), we have
noted already that 8% | ~ 1, and 8%, ~ 0. The formula (5.48) thus sets fry1 = B, as
desired. Thus, the modification (5.48) seems to avoid the inefficiencies of the FR method,
while falling back on this method for global convergence.

The undesirable behavior of the Fletcher—Reeves method predicted by the arguments
given above can be observed in practice. For example, the paper [123] describes a problem
with n = 100 in which cos; is of order 1072 for hundreds of iterations and the steps
lxx — xx_1]| are of order 1072, Algorithm FR requires thousands of iterations to solve this
problem, while Algorithm PR requires just 37 iterations. In this example, the Fletcher—
Reeves method performs much better if it is periodically restarted along the steepest descent
direction, since each restart terminates the cycle of bad steps. In general, Algorithm FR
should not be implemented without some kind of restart strategy.

GLOBAL CONYERGENCE

Unlike the linear conjugate gradient method, whose convergence properties are well
understood and which is known to be optimal as described above, nonlinear conjugate
gradient methods possess surprising, sometimes bizarre, convergence properties. We now
present a few of the main results known for the Fletcher—Reeves and Polak—Ribiére methods
using practical line searches.

For the purposes of this section, we make the following (nonrestrictive) assumptions
on the objective function.

Assumptions 5.1.
(i) Thelevelset L := {x| f(x) < f(xo)} is bounded;

(ii) In some open neighborhood N of L, the objective function f is Lipschitz continuously
differentiable.

127

128 CHAPTER 5. CONJUGATE GRADIENT METHODS

These assumptions imply that there is a constant y such that
IVF()| < y,forallx € L. (5.59)

Our main analytical tool in this section is Zoutendijk’s theorem—Theorem 3.2 in
Chapter 3. It states, that under Assumptions 5.1, any line search iteration of the form
Xit+1 = Xg + o pr, where py is a descent direction and oy satisfies the Wolfe conditions
(5.43) gives the limit

o0
> cos’ O IV £ill® < oo (5.60)
k=0

We can use this result to prove global convergence for algorithms that are periodically
restarted by setting B = 0.If ky, k,, and so on denote the iterations on which restarts occur,
we have from (5.60) that

> IVAIR < o (5.61)

k=ky,ky,...

If we allow no more than 7 iterations between restarts, the sequence {k j}?il is infinite,

and from (5.61) we have that lim; . [V fi, | = 0. That is, a subsequence of gradients
approaches zero, or equivalently,

li]{n inf |V fx|l = 0. (5.62)

This result applies equally to restarted versions of all the algorithms discussed in this chapter.

Itis more interesting, however, to study the global convergence of unrestarted conjugate
gradient methods, because for large problems (say n > 1000) we expect to find a solution in
many fewer than n iterations—the first point at which a regular restart would take place. Our
study of large sequences of unrestarted conjugate gradient iterations reveals some surprising
patterns in their behavior.

We can build on Lemma 5.6 and Zoutendijk’s result (5.60) to prove a global conver-
gence result for the Fletcher—Reeves method. While we cannot show that the limit of the
sequence of gradients {V f;} is zero, the following result shows that this sequence is not
bounded away from zero.

Theorem 5.7 (Al-Baali [3]).
Suppose that Assumptions 5.1 hold, and that Algorithm 5.4 is implemented with a line
search that satisfies the strong Wolfe conditions (5.43), with0 < ¢; < ¢; < % Then

liminf ||V f¢|| = 0. (5.63)
k—00

5.92. NONLINEAR CONJUGATE GRADIENT METHODS 129

Proor. The proof is by contradiction. It assumes that the opposite of (5.63) holds, that is,
there is a constant ¥ > 0 such that

IVl = v, (5.64)

for all k sufficiently large. By substituting the left inequality of (5.57) into Zoutendijk’s
condition (5.60), we obtain

o0

\V/ 4
E I fkll < 00. (5.65)
= el

By using (5.43b) and (5.53), we obtain that

C
2 IV fi % (5.66)

|kaTPk—1| =< —szfkT_lpk—l =< -
—C

Thus, from (5.41b) and recalling the definition (5.41a) of B{* we obtain

1Pl < IV fiel® + 2B IV £ peal + B pra |1

2C2
< IV/ll? + - BV fia I + (B3 Il i I
— Q2
1+ Cy .
= <1 A) IV fell? + (B pra I
— Q2

Applying this relation repeatedly, and defining c; def (14 ¢)/(1 —c3) > 1, we have

el < sV fill> 4+ (BE)(eslIV ft 1P + (B)X (Y fima I +
e B poll®))

k
=alVAIEY IV, (5.67)

Jj=0
where we used the facts that

FR\2(QFR 2 (QFR \2 ”ka”4
BB Pe) = 57T

and py = —V f;. By using the bounds (5.59) and (5.64) in (5.67), we obtain

~4
cy
Ipell® < —k (5.68)

130

CHAPTER 5. CONJUGATE GRADIENT METHODS

which implies that

- 1 |
> =) (5.69)
k=1 k=1

Ipell> —

for some positive constant y;.
On the other hand, from (5.64) and (5.65), we have that

o0

Z I (5.70)

2
 pel

However, if we combine this inequality with (5.69), we obtain that Z,fil 1/k < o0, which
is not true. Hence, (5.64) does not hold, and the claim (5.63) is proved. O

This global convergence result can be extended to any choice of g satisfying (5.47),
and in particular to the FR-PR method given by (5.48).
In general, if we can show that there exist constants ¢4, ¢5 > 0 such that

IV fill IVl
4) zC
I el I el

cosO > c¢ > 0, k=1,2,...,

it follows from (5.60) that
klglgo IV fill = 0.

In fact, this result can be established for the Polak—Ribiere method under the assumption
that f is strongly convex and that an exact line search is used.

For general (nonconvex) functions, however, is it not possible to prove a result like
Theorem 5.7 for Algorithm PR. This fact is unexpected, since the Polak—Ribiére method
performs better in practice than the Fletcher—Reeves method. The following surprising result
shows that the Polak—Ribiere method can cycle infinitely without approaching a solution
point, even if an ideal line search is used. (By “ideal” we mean that line search returns a
value o, that is the first positive stationary point for the function #(«) = f(xx + apy).)

Theorem 5.8.

Consider the Polak—Ribiere method method (5.44) with an ideal line search. There exists
a twice continuously differentiable objective function f : R* — R and a starting pointx, € R®
such that the sequence of gradients {||V fi ||} is bounded away from zero.

The proof of this result, given in [253], is quite complex. It demonstrates the existence
of the desired objective function without actually constructing this function explicitly. The
result is interesting, since the step length assumed in the proof—the first stationary point—
may be accepted by any of the practical line search algorithms currently in use. The proof

5.9. NONLINEAR CONJUGATE GRADIENT METHODS

of Theorem 5.8 requires that some consecutive search directions become almost negatives
of each other. In the case of ideal line searches, this happens only if ; < 0, so the analysis
suggests Algorithm PR+ (see (5.45)), in which we reset B to zero whenever it becomes
negative. We mentioned earlier that a line search strategy based on a slight modification of
the Wolfe conditions guarantees that all search directions generated by Algorithm PR+ are
descent directions. Using these facts, it is possible to a prove global convergence result like
Theorem 5.7 for Algorithm PR+. An attractive property of the formulae (5.49), (5.50) is
that global convergence can be established without introducing any modification to a line
search based on the Wolfe conditions.

NUMERICAL PERFORMANCE

Table 5.1 illustrates the performance of Algorithms FR, PR, and PR+ without restarts.
For these tests, the parameters in the strong Wolfe conditions (5.43) were chosen to be
¢; = 107* and ¢, = 0.1. The iterations were terminated when

IV filloo < 107°(1 + | fil)-

If this condition was not satisfied after 10,000 iterations, we declare failure (indicated by a
* in the table).

The final column, headed “mod,” indicates the number of iterations of Algorithm PR+
for which the adjustment (5.45) was needed to ensure that 8* > 0. Algorithm FR on problem
GENROS takes very short steps far from the solution that lead to tiny improvements in the
objective function, and convergence was not achieved within the maximum number of
iterations.

The Polak—Ribiere algorithm, or its variation PR+, are not always more efficient
than Algorithm FR, and it has the slight disadvantage of requiring one more vector of
storage. Nevertheless, we recommend that users choose Algorithm PR, PR+ or FR-PR, or
the methods based on (5.49) and (5.50).

Table 5.1 Iterations and function/gradient evaluations required by three
nonlinear conjugate gradient methods on a set of test problems; see [123]

Alg FR Alg PR Alg PR+
Problem n it/f-g it/f-g it/f-g mod
CALCVAR3 200 2808/5617 | 2631/5263 | 2631/5263 0
GENROS 500 * 1068/2151 | 1067/2149 1
XPOWSING 1000 533/1102 212/473 97/229 3
TRIDIA1 1000 264/531 262/527 262/527 0
MSQRT1 1000 422/849 113/231 113/231 0
XPOWELL 1000 568/1175 212/473 97/229 3
TRIGON 1000 231/467 40/92 40/92 0

131

132

CHAPTER 5. CONJUGATE GRADIENT METHODS

NOTES AND REFERENCES

The conjugate gradient method was developed in the 1950s by Hestenes and
Stiefel [168] as an alternative to factorization methods for finding solutions of symmet-
ric positive definite systems. It was not until some years later, in one of the most important
developments in sparse linear algebra, that this method came to be viewed as an iterative
method that could give good approximate solutions to systems in many fewer than n steps.
Our presentation of the linear conjugate gradient method follows that of Luenberger [195].
For a history of the development of the conjugate gradient and Lanczos methods see Golub
and O’Leary [135].

Interestingly enough, the nonlinear conjugate gradient method of Fletcher and
Reeves [107] was proposed after the linear conjugate gradient method had fallen out of
favor, but several years before it was rediscovered as an iterative method for linear systems.
The Polak—Ribiere method was introduced in [237], and the example showing that it may
fail to converge on nonconvex problems is given by Powell [253]. Restart procedures are
discussed in Powell [248].

Hager and Zhang [161] report some of the best computational results obtained to date
with a nonlinear CG method. Their implementation is based on formula (5.50) and uses
a high-accuracy line search procedure. The results in Table 5.1 are taken from Gilbert and
Nocedal [123]. This paper also describes a line search that guarantees that Algorithm PR+
always generates descent directions and proves global convergence.

Analysis due to Powell [245] provides further evidence of the inefficiency of the
Fletcher—Reeves method using exact line searches. He shows that if the iterates enter a
region in which the function is the two-dimensional quadratic

Fo0) = txTx,

then the angle between the gradient V f; and the search direction py stays constant. Since
this angle can be arbitrarily close to 90°, the Fletcher—Reeves method can be slower than
the steepest descent method. The Polak—Ribiere method behaves quite differently in these
circumstances: If a very small step is generated, the next search direction tends to the steepest
descent direction, as argued above. This feature prevents a sequence of tiny steps.

The global convergence of nonlinear conjugate gradient methods has received much
attention; see for example Al-Baali 3], Gilbert and Nocedal [123], Dai and Yuan [85], and
Hager and Zhang [161]. For recent surveys on CG methods see Gould et al. [147] and Hager
and Zhang [162].

Most of the theory on the rate of convergence of conjugate gradient methods assumes
that the line search is exact. Crowder and Wolfe [82] show that the rate of convergence
is linear, and show by constructing an example that Q-superlinear convergence is not
achievable. Powell [245] studies the case in which the conjugate gradient method enters a
region where the objective function is quadratic, and shows that either finite termination
occurs or the rate of convergence is linear. Cohen [63] and Burmeister [45] prove n-step

5.92. NONLINEAR CONJUGATE GRADIENT METHODS

quadratic convergence (5.51) for general objective functions. Ritter [265] shows that in fact,
the rate is superquadratic, that is,

2
[kn — X" = o(llxk — x™[17).

Powell [251] gives a slightly better result and performs numerical tests on small problems
to measure the rate observed in practice. He also summarizes rate-of-convergence results
for asymptotically exact line searches, such as those obtained by Baptist and Stoer [11]
and Stoer [282]. Even faster rates of convergence can be established (see Schuller [278],
Ritter [265]), under the assumption that the search directions are uniformly linearly
independent, but this assumption is hard to verify and does not often occur in practice.

Nemirovsky and Yudin [225] devote some attention to the global efficiency of the
Fletcher—Reeves and Polak—Ribiére methods with exact line searches. For this purpose they
define a measure of “laboriousness” and an “optimal bound” for it among a certain class
of iterations. They show that on strongly convex problems not only do the Fletcher—Reeves
and Polak—Ribiére methods fail to attain the optimal bound, but they may also be slower
than the steepest descent method. Subsequently, Nesterov [225] presented an algorithm that
attains this optimal bound. It is related to PARTAN, the method of parallel tangents (see, for
example, Luenberger [195]). We feel that this approach is unlikely to be effective in practice,
but no conclusive investigation has been carried out, to the best of our knowledge.

& EXERCISES

& 5.1 Implement Algorithm 5.2 and use to it solve linear systems in which A is the
Hilbert matrix, whose elements are A; ; = 1/(i + j — 1). Set the right-hand-side to
b= (1,1,...,1)7 and the initial point to xo = 0. Try dimensions n = 5, 8, 12, 20 and
report the number of iterations required to reduce the residual below 107,

& 5.2 Show that if the nonzero vectors py, pi, . . ., p; satisfy (5.5), where A is symmetric
and positive definite, then these vectors are linearly independent. (This result implies that
A has at most n conjugate directions.)

& 5.3 Verify the formula (5.7).

& 5.4 Show that if f(x) is a strictly convex quadratic, then the function k(o) =
f(xo + oopo + -+ + ox—1pr—1) also is a strictly convex quadratic in the variable 0 =
(007 01y evvy o.k—l)T'

& 5.5 Verify from the formulae (5.14) that (5.17) and (5.18) hold for k = 1.

& 5.6 Show that (5.24d) is equivalent to (5.14d).

133

134

CHAPTER 5. CONJUGATE GRADIENT METHODS

& 5.7 Let {A;,v;}i = 1,2,...,n be the eigenpairs of the symmetric matrix A. Show
that the eigenvalues and eigenvectors of [+ P, (A)A]T A[1+ Py (A)A] are A; [1+X; P (A;)]?
and v;, respectively.

& 5.8 Construct matrices with various eigenvalue distributions (clustered and non-
clustered) and apply the CG method to them. Comment on whether the behavior can be
explained from Theorem 5.5.

& 5.9 Derive Algorithm 5.3 by applying the standard CG method in the variables X and
then transforming back into the original variables.

& 5.10 Verify the modified conjugacy condition (5.40).

& 5.11 Show that when applied to a quadratic function, with exact line searches, both
the Polak—Ribiere formula given by (5.44) and the Hestenes—Stiefel formula given by (5.46)
reduce to the Fletcher—Reeves formula (5.41a).

& 5.12 Prove that Lemma 5.6 holds for any choice of By satisfying |Bx| < B*.

CHAPTER

Quasi-Newton
Methods

In the mid 1950s, W.C. Davidon, a physicist working at Argonne National Laboratory,
was using the coordinate descent method (see Section 9.3) to perform a long optimization
calculation. At that time computers were not very stable, and to Davidon’s frustration,
the computer system would always crash before the calculation was finished. So Davidon
decided to find a way of accelerating the iteration. The algorithm he developed—the first
quasi-Newton algorithm—turned out to be one of the most creative ideas in nonlinear
optimization. It was soon demonstrated by Fletcher and Powell that the new algorithm
was much faster and more reliable than the other existing methods, and this dramatic

<iAnnotate iPad User>

136

CHAPTER 6. QUASI-NEWTON METHODS

advance transformed nonlinear optimization overnight. During the following twenty years,
numerous variants were proposed and hundreds of papers were devoted to their study. An
interesting historical irony is that Davidon’s paper [87] was not accepted for publication; it
remained as a technical report for more than thirty years until it appeared in the first issue
of the SIAM Journal on Optimization in 1991 [88].

Quasi-Newton methods, like steepest descent, require only the gradient of the ob-
jective function to be supplied at each iterate. By measuring the changes in gradients, they
construct a model of the objective function that is good enough to produce superlinear
convergence. The improvement over steepest descent is dramatic, especially on difficult
problems. Moreover, since second derivatives are not required, quasi-Newton methods are
sometimes more efficient than Newton’s method. Today, optimization software libraries
contain a variety of quasi-Newton algorithms for solving unconstrained, constrained, and
large-scale optimization problems. In this chapter we discuss quasi-Newton methods for
small and medium-sized problems, and in Chapter 7 we consider their extension to the
large-scale setting.

The development of automatic differentiation techniques has made it possible to use
Newton’s method without requiring users to supply second derivatives; see Chapter 8.
Still, automatic differentiation tools may not be applicable in many situations, and it
may be much more costly to work with second derivatives in automatic differentia-
tion software than with the gradient. For these reasons, quasi-Newton methods remain
appealing.

6.1 THE BFGS METHOD

The most popular quasi-Newton algorithm is the BFGS method, named for its discoverers
Broyden, Fletcher, Goldfarb, and Shanno. In this section we derive this algorithm (and
its close relative, the DFP algorithm) and describe its theoretical properties and practical
implementation.

We begin the derivation by forming the following quadratic model of the objective
function at the current iterate x;:

me(p) = fi + VI p+ip" Bip. (6.1)

Here By is an n x n symmetric positive definite matrix that will be revised or updated at
every iteration. Note that the function value and gradient of this model at p = 0 match
fi and V f;, respectively. The minimizer py of this convex quadratic model, which we can
write explicitly as

pe=—B'Vfi, (6.2)

6.1. THE BFGS METHOD

is used as the search direction, and the new iterate is
Xk+1 = Xg + o Py, (6.3)

where the step length o4 is chosen to satisfy the Wolfe conditions (3.6). This iteration is
quite similar to the line search Newton method; the key difference is that the approximate
Hessian By, is used in place of the true Hessian.

Instead of computing By afresh at every iteration, Davidon proposed to update itin a
simple manner to account for the curvature measured during the most recent step. Suppose
that we have generated a new iterate x4, and wish to construct a new quadratic model, of
the form

Mer1(p) = fier + VAL P+ 30" B,

What requirements should we impose on By, based on the knowledge gained during
the latest step? One reasonable requirement is that the gradient of my; should match the
gradient of the objective function f at the latest two iterates x; and x44. Since Vmy1(0) is
precisely V fi.1, the second of these conditions is satisfied automatically. The first condition
can be written mathematically as

Vm(=akpr) =V fiyr — i Biipr =V fi
By rearranging, we obtain
Biowpk =V fir1 = Vi (6.4)
To simplify the notation it is useful to define the vectors
Sk = Xpp1 — Xk = Pk, Yk =V fior — Vi, (6.5)
so that (6.4) becomes
Biy1sk = Yr. (6.6)

We refer to this formula as the secant equation.

Given the displacement s; and the change of gradients yy, the secant equation requires
that the symmetric positive definite matrix By, map s into yg. This will be possible only
if s and yy satisfy the curvature condition

skTyk >0, (6.7)

asis easily seen by premultiplying (6.6) by s/ . When f is strongly convex, the inequality (6.7)
will be satisfied for any two points x; and x;1; (see Exercise 6.1). However, this condition

137

138

CHAPTER 6. QUASI-NEWTON METHODS

will not always hold for nonconvex functions, and in this case we need to enforce (6.7)
explicitly, by imposing restrictions on the line search procedure that chooses the step length
a. In fact, the condition (6.7) is guaranteed to hold if we impose the Wolfe (3.6) or strong
Wolfe conditions (3.7) on the line search. To verify this claim, we note from (6.5) and (3.6b)
that V £/, sc = 2V fl sk, and therefore

yise > (e — DV pr. (6.8)

Since ¢; < 1 and since py is a descent direction, the term on the right is positive, and the
curvature condition (6.7) holds.

When the curvature condition is satisfied, the secant equation (6.6) always has a
solution By,i. In fact, it admits an infinite number of solutions, since the n(n + 1)/2
degrees of freedom in a symmetric positive definite matrix exceed the n conditions imposed
by the secant equation. The requirement of positive definiteness imposes n additional
inequalities—all principal minors must be positive—but these conditions do not absorb the
remaining degrees of freedom.

To determine By;; uniquely, we impose the additional condition that among all
symmetric matrices satisfying the secant equation, By, is, in some sense, closest to the current
matrix B. In other words, we solve the problem

min [|B — By (6.9a)

subjectto B = BT, Bsi =y, (6.9b)

where s and y; satisfy (6.7) and By is symmetric and positive definite. Different matrix
norms can be used in (6.9a), and each norm gives rise to a different quasi-Newton method.
A norm that allows easy solution of the minimization problem (6.9) and gives rise to a
scale-invariant optimization method is the weighted Frobenius norm

IAllw = |W'2AWY2|| (6.10)

where || - || is defined by |C |17 = >/, >, cfj The weight matrix W can be chosen as

any matrix satisfying the relation Wy, = s;. For concreteness, the reader can assume that
W = G; ' where Gy is the average Hessian defined by

1
Gy = |:/ V2 f(x + rozkpk)dr:|) (6.11)
0
The property
v = Gropr = Gisy (6.12)

follows from Taylor’s theorem, Theorem 2.1. With this choice of weighting matrix W, the

Long Chen

6.1. THE BFGS METHOD

norm (6.10) is non-dimensional, which is a desirable property, since we do not wish the
solution of (6.9) to depend on the units of the problem.
With this weighting matrix and this norm, the unique solution of (6.9) is

(DFP) Bir = (I — peyesy) Be (I — peseyi) + piveyi - (6.13)

with
1

—
Vi Sk

Pk = (6.14)
This formula is called the DFP updating formula, since it is the one originally proposed by
Davidon in 1959, and subsequently studied, implemented, and popularized by Fletcher and
Powell.

The inverse of By, which we denote by

H, = B; ',

is useful in the implementation of the method, since it allows the search direction (6.2)
to be calculated by means of a simple matrix—vector multiplication. Using the Sherman—
Morrison—Woodbury formula (A.28), we can derive the following expression for the update
of the inverse Hessian approximation Hj, that corresponds to the DFP update of By in (6.13):

Hoyeyl He sesf
v Hiyk Vi Sk

(DFP) Hiyy = Hy — (6.15)
Note that the last two terms in the right-hand-side of (6.15) are rank-one matrices, so that H
undergoes a rank-two modification. Itis easy to see that (6.13) is also a rank-two modification
of By. This is the fundamental idea of quasi-Newton updating: Instead of recomputing the
approximate Hessians (or inverse Hessians) from scratch at every iteration, we apply a simple
modification that combines the most recently observed information about the objective
function with the existing knowledge embedded in our current Hessian approximation.
The DFP updating formula is quite effective, but it was soon superseded by the BFGS
formula, which is presently considered to be the most effective of all quasi-Newton updating
formulae. BFGS updating can be derived by making a simple change in the argument
that led to (6.13). Instead of imposing conditions on the Hessian approximations By, we
impose similar conditions on their inverses Hy. The updated approximation Hy; must be
symmetric and positive definite, and must satisfy the secant equation (6.6), now written as

Hiy1 i = k.
The condition of closeness to H, is now specified by the following analogue of (6.9):
mF}n |H — Hy|| (6.16a)

subjectto H = HT, Hy, = 5. (6.16b)

139

Long Chen

Long Chen

140

CHAPTER 6. QUASI-NEWTON METHODS

The norm is again the weighted Frobenius norm described above, where the weight matrix
W is now any matrix satisfying Ws; = y,. (For concreteness, we assume again that W is
given by the average Hessian Gy defined in (6.11).) The unique solution Hy to (6.16) is
given by

(BFGS) Hiwr = (I — peseyi VH(I — peyisy) + pesest (6.17)

with p; defined by (6.14).

Just one issue has to be resolved before we can define a complete BEGS algorithm: How
should we choose the initial approximation Hy? Unfortunately, there is no magic formula
that works well in all cases. We can use specific information about the problem, for instance
by setting it to the inverse of an approximate Hessian calculated by finite differences at x.
Otherwise, we can simply set it to be the identity matrix, or a multiple of the identity matrix,
where the multiple is chosen to reflect the scaling of the variables.

Algorithm 6.1 (BFGS Method).
Given starting point x, convergence tolerance € > 0,
inverse Hessian approximation Hy;
k < 0;
while |V fi]| > €
Compute search direction

Pk = —HV fi; (6.18)

Set Xx+1 = X + o pr where o is computed from a line search
procedure to satisfy the Wolfe conditions (3.6);
Define sy = X341 — xg and yp =V fiy1 — V fis
Compute Hy;; by means of (6.17);
k<~—k+1;
end (while)

Each iteration can be performed at a cost of O (n?) arithmetic operations (plus the cost
of function and gradient evaluations); there are no O(n>) operations such as linear system
solves or matrix—matrix operations. The algorithm is robust, and its rate of convergence is
superlinear, which is fast enough for most practical purposes. Even though Newton’s method
converges more rapidly (that is, quadratically), its cost per iteration usually is higher, because
of its need for second derivatives and solution of a linear system.

We can derive a version of the BFGS algorithm that works with the Hessian approx-
imation By rather than Hj. The update formula for By is obtained by simply applying the
Sherman—Morrison—-Woodbury formula (A.28) to (6.17) to obtain

Bisis!I B r
kSkS; Dk Vi Vi (6.19)

(BFGS) Biy1 = By — .
skTBksk ykTsk

6.1. THE BFGS METHOD

A naive implementation of this variant is not efficient for unconstrained minimization,
because it requires the system By pr = —V f to be solved for the step py, thereby increasing
the cost of the step computation to O(n>). We discuss later, however, that less expensive
implementations of this variant are possible by updating Cholesky factors of By.

PROPERTIES OF THE BFGS METHOD

It is usually easy to observe the superlinear rate of convergence of the BFGS method
on practical problems. Below, we report the last few iterations of the steepest descent, BFGS,
and an inexact Newton method on Rosenbrock’s function (2.22). The table gives the value of
lxx — x*||. The Wolfe conditions were imposed on the step length in all three methods. From
the starting point (—1.2, 1), the steepest descent method required 5264 iterations, whereas
BFGS and Newton took only 34 and 21 iterations, respectively to reduce the gradient norm
to 107°.

steepest BFGS | Newton
descent
1.827e-04 | 1.70e-03 | 3.48e-02
1.826e-04 | 1.17e-03 | 1.44e-02
1.824e-04 | 1.34e-04 | 1.82e-04
1.823e-04 | 1.01e-06 | 1.17e-08

A few points in the derivation of the BFGS and DFP methods merit further discussion.
Note that the minimization problem (6.16) that gives rise to the BFGS update formula does
not explicitly require the updated Hessian approximation to be positive definite. It is easy to
show, however, that Hj; will be positive definite whenever Hy is positive definite, by using
the following argument. First, note from (6.8) that y/ sy is positive, so that the updating
formula (6.17), (6.14) is well-defined. For any nonzero vector z, we have

2" Hyz = w' How + o (27 s0)* > 0,

where we have defined w = z — px yk(skT 7). The right hand side can be zero only if skT z=0,
but in this case w = z # 0, which implies that the first term is greater than zero. Therefore,
Hj, is positive definite.

To make quasi-Newton updating formulae invariant to transformations in the vari-
ables (such as scaling transformations), it is necessary for the objectives (6.9a) and (6.16a)
to be invariant under the same transformations. The choice of the weighting matrices W
used to define the norms in (6.9a) and (6.16a) ensures that this condition holds. Many other
choices of the weighting matrix W are possible, each one of them giving a different update
formula. However, despite intensive searches, no formula has been found that is significantly
more effective than BFGS.

141

142

CHAPTER 6. QUASI-NEWTON METHODS

The BFGS method has many interesting properties when applied to quadratic func-
tions. We discuss these properties later in the more general context of the Broyden family of
updating formulae, of which BFGS is a special case.

It is reasonable to ask whether there are situations in which the updating formula such
as (6.17) can produce bad results. If at some iteration the matrix H; becomes a poor approx-
imation to the true inverse Hessian, is there any hope of correcting it? For example, when
the inner product y/ sy is tiny (but positive), then it follows from (6.14), (6.17) that Hy,
contains very large elements. Is this behavior reasonable? A related question concerns the
rounding errors that occur in finite-precision implementation of these methods. Can these
errors grow to the point of erasing all useful information in the quasi-Newton approximate
Hessian?

These questions have been studied analytically and experimentally, and it is now
known that the BEGS formula has very effective self-correcting properties. If the matrix Hj
incorrectly estimates the curvature in the objective function, and if this bad estimate slows
down the iteration, then the Hessian approximation will tend to correct itself within a few
steps. Itis also known that the DFP method is less effective in correcting bad Hessian approx-
imations; this property is believed to be the reason for its poorer practical performance. The
self-correcting properties of BFGS hold only when an adequate line search is performed. In
particular, the Wolfe line search conditions ensure that the gradients are sampled at points
that allow the model (6.1) to capture appropriate curvature information.

It is interesting to note that the DFP and BFGS updating formulae are duals of each
other, in the sense that one can be obtained from the other by the interchanges s < y,
B < H. This symmetry is not surprising, given the manner in which we derived these
methods above.

IMPLEMENTATION

A few details and enhancements need to be added to Algorithm 6.1 to produce an
efficient implementation. The line search, which should satisfy either the Wolfe conditions
(3.6) or the strong Wolfe conditions (3.7), should always try the step length o = 1 first,
because this step length will eventually always be accepted (under certain conditions), thereby
producing superlinear convergence of the overall algorithm. Computational observations
strongly suggest that it is more economical, in terms of function evaluations, to perform
a fairly inaccurate line search. The values ¢; = 107* and ¢, = 0.9 are commonly used in
(3.6).

As mentioned earlier, the initial matrix Hj often is set to some multiple 87 of the
identity, but there is no good general strategy for choosing the multiple 8. If B is too large,
so that the first step pp = —Bgo is too long, many function evaluations may be required to
find a suitable value for the step length «g. Some software asks the user to prescribe a value
8 for the norm of the first step, and then set Hy = §||go|| =1 to achieve this norm.

A heuristic that is often quite effective is to scale the starting matrix after the first
step has been computed but before the first BEFGS update is performed. We change the

Long Chen

6.1. THE BFGS METHOD

provisional value Hy = I by setting

ykT Sk
ykT Yk

Hy < I, (6.20)

before applying the update (6.14) , (6.17) to obtain H;. This formula attempts to make the
size of Hy similar to that of V2 f(x()~!, in the following sense. Assuming that the average
Hessian defined in (6.11) is positive definite, there exists a square root C_?llc/ ? satisfying
Gi=G ,1/ 2@,1/ 2 (see Exercise 6.6). Therefore, by defining z; = C_;,lc/ zsk and using the relation
(6.12), we have

ykTsk B (G,i/zsk)T(_},i/zsk _ Z,sz 621
T, — (A2 N7~ A2, 7 TA : (6.21)
Vi Yk (Gk Sk) Gka Sk Lk Gka

The reciprocal of (6.21) is an approximation to one of the eigenvalues of Gy, which in turn
is close to an eigenvalue of V2 f(x;). Hence, the quotient (6.21) itself approximates an
eigenvalue of V2 f(x;)~!. Other scaling factors can be used in (6.20), but the one presented
here appears to be the most successful in practice.

In (6.19) we gave an update formula for a BFGS method that works with the Hes-
sian approximation By instead of the the inverse Hessian approximation Hy. An efficient
implementation of this approach does not store By explicitly, but rather the Cholesky fac-
torization Ly DkL,{ of this matrix. A formula that updates the factors Ly and Dy, directly in
O(n?) operations can be derived from (6.19). Since the linear system By p;y = —V f; also
can be solved in O (n?) operations (by performing triangular substitutions with Ly and L]
and a diagonal substitution with Dy), the total cost is quite similar to the variant described
in Algorithm 6.1. A potential advantage of this alternative strategy is that it gives us the
option of modifying diagonal elements in the Dy factor if they are not sufficiently large, to
prevent instability when we divide by these elements during the calculation of p;. However,
computational experience suggests no real advantages for this variant, and we prefer the
simpler strategy of Algorithm 6.1.

The performance of the BEGS method can degrade if the line search is not based
on the Wolfe conditions. For example, some software implements an Armijo backtracking
line search (see Section 3.1): The unit step length o, = 1 is tried first and is successively
decreased until the sufficient decrease condition (3.6a) is satisfied. For this strategy, there is
no guarantee that the curvature condition ykT sk > 0(6.7) will be satisfied by the chosen step,
since a step length greater than 1 may be required to satisfy this condition. To cope with this
shortcoming, some implementations simply skip the BFGS update by setting Hy; = Hy
when y/s; is negative or too close to zero. This approach is not recommended, because
the updates may be skipped much too often to allow Hj to capture important curvature
information for the objective function f. In Chapter 18 we discuss a damped BFGS update
that is a more effective strategy for coping with the case where the curvature condition (6.7)
is not satisfied.

143

Long Chen

144 CHAPTER 6. QUASI-NEWTON METHODS

6.2 THE SR1 METHOD

In the BFGS and DFP updating formulae, the updated matrix By (or Hy,) differs from its
predecessor By (or Hy) by a rank-2 matrix. In fact, as we now show, there is a simpler rank-1
update that maintains symmetry of the matrix and allows it to satisfy the secant equation.
Unlike the rank-two update formulae, this symmetric-rank-1, or SR1, update does not
guarantee that the updated matrix maintains positive definiteness. Good numerical results
have been obtained with algorithms based on SR1, so we derive it here and investigate its
properties.
The symmetric rank-1 update has the general form

By = By +owv’,

where o is either 4+1 or —1, and o and v are chosen so that By satisfies the secant equation
(6.6), that is, yy = By.1Sk. By substituting into this equation, we obtain

Vi = Bisi + [O’UTSk] v. (6.22)

Since the term in brackets is a scalar, we deduce that v must be a multiple of y, — By.sy, that
is, v = 8(yx — Bysy) for some scalar §. By substituting this form of v into (6.22), we obtain

(% — Besi) = 087 [s{ (e — Besi)] (v — Besi), (6.23)
and it is clear that this equation is satisfied if (and only if) we choose the parameters § and

o to be

. —1/2
o = sign [skT(yk — Bksk)] , &==%£ |skT(yk — Bksk)| .

Hence, we have shown that the only symmetric rank-1 updating formula that satisfies the

secant equation is given by

(v — Bese)(yx — Bes)”

(6.24)
(v — Biesi) T sk

(SR1) Biy1 = By +

By applying the Sherman—Morrison formula (A.27), we obtain the corresponding update
formula for the inverse Hessian approximation Hy:

(se — Heye)(se — Heye)™

(6.25)
(sk — Hiey) Ty

(SR1) Hii 1 = H +

This derivation is so simple that the SR1 formula has been rediscovered a number of times.
It is easy to see that even if By is positive definite, By, may not have the same property.
(The same is, of course, true of Hy.) This observation was considered a major drawback

6.2. THE SRT METHOD

in the early days of nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updating formula has proved to
be quite useful, and its ability to generate indefinite Hessian approximations can actually be
regarded as one of its chief advantages.

The main drawback of SR1 updating is that the denominator in (6.24) or (6.25) can
vanish. In fact, even when the objective function is a convex quadratic, there may be steps
on which there is no symmetric rank-1 update that satisfies the secant equation. It pays to
reexamine the derivation above in the light of this observation.

By reasoning in terms of By (similar arguments can be applied to Hy), we see that
there are three cases:

1. If (yx — Bisi)Tsg # 0, then the arguments above show that there is a unique
rank-one updating formula satisfying the secant equation (6.6), and that it is given
by (6.24).

2. If yx = By, then the only updating formula satisfying the secant equation is simply
Biy1 = By.

3. If yv # Bisy and (yx — Bisy)Tsi = 0, then (6.23) shows that there is no symmetric
rank-one updating formula satisfying the secant equation.

The last case clouds an otherwise simple and elegant derivation, and suggests that numerical
instabilities and even breakdown of the method can occur. It suggests that rank-one updating
does not provide enough freedom to develop a matrix with all the desired characteristics,
and that a rank-two correction is required. This reasoning leads us back to the BEGS method,
in which positive definiteness (and thus nonsingularity) of all Hessian approximations is
guaranteed.

Nevertheless, we are interested in the SR1 formula for the following reasons.

(i) A simple safeguard seems to adequately prevent the breakdown of the method and the
occurrence of numerical instabilities.

(ii) The matrices generated by the SR1 formula tend to be good approximations to the
true Hessian matrix—often better than the BFGS approximations.

(iii) In quasi-Newton methods for constrained problems, or in methods for partially
separable functions (see Chapters 18 and 7), it may not be possible to impose the
curvature condition ykT sx > 0, and thus BFGS updating is not recommended. Indeed,
in these two settings, indefinite Hessian approximations are desirable insofar as they
reflect indefiniteness in the true Hessian.

We now introduce a strategy to prevent the SR1 method from breaking down. It
has been observed in practice that SR1 performs well simply by skipping the update if the
denominator is small. More specifically, the update (6.24) is applied only if

|si (v — Bes)| = rlisll 1y — Biesll, (6.26)

145

146

CHAPTER 6. QUASI-NEWTON METHODS

where r € (0,1) is a small number, say r = 1078, If (6.26) does not hold, we set
Bi+1 = Byi. Most implementations of the SR1 method use a skipping rule of this
kind.

Why do we advocate skipping of updates for the SR1 method, when in the previous
section we discouraged this strategy in the case of BFGS? The two cases are quite different.
The condition s{ (yx — Bs) ~ 0 occurs infrequently, since it requires certain vectors to
be aligned in a specific way. When it does occur, skipping the update appears to have no
negative effects on the iteration. This is not surprising, since the skipping condition im-
plies that skT Gsp ~ skT Bysy, where G is the average Hessian over the last step—meaning
that the curvature of By along s is already correct. In contrast, the curvature condition
s{yx > 0 required for BFGS updating may easily fail if the line search does not im-
pose the Wolfe conditions (for example, if the step is not long enough), and therefore
skipping the BFGS update can occur often and can degrade the quality of the Hessian
approximation.

We now give a formal description of an SR1 method using a trust-region framework,
which we prefer over a line search framework because it can accommodate indefinite Hessian
approximations more easily.

Algorithm 6.2 (SR1 Trust-Region Method).

Given starting point xo, initial Hessian approximation By,
trust-region radius Ay, convergence tolerance € > 0,
parameters 7 € (0, 107%) and r € (0, 1);

k < 0;

while |V fi|| > €;

Compute s; by solving the subproblem

1
min kaTs + ESTBks subject to ||s|| < Ag; (6.27)
N

Compute

Yk =Vl +s) =V fi,
ared = fi — f(xx + sx) (actual reduction)

1
pred = — (kaTsk + Eskr Bksk) (predicted reduction);

if ared/pred > n
Xk+1 = Xk + Sk5
else
Xk+1 = Xk>
end (if)

6.2. THE SRT METHOD

if ared/pred > 0.75

if ||Sk|| < 0.8A;
Apr1 = Ags
else
A1 = 24
end (if)
elseif 0.1 < ared/pred < 0.75
Apy1 = Ags
else
Apg1 = 0.5A;;
end (if)
if (6.26) holds
Use (6.24) to compute By (even if x; 41 = x;);
else
Bk+1 < Bk;
end (if)
k<—k+1;
end (while)

This algorithm has the typical form of a trust region method (cf. Algorithm 4.1). For
concreteness, we have specified a particular strategy for updating the trust region radius,
but other heuristics can be used instead.

To obtain a fast rate of convergence, it is important for the matrix By to be updated
even along a failed direction s;. The fact that the step was poor indicates that By is an
inadequate approximation of the true Hessian in this direction. Unless the quality of the
approximation is improved, steps along similar directions could be generated on later
iterations, and repeated rejection of such steps could prevent superlinear convergence.

PROPERTIES OF SR1 UPDATING

One of the main advantages of SR1 updating is its ability to generate good Hessian
approximations. We demonstrate this property by first examining a quadratic function. For
functions of this type, the choice of step length does not affect the update, so to examine the
effect of the updates, we can assume for simplicity a uniform step length of 1, that is,

P = —HV fi, Xk41 = Xi + D (6.28)
It follows that p; = s.
Theorem 6.1.

Suppose that f : R" — R is the strongly convex quadratic function f(x) = b'x +
2xT Ax, where A is symmetric positive definite. Then for any starting point xo and any

147

148

CHAPTER 6. QUASI-NEWTON METHODS

symmetric starting matrix Hy, the iterates {x;} generated by the SR1 method (6.25), (6.28)
converge to the minimizer in at most n steps, provided that (s, — Hyyi)T yv # 0 for all k.
Moreover, ifn steps are performed, and if the search directions p; are linearly independent, then
H,=A""

PROOF. Because of our assumption (s; — Hyyx)” yi # 0, the SR1 update is always well-
defined. We start by showing inductively that

Hyj=sj, j=01,....k—1 (6.29)

In other words, we claim that the secant equation is satisfied not only along the most recent
search direction, but along all previous directions.

By definition, the SR1 update satisfies the secant equation, so we have H;y, = sq. Let
us now assume that (6.29) holds for some value k > 1 and show that it holds also for k + 1.
From this assumption, we have from (6.29) that

(sx — Hiy) Ty = sty — vl (Hy)) =sly; —ylsj =0, allj <k, (6.30)

where thelast equality follows because y; = As; for the quadratic function we are considering
here. By using (6.30) and the induction hypothesis (6.29) in (6.25), we have

Hyp1yj = Hyyj = s, forall j < k.

Since Hyi1yx = sk by the secant equation, we have shown that (6.29) holds when k is
replaced by k + 1. By induction, then, this relation holds for all k.

If the algorithm performs n steps and if these steps {s;} are linearly independent, we
have

s; = H,y; = H,As;, j=0,1,...,n—1.

It follows that H,A = I, that is, H, = A~!. Therefore, the step taken at x, is the Newton
step, and so the next iterate x,; will be the solution, and the algorithm terminates.

Consider now the case in which the steps become linearly dependent. Suppose that s;
is a linear combination of the previous steps, that is,

sk = &oso + -+ + Er18k—1, (6.31)
for some scalars &;. From (6.31) and (6.29) we have that

Hyyr = HiAsg
=& HAso+ -+ - + §ro1 HiAsiy

6.3. THE BROYDEN CLASS

=& Hyyo+ -+ &1 Hyyry
= &S50+ + &Skt

= Sk.
Since yy = V fiy1 — V fr and since sy = py = —HV f; from (6.28), we have that
Hy(V fir1 — V fi) = —H(V fi,

which, by the nonsingularity of Hy, implies that V f;; = 0. Therefore, x;, is the solution
point. (]

The relation (6.29) shows that when f is quadratic, the secant equation is satisfied
along all previous search directions, regardless of how the line search is performed. A result
like this can be established for BFGS updating only under the restrictive assumption that
the line search is exact, as we show in the next section.

For general nonlinear functions, the SR1 update continues to generate good Hessian
approximations under certain conditions.

Theorem 6.2.

Suppose that f is twice continuously differentiable, and that its Hessian is bounded and
Lipschitz continuous in a neighborhood of a point x*. Let {x;.} be any sequence of iterates such
that x;, — x* for some x* € R". Suppose in addition that the inequality (6.26) holds for all k,
forsomer € (0, 1), and that the steps sy are uniformly linearly independent. Then the matrices
By generated by the SR1 updating formula satisfy

lim [|B, — V f(x*)] =0.
k— 00

The term “uniformly linearly independent steps” means, roughly speaking, that the
steps do not tend to fall in a subspace of dimension less than n. This assumption is usually,
but not always, satisfied in practice (see the Notes and References at the end of this chapter).

6.3 THE BROYDEN CLASS

So far, we have described the BFGS, DFP, and SR1 quasi-Newton updating formulae, but
there are many others. Of particular interest is the Broyden class, a family of updates specified
by the following general formula:

Bisisy Be yieyl

Biiy = By — + ¢ (s{ Bisi)vrvy (6.32)

T T
S Biesk Vi Sk

149

150

CHAPTER 6. QUASI-NEWTON METHODS

where ¢ is a scalar parameter and

Yk Bysy
v = [T— - } (6.33)
Ve Sk 8y Bisk

The BFGS and DFP methods are members of the Broyden class—we recover BEGS by setting
¢r = 0 and DFP by setting ¢y = 1 in (6.32). We can therefore rewrite (6.32) as a “linear
combination” of these two methods, that is,

Bigr = (1 — @) B + ¢ B

This relationship indicates that all members of the Broyden class satisfy the secant equation
(6.6), since the BGFS and DFP matrices themselves satisfy this equation. Also, since BEGS and
DFP updating preserve positive definiteness of the Hessian approximations when s/ y; > 0,
this relation implies that the same property will hold for the Broyden family if 0 < ¢ < 1.

Much attention has been given to the so-called restricted Broyden class, which is
obtained by restricting ¢ to the interval [0, 1]. It enjoys the following property when
applied to quadratic functions. Since the analysis is independent of the step length, we
assume for simplicity that each iteration has the form

pe=—B'"Vfi, X=X+ pre (6.34)

Theorem 6.3.

Suppose that f : R" — R is the strongly convex quadratic function f(x) = bTx +
1xT Ax, where A is symmetric and positive definite. Let xo be any starting point for the iteration
(6.34) and By be any symmetric positive definite starting matrix, and suppose that the matrices
By, are updated by the Broyden formula (6.32) with ¢, € [0, 1]. Define X’{ <)‘]2(<...<)J,;
to be the eigenvalues of the matrix

1 1
A2B A2, (6.35)
Then for all k, we have
min{A¥, 1} < A < max{ab 1), i=1,2,....n (6.36)

Moreover, the property (6.36) does not hold if the Broyden parameter ¢y, is chosen outside the
interval [0, 1].

Let us discuss the significance of this result. If the eigenvalues)»f‘ of the matrix (6.35)
are all 1, then the quasi-Newton approximation By is identical to the Hessian A of the
quadratic objective function. This situation is the ideal one, so we should be hoping for
these eigenvalues to be as close to 1 as possible. In fact, relation (6.36) tells us that the

6.3. THE BROYDEN CLASS

eigenvalues {A¥} converge monotonically (but not strictly monotonically) to 1. Suppose, for
example, that at iteration k the smallest eigenvalue is)Jl‘ = 0.7. Then (6.36) tells us that
at the next iteration AX™ € [0.7, 1]. We cannot be sure that this eigenvalue has actually
moved closer to 1, but it is reasonable to expect that it has. In contrast, the first eigenvalue
can become smaller than 0.7 if we allow ¢ to be outside [0, 1]. Significantly, the result of
Theorem 6.3 holds even if the line searches are not exact.

Although Theorem 6.3 seems to suggest that the best update formulas belong to the
restricted Broyden class, the situation is not at all clear. Some analysis and computational
testing suggest that algorithms that allow ¢ to be negative (in a strictly controlled manner)
may in fact be superior to the BFGS method. The SR1 formula is a case in point: It is a
member of the Broyden class, obtained by setting

o = Si Vi
k= skTyk —skTBksk’

but it does not belong to the restricted Broyden class, because this value of ¢, may fall
outside the interval [0, 1].

In the remaining discussion of this section, we determine more precisely the range of
values of ¢ that preserve positive definiteness.

The last term in (6.32) is a rank-one correction, which by the interlacing eigenvalue
theorem (Theorem A.1) increases the eigenvalues of the matrix when ¢y is positive. Therefore
By is positive definite for all ¢, > 0. On the other hand, by Theorem A.1 the last term in
(6.32) decreases the eigenvalues of the matrix when ¢y, is negative. As we decrease ¢y, this
matrix eventually becomes singular and then indefinite. A little computation shows that
By is singular when ¢ has the value

1
b = ; (6.37)
T

where

B) (! Besi)

6.38
(v s1)? (6.38)

By applying the Cauchy—Schwarz inequality (A.5) to (6.38), we see that i > 1 and therefore
¢; < 0. Hence, if the initial Hessian approximation By is symmetric and positive definite,
and if s/ yx > 0 and ¢ > ¢ for each k, then all the matrices By generated by Broyden’s
formula (6.32) remain symmetric and positive definite.

When the line search is exact, all methods in the Broyden class with ¢, > ¢; generate
the same sequence of iterates. This result applies to general nonlinear functions and is
based on the observation that when all the line searches are exact, the directions generated
by Broyden-class methods differ only in their lengths. The line searches identify the same

151

152 CHAPTER 6. QUASI-NEWTON METHODS

minima along the chosen search direction, though the values of the step lengths may differ
because of the different scaling.

The Broyden class has several remarkable properties when applied with exact line
searches to quadratic functions. We state some of these properties in the next theorem,
whose proof is omitted.

Theorem 6.4.

Suppose that a method in the Broyden class is applied to the strongly convex quadratic
function f(x) = b"x + 1x” Ax, wherexy is the starting point and By is any symmetric positive
definite matrix. Assume that oy, is the exact step length and that ¢y > ¢; for all k, where ¢y, is
defined by (6.37). Then the following statements are true.

(i) The iterates are independent of ¢y and converge to the solution in at most n iterations.

(ii) The secant equation is satisfied for all previous search directions, that is,
Bisi=y;, j=k—1,k—2,...,1

(iii) If the starting matrix is By = I, then the iterates are identical to those generated by
the conjugate gradient method (see Chapter 5). In particular, the search directions are
conjugate, that is,

sl-TAsj =0, fori#j.

(iv) Ifn iterations are performed, we have B, = A.

Note that parts (i), (ii), and (iv) of this result echo the statement and proof of Theorem 6.1,
where similar results were derived for the SR1 update formula.

We can generalize Theorem 6.4 slightly: It continues to hold if the Hessian approxi-
mations remain nonsingular but not necessarily positive definite. (Hence, we could allow
¢ to be smaller than ¢y, provided that the chosen value did not produce a singular updated
matrix.) We can also generalize point (iii) as follows. If the starting matrix By is not the
identity matrix, then the Broyden-class method is identical to the preconditioned conjugate
gradient method that uses B as preconditioner.

We conclude by commenting that results like Theorem 6.4 would appear to be of
mainly theoretical interest, since the inexact line searches used in practical implementations
of Broyden-class methods (and all other quasi-Newton methods) cause their performance
to differ markedly. Nevertheless, it is worth noting that this type of analysis guided much of
the development of quasi-Newton methods.

6.4. CONVERGENCE ANALYSIS

6.4 CONVERGENCE ANALYSIS

In this section we present global and local convergence results for practical implementations
of the BFGS and SR1 methods. We give more details for BEGS because its analysis is more
general and illuminating than that of SR1. The fact that the Hessian approximations evolve
by means of updating formulas makes the analysis of quasi-Newton methods much more
complex than that of steepest descent and Newton’s method.

Although the BFGS and SR1 methods are known to be remarkably robust in practice,
we will not be able to establish truly global convergence results for general nonlinear objective
functions. That s, we cannot prove that the iterates of these quasi-Newton methods approach
a stationary point of the problem from any starting point and any (suitable) initial Hessian
approximation. In fact, it is not yet known if the algorithms enjoy such properties. In our
analysis we will either assume that the objective function is convex or that the iterates satisfy
certain properties. On the other hand, there are well known local, superlinear convergence
results that are true under reasonable assumptions.

Throughout this section we use || - || to denote the Euclidean vector or matrix norm,
and denote the Hessian matrix V2 f(x) by G(x).

GLOBAL CONVERGENCE OF THE BFGS METHOD

We study the global convergence of the BFGS method, with a practical line search,
when applied to a smooth convex function from an arbitrary starting point x¢ and from
any initial Hessian approximation By that is symmetric and positive definite. We state our
precise assumptions about the objective function formally, as follows.

Assumption 6.1.
(i) The objective function f is twice continuously differentiable.

(ii) Thelevel set L = {x € R"| f(x) < f(x0)} is convex, and there exist positive constants
m and M such that

m|z))* < 2" G(x)z < M|z|? (6.39)
forallz e R" andx € L.

Part (ii) of this assumption implies that G(x) is positive definite on £ and that f has a
unique minimizer x* in L.
By using (6.12) and (6.39) we obtain

T T
Vi Sk _ Si GkSk

= m, 6.40
si sk sise (6.40)

153

154 CHAPTER 6. QUASI-NEWTON METHODS

where Gy is the average Hessian defined in (6.11). Assumption 6.1 implies that Gy is
positive definite, so its square root is well-defined. Therefore, as in (6.21), we have by
defining z; = G,l(/zsk that

T T ~2 T
Ve Ve S Gise _ % Grzk M (6.41)

T T T
Vi Sk Sg Gisy 2y 2k

We are now ready to present the global convergence result for the BFGS method. It
does not seem to be possible to establish a bound on the condition number of the Hessian
approximations By, as is done in Section 3.2. Instead, we will introduce two new tools
in the analysis, the trace and determinant, to estimate the size of the largest and smallest
eigenvalues of the Hessian approximations. The trace of a matrix (denoted by trace(-)) is
the sum of its eigenvalues, while the determinant (denoted by det(-)) is the product of the
eigenvalues; see the Appendix for a brief discussion of their properties.

Theorem 6.5.

Let By be any symmetric positive definite initial matrix, and let xo be a starting point
for which Assumption 6.1 is satisfied. Then the sequence {x;} generated by Algorithm 6.1 (with
€ = 0) converges to the minimizer x* of f.

PROOF. We start by defining

T T
Vi Sk Vi Yk
my = ’; , My = kT , (6.42)
Sk Sk Yk Sk
and note from (6.40) and (6.41) that
my > m, M, < M. (6.43)

By computing the trace of the BFGS update (6.19), we obtain that

B s 2 2
trace(Byy) = trace(By) — | Tk el ”ka” (6.44)

St Bisk Vi Sk

(see Exercise 6.11). We can also show (Exercise 6.10) that
ykTSk
det(By1) = det(By) — . (6.45)
S BkSk
We now define
sT Bys s Bys

cos 6 k Zkok qr = k k, (6.46)

sl Bresell” s sk

6.4. CONVERGENCE ANALYSIS

so that 6y is the angle between s; and By.si. We then obtain that

I Bisill®> | Besell®llsell® s{ Bise — ai (6.47)
s{ Besk (s{ Brse)? llsell> cos? 6, '
In addition, we have from (6.42) that
ykTSk SkTSk ny
det(By11) = det(By) ——— = det(By)—. (6.48)
g Sk 8 Bisy qx

We now combine the trace and determinant by introducing the following function of
a positive definite matrix B:

¥ (B) = trace(B) — In(det(B)), (6.49)

where In(-) denotes the natural logarithm. It is not difficult to show that ¥/ (B) > 0; see
Exercise 6.9. By using (6.42) and (6.44)—(6.49), we have that

9k
cos? G
=Y (By) + My —Inmy — 1)

Y (Byy) = trace(By) + My — In(det(By)) — Inmy + Ingy

4k 9k 2
1— 1 1 Ok 6.50
+ [cos? 6y +in cos? Ok:| Hincos O (6.50)

Now, since the function 4(¢) = 1 — ¢ + Int is nonpositive for all 7 > 0 (see Exercise 6.8),
the term inside the square brackets is nonpositive, and thus from (6.43) and (6.50) we have

k
0 < ¥(Be1) < ¥(Bo) +clk +1)+) Incos’ 6, (6.51)

Jj=0

where we can assume the constant ¢ = M —Inm — 1 to be positive, without loss of generality.

We now relate these expressions to the results given in Section 3.2. Note from the form
S = —a B, 'V fi of the quasi-Newton iteration that cos 6, defined by (6.46) is the angle
between the steepest descent direction and the search direction, which plays a crucial role in
the global convergence theory of Chapter 3. From (3.22), (3.23) we know that the sequence
IV fi|l generated by the line search algorithm is bounded away from zero only if cos §; — 0.

Let us then proceed by contradiction and assume that cos#; — 0. Then there exists
k1 > 0 such that for all j > k;, we have

In cos® 0; < —2c,

155

156 CHAPTER 6. QUASI-NEWTON METHODS

where c is the constant defined above. Using this inequality in (6.51) we find the following
relations to be true for all k > k;:

ki k
0 <y (By) +clk+1)+ Zlncosz 0; + Z (—2¢)
j=0 j=ki+1
ki
=Y (By) + Zlncos2 0; + 2ck, + ¢ — ck.

j=0

However, the right-hand-side is negative for large k, giving a contradiction. Therefore, there
exists a subsequence of indices { jx}x=1,2,... such that cos8; > & > 0. By Zoutendijk’s result
(3.14) this limit implies that liminf ||V fi|| — 0. Since the problem is strongly convex, the
latter limit is enough to prove that x;, — x*. 0

Theorem 6.5 has been generalized to the entire restricted Broyden class, except for
the DFP method. In other words, Theorem 6.5 can be shown to hold for all ¢, € [0, 1)
in (6.32), but the argument seems to break down as ¢ approaches 1 because some of the
self-correcting properties of the update are weakened considerably.

An extension of the analysis just given shows that the rate of convergence of the iterates
is linear. In particular, we can show that the sequence ||x; — x*|| converges to zero rapidly
enough that

o0
Dl — x*|| < oo. (6.52)
k=1

We will not prove this claim, but rather establish that if (6.52) holds, then the rate of
convergence is actually superlinear.

SUPERLINEAR CONVERGENCE OF THE BFGS METHOD

The analysis of this section makes use of the Dennis and Moré characterization (3.36)
of superlinear convergence. It applies to general nonlinear—not just convex—objective
functions. For the results that follow we need to make an additional assumption.

Assumption 6.2.
The Hessian matrix G is Lipschitz continuous at x*, that is,

1G(x) = G(x™)Il = Lllx — x™[,

for all x near x*, where L is a positive constant.

6.4. CONVERGENCE ANALYSIS

We start by introducing the quantities
Sk = GYsy, 5k = Gy, By = G;'*BG 2,
where G, = G(x*) and x™* is a minimizer of f. Similarly to (6.46), we define
- 57 Bisi . S Bis

cos O = = , G = ———,
i < 2
I M1l BieSk | N5kl

while we echo (6.42) and (6.43) in defining

~ Al - W
My = ——, mi = —5—.
Yk Sk Sk Sk

By pre- and postmultiplying the BFGS update formula (6.19) by G /2 and grouping
terms appropriately, we obtain

~ - BB Wl
Biy1 = By — J :

T 1 ~ ~T~ *
Sy By.s, Vi Sk

Since this expression has precisely the same form as the BFGS formula (6.19), it follows
from the argument leading to (6.50) that

V(Biy1) = ¥ (By) + (Mg — Insig — 1)

+ [1 . L R (o } (6.53)
cos? G cos? G,
+ In cos? 6.

Recalling (6.12), we have that
Yk — Gusi = (Gk — G)si,
and thus
Ik — 5 = G, 2(Gr — GG, 5.
By Assumption 6.2, and recalling the definition (6.11), we have
136 = Sl < NG 21PNk G — Gull < 1G S 1P11kl| Le.
where ¢ is defined by

ek = max{[|xe1 — x|, lxe — x*[1}.

157

158 CHAPTER 6. QUASI-NEWTON METHODS

We have thus shown that

— S
Ik — Skl < e, (6.54)
[I5k I

for some positive constant . This inequality and (6.52) play an important role in superlinear
convergence, as we now show.

Theorem 6.6.

Suppose that f is twice continuously differentiable and that the iterates generated by the
BFGS algorithm converge to a minimizer x* at which Assumption 6.2 holds. Suppose also that
(6.52) holds. Then xy converges to x* at a superlinear rate.

PrOOF. From (6.54), we have from the triangle inequality (A.4a) that
Il = NSkl < cexllsell, ISkl = lyell < cexllsells
so that
(1 —ce)llsell < Iyl = (1 + cep)lISill- (6.55)
By squaring (6.54) and using (6.55), we obtain
(1= e 5l — 23] S + 151> < 13%l® = 250 S + 1ell* < €11l
and therefore

2505 > (1 — 286 + g + 1 — D) ISkl* = 2(1 — Cep) 5kl

It follows from the definition of 71, that

~T ~

S
i = 2 o1 ey (6.56)
A

By combining (6.55) and (6.56), we obtain also that

(6.57)

Since x; — x*, we have that ¢, — 0, and thus by (6.57) there exists a positive constant
¢ > ¢ such that the following inequalities hold for all sufficiently large :

- 2c
My <1+ -
1 —ce;

€ < 1+ cey. (6.58)

6.4. CONVERGENCE ANALYSIS

We again make use of the nonpositiveness of the function 4(¢) = 1 — ¢ + In¢. Therefore,
we have

1—x

_—x—ln(l—x):h<1;> <o0.

Now, for k large enough we can assume that ce;, < %, and therefore

In(1 — cep) >

— > —ZEGk.
1-— C€Ef

This relation and (6.56) imply that for sufficiently large k, we have
Inmy; > In(1 — cer) > —2¢er > —2c€. (6.59)

We can now deduce from (6.53), (6.58), and (6.59) that

(6.60)

0< w(ékﬂ) < w(ék) + 3cex + Incos® G + [1 _ & — +1In kL = i| .
cos? O cos? O

By summing this expression and making use of (6.52) we have that

9 1 g 7. ~ >
Z(In _|:1_ qj +In ql@ j|>§w(30)+3c25j<+oo.

24, 24, 24,
= cos?0; cos? 6; cos?0; =

Since the term in the square brackets is nonpositive, and since In (1 / cos* 6 j) > 0 forall j,

we obtain the two limits

1 N -
lim In — =0, Iim (1— qj~ qj~ =0,
j=oo cos?0; j—00 cos? 6; cos? 6;
which imply that
lim coséj =1, lim g; = 1. (6.61)
j—oo j—o00

The essence of the result has now been proven; we need only to interpret these limits
in terms of the Dennis—Moré characterization of superlinear convergence.

159

160 CHAPTER 6. QUASI-NEWTON METHODS

Recalling (6.47), we have

IG*(Be — Gsl> 1By — D5
G 2512 (AR
BN — 28] Bidi + 5] S

~T~
Sy Sk

~)
S Y R
cos 0}

Since by (6.61) the right-hand-side converges to 0, we conclude that

I(Bx — Gu)sell

lim =0.

k=00 [l

The limit (3.36) and Theorem 3.6 imply that the unit step length oy = 1 will satisfy the Wolfe
conditions near the solution, and hence that the rate of convergence is superlinear. O

CONVERGENCE ANALYSIS OF THE SR1 METHOD

The convergence properties of the SR1 method are not as well understood as those of
the BFGS method. No global results like Theorem 6.5 or local superlinear results like The-
orem 6.6 have been established, except the results for quadratic functions discussed earlier.
There is, however, an interesting result for the trust-region SR1 algorithm, Algorithm 6.2.
It states that when the objective function has a unique stationary point and the condition
(6.26) holds at every step (so that the SR1 update is never skipped) and the Hessian ap-
proximations By are bounded above, then the iterates converge to x* at an (n + 1)-step
superlinear rate. The result does not require exact solution of the trust-region subproblem
(6.27).

We state the result formally as follows.

Theorem 6.7.
Suppose that the iterates x;. are generated by Algorithm 6.2. Suppose also that the following
conditions hold:

(c1) The sequence of iterates does not terminate, but remains in a closed, bounded, convex set
D, on which the function f is twice continuously differentiable, and in which f has a
unique stationary point x*;

(c2) the Hessian V2 f(x*) is positive definite, and V? f(x) is Lipschitz continuous in a
neighborhood of x*;

(c3) the sequence of matrices { By} is bounded in norm;

(c4) condition (6.26) holds at every iteration, where r is some constant in (0, 1).

6.4. CONVERGENCE ANALYSIS

Then limy_, o xx = x*, and we have that

Xk +n1 — X7 _
koo g — x*||

Note that the BFGS method does not require the boundedness assumption (c3) to
hold. As we have mentioned already, the SR1 update does not necessarily maintain positive
definiteness of the Hessian approximations By. In practice, By may be indefinite at any
iteration, which means that the trust region bound may continue to be active for arbitrarily
large k. Interestingly, however, it can be shown that the SR1 Hessian approximations tend
to be positive definite most of the time. The precise result is that

I number of indices j =1, 2, ..., k for which B; is positive semidefinite |
im -1,
k— 00 k

under the assumptions of Theorem 6.7. This result holds regardless of whether the initial
Hessian approximation is positive definite or not.

NOTES AND REFERENCES

For a comprehensive treatment of quasi-Newton methods see Dennis and Schn-
abel [92], Dennis and Moré [91], and Fletcher [101]. A formula for updating the Cholesky
factors of the BFGS matrices is given in Dennis and Schnabel [92].

Several safeguards and modifications of the SR1 method have been proposed, but
the condition (6.26) is favored in the light of the analysis of Conn, Gould, and Toint [71].
Computational experiments by Conn, Gould, and Toint [70, 73] and Khalfan, Byrd, and
Schnabel [181], using both line search and trust-region approaches, indicate that the SR1
method appears to be competitive with the BEGS method. The proof of Theorem 6.7 is
given in Byrd, Khalfan, and Schnabel [51].

A study of the convergence of BFGS matrices for nonlinear problems can be found in
Ge and Powell [119] and Boggs and Tolle [32]; however, the results are not as satisfactory as
for SR1 updating.

The global convergence of the BFGS method was established by Powell [246]. This
result was extended to the restricted Broyden class, except for DFP, by Byrd, Nocedal, and
Yuan [53]. For a discussion of the self-correcting properties of quasi-Newton methods
see Nocedal [229]. Most of the early analysis of quasi-Newton methods was based on the
bounded deterioration principle. This is a tool for the local analysis that quantifies the worst-
case behavior of quasi-Newton updating. Assuming that the starting point is sufficiently
close to the solution x* and that the initial Hessian approximation is sufficiently close to
V2 f(x*), one can use the bounded deterioration bounds to prove that the iteration cannot
stray away from the solution. This property can then be used to show that the quality of the
quasi-Newton approximations is good enough to yield superlinear convergence. For details,
see Dennis and Moré [91] or Dennis and Schnabel [92].

161

162 CHAPTER 6. QUASI-NEWTON METHODS

& EXERCISES
& 6.1
(a) Show thatif f is strongly convex, then (6.7) holds for any vectors x; and xj;.

(b) Give an example of a function of one variable satisfying g(0) = —1 and g(1) = —
and show that (6.7) does not hold in this case.

1
1
& 6.2 Show that the second strong Wolfe condition (3.7b) implies the curvature
condition (6.7).

& 6.3 Verify that (6.19) and (6.17) are inverses of each other.

& 6.4 Use the Sherman—Morrison formula (A.27) to show that (6.24) is the inverse of
(6.25).

& 6.5 Prove the statements (ii) and (iii) given in the paragraph following (6.25).

& 6.6 The square root of a matrix A is a matrix A'/? such that AY/2A1/2 = A. Show
that any symmetric positive definite matrix A has a square root, and that this square root
is itself symmetric and positive definite. (Hint: Use the factorization A = UDUT (A.16),
where U is orthogonal and D is diagonal with positive diagonal elements.)

& 6.7 Use the Cauchy-Schwarz inequality (A.5) to verify that uy > 1, where py is
defined by (6.38).

& 6.8 Defineh(t) =1—1t+Int,and notethat A'(t) = —141/t, h"'(t) = —1/t* < 0,
h(1) = 0,and #’(1) = 0. Show that 2(z) < O forallz > 0.

& 6.9 Denote the eigenvalues of the positive definite matrix B by A1, A3, . .., A,, where
0 <A <Ay <--- < A,. Show that the ¥ function defined in (6.49) can be written as

Y(B)=) (i —Ink).
i=1

Use this form to show that ¥/ (B) > 0.

& 6.10 The object of this exercise is to prove (6.45).

(a) Show that det(/ +xy”) = 1+ y” x, where x and y are n-vectors. Hint: Assuming that
x # 0, we can find vectors wy, ws, . .., w,—; such that the matrix Q defined by

0 =[x, wi,wy..., Wy_1]

6.4. CONVERGENCE ANALYSIS 163

is nonsingular and x = Qe;, wheree; = (1,0,0, ..., 0)T. If we define
Y0 =22,),
then
2=y Qer =y"0(07'x) = yx,

and

det(] +xyT) = det(Q (I + xy1)Q) = det(I + ey’ Q).

(b) Use a similar technique to prove that
det(7 +xy" +uv’) = 1+ yTx)Q + v u) — xTv)(yTw).

(c) Use this relation to establish (6.45).

& 6.11 Use the properties of the trace of a symmetric matrix and the formula (6.19) to
prove (6.44).

& 6.12 Show that if f satisfies Assumption 6.1 and if the sequence of gradients satisfies
liminf ||V fi || = 0, then the whole sequence of iterates x converges to the solution x*.

CHAPTER

arge-Scale
Jnconstrainead
Optimization

Many applications give rise to unconstrained optimization problems with thousands or
millions of variables. Problems of this size can be solved efficiently only if the storage
and computational costs of the optimization algorithm can be kept at a tolerable level. A
diverse collection of large-scale optimization methods has been developed to achieve this
goal, each being particularly effective for certain problem types. Some of these methods
are straightforward adaptations of the methods described in Chapters 3, 4, and 6. Other
approaches are modifications of these basic methods that allow approximate steps to be
calculated at lower cost in computation and storage. One set of approaches that we have
already discussed—the nonlinear conjugate gradient methods of Section 5.2—can be applied

7.1. INEXACT NEWTON METHODS

to large problems without modification, because of its minimal storage demands and its
reliance on only first-order derivative information.

Theline search and trust-region Newton algorithms of Chapters 3 and 4 require matrix
factorizations of the Hessian matrices V2 f;. In the large-scale case, these factorizations can
be carried out using sparse elimination techniques. Such algorithms have received much
attention, and high quality software implementations are available. If the computational
cost and memory requirements of these sparse factorization methods are affordable for a
given application, and if the Hessian matrix can be formed explicitly, Newton methods
based on sparse factorizations constitute an effective approach for solving such problems.

Often, however, the cost of factoring the Hessian is prohibitive, and it is preferable
to compute approximations to the Newton step using iterative linear algebra techniques.
Section 7.1 discusses inexact Newton methods that use these techniques, in both line search
and trust-region frameworks. The resulting algorithms have attractive global convergence
properties and may be superlinearly convergent for suitable choices of parameters. They find
effective search directions when the Hessian V? f; is indefinite, and may even be implemented
in a “Hessian-free” manner, without explicit calculation or storage of the Hessian.

The Hessian approximations generated by the quasi-Newton approaches of Chapter 6
are usually dense, even when the true Hessian is sparse, and the cost of storing and working
with these approximations can be excessive for large n. Section 7.2 discusses limited-memory
variants of the quasi-Newton approach, which use Hessian approximations that can be
stored compactly by using just a few vectors of length n. These methods are fairly robust,
inexpensive, and easy to implement, but they do not converge rapidly. Another approach,
discussed briefly in Section 7.3, is to define quasi-Newton approximate Hessians By that
preserve sparsity, for example by mimicking the sparsity pattern of the Hessian.

In Section 7.4, we note that objective functions in large problems often possess a
structural property known as partial separability, which means they can be decomposed
into a sum of simpler functions, each of which depends on only a small subspace of R".
Effective Newton and quasi-Newton methods that exploit this property have been developed.
Such methods usually converge rapidly and are robust, but they require detailed information
about the objective function, which can be difficult to obtain in some applications.

We conclude the chapter with a discussion of software for large-scale unconstrained
optimization problems.

7.1 INEXACT NEWTON METHODS

Recall from (2.15) that the basic Newton step p} is obtained by solving the symmetricn x n
linear system

vV fipy = =V fi. (7.1)

In this section, we describe techniques for obtaining approximations to p; that are

165

166 CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

inexpensive to calculate but are good search directions or steps. These approaches are
based on solving (7.1) by using the conjugate gradient (CG) method (see Chapter 5) or
the Lanczos method, with modifications to handle negative curvature in the Hessian V2 fi.
Both line search and trust-region approaches are described here. We refer to this family of
methods by the general name inexact Newton methods.

The use of iterative methods for (7.1) spares us from concerns about the expense
of a direct factorization of the Hessian V2 f; and the fill-in that may occur during this
process. Further, we can customize the solution strategy to ensure that the rapid convergence
properties associated with Newton’s methods are not lost in the inexact version. In addition,
as noted below, we can implement these methods in a Hessian-free manner, so that the
Hessian V2 f; need not be calculated or stored explicitly at all.

We examine first how the inexactness in the step calculation determines the local
convergence properties of inexact Newton methods. We then consider line search and
trust-region approaches based on using CG (possibly with preconditioning) to obtain an
approximate solution of (7.1). Finally, we discuss the use of the Lanczos method for solving
(7.1) approximately.

LOCAL CONVERGENCE OF INEXACT NEWTON METHODS

Most rules for terminating the iterative solver for (7.1) are based on the residual

re =V fipk + V fi, (7.2)

where py is the inexact Newton step. Usually, we terminate the CG iterations when

el < mellV fell, (7.3)

where the sequence {1} (with 0 < n; < 1 for all k) is called the forcing sequence.

We now study how the rate of convergence of inexact Newton methods based on
(7.1)—(7.3) is affected by the choice of the forcing sequence. The next two theorems apply
not just to Newton—CG procedures but to all inexact Newton methods whose steps satisfy
(7.2) and (7.3).

Our first result says that local convergence is obtained simply by ensuring that n; is
bounded away from 1.

Theorem 7.1.

Suppose that V2 f (x) exists and is continuous in a neighborhood of a minimizer x*, with
V2 f(x*) is positive definite. Consider the iteration x;, = Xxi + px where py. satisfies (7.3), and
assume that ny < n for some constant n € [0, 1). Then, if the starting point x, is sufficiently
near x*, the sequence {x;} converges to x* and satisfies

V2 f (x*) Qe = X< ANV F (%) o = 2, (7.4)

for some constant nj withn < n < 1.

7.1. INEXACT NEWTON METHODS

Rather than giving a rigorous proof of this theorem, we present an informal derivation
that contains the essence of the argument and motivates the next result.

Since the Hessian matrix V2 f is positive definite at x* and continuous near x*, there
exists a positive constant L such that ||(V2 f;) ™| < L for all x; sufficiently close to x*. We
therefore have from (7.2) that the inexact Newton step satisfies

Pl < LAY fiell + lrell) < 2LIV fill

where the second inequality follows from (7.3) and n; < 1. Using this expression together
with Taylor’s theorem and the continuity of V2 £ (x), we obtain

1
Vfirr = Vi + V2 fipe + / IV (ke + tpr) = V F(x0)] prdit
0

=V fi + V2 fip + o (Ipil)
— Vi = (Vi —r) +o(IVfil)
=+ o (IVAID). (7.5)

Taking norms and recalling (7.3), we have that

IV ferill = mlIV fill + o (IV fill) = (e + o(ODIV fill. (7.6)

When x; is close enough to x* that the o(1) term in the last estimate is bounded by (1 —1)/2,
we have

IV firll = (e + (X =)/ DIV fiell = lJrTnllvfkll, (7.7)

so the gradient norm decreases by a factor of (1 + 71)/2 at this iteration. By choosing the
initial point x, sufficiently close to x*, we can ensure that this rate of decrease occurs at
every iteration.

To prove (7.4), we note that under our smoothness assumptions, we have

Vi = V2 (") (i = x) + olllx — x*).

Hence it can be shown that for x; close to x*, the gradient V f; differs from the scaled error
V2 £ (x*)(xx — x*) by only a relatively small perturbation. A similar estimate holds at x 1,
so (7.4) follows from (7.7).

From (7.6), we have that

IV fisr
—_— 1). 8
VAl < m+o(1) (7.8)

167

168

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

If limg, oo nx = 0, we have from this expression that

IV finll _

im
k=00 IV fill

)

indicating Q-superlinear convergence of the gradient norms ||V fi| to zero. Superlinear
convergence of the iterates {x;} to x* can be proved as a consequence.

We can obtain quadratic convergence by making the additional assumption that the
Hessian V2 f(x) is Lipschitz continuous near x*. In this case, the estimate (7.5) can be
tightened to

Viri=r+0 (||ka||2) .

By choosing the forcing sequence so that ny = O(||V fi||), we have from this expression
that

IV firill = OUV fil®),

indicating Q-quadratic convergence of the gradient norms to zero (and thus also Q-quadratic
convergence of the iterates x; to x*). The last two observations are summarized in the
following theorem.

Theorem 7.2.

Suppose that the conditions of Theorem 7.1 hold, and assume that the iterates {x;}
generated by the inexact Newton method converge to x*. Then the rate of convergence is
superlinear if ny — 0. If in addition, V* f(x) is Lipschitz continuous for x near x* and if
Nk = O(||V frll), then the convergence is quadratic.

To obtain superlinear convergence, we can set, for example, 7 = min (0.5, VIV A);
the choice n; = min(0.5, |V fi||) would yield quadratic convergence.

All the results presented in this section, which are proved by Dembo, Eisenstat, and
Steihaug [89], are local in nature: They assume that the sequence {x;} eventually enters
the near vicinity of the solution x*. They also assume that the unit step length oy = 1 is
taken and hence that globalization strategies do not interfere with rapid convergence. In
the following pages we show that inexact Newton strategies can, in fact, be incorporated
in practical line search and trust-region implementations of Newton’s method, yielding
algorithms with good local and global convergence properties. We start with a line search
approach.

LINE SEARCH NEWTON-CG METHOD

In theline search Newton—CG method, also known as the truncated Newton method, we
compute the search direction by applying the CG method to the Newton equations (7.1) and

7.1. INEXACT NEWTON METHODS

attempt to satisfy a termination test of the form (7.3). However, the CG method is designed
to solve positive definite systems, and the Hessian V2 f; may have negative eigenvalues when
Xy is not close to a solution. Therefore, we terminate the CG iteration as soon as a direction
of negative curvature is generated. This adaptation of the CG method produces a search
direction py that is a descent direction. Moreover, the adaptation guarantees that the fast
convergence rate of the pure Newton method is preserved, provided that the step length
o = 1is used whenever it satisfies the acceptance criteria.

We now describe Algorithm 7.1, a line search algorithm that uses a modification of
Algorithm 5.2 as the inner iteration to compute each search direction py. For purposes of
this algorithm, we write the linear system (7.1) in the form

Bip ==V fi. (7.9)

where By represents V2 f;. For the inner CG iteration, we denote the search directions by
d; and the sequence of iterates that it generates by z;. When By is positive definite, the
inner iteration sequence {z;} will converge to the Newton step p;’ that solves (7.9). At each
major iteration, we define a tolerance €, that specifies the required accuracy of the computed
solution. For concreteness, we choose the forcing sequence to be 7, = min(0.5, /[[V £
to obtain a superlinear convergence rate, but other choices are possible.

Algorithm 7.1 (Line Search Newton-CG).
Given initial point x;
fork=0,1,2,...
Define tolerance €, = min(0.5, [V DIV fill;
Setzo =0,r0 = V fi, dy = —ry = -V fi;

for j=0,1,2,...
ifdjTBkdj <0
if j=0
return p; = —V fi;
else

return p; = 7;;
_ T T .
Seta; = ri rj/dj Bid;;
Setzj+1 =2Zj +Oljdj;
Setrjp =rj+o;Bidj;
if [lrj]l < e
return py = 415
T T
Set Bjp1 =71, rj+1/T; 15
Set d_,‘.;,.] =—rjp+ IB.f""]d.i;
end (for)
Set x;11 = Xx + o pi, where o satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions (using o = 1 if possible);
end

169

170

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

The main differences between the inner loop of Algorithm 7.1 and Algorithm 5.2 are
that the specific starting point zo = 0 is used; the use of a positive tolerance €, allows the CG
iterations to terminate at an inexact solution; and the negative curvature test djT Bid; <0
ensures that py is a descent direction for f at x;. If negative curvature is detected on the
first inner iteration j = 0, the returned direction p; = —V f; is both a descent direction
and a direction of nonpositive curvature for f at x;.

We can modify the CG iterations in Algorithm 7.1 by introducing preconditioning,
in the manner described in Chapter 5.

Algorithm 7.1 is well suited for large problems, but it has a weakness. When the Hessian
V2 f; is nearly singular, the line search Newton—CG direction can be long and of poor quality,
requiring many function evaluations in the line search and giving only a small reduction in
the function. To alleviate this difficulty, we can try to normalize the Newton step, but good
rules for doing so are difficult to determine. They run the risk of undermining the rapid
convergence of Newton’s method in the case where the pure Newton step is well scaled. It
is preferable to introduce a threshold value into the test djTBd ;i < 0, but good choices of
the threshold are difficult to determine. The trust-region Newton—CG method described
below deals more effectively with this problematic situation and is therefore preferable, in
our opinion.

The line search Newton—CG method does not require explicit knowledge of the
Hessian By = V2 f. Rather, it requires only that we can supply Hessian—vector products
of the form V2 fid for any given vector d. When the user cannot easily supply code to
calculate second derivatives, or where the Hessian requires too much storage, the techniques
of Chapter 8 (automatic differentiation and finite differencing) can be used to calculate these
Hessian—vector products. Methods of this type are known as Hessian-free Newton methods.

To illustrate the finite-differencing technique briefly, we use the approximation

Vf(x + hd) — V f(xz)

V? fud ~ :

(7.10)

for some small differencing interval 4. It is easy to prove that the accuracy of this approxi-
mation is O (h); appropriate choices of 4 are discussed in Chapter 8. The price we pay for
bypassing the computation of the Hessian is one new gradient evaluation per CG iteration.

TRUST-REGION NEWTON-CG METHOD

In Chapter 4, we discussed approaches for finding an approximate solution of the
trust-region subproblem (4.3) that produce improvements on the Cauchy point. Here we
define a modified CG algorithm for solving the subproblem with these properties. This
algorithm, due to Steihaug [281], is specified below as Algorithm 7.2. A complete algorithm
for minimizing f is obtained by using Algorithm 7.2 to generate the step p; required by
Algorithm 4.1 of Chapter 4, for some choice of tolerance ¢, at each iteration.

7.1. INEXACT NEWTON METHODS

We use notation similar to (7.9) to define the trust-region subproblem for which
Steihaug’s method finds an approximate solution:

. def .
min mi(p) = fi+ (Vf)"'p+3p"Bip subjectto | pll < Ay, (7.11)

where B, = V2f;. As in Algorithm 7.1, we use d; to denote the search directions of this
modified CG iteration and z; to denote the sequence of iterates that it generates.

Algorithm 7.2 (CG-Steihaug).
Given tolerance ¢, > 0;
Setzo =0,70 =V fr,dy = —rg = =V fi;

if [roll < &
return p; = zo = 0;
forj=0,1,2,...

ifdjTBkdj <0

Find 7 such that p; = z; + vd; minimizes my(py) in (4.5)
and satisfies || pi|| = Ags

return p;;

Setoaj = rorj/djTBkdj;

Set Zjy1 =2j + C(jdj;

if zj1ll = Ak
Find 7 > 0 such that p; = z; + td; satisfies || pi|| = A;
return p;;

Setrj+1 =7r; +ajBkdj;

if lrj1ll < e
return pp = Z;j41;

Set 1 =1 rjw1/ 1] 1)

Set dj+1 =—rjy + ﬂj-ﬂ-ldj;

end (for).

The first if statement inside the loop stops the method if its current search direction
d; is a direction of nonpositive curvature along By, while the second if statement inside the
loop causes termination if z ;1 violates the trust-region bound. In both cases, the method
returns the step py obtained by intersecting the current search direction with the trust-region
boundary.

The choice of the tolerance € at each call to Algorithm 7.2 is important in keeping the
overall cost of the trust-region Newton—CG method low. Near a well-behaved solution x*,
the trust-region bound becomes inactive, and the method reduces to the inexact Newton
method analyzed in Theorems 7.1 and 7.2. Rapid convergence can be obtained in these
circumstances by choosing € in a similar fashion to Algorithm 7.1.

171

172

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

The essential differences between Algorithm 5.2 and the inner loop of Algorithm 7.2
are that the latter terminates when it violates the trust-region bound ||p|| < A, when it
encounters a direction of negative curvature in V2 f;, or when it satisfies a convergence
tolerance defined by a parameter €. In these respects, Algorithm 7.2 is quite similar to the
inner loop of Algorithm 7.1.

The initialization of z, to zero in Algorithm 7.2 is a crucial feature of the algorithm.
Provided ||V fill, > €, Algorithm 7.2 terminates at a point py for which m(pr) < mi(py),
that is, when the reduction in model function equals or exceeds that of the Cauchy point.
To demonstrate this fact, we consider several cases. First, if dOT Bidy = (Vi) BV fi <0,
then the condition in the first if statement is satisfied, and the algorithm returns the Cauchy

point p = —Ar(V fi)/1IV fi|l. Otherwise, Algorithm 7.2 defines z; as follows:

rro _ (VITV fi
dl Bid, (VT BV fi

v fi.

21 = aody =

If |z1|| < Ay, then z; is exactly the Cauchy point. Subsequent steps of Algorithm 7.2 ensure
that the final py satisfies my(py) < my(z1). When ||z1]| > Ay, on the other hand, the second
if statement is activated, and Algorithm 7.2 terminates at the Cauchy point, proving our
claim. This property is important for global convergence: Since each step is at least as good
as the Cauchy point in reducing the model m;, Algorithm 7.2 is globally convergent.

Another crucial property of the method is that each iterate z; is larger in norm than
its predecessor. This property is another consequence of the initialization zy = 0. Its main
implication is that it is acceptable to stop iterating as soon as the trust-region boundary is
reached, because no further iterates giving a lower value of the model function m; will lie
inside the trust region. We state and prove this property formally in the following theorem,
which makes use of the expanding subspace property of the conjugate gradient algorithm,
described in Theorem 5.2.

Theorem 7.3.
The sequence of vectors {z;} generated by Algorithm 7.2 satisfies

0=llzoll <--- <llzjllz < llzj+1ll < -+ < lIpell2 = Ax.
PROOF. We first show that the sequences of vectors generated by Algorithm 7.2 satisfy
z/Trj =0forj > Oandzjrdj > 0 for j > 1.

Algorithm 7.2 computes z .41 recursively in terms of z;; but when all the terms of this
recursion are written explicitly, we see that

j—1 Jj—1
7j =20+ Zaidi = E o;d;,
i=0 i=0

7.1. INEXACT NEWTON METHODS

since zo = 0. Multiplying by r; and applying the expanding subspace property of conjugate
gradients (see Theorem 5.2), we obtain

j—1
drp=Y ad'r=0. (7.12)
i=0

An induction proof establishes the relation z]Td ; > 0. By applying the expanding
subspace property again, we obtain

erdl = (0atpdo)" (=1 + Budy) = oy dono > 0.

We now make the inductive hypothesis that zjrdj > 0 and deduce that ZJT 41441 > 0. From
(7.12), we have Z1T+1”J'+1 = 0, and therefore

Zndjn =254 (= + Bind,))
= Bjr12]4.1d]
= Bjn1(z; +a;d) d;
= Bjnzjdj +a;Bjnd] d;.

Because of the inductive hypothesis and positivity of 84, and o, the last expression is
positive.

We now prove the theorem. If Algorithm 7.2 terminates because djTBkd i < 0or
lzj+1ll. = Ag, then the final point p; is chosen to make ||pill, = Ay, which is the
largest possible length. To cover all other possibilities in the algorithm, we must show that
llzjll2 < llzj41llo when z;41 = z; + a;d; and j > 1. Observe that

lzj1ll3 = (zj + a;d)) (zj + a;d;) = llz; 5 + 2a;2] d; + a3 ld; 3

It follows from this expression and our intermediate result that ||z;|l, < ||zj+1ll2, so our
proof is complete. O

From this theorem we see that Algorithm 7.2 sweeps out points z; that move on some
interpolating path from z; to the final solution py, a path in which every step increases its
total distance from the start point. When By, = V2 f; is positive definite, this path may
be compared to the path of the dogleg method: Both methods start by minimizing my
along the negative gradient direction —V f; and subsequently progress toward p;, until the
trust-region boundary intervenes. One can show that, when By, = V2 f is positive definite,
Algorithm 7.2 provides a decrease in the model (7.11) that is at least half as good as the
optimal decrease [320].

173

174

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

PRECONDITIONING THE TRUST-REGION NEWTON-CG METHOD

As discussed in Chapter 5, preconditioning can be used to accelerate the CG iteration.
Preconditioning techniques are based on finding a nonsingular matrix D such that the eigen-
values of D~TV?2 f, D~! have a more favorable distribution. By generalizing Theorem 7.3,
we can show that the iterates z; generated by a preconditioned variant of Algorithm 7.2 will
grow monotonically in the weighted norm || D - ||. To be consistent, we should redefine the
trust-region subproblem in terms of the same norm, as follows:

milg my(p) def fi+ViETp+ %pTka subjectto ||Dpll < Ag. (7.13)
pe

Making the change of variables p = Dp and defining
& =DTVf, By =D (V*f)D",
we can write (7.13) as
min fy + &/ p + %ﬁTlg‘kﬁ subject to [|p]| < A,

which has exactly the form of (7.11). We can apply Algorithm 7.2 without any modification to
this subproblem, which is equivalent to applying a preconditioned version of Algorithm 7.2
to the problem (7.13).

Many preconditioners can be used within this framework; we discuss some of them
in Chapter 5. Of particular interest is incomplete Cholesky factorization, which has proved
useful in a wide range of optimization problems. The incomplete Cholesky factorization of
a positive definite matrix B finds a lower triangular matrix L such that

B=LL" — R,

where the amount of fill-in in L is restricted in some way. (For instance, it is constrained
to have the same sparsity structure as the lower triangular part of B or is allowed to have a
number of nonzero entries similar to that in B.) The matrix R accounts for the inexactness
in the approximate factorization. The situation is complicated somewhat by the possible
indefiniteness of the Hessian V? f;; we must be able to handle this indefiniteness as well as
maintain the sparsity. The following algorithm combines incomplete Cholesky and a form
of modified Cholesky to define a preconditioner for the trust-region Newton—CG approach.

Algorithm 7.3 (Inexact Modified Cholesky).
Compute T = diag(|| Bey ||, | Bezll, - - ., | Bea|l), where e; is the
ith coordinate vector;
Set B <~ T~Y2BT~1/%;Set B « || B|;

7.1. INEXACT NEWTON METHODS

(compute a shift to ensure positive definiteness)
if mini bii >0

oy < 0
else
oy < B/2
fork=0,1,2,...
Attempt to apply incomplete Cholesky algorithm to obtain
LL" = B+ ol;
if the factorization is completed successfully
stop and return L;
else
Q1 < max(2ey, B/2);
end (for)

We can then set the preconditioner to be D = LT, where L is the lower triangular matrix
output from Algorithm 7.3. A trust-region Newton—CG method using this preconditioner
is implemented in the LANCELOT [72] and TRON [192] codes.

TRUST-REGION NEWTON-LANCZOS METHOD

Alimitation of Algorithm 7.2 is that it accepts any direction of negative curvature, even
when this direction gives an insignificant reduction in the model. Consider, for example,
the case where the subproblem (7.11) is

min m(p) = 10 p; — 10~*p? — p3 subjectto || p|| < 1,
P

where subscripts indicate elements of the vector p. The steepest descent direction at p = 01is
(—1073,0)7, which is a direction of negative curvature for the model. Algorithm 7.2 would
follow this direction to the boundary of the trust region, yielding a reduction in model
function m of about 107>, A step along e,—also a direction of negative curvature—would
yield a much greater reduction of 1.

Several remedies have been proposed. We have seen in Chapter 4 that when the
Hessian V2 f; contains negative eigenvalues, the search direction should have a significant
component along the eigenvector corresponding to the most negative eigenvalue of V2 f;.
This feature would allow the algorithm to move away rapidly from stationary points that
are not minimizers. One way to achieve this is to compute a nearly exact solution of
the trust-region subproblem (7.11) using the techniques described in Section 4.3. This
approach requires the solution of a few linear systems with coefficient matrices of the form

175

176

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

By + 11. Although this approach is perhaps too expensive in the large-scale case, it generates
productive search directions in all cases.

A more practical alternative is to use the Lanczos method (see, for example, [136])
rather than the CG method to solve the linear system Byp = —V fi. The Lanczos method
can be seen as a generalization of the CG method that is applicable to indefinite systems, and
we can use it to continue the CG process while gathering negative curvature information.

After j steps, the Lanczos method generates an n x j matrix Q; with orthogonal
columns that span the Krylov subspace (5.15) generated by this method. This matrix has
the property that QJTBQ j = Tj, where T; is an tridiagonal. We can take advantage of
this tridiagonal structure and seek to find an approximate solution of the trust-region
subproblem in the range of the basis Q ;. To do so, we solve the problem

min f; + elT Qj(ka)elTw + %wTTjw subject to ||lw|| < Ay, (7.14)
weR/

where e; = (1,0,0,...,0)7, and we define the approximate solution of the trust-region
subproblem as py = Q jw. Since 7} is tridiagonal, problem (7.14) can be solved by factoring
the system 7; + A1 and following the (nearly) exact approach of Section 4.3.

The Lanczos iteration may be terminated, as in the Newton—CG methods, by a test of
the form (7.3). Preconditioning can also be incorporated to accelerate the convergence of
the Lanczos iteration. The additional robustness in this trust-region algorithm comes at the
cost of a more expensive solution of the subproblem than in the Newton—CG approach. A
sophisticated implementation of the Newton—Lanczos approach has been implemented in
the GLTR package [145].

7.2 LIMITED-MEMORY QUASI-NEWTON METHODS

Limited-memory quasi-Newton methods are useful for solving large problems whose Hes-
sian matrices cannot be computed at a reasonable cost or are not sparse. These methods
maintain simple and compact approximations of Hessian matrices: Instead of storing fully
dense n x n approximations, they save only a few vectors of length n that represent the
approximations implicitly. Despite these modest storage requirements, they often yield an
acceptable (albeit linear) rate of convergence. Various limited-memory methods have been
proposed; we focus mainly on an algorithm known as L-BFGS, which, as its name suggests,
is based on the BFGS updating formula. The main idea of this method is to use curvature
information from only the most recent iterations to construct the Hessian approximation.
Curvature information from earlier iterations, which is less likely to be relevant to the ac-
tual behavior of the Hessian at the current iteration, is discarded in the interest of saving
storage.

Following our discussion of L-BFGS and its convergence behavior, we discuss its
relationship to the nonlinear conjugate gradient methods of Chapter 5. We then discuss

7.2. LIMITED-MEMORY QUASI-NEWTON METHODS

implementations of limited-memory schemes that make use of a compact representation of
approximate Hessian information. These techniques can be applied not only to L-BFGS but
also to limited-memory versions of other quasi-Newton procedures such as SR1. Finally,
we discuss quasi-Newton updating schemes that impose a particular sparsity pattern on the
approximate Hessian.

LIMITED-MEMORY BFGS

We begin our description of the L-BFGS method by recalling its parent, the BFGS
method, which was described in Algorithm 8.1. Each step of the BFGS method has the form

X1 = X — o Hi V fy, (7.15)

where o is the step length and H;, is updated at every iteration by means of the formula

Hior = VI H Vi + peses{ (7.16)
(see (6.17)), where
1 T
Pk = —F7—, Vie =1 — pryisy (7.17)
Yk Sk
and
Sk = Xk1 — Xi, Yk =V fir1 — Vi (7.18)

Since the inverse Hessian approximation Hj will generally be dense, the cost of storing
and manipulating it is prohibitive when the number of variables is large. To circumvent this
problem, we store a modified version of H; implicitly, by storing a certain number (say, m)
of the vector pairs {s;, y;} used in the formulas (7.16)—(7.18). The product H;V f; can be
obtained by performing a sequence of inner products and vector summations involving
V fi and the pairs {s;, y;}. After the new iterate is computed, the oldest vector pair in the set
of pairs {s;, y;} is replaced by the new pair {s¢, yx} obtained from the current step (7.18).
In this way, the set of vector pairs includes curvature information from the m most recent
iterations. Practical experience has shown that modest values of m (between 3 and 20, say)
often produce satisfactory results.

We now describe the updating process in a little more detail. At iteration k, the current
iterate is x; and the set of vector pairs is given by {s;, y;} fori =k —m, ..., k — 1. We first
choose some initial Hessian approximation H;’ (in contrast to the standard BFGS iteration,
this initial approximation is allowed to vary from iteration to iteration) and find by repeated
application of the formula (7.16) that the L-BFGS approximation H; satisfies the following

177

178 CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

formula:

He= V.-Vl H Vicw - Vic1)
+ pkem (VL Vi) SkemSi— Vit -+ Vi)
+ Pk—m+1 (VkT_l X VkT_m+2) Sk—m+1SkT_m+1 (Vk—ms2 -+ Vim1)
+ e
+ Pr—1Sk—18{_;- (7.19)

From this expression we can derive a recursive procedure to compute the product H;V f;
efficiently.

Algorithm 7.4 (L-BFGS two-loop recursion).
q < Vi
fori=k—1,k—2,....k—m
a < pis! g

q < 4q —Q;)i;

end (for)

r<—H]?q;

fori=k—-mk—-—m+1,...k—1
B <—Piy,-Tr;
r<r+si(a; —B)

end (for)

stop with result H;V f, =r.

Without considering the multiplication H;'g, the two-loop recursion scheme requires
4mn multiplications; if H] is diagonal, then n additional multiplications are needed. Apart
from being inexpensive, this recursion has the advantage that the multiplication by the
initial matrix H_ is isolated from the rest of the computations, allowing this matrix to be
chosen freely and to vary between iterations. We may even use an implicit choice of H by
defining some initial approximation By to the Hessian (not its inverse) and obtaining r by
solving the system Blr = q.

A method for choosing H] that has proved effective in practice is to set H_ = I,
where

T
yi = Skl (7.20)
Yi—1Yk—1
As discussed in Chapter 6, y; is the scaling factor that attempts to estimate the size of the
true Hessian matrix along the most recent search direction (see (6.21)). This choice helps
to ensure that the search direction py is well scaled, and as a result the step length oy = 1is
accepted in most iterations. As discussed in Chapter 6, it is important that the line search be

7.2. LIMITED-MEMORY QUASI-NEWTON METHODS

based on the Wolfe conditions (3.6) or strong Wolfe conditions (3.7), so that BFGS updating
is stable.
The limited-memory BFGS algorithm can be stated formally as follows.

Algorithm 7.5 (L-BFGS).
Choose starting point x, integer m > 0;
k < 0;
repeat
Choose Hk0 (for example, by using (7.20));
Compute py < —HV fi from Algorithm 7.4;
Compute xy41 < X + a pr, where o is chosen to
satisfy the Wolfe conditions;
ifk >m
Discard the vector pair {sx_, Yk—m} from storage;
Compute and save sy < Xp41 — Xk, Yk = V fir1 — Vs
k<—k+1;
until convergence.

The strategy of keeping the m most recent correction pairs {s;, y;} works well in
practice; indeed no other strategy has yet proved to be consistently better. During its first
m — 1 iterations, Algorithm 7.5 is equivalent to the BFGS algorithm of Chapter 6 if the
initial matrix Hy is the same in both methods, and if L-BFGS chooses H? = H, at each
iteration.

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels
of memory m. It gives the number of function and gradient evaluations (nfg) and the total
CPU time. The test problems are taken from the CUTE collection [35], the number of
variables is indicated by n, and the termination criterion ||V fx|| < 107> is used. The table
shows that the algorithm tends to be less robust when m is small. As the amount of storage
increases, the number of function evaluations tends to decrease; but since the cost of each
iteration increases with the amount of storage, the best CPU time is often obtained for small
values of m. Clearly, the optimal choice of m is problem dependent.

Because some rival algorithms are inefficient, Algorithm 7.5 is often the approach of
choice for large problems in which the true Hessian is not sparse. In particular, a Newton

Table 7.1 Performance of Algorithm 7.5.

L-BFGS L-BFGS L-BFGS L-BFGS
Problem n m=73 m=>5 m =17 m =29
nfg time nfg time | nfg time | nfg time

DIXMAANL 1500 146 16.5 134 17.4 | 120 28.2 | 125 44.4
EIGENALS 110 821 215 569 15.7 | 363 16.2 | 168 12.5
FREUROTH 1000 | >999 — | >999 — 69 8.1 38 6.3
TRIDIA 1000 876 46.6 611 41.4 | 531 84.6 | 462 127.1

179

180

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

method in which the exact Hessian is computed and factorized is not practical in such
circumstances. The L-BFGS approach may also outperform Hessian-free Newton methods
such as Newton—CG approaches, in which Hessian—vector products are calculated by finite
differences or automatic differentiation. The main weakness of the L-BFGS method is that it
converges slowly on ill-conditioned problems—specifically, on problems where the Hessian
matrix contains a wide distribution of eigenvalues. On certain applications, the nonlinear
conjugate gradient methods discussed in Chapter 5 are competitive with limited-memory
quasi-Newton methods.

RELATIONSHIP WITH CONJUGATE GRADIENT METHODS

Limited-memory methods evolved as an attempt to improve nonlinear conjugate
gradient methods, and early implementations resembled conjugate gradient methods more
than quasi-Newton methods. The relationship between the two classes is the basis of a
memoryless BFGS iteration, which we now outline.

We start by considering the Hestenes—Stiefel form of the nonlinear conjugate gradient
method (5.46). Recalling that s; = o4 px, we have that the search direction for this method
is given by

VL Sk A
pk+1 = —ka+1 + %Pk = — ([- T k ka+1 = —Hk+1vfk+1. (7.21)
Yk Pk Vi Sk

This formula resembles a quasi-Newton iteration, but the matrix I-AIH 1 is neither symmetric
nor positive definite. We could symmetrize it as H[, , Hi41, but this matrix does not satisfy
the secant equation Hyy1yx = s and is, in any case, singular. An iteration matrix that is

symmetric, positive definite, and satisfies the secant equation is given by

S T ST SST
Hk+1:<l— kyk)(l—yk")+ il (7.22)

T T T .
Yk Sk Yk Sk Yk Sk

This matrix is exactly the one obtained by applying a single BEGS update (7.16) to the identity
matrix. Hence, an algorithm whose search direction is given by pyy1 = —Hg+1V fit1, with
Hj1 defined by (7.22), can be thought of as a “memoryless” BFGS method, in which the
previous Hessian approximation is always reset to the identity matrix before updating it and
where only the most recent correction pair (si, yi) is kept at every iteration. Alternatively,
we can view the method as a variant of Algorithm 7.5 in whichm = 1 and H = I at each
iteration.

A more direct connection with conjugate gradient methods can be seen if we consider
the memoryless BFGS formula (7.22) in conjunction with an exact line search, for which

7.2. LIMITED-MEMORY QUASI-NEWTON METHODS

V fiL.1 px = 0 for all k. We then obtain

I
Pirt = —HinV fisr = =V fir + y’;—*p‘pk, (7.23)
k Pk

which is none other than the Hestenes—Stiefel conjugate gradient method. Moreover, it is
easy to verify that when V f;’., px = 0, the Hestenes—Stiefel formula reduces to the Polak—
Ribiere formula (5.44). Even though the assumption of exact line searches is unrealistic,
it is intriguing that the BFGS formula is related in this way to the Polak—Ribiere and
Hestenes—Stiefel methods.

GENERAL LIMITED-MEMORY UPDATING

Limited-memory quasi-Newton approximations are useful in a variety of optimization
methods. L-BFGS, Algorithm 7.5, is a line search method for unconstrained optimization
that (implicitly) updates an approximation Hy to the inverse of the Hessian matrix. Trust-
region methods, on the other hand, require an approximation By to the Hessian matrix,
not to its inverse. We would also like to develop limited-memory methods based on the SR1
formula, which is an attractive alternative to BFGS; see Chapter 6. In this section we consider
limited-memory updating in a general setting and show that by representing quasi-Newton
matrices in a compact (or outer product) form, we can derive efficient implementations of all
popular quasi-Newton update formulas, and their inverses. These compact representations
will also be useful in designing limited-memory methods for constrained optimization,
where approximations to the Hessian or reduced Hessian of the Lagrangian are needed; see
Chapter 18 and Chapter 19.

We will consider only limited-memory methods (such as L-BEGS) that continuously
refresh the correction pairs by removing and adding information at each stage. A different
approach saves correction pairs until the available storage is exhausted and then discards all
correction pairs (except perhaps one) and starts the process anew. Computational experience
suggests that this second approach is less effective in practice.

Throughout this chapter we let By denote an approximation to a Hessian matrix and
H the approximation to the inverse. In particular, we always have that B, '= H,.

COMPACT REPRESENTATION OF BFGS UPDATING

We now describe an approach to limited-memory updating that is based on repre-
senting quasi-Newton matrices in outer-product form. We illustrate it for the case of a BFGS
approximation By to the Hessian.

Theorem 7.4.
Let By be symmetric and positive definite, and assume that the k vector pairs {s;, y;}\—)
satisfy s] yi > 0. Let By be obtained by applyingk BFGS updates with these vector pairs to By,

181

182

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

using the formula (6.19). We then have that

—1
SIByS: Ly S{ By
B, = By —| ByS Y s 7.24
v =Bo—[BoSk Y | % _p, v (7.24)
k k
where Sy and Y. are then x k matrices defined by
Sk - [S()a""sk—l]a Yk= [yOa"'ayk—l]a (7'25)
while L, and Dy, are thek x k matrices
T e .
S; i ifi >,
(Lo =1 - / (7.26)
0 otherwise,
D, = diag [soTyo, R skT_lyk_l] . (7.27)

This result can be proved by induction. We note that the conditions s/ y; > 0, i =
0,1,...,k — 1, ensure that the middle matrix in (7.24) is nonsingular, so that this expres-
sion is well defined. The utility of this representation becomes apparent when we consider
limited-memory updating.

As in the L-BFGS algorithm, we keep the m most recent correction pairs {s;, y;} and
refresh this set at every iteration by removing the oldest pair and adding a newly generated
pair. During the first m iterations, the update procedure described in Theorem 7.4 can be
used without modification, except that usually we make the specific choice B} = &1 for
the basic matrix, where §; = 1/y; and y; is defined by (7.20).

At subsequent iterations k > m, the update procedure needs to be modified slightly to
reflect the changing nature of the set of vector pairs {s;, y;} fori = k—m, k—m+1, ..., k—1.
Defining the n x m matrices Sy and Y} by

Sk = [Sk—m» - -+ k=11, Yi = [Yk=m> -+ os k1], (7.28)

we find that the matrix By resulting from m updates to the basic matrix Bék) = ;1 is given
by

-1
SISy Ly &St
Be=8d —[&S Y, : (7.29)
k k [KOk k] |: L7 D, y!
where Ly and Dy are now the m x m matrices defined by
(Sk—m—l-‘ri)T(yk—m—1+j) ifi > j)
(Li)ij = .
otherwise,

Dk = dlag [SZ—myk—mv ey S/(T_lyk_l] .

7.2. LIMITED-MEMORY QUASI-NEWTON METHODS

L

By=8; I+ Figure 7.1
Compact (or outer
product) representation of

L] By in (7.29).

After the new iterate x4 is generated, we obtain Sy by deleting s;_,, from S; and adding
the new displacement s, and we update Y;; in a similar fashion. The new matrices L
and Dy are obtained in an analogous way.

Since the middle matrix in (7.29) is small—of dimension 2m—its factorization re-
quires a negligible amount of computation. The key idea behind the compact representation
(7.29) is that the corrections to the basic matrix can be expressed as an outer product of two
long and narrow matrices—[8 Sy Y] and its transpose—with an intervening multiplication
by a small 2m x 2m matrix. See Figure 7.1 for a graphical illustration.

The limited-memory updating procedure of By requires approximately 2mn + O (m>)
operations, and matrix—vector products of the form Bv can be performed at a cost of
(4m + 1)n + O(m?*) multiplications. These operation counts indicate that updating and
manipulating the direct limited-memory BFGS matrix By is quite economical when m is
small.

This approximation By can be used in a trust-region method for unconstrained opti-
mization or, more significantly, in methods for bound-constrained and general-constrained
optimization. The program L-BFGs-B [322] makes extensive use of compact limited-memory
approximations to solve large nonlinear optimization problems with bound constraints. In
this situation, projections of By into subspaces defined by the constraint gradients must be
calculated repeatedly. Several codes for general-constrained optimization, including KNITRO
and 1POPT, make use of the compact limited-memory matrix By, to approximate the Hessian
of the Lagrangians; see Section 19.3

We can derive a formula, similar to (7.24), that provides a compact representation
of the inverse BFGS approximation Hj; see [52] for details. An implementation of the
unconstrained L-BFGS algorithm based on this expression requires a similar amount of
computation as the algorithm described in the previous section.

Compact representations can also be derived for matrices generated by the symmetric
rank-one (SR1) formula. If k updates are applied to the symmetric matrix B, using the
vector pairs {s;, y; }f.:é and the SR1 formula (6.24), the resulting matrix By can be expressed
as

By = By + (Yy — BoSt)(Dy + Ly + L] — S BoS) ' (Yy — BoSi)”, (7.30)

183

184

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

where Sy, Yy, Dy, and L, are as defined in (7.25), (7.26), and (7.27). Since the SR1 method
is self-dual, the inverse formula Hy can be obtained simply by replacing B, s, and y by H,
v, and s, respectively. Limited-memory SR1 methods can be derived in the same way as the
BFGS method. We replace By with the basic matrix B,? at the kth iteration, and we redefine
Sy and Y; to contain the m most recent corrections, as in (7.28). We note, however, that
limited-memory SR1 updating is sometimes not as effective as L-BFGS updating because it
may not produce positive definite approximations near a solution.

UNROLLING THE UPDATE

The reader may wonder whether limited-memory updating can be implemented
in simpler ways. In fact, as we show here, the most obvious implementation of limited-
memory BFGS updating is considerably more expensive than the approach based on compact
representations discussed in the previous section.

The direct BFGS formula (6.19) can be written as

Bit1 = By — axal + bib), (7.31)
where the vectors a; and by, are defined by

Bysy Yk

k= ——7, = . (7.32)
(s{ Bese)? (i se)2

We could continue to save the vector pairs {s;, y;} but use the formula (7.31) to compute
matrix—vector products. A limited-memory BFGS method that uses this approach would
proceed by defining the basic matrix By at each iteration and then updating according to
the formula

k—1
Be=B)+ > [bib] —aia]]. (7.33)
i=k—m
The vector pairs {a;, b;},i =k —m,k —m + 1, ...,k — 1, would then be recovered from
the stored vector pairs {s;, y;},i = k—m,k—m+1, ..., k—1, by the following procedure:

Procedure 7.6 (Unrolling the BFGS formula).
fori=k—-m,k—m+1,...,k—1
b; <)’i/(yiTSi)l/z;
a; < Blsi + Z;;lk_m [(bJTs,')bj - (ast,')aj];
a; < Cli/(SiTai)l/z;
end (for)

7.3. SPARSE QUASI-NEWTON UPDATES

Note that the vectors ¢; must be recomputed at each iteration because they all depend
on the vector pair {Sg_,, Yk—m}> which is removed at the end of iteration k. On the other
hand, the vectors b; and the inner products b]Tsi can be saved from the previous iteration,
so only the new values b;_; and b]Tsk,l need to be computed at the current iteration.

By taking all these computations into account, and assuming that By = I, we find
that approximately %mzn operations are needed to determine the limited-memory matrix.
The actual computation of the inner product B, v (for arbitrary v € R") requires 4mn
multiplications. Overall, therefore, this approach is less efficient than the one based on the
compact matrix representation described previously. Indeed, while the product Bv costs
the same in both cases, updating the representation of the limited-memory matrix by using
the compact form requires only 2mn multiplications, compared to %mzn multiplications
needed when the BFGS formula is unrolled.

7.3 SPARSE QUASI-NEWTON UPDATES

We now discuss a quasi-Newton approach to large-scale problems that has intuitive appeal:
We demand that the quasi-Newton approximations By have the same (or similar) sparsity
pattern as the true Hessian. This approach would reduce the storage requirements of the
algorithm and perhaps give rise to more accurate Hessian approximations.

Suppose that we know which components of the Hessian may be nonzero at some
point in the domain of interest. That is, we know the contents of the set 2 defined by

Q& {(@,)| [sz(x)],-j # 0 for some x in the domain of f}.

Suppose also that the current Hessian approximation By mirrors the nonzero structure of
the exact Hessian, that is, (By);; = 0 for (i, j) ¢ Q. In updating By to By, then, we
could try to find the matrix By, that satisfies the secant condition, has the same sparsity
pattern, and is as close as possible to By. Specifically, we define By to be the solution of
the following quadratic program:

. 2 2
min | B~ Bl = Y (B — (B, (7.342)
(i,j)e
subject to Bsy = yx, B = B”, and B;; =0 for (i, j) ¢ Q. (7.34b)

One can show that the solution By, of this problem can be obtained by solving an n x n
linear system whose sparsity pattern is €2, the same as the sparsity of the true Hessian. Once
By+1 has been computed, we can use it, within a trust-region method, to obtain the new
iterate xx41. We note that By is not guaranteed to be positive definite.

We omit further details of this approach because it has several drawbacks. The updating
process does not possess scale invariance under linear transformations of the variables and,

185

186

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

more significantly, its practical performance has been disappointing. The fundamental
weakness of this approach is that (7.34a) is an inadequate model and can produce poor
Hessian approximations.

An alternative approach is to relax the secant equation, making sure that it is approx-
imately satisfied along the last few steps rather than requiring it to hold strictly on the latest
step. To do so, we define S; and Y} by (7.28) so that they contain the m most recent difference
pairs. We can then define the new Hessian approximation By to be the solution of

: 2
min || BS, — Yil[f
subject to B = BT and Bjj = 0for (i, j) ¢ Q.
This convex optimization problem has a solution, but it is not easy to compute. Moreover,
this approach can produce singular or poorly conditioned Hessian approximations. Even

though it frequently outperforms methods based on (7.34a), its performance on large
problems has not been impressive.

7.4 ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

In a separable unconstrained optimization problem, the objective function can be decom-
posed into a sum of simpler functions that can be optimized independently. For example, if
we have

fx) = filxr, x3) + falxz, x4, X6) + f3(x5),

we can find the optimal value of x by minimizing each function f;, i = 1, 2, 3, indepen-
dently, since no variable appears in more than one function. The cost of performing m
lower-dimensional optimizations is much less in general than the cost of optimizing an
n-dimensional function.

In many large problems the objective function f : R* — R is not separable, but
it can still be written as the sum of simpler functions, known as element functions. Each
element function has the property that it is unaffected when we move along a large number
of linearly independent directions. If this property holds, we say that f is partially separable.
All functions whose Hessians V2 f are sparse are partially separable, but so are many
functions whose Hessian is not sparse. Partial separability allows for economical problem
representation, efficient automatic differentiation, and effective quasi-Newton updating.

The simplest form of partial separability arises when the objective function can be
written as

fx) =Y filx), (7.35)
i=1

7.4. ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

where each of the element functions f; depends on only a few components of x. It follows
that the gradients V f; and Hessians V2 f; of each element function contain just a few
nonzeros. By differentiating (7.35), we obtain

Vi) =) V), Vi) =) Vi)
i=1 i=1

A natural question is whether it is more effective to maintain quasi-Newton approximations
to each of the element Hessians V? f;(x) separately, rather than approximating the entire
Hessian V2 f (x). We will show that the answer is affirmative, provided that the quasi-Newton
approximation fully exploits the structure of each element Hessian.

We introduce the concept by means of a simple example. Consider the objective
function

Fx) = — x5 + (0 —x7)* 4 (x5 — x3)* + (x4 — x7)? (7.36)
= filx) + 2(x) + f3(x) + falx).
The Hessians of the element functions f; are 4 x 4 sparse, singular matrices with 4 nonzero
entries.
Let us focus on fi; all other element functions have exactly the same form. Even

though f is formally a function of all components of x, it depends only on x; and x3, which
we call the element variables for f;. We assemble the element variables into a vector that we

X1
Ay =)
X3

. 1 0 0 0
xp) = Ux with U = .

call xpy), that is,

and note that

If we define the function ¢; by

¢1(Z17 22) = (z1 — Z%)Z,

then we can write f1(x) = ¢;(U;x). By applying the chain rule to this representation, we
obtain

Vfix) = UV (Ux), V2 fi(x) = U} V2 (U1 x)Uy. (7.37)

187

188

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

In our case, we have

2 0 —4)C3 0

5 —4x; 5 0 0 0 0
Vi (Uix) = 2 . VAilx) = P

—4x; 12x5 — 4x; —4x; 0 12x5—4x; O

0 0 0 0

The matrix U}, known as a compactifying matrix, allows us to map the derivative information
for the low-dimensional function ¢, into the derivative information for the element function
fi-

Now comes the key idea: Instead of maintaining a quasi-Newton approximation to
V2 f1, we maintain a 2 x 2 quasi-Newton approximation B(;j of V2¢; and use the relation
(7.37) to transform it into a quasi-Newton approximation to V2 f;. To update By after a
typical step from x to x™, we record the information

spy = X[y — *n)s yu1 = Vé (xﬁ]) — Vi (xpy), (7.38)

and use BFGS or SR1 updating to obtain the new approximation Ba']. We therefore update
small, dense quasi-Newton approximations with the property

By &~ V21 (Uix) = V¢ (xpn). (7.39)

To obtain an approximation of the element Hessian V2 f;, we use the transformation
suggested by the relationship (7.37); that is,

V? fi(x) ~ U] By Uy.
This operation has the effect of mapping the elements of By to the correct positions in the
full n x n Hessian approximation.

The previous discussion concerned only the first element function f;, but we can treat
all other functions f; in the same way. The full objective function can now be written as

) =) ¢i(U), (7.40)
i=1

and we maintain a quasi-Newton approximation By;) for each of the functions ¢;. To obtain
a complete approximation to the full Hessian V2 f, we simply sum the element Hessian
approximations as follows:

B =Y U!BuU. (7.41)
i=1

7.5. PERSPECTIVES AND SOFTWARE

We may use this approximate Hessian in a trust-region algorithm, obtaining an
approximate solution py of the system

Bipr = =V fi. (7.42)

We need not assemble By explicitly but rather use the conjugate gradient approach to solve
(7.42), computing matrix—vector products of the form Biv by performing operations with
the matrices U; and By;).

To illustrate the usefulness of this element-by-element updating technique, let us
consider a problem of the form (7.36) but this time involving 1000 variables, not just 4. The
functions ¢; still depend on only two internal variables, so that each Hessian approximation
Byi7 is a 2 x 2 matrix. After just a few iterations, we will have sampled enough directions
s;;) to make each By;) an accurate approximation to V2¢;. Hence the full quasi-Newton
approximation (7.41) will tend to be a very good approximation to V2 f(x). By contrast, a
quasi-Newton method that ignores the partially separable structure of the objective function
will attempt to estimate the total average curvature—the sum of the individual curvatures
of the element functions—by approximating the 1000 x 1000 Hessian matrix. When the
number of variables 7 is large, many iterations will be required before this quasi-Newton
approximation is of good quality. Hence an algorithm of this type (for example, standard
BEFGS or L-BFGS) will require many more iterations than a method based on the partially
separable approximate Hessian.

It is not always possible to use the BFGS formula to update the partial Hessian By;},
because there is no guarantee that the curvature condition sg] yii1 > 0 will be satisfied. That
is, even though the full Hessian V2 f (x) is at least positive semidefinite at the solution x*,
some of the individual Hessians V2¢; () may be indefinite. One way to overcome this obstacle
is to apply the SR1 update to each of the element Hessians. This approach has proved effective
in the LANCELOT package [72], which is designed to take full advantage of partial separability.

The main limitations of this quasi-Newton approach are the cost of the step computa-
tion (7.42), which is comparable to the cost of a Newton step, and the difficulty of identifying
the partially separable structure of a function. The performance of quasi-Newton methods
is satisfactory provided that we find the finest partially separable decomposition of the
problem; see [72]. Furthermore, even when the partially separable structure is known, it
may be more efficient to compute a Newton step. For example, the modeling language AmMpPL
automatically detects the partially separable structure of a function f and uses it to compute
the Hessian V2 f (x).

7.5 PERSPECTIVES AND SOFTWARE

Newton—-CG methods have been used successfully to solve large problems in a vari-
ety of applications. Many of these implementations are developed by engineers and

189

190

CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

scientists and use problem-specific preconditioners. Freely available packages include
TN/TNBC [220] and TNPACK [275]. Software for more general problems, such as LANCELOT
[72], xnITRO/CG [50], and TRON [192], employ Newton—-CG methods when applied to
unconstrained problems. Other packages, such as LoQo [294] implement Newton meth-
ods with a sparse factorization modified to ensure positive definiteness. GLTR [145] offers
a Newton-Lanczos method. There is insufficient experience to date to say whether the
Newton—Lanczos method is significantly better in practice than the Steihaug strategy given in
Algorithm 7.2.

Software for computing incomplete Cholesky preconditioners includes the 1CFs [193]
and MA57 [166] packages. A preconditioner for Newton—CG based on limited-memory
BFGS approximations is provided in PREQN [209].

Limited-memory BFGS methods are implemented in LBFGS [194] and M1QN3 [122];
see Gill and Leonard [125] for a variant that requires less storage and appears to be quite
efficient. The compact limited-memory representations of Section 7.2 are used in LBFGS-B
[322], 1poPT [301], and KNITRO.

The LANCELOT package exploits partial separability. It provides SR1 and BFGS quasi-
Newton options as well as a Newton methods. The step computation is obtained by a
preconditioned conjugate gradient iteration using trust regions. If f is partially separable, a
general affine transformation will not in general preserve the partially separable structure.
The quasi-Newton method for partially separable functions described in Section 7.4 is not
invariant to affine transformations of the variables, but this is not a drawback because the
method is invariant under transformations that preserve separability.

NOTES AND REFERENCES

A complete study of inexact Newton methods is given in [74]. For a discussion
of the Newton—Lanczos method see [145]. Other iterative methods for the solution of a
trust-region problem have been proposed by Hager [160], and by Rendl and Wolkowicz
[263].

For further discussion on the L-BFGS method see Nocedal [228], Liu and Nocedal
[194], and Gilbert and Lemaréchal [122]. The last paper also discusses various ways in
which the scaling parameter can be chosen. Algorithm 7.4, the two-loop L-BFGS recursion,
constitutes an economical procedure for computing the product H V f;. Itis based, however,
on the specific form of the BFGS update formula (7.16), and recursions of this type have not
yet been developed (and may not exist) for other members of the Broyden class (for instance,
the SR1 and DFP methods). Our discussion of compact representations of limited-memory
matrices is based on Byrd, Nocedal, and Schnabel [52].

Sparse quasi-Newton updates have been studied by Toint [288, 289] and Fletcher et
al. [102, 104], among others. The concept of partial separability was introduced by Griewank
and Toint [156, 155]. For an extensive treatment of the subject see Conn, Gould, and Toint
[72].

7.5. PERSPECTIVES AND SOFTWARE

& EXERCISES

& 7.1 Code Algorithm 7.5, and test it on the extended Rosenbrock function

n/2

FO) =) [l — x5)+ (1 —x21)],

i=1

where « is a parameter that you can vary (for example, 1 or 100). The solution is x* =
(1,1,..., DT, f* = 0. Choose the starting point as (—1, —1,..., —1)T. Observe the
behavior of your program for various values of the memory parameter m.

& 7.2 Show that the matrix Hy; in (7.21) is singular.
& 7.3 Derive the formula (7.23) under the assumption that line searches are exact.

& 7.4 Consider limited-memory SR1 updating based on (7.30). Explain how the storage
can be cut in half if the basic matrix B} is kept fixed for all k. (Hint: Consider the matrix
Qk = [qo, - - -+ qx—1] = Yk — BoSk.)

& 7.5 Write the function defined by
F(x) = 22237575 4 (503)% 4+ (x5 — x4)

in the form (7.40). In particular, give the definition of each of the compactifying
transformations U;.

& 7.6 Does the approximation B obtained by the partially separable quasi-Newton
updating (7.38), (7.41) satisfy the secant equation Bs = y?

& 7.7 The minimum surface problem is a classical application of the calculus of vari-
ations and can be found in many textbooks. We wish to find the surface of minimum
area, defined on the unit square, that interpolates a prescribed continuous function on the
boundary of the square. In the standard discretization of this problem, the unknowns are
the values of the sought-after function z(x, y) on a ¢ x ¢ rectangular mesh of points over
the unit square.

More specifically, we divide each edge of the square into ¢ intervals of equal length,
yielding (¢ + 1)* grid points. We label the grid points as

X(=D)(g4+D+1> -+ > Xige) fori=1,2,...,g +1,

so that each value of i generates a line. With each point we associate a variable z; that
represents the height of the surface at this point. For the 4¢ grid points on the boundary
of the unit square, the values of these variables are determined by the given function. The

191

192 CHAPTER 7. LARGE-SCALE UNCONSTRAINED OPTIMIZATION

optimization problem is to determine the other (g + 1)* — 4q variables z; so that the total
surface area is minimized.
A typical subsquare in this partition looks as follows:

Xjtg+1 Xj+q+2

Xj Xj+1

We denote this square by A ; and note that its area is qz. The desired function is z(x, y), and
we wish to compute its surface over A ;. Calculus books show that the area of the surface is

given by
az* (9z)
fj(x)E// \/1+(—Z> +<—Z> dxdy.
(x,y)€A; 0x ay

Approximate the derivatives by finite differences, and show that f; has the form

1

1 q2) 5 2
fj(x):;[l"‘?[(xj_xjwﬁ-l) + (Xj11 — Xj4q)]] . (7.43)

& 7.8 Compute the gradient of the element function (7.43) with respect to the full
vector x. Show that it contains at most four nonzeros, and that two of these four nonzero
components are negatives of the other two. Compute the Hessian of f;, and show that,
among the 16 nonzeros, only three different magnitudes are represented. Also show that
this Hessian is singular.

CHAPTER

Calculating
Derivatives

Most algorithms for nonlinear optimization and nonlinear equations require knowledge of
derivatives. Sometimes the derivatives are easy to calculate by hand, and it is reasonable
to expect the user to provide code to compute them. In other cases, the functions are too
complicated, so we look for ways to calculate or approximate the derivatives automatically.
A number of interesting approaches are available, of which the most important are probably
the following.

Finite Differencing. This technique has its roots in Taylor’s theorem (see Chapter 2). By
observing the change in function values in response to small perturbations of the unknowns

194

CHAPTER 8. CALCULATING DERIVATIVES

near a given point x, we can estimate the response to infintesimal perturbations, that is,
the derivatives. For instance, the partial derivative of a smooth function f : R” — R with
respect to the ith variable x; can be approximated by the central-difference formula

of flx+ee)— flx —ee)

Z

0x; 2¢€

’

where € is a small positive scalar and e; is the ith unit vector, that is, the vector whose
elements are all 0 except for a 1 in the ith position.

Automatic Differentiation. This technique takes the view that the computer code for
evaluating the function can be broken down into a composition of elementary arithmetic
operations, to which the chain rule (one of the basic rules of calculus) can be applied. Some
software tools for automatic differentiation (such as ADIFOR [25]) produce new code that
calculates both function and derivative values. Other tools (such as ADOL-C [154]) keep a
record of the elementary computations that take place while the function evaluation code
for a given point x is executing on the computer. This information is processed to produce
the derivatives at the same point x.

Symbolic Differentiation. In this technique, the algebraic specification for the function f is
manipulated by symbolic manipulation tools to produce new algebraic expressions for each
component of the gradient. Commonly used symbolic manipulation tools can be found in
the packages Mathematica [311], Maple [304], and Macsyma [197].

In this chapter we discuss the first two approaches: finite differencing and automatic
differentiation.

The usefulness of derivatives is not restricted to algorithms for optimization. Modelers
in areas such as design optimization and economics are often interested in performing
post-optimal sensitivity analysis, in which they determine the sensitivity of the optimum to
small perturbations in the parameter or constraint values. Derivatives are also important in
other areas such as nonlinear differential equations and simulation.

8.1 FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

Finite differencing is an approach to the calculation of approximate derivatives whose
motivation (like that of so many algorithms in optimization) comes from Taylor’s theorem.
Many software packages perform automatic calculation of finite differences whenever the
user is unable or unwilling to supply code to calculate exact derivatives. Although they yield
only approximate values for the derivatives, the results are adequate in many situations.

By definition, derivatives are a measure of the sensitivity of the function to infinitesimal
changes in the values of the variables. Our approach in this section is to make small, finite
perturbations in the values of x and examine the resulting differences in the function values.

8.1. FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

By taking ratios of the function difference to variable difference, we obtain approximations
to the derivatives.

APPROXIMATING THE GRADIENT

An approximation to the gradient vector V f(x) can be obtained by evaluating the
function f at (n + 1) points and performing some elementary arithmetic. We describe this
technique, along with a more accurate variant that requires additional function evaluations.

A popular formula for approximating the partial derivative 9f/dx; at a given point x
is the forward-difference, or one-sided-difference, approximation, defined as

2

3)(,'

(x)

~ f(x+ee€i)—f(X). (8.1)

The gradient can be built up by simply applying this formula for i = 1,2, ..., n. This
process requires evaluation of f at the point x as well as the n perturbed points x + €e;,
i=1,2,...,n:atotal of (n + 1) points.

The basis for the formula (8.1) is Taylor’s theorem, Theorem 2.1 in Chapter 2. When
f is twice continuously differentiable, we have

fx+p)=fX)+Vf @) p+ip" V2 f(x+1tp)p, somete(0,1) (8.2)

(see (2.6)). If we choose L to be a bound on the size of | V2 f(-)|| in the region of interest,
it follows directly from this formula that the last term in this expression is bounded by
(L/2)lIpI1% so that

| f&+p) = f) = V@ p| < L/DIpl (8.3)

We now choose the vector p to be €e¢;, so that it represents a small change in the value
of a single component of x (the ith component). For this p, we have that Vf(x)"p =
V f(x)Te; = df/dx;, so by rearranging (8.3), we conclude that

af

8)6,‘

_fatee) - f)
€

(x) <, where |8.| < (L/2)e. (8.4)

We derive the forward-difference formula (8.1) by simply ignoring the error term &, in this
expression, which becomes smaller and smaller as € approaches zero.

An important issue in implementing the formula (8.1) is the choice of the parameter
€. The error expression (8.4) suggests that we should choose € as small as possible. Unfor-
tunately, this expression ignores the roundoff errors that are introduced when the function
f is evaluated on a real computer, in floating-point arithmetic. From our discussion in the
Appendix (see (A.30) and (A.31)), we know that the quantity u known as unit roundoff

195

196

CHAPTER 8. CALCULATING DERIVATIVES

is crucial: It is a bound on the relative error that is introduced whenever an arithmetic
operation is performed on two floating-point numbers. (u is about 1.1 x 107!¢ in double-
precision IEEE floating-point arithmetic.) The effect of these errors on the final computed
value of f depends on the way in which f is computed. It could come from an arithmetic
formula, or from a differential equation solver, with or without refinement.

As a rough estimate, let us assume simply that the relative error in the computed f is
bounded by u, so that the computed values of f(x) and f(x + €e;) are related to the exact
values in the following way:

lcomp(f(x)) — f(x)| <uLy,
|comp(f(x +€e;)) — f(x +e€e)| <ulLy,

where comp(-) denotes the computed value, and L ; is a bound on the value of | f(-)| in the

region of interest. If we use these computed values of f in place of the exact values in (8.4)
and (8.1), we obtain an error that is bounded by

(L/2)e + 2uL s /e. (8.5)

Naturally, we would like to choose € to make this error as small as possible; it is easy to see
that the minimizing value is

4L ru
=217
L
If we assume that the problem is well scaled, then the ratio L /L (the ratio of function
values to second derivative values) does not exceed a modest size. We can conclude that the
following choice of € is fairly close to optimal:

€ =Ju (8.6)

(In fact, this value is used in many of the optimization software packages that use finite
differencing as an option for estimating derivatives.) For this value of €, we have from (8.5)
that the total error in the forward-difference approximation is fairly close to /u.

A more accurate approximation to the derivative can be obtained by using the central-
difference formula, defined as

af fx +ee) — flx —ee)
—x)~ .

8.7
E)xi 2¢€ ()

As we show below, this approximation is more accurate than the forward-difference approx-
imation (8.1). It is also about twice as expensive, since we need to evaluate f at the points
xandx te€e;,i =1,2,...,n:atotal of 2n 4 1 points.

8.1. FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

The basis for the central difference approximation is again Taylor’s theorem. When
the second derivatives of f exist and are Lipschitz continuous, we have from (8.2) that

fx+p)=f@O)+ V@) p+3p"V2f(x+1p)p forsomer e (0,1)
= f@)+ V) p+3p V@) + O (IplP). (8.8)

By setting p = €¢; and p = —ee;, respectively, we obtain

2
ftee) = fm+eLl 41l 4o (@),

8)(,' 2 8le
0 1,0°
Fle—ee) = f) - e+ JE G0 (E).

(Note that the final error terms in these two expressions are generally not the same, but they
are both bounded by some multiple of €.) By subtracting the second equation from the
first and dividing by 2¢, we obtain the expression

af , . flx+ee)— flx —ee))
B—Xl(.x)— 2e +O(€)

We see from this expression that the error is O (62), as compared to the O(€) error in the
forward-difference formula (8.1). However, when we take evaluation error in f into account,
the accuracy that can be achieved in practice is less impressive; the same assumptions that
were used to derive (8.6) lead to an optimal choice of € of about u'/?
u?/3. In some situations, the extra few digits of accuracy may improve the performance of

and an error of about

the algorithm enough to make the extra expense worthwhile.

APPROXIMATING A SPARSE JACOBIAN

Consider now the case of a vector function r : R” — R™, such as the residual vector
that we consider in Chapter 10 or the system of nonlinear equations from Chapter 11. The
matrix J (x) of first derivatives for this function is defined as follows:

Vrl(x)T
Vi, (x)T
or; 2
Jx)=|— — .
() |:8x,»:|j=1,2 m . ’ (8.9)
i=1,2,...,n .
Vrm(x)"

wherer;, j = 1,2, ..., marethe components of r. The techniques described in the previous

197

198

CHAPTER 8. CALCULATING DERIVATIVES

section can be used to evaluate the full Jacobian J(x) one column at a time. When r is twice
continuously differentiable, we can use Taylor’s theorem to deduce that

Ilr(x 4+ p) = r(x) = J)pll < (L/D)]pI, (8.10)

where L is a Lipschitz constant for J in the region of interest. If we require an approximation
to the Jacobian—vector product J (x) p for a given vector p (as is the case with inexact Newton
methods for nonlinear systems of equations; see Section 11.1), this expression immediately
suggests choosing a small nonzero € and setting

~ r(x +ep) —r(x)

J(x)p (8.11)

an approximation that is accurate to O (¢€). A two-sided approximation can be derived from
the formula (8.7).

If an approximation to the full Jacobian J (x) is required, we can compute it a column
at a time, analogously to (8.1), by setting set p = €e; in (8.10) to derive the following
estimate of the ith column:

or r(x +ee) —r(x)
(x) ~ .

— 8.12
8x,~ € ()

A full Jacobian estimate can be obtained at a cost of n + 1 evaluations of the function r.
When the Jacobian is sparse, however, we can often obtain the estimate at a much lower cost,
sometimes just three or four evaluations of r. The key is to estimate a number of different
columns of the Jacobian simultaneously, by judicious choices of the perturbation vector p
in (8.10).

We illustrate the technique with a simple example. Consider the functionr : R* — R”
defined by

2()623 —xlz)
3(x; — x7) +2(x5 — x3)
r(x) = 3()63'? - xzz) + 2()62 - x%) . (8.13)

S(x,f —x,f_l)

Each component of » depends on just two or three components of x, so that each row of the
Jacobian contains only two or three nonzero elements. For the case of n = 6, the Jacobian

8.1. FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

has the following structure:

X X X
, (8.14)
X X X
X X X

X X

where each cross represents a nonzero element, with zeros represented by a blank space.

Staying for the moment with the case n = 6, suppose that we wish to compute a finite-
difference approximation to the Jacobian. (Of course, it is easy to calculate this particular
Jacobian by hand, but there are complicated functions with similar structure for which
hand calculation is more difficult.) A perturbation p = €e; to the first component of x
will affect only the first and second components of r. The remaining components will be
unchanged, so that the right-hand-side of formula (8.12) will correctly evaluate to zero in
the components 3, 4, 5, 6. It is wasteful, however, to reevaluate these components of r when
we know in advance that their values are not affected by the perturbation. Instead, we look
for a way to modify the perturbation vector so that it does not have any further effect on
components 1 and 2, but does produce a change in some of the components 3, 4, 5, 6, which
we can then use as the basis of a finite-difference estimate for some other column of the
Jacobian. It is not hard to see that the additional perturbation €e4 has the desired property:
It alters the 3rd, 4th, and 5th elements of 7, but leaves the 1st and 2nd elements unchanged.
The changes in r as a result of the perturbations €e; and €e, do not interfere with each
other.

To express this discussion in mathematical terms, we set

p =¢€ler +eyq),
and note that
r(x+pha=rx+eler+es))ir=r(x+ee) (8.15)

(where the notation [-]; » denotes the subvector consisting of the first and second elements),
while

r(x + p)sas =r(x +e(er +e4))sas =r(x +€eq)s45. (8.16)
By substituting (8.15) into (8.10), we obtain

r(x 4+ pio=r@)is+elJ(x)er]ir + O(?).

199

200

CHAPTER 8. CALCULATING DERIVATIVES

By rearranging this expression, we obtain the following difference formula for estimating
the (1, 1) and (2, 1) elements of the Jacobian matrix:

87‘1

—(x) _

g):l = UWera ~ r(x 4 pi r(x)l,z‘ (8.17)
2 €

Fy (x)

X1

A similar argument shows that the nonzero elements of the fourth column of the Jacobian
can be estimated by substituting (8.16) into (8.10); we obtain

8r4
8_x3(x)

9 _
ﬂ(x) = [T ()edsas ~ F(x + p)sas r(x)3,4,5.
3)64 €

LLEY

3)65

(8.18)

To summarize: We have been able to estimate two columns of the Jacobian J (x) by evaluating
the function r at the single extra point x + €(e; + e4).

We can approximate the remainder of J (x) in an economical manner as well. Columns
2 and 5 can be approximated by choosing p = €(e; + ¢s), while we can use p = €(e3 + ¢¢)
to approximate columns 3 and 6. In total, we need 3 evaluations of the function r (after the
initial evaluation at x) to estimate the entire Jacobian matrix.

In fact, for any choice of n in (8.13) (no matter how large), three extra evaluations of
are sufficient to approximate the entire Jacobian. The corresponding choices of perturbation
vectors p are

p=cleytes+e;+epg+---),
p=c¢cles+es+es+en+---),
p=cles+es+e+en+---).

In the first of these vectors, the nonzero components are chosen so that no two of the
columns 1, 4, 7, ... have a nonzero element in the same row. The same property holds for
the other two vectors and, in fact, points the way to the criterion that we can apply to general
problems to decide on a valid set of perturbation vectors.

Algorithms for choosing the perturbation vectors can be expressed conveniently in the
language of graphs and graph coloring. For any function r : R” — R, we can construct
a column incidence graph G with n nodes by drawing an arc between nodes i and k if
there is some component of r that depends on both x; and x;. In other words, the ith and
kth columns of the Jacobian J(x) each have a nonzero element in some row j, for some
Jj =1,2,...,m and some value of x. (The intersection graph for the function defined in

8.1. FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

Figure 8.1
Column incidence graph for r(x) defined in (8.13).

(8.13), with n = 6, is shown in Figure 8.1.) We now assign each node a “color” according
to the following rule: Two nodes can have the same color if there is no arc that connects
them. Finally, we choose one perturbation vector corresponding to each color: If nodes
i1, Iz, ..., ig have the same color, the corresponding p is €(e;, +¢;, +--- + ¢;,).

Usually, there are many ways to assign colors to the n nodes in the graph in a way that
satisfies the required condition. The simplest way is just to assign each node a different color,
but since that scheme produces n perturbation vectors, it is usually not the most efficient
approach. It is generally very difficult to find the coloring scheme that uses the fewest
possible colors, but there are simple algorithms that do a good job of finding a near-optimal
coloring at low cost. Curtis, Powell, and Reid [83] and Coleman and Moré [68] provide
descriptions of some methods and performance comparisons. Newsam and Ramsdell [227]
show that by considering a more general class of perturbation vectors p, it is possible
to evaluate the full Jacobian using no more than n, evaluations of r (in addition to the
evaluation at the point x), where 7, is the maximum number of nonzeros in each row
of J(x).

For some functions r with well-studied structures (those that arise from discretizations
of differential operators, or those that give rise to banded Jacobians, as in the example above),
optimal coloring schemes are known. For the tridiagonal Jacobian of (8.14) and its associated
graph in Figure 8.1, the scheme with three colors is optimal.

APPROXIMATING THE HESSIAN

In some situations, the user may be able to provide a routine to calculate the gradient
V f(x) but not the Hessian V2 f(x). We can obtain the Hessian by applying the techniques
described above for the vector function 7 to the gradient V f. By using the graph coloring
techniques discussed above, sparse Hessians often can be approximated in this manner by
using considerably fewer than n perturbation vectors. This approach ignores symmetry
of the Hessian, and will usually produce a nonsymmetric approximation. We can recover

201

202

CHAPTER 8. CALCULATING DERIVATIVES

symmetry by adding the approximation to its transpose and dividing the result by 2.
Alternative differencing approaches that take symmetry of V2 f (x) explicitly into account
are discussed below.

Some important algorithms—most notably the Newton—CG methods described in
Chapter 7—do not require knowledge of the full Hessian. Instead, each iteration requires
us to supply the Hessian—vector product V2 f(x) p, for a given vector p. We can obtain an
approximation to this matrix-vector product by appealing once again to Taylor’s theorem.
When second derivatives of f exist and are Lipschitz continuous near x, we have

Vix+ep) =V x)+eVif(x)p+ 0(e?), (8.19)

so that

Vilx+ep) - Vi)
€

Vif(x)p~ (8.20)

(see also (7.10)). The approximation error is O (€), and the cost of obtaining the approxi-
mation is a single gradient evaluation at the point x + €p. The formula (8.20) corresponds
to the forward-difference approximation (8.1). A central-difference formula like (8.7) can
be derived by evaluating V f (x — ep) as well.

For the case in which even gradients are not available, we can use Taylor’s theorem
once again to derive formulae for approximating the Hessian that use only function values.
The main tool is the formula (8.8): By substituting the vectors p = €e;, p = €e;, and
p = €(e; + e;) into this formula and combining the results appropriately, we obtain

*f () = flx+ee +ee;)— flx+ee)— flx+ee;)+ f(x) N

O(e). 8.21
dx; 0x; €? ©. ()

If we wished to approximate every element of the Hessian with this formula, then we would
need to evaluate f at x 4 €(e; + e;) for all possible i and j (a total of n(n + 1)/2 points)
as well as at the n points x + €¢;,i = 1, 2, ..., n. If the Hessian is sparse, we can, of course,
reduce this operation count by skipping the evaluation whenever we know the element
8 f/0x;9x; to be zero.

APPROXIMATING A SPARSE HESSIAN

We noted above that a Hessian approximation can be obtained by applying finite-
difference Jacobian estimation techniques to the gradient V f, treated as a vector function.
We now show how symmetry of the Hessian V2 f can be used to reduce the number of
perturbation vectors p needed to obtain a complete approximation, when the Hessian
is sparse. The key observation is that, because of symmetry, any estimate of the element
[V2f(x)];; = 8% f(x)/0x;dx; is also an estimate of its symmetric counterpart [V2 f(x)] ; ;.

8.1. FINITE-DIFFERENCE DERIVATIVE APPROXIMATIONS

We illustrate the point with the simple function f : R" — R defined by
n
fx)=x1) i%x]. (8.22)
i=1

It is easy to show that the Hessian V2 f has the “arrowhead” structure depicted below, for
the case of n = 6:

M x x x x x x|
X X
X X
(8.23)
x X
X X

If we were to construct the intersection graph for the function V f (analogous to Figure 8.1),
we would find that every node is connected to every other node, for the simple reason that
row 1 has a nonzero in every column. According to the rule for coloring the graph, then, we
would have to assign a different color to every node, which implies that we would need to
evaluate V f at the n + 1 points x and x + €¢; fori = 1,2,...,n.

We can construct a much more efficient scheme by taking the symmetry into account.
Suppose we first use the perturbation vector p = €e to estimate the first column of V2 f(x).
Because of symmetry, the same estimates apply to the first row of V2 f. From (8.23), we see
that all that remains is to find the diagonal elements V2 f (x), V2 f(x)33, ..., V2 f(x)¢6-
The intersection graph for these remaining elements is completely disconnected, so we can
assign them all the same color and choose the corresponding perturbation vector to be

p=clext+es+---+e)=€(0,1,1,1,1,1)". (8.24)

Note that the second component of V f is not affected by the perturbations in components
3,4, 5,6 of the unknown vector, while the third component of V f is not affected by
perturbations in components 2, 4, 5, 6 of x, and so on. As in (8.15) and (8.16), we have for
each component i that

Vfix+pi=Vflx+elext+es+---+e)) =Vflx+ee).

By applying the forward-difference formula (8.1) to each of these individual components,
we then obtain

2). — . . .
%(x)% Vf(x+ee) — Vfx) _ Vf(x+ep); Vf(x),’ i—23.
0x; € €

203

204

CHAPTER 8. CALCULATING DERIVATIVES

By exploiting symmetry, we have been able to estimate the entire Hessian by evaluating V f
only at x and two other points.

Again, graph-coloring techniques can be used to choose the perturbation vectors p
economically. We use the adjacency graph in place of the intersection graph described earlier.
The adjacency graph has n nodes, with arcs connecting nodes i and k whenever i # k and
02 f(x)/(0x;0x;) # 0 for some x. The requirements on the coloring scheme are a little more
complicated than before, however. We require not only that connected nodes have different
colors, but also that any path of length 3 through the graph contain at least three colors. In
other words, if there exist nodes i1, i5, i3, i4 in the graph that are connected by arcs (i, i2),
(i2,13), and (i3, i4), then at least three different colors must be used in coloring these four
nodes. See Coleman and Moré [69] for an explanation of this rule and for algorithms to
compute valid colorings. The perturbation vectors are constructed as before: Whenever the
nodes iy, i3, ..., iy have the same color, we set the corresponding perturbation vector to be
p=c¢le +e,+--+e,).

8.2 AUTOMATIC DIFFERENTIATION

Automatic differentiation is the generic name for techniques that use the computational
representation of a function to produce analytic values for the derivatives. Some techniques
produce code for the derivatives at a general point x by manipulating the function code
directly. Other techniques keep a record of the computations made during the evaluation
of the function at a specific point x and then review this information to produce a set of
derivatives at x.

Automatic differentiation techniques are founded on the observation that any func-
tion, no matter how complicated, is evaluated by performing a sequence of simple elementary
operations involving just one or two arguments at a time. Two-argument operations include
addition, multiplication, division, and the power operation a’. Examples of single-argument
operations include the trigonometric, exponential, and logarithmic functions. Another com-
mon ingredient of the various automatic differentiation tools is their use of the chain rule.
This is the well-known rule from elementary calculus that says that if / is a function of the
vector y € R™, which is in turn a function of the vector x € R", we can write the derivative
of h with respect to x as follows:

m

oh
Veh(y(x)) =) 3y V) (8.25)
i=1 7!

See Appendix A for further details.
There are two basic modes of automatic differentiation: the forward and reversemodes.
The difference between them can be illustrated by a simple example. We work through such

8.2. AUTOMATIC DIFFERENTIATION

an example below, and indicate how the techniques can be extended to general functions,
including vector functions.

AN EXAMPLE

Consider the following function of 3 variables:
f(x) = (x1x3sinx3 + €"7?) /x3. (8.26)

Figure 8.2 shows how the evaluation of this function can be broken down into its elementary
operations and also indicates the partial ordering associated with these operations. For
instance, the multiplication x; * x, must take place prior to the exponentiation e**2, or else
we would obtain the incorrect result (e*')x,. This graph introduces the intermediate variables
X4, X5, . . . that contain the results of intermediate computations; they are distinguished from
the independent variables x,, x,, x3 that appear at the left of the graph. We can express the
evaluation of f in arithmetic terms as follows:

X4 = X1 * X7,
X5 = sin x3,

Xg = €™,

(8.27)
X7 = X4 * X5,
Xg = X¢ + X7,

X9 = Xg/)C3.

The final node x4 in Figure 8.2 contains the function value f(x). In the terminology
of graph theory, node i is the parent of node j, and node j the child of node i, whenever
there is a directed arc from i to j. Any node can be evaluated when the values of all its
parents are known, so computation flows through the graph from left to right. Flow of

Figure 8.2 Computational graph for f(x) defined in (8.26).

205

206

CHAPTER 8. CALCULATING DERIVATIVES

computation in this direction is known as a forward sweep. It is important to emphasize
that software tools for automatic differentiation do not require the user to break down the
code for evaluating the function into its elements, as in (8.27). Identification of intermediate
quantities and construction of the computational graph is carried out, explicitly or implicitly,
by the software tool itself.

THE FORWARD MODE

In the forward mode of automatic differentiation, we evaluate and carry forward
a directional derivative of each intermediate variable x; in a given direction p € R”,
simultaneously with the evaluation of x; itself. For the three-variable example above, we use
the following notation for the directional derivative for p associated with each variable:

3
D,,x,»dzef(in)Tp:Z%pj, i=1,2,...,9, (8.28)
j=1
where V indicates the gradient with respect to the three independent variables. Our goal
is to evaluate D,x, which is the same as the directional derivative V f(x)” p. We note
immediately that initial values D ,x; for the independent variables x;, i = 1, 2, 3, are simply
the components p;, p,, p3 of p. The direction p is referred to as the seed vector.

As soon as the value of x; at any node is known, we can find the corresponding value
of Dpx; from the chain rule. For instance, suppose we know the values of x4, D x4, x5, and
D, x5, and we are about to calculate x; in Figure 8.2. We have that x; = x4xs; that is, x;
is a function of the two variables x4 and xs, which in turn are functions of x;, x,, x3. By
applying the rule (8.25), we have that

3x7 8x7
V)C7 = —VX4 + —VX5 = X5VX4 + X4VX5.
8X4 8X5

By taking the inner product of both sides of this expression with p and applying the definition
(8.28), we obtain

—7D +—7D =x5D + x4D (829)
X. X X X. X Xs5. .
9xs pX4 9xs pX5 5LpX4 41U pXs5

DPX7 =
The directional derivatives D ,x; are therefore evaluated side by side with the intermediate
results x;, and at the end of the process we obtain D,xg = D, f = V f(x)7 p.

The principle of the forward mode is straightforward enough, but what of its practical
implementation and computational requirements? First, we repeat that the user does not
need to construct the computational graph, break the computation down into elementary
operations as in (8.27), or identify intermediate variables. The automatic differentiation
software should perform these tasks implicitly and automatically. Nor is it necessary to store

8.2. AUTOMATIC DIFFERENTIATION

the information x; and D, x; for every node of the computation graph at once (which is just
as well, since this graph can be very large for complicated functions). Once all the children
of any node have been evaluated, its associated values x; and D,x; are not needed further
and may be overwritten in storage.

The key to practical implementation is the side-by-side evaluation of x; and Dx;. The
automatic differentiation software associates a scalar D,w with any scalar w that appears
in the evaluation code. Whenever w is used in an arithmetic computation, the software
performs an associated operation (based on the chain rule) with the gradient vector D,w.
For instance, if w is combined in a division operation with another value y to produce a
new value z, that is,

w
7 < —,
y

we use w, Z, D,w, and D,y to evaluate the directional derivative D,z as follows:

1 w
Dyz < —Dyw — —Dpy. (8.30)
Y y

To obtain the complete gradient vector, we can carry out this procedure simultaneously
for the n seed vectors p = ey, e,, ..., e,. By the definition (8.28), we see that p = e; implies
that D, f = 8f/dx;, j = 1,2, ..., n. We note from the example (8.30) that the additional
cost of evaluating f and V f (over the cost of evaluating f alone) may be significant. In
this example, the single division operation on w and y needed to calculate z gives rise
to approximately 2n multiplications and n additions in the computation of the gradient
elements D¢z, j =1,2,...,n. Itis difficult to obtain an exact bound on the increase in
computation, since the costs of retrieving and storing the data should also be taken into
account. The storage requirements may also increase by a factor as large as n, since we
now have to store n additional scalars Dexiy j =1,2,...,n, alongside each intermediate
variable x;. It is usually possible to make savings by observing that many of these quantities
are zero, particularly in the early stages of the computation (that is, toward the left of the
computational graph), so sparse data structures can be used to store the vectors D, x;,
j=1,2,...,n (see [27]).

The forward mode of automatic differentiation can be implemented by means of a
precompiler, which transforms function evaluation code into extended code that evaluates
the derivative vectors as well. An alternative approach is to use the operator-overloading
facilities available in languages such as C++ to transparently extend the data structures and
operations in the manner described above.

THE REVERSE MODE

The reverse mode of automatic differentiation does not perform function and gradient
evaluations concurrently. Instead, after the evaluation of f is complete, it recovers the partial

207

208

CHAPTER 8. CALCULATING DERIVATIVES

derivatives of f with respect to each variable x;—independent and intermediate variables
alike—by performing a reverse sweep of the computational graph. At the conclusion of this
process, the gradient vector V f can be assembled from the partial derivatives df/dx; with
respect to the independent variables x;,i = 1,2, ..., n.

Instead of the gradient vectors D,x; used in the forward mode, the reverse mode
associates a scalar variable X; with each node in the graph; information about the partial
derivative df/dx; is accumulated in X; during the reverse sweep. The X; are sometimes
called the adjoint variables, and we initialize their values to zero, with the exception
of the rightmost node in the graph (node N, say), for which we set xy = 1. This
choice makes sense because xy contains the final function value f, so we have 9f/
ax N = 1.

The reverse sweep makes use of the following observation, which is again based on
the chain rule (8.25): For any node i, the partial derivative df/dx; can be built up from
the partial derivatives f/0x; corresponding to its child nodes j according to the following
formula:

gy U (831)
8x,» . N . an Bxi ’)
Jj achild of i

For each node i, we add the right-hand-side term in (8.31) to X; as soon as it becomes
known; that is, we perform the operation

X += ﬁaﬁ (8.32)

0x j 3)(,'
(In this expression and the ones below, we use the arithmetic notation of the programming
language C, in which x+=a means x < x + a.) Once contributions have been received
from all the child nodes of i, we have x; = 3f/dx;, so we declare node i to be “finalized.”
At this point, node i is ready to contribute a term to the summation for each of its parent
nodes according to the formula (8.31). The process continues in this fashion until all nodes
are finalized. Note that for derivative evaluation, the flow of computation in the graph
is from children to parents—the opposite direction to the computation flow for function
evaluation.

During the reverse sweep, we work with numerical values, not with formulae or
computer code involving the variables x; or the partial derivatives df/dx;. During the
forward sweep—the evaluation of f—we not only calculate the values of each variable x;,
but we also calculate and store the numerical values of each partial derivative dx;/dx;. Each
of these partial derivatives is associated with a particular arc of the computational graph.
The numerical values of dx;/dx; computed during the forward sweep are then used in the
formula (8.32) during the reverse sweep.

We illustrate the reverse mode for the example function (8.26). In Figure 8.3 we fill
in the graph of Figure 8.2 for a specific evaluation point x = (1, 2, 7/2)7, indicating the

8.2. AUTOMATIC DIFFERENTIATION 209

p(9.8)=2/
/

sin

N
(1) 2
G3=0 N\ w7 2 s)

14+29n

p(9,3)=(84¢?)n?

Figure 8.3 Computational graph for f(x) defined in (8.26) showing numerical
values of intermediate values and partial derivatives for the point x = (1, 2, 7/2)7.
Notation: p(j, i) = dx;/0x;.

numerical values of the intermediate variables x4, xs, . . ., X9 associated with each node and
the partial derivatives dx;/0x; associated with each arc.

As mentioned above, we initialize the reverse sweep by setting all the adjoint variables
X; to zero, except for the rightmost node, for which we have X9 = 1. Since f(x) = xo and
since node 9 has no children, we have Xo = 9f/0dx9, and so we can immediately declare node
9 to be finalized.

Node 9 is the child of nodes 3 and 8, so we use formula (8.32) to update the values of
X3 and xg as follows:

Af dxo 24+ —8—4¢?

N3t=—"— = — = , 8.33

st dx9 0x3 (7 /2)? 2 (8:332)
Jaf o 1 2

X+ = A dx 12 (8.33b)
0X9 0Xg /2 T

Node 3 is not finalized after this operation; it still awaits a contribution from its other child,
node 5. On the other hand, node 9 is the only child of node 8, so we can declare node 8 to
be finalized with the Value =+ = 2/m. We can now update the values of X; at the two parent
nodes of node 8 by applymg the formula (8.32) once again; that is,

Tt af axg 2
X, ——_— = —’
6 0xg 0Xg T

af a 2
j7+=_f£ —_
8)(8 8)(:7 b/

At this point, nodes 6 and 7 are finalized, so we can use them to update nodes 4 and 5. At

210

CHAPTER 8. CALCULATING DERIVATIVES

the end of this process, when all nodes are finalized, nodes 1, 2, and 3 contain

% (4 + 4€*) /7
oo |=Vf)=| @+2)/7 |,
X3 (—8 — 4¢?)/m?

and the derivative computation is complete.

The main appeal of the reverse mode is that its computational complexity is low for
the scalar functions f : R” — R discussed here. The extra arithmetic associated with
the gradient computation is at most four or five times the arithmetic needed to evaluate
the function alone. Taking the division operation in (8.33) as an example, we see that two
multiplications, a division, and an addition are required for (8.33a), while a division and
an addition are required for (8.33b). This is about five times as much work as the single
division involving these nodes that was performed during the forward sweep.

As we noted above, the forward mode may require up to n times more arithmetic
to compute the gradient V f than to compute the function f alone, making it appear
uncompetitive with the reverse mode. When we consider vector functions » : R" — R™,
the relative costs of the forward and reverse modes become more similar as m increases, as
we describe in the next section.

An apparent drawback of the reverse mode is the need to store the entire computational
graph, which is needed for the reverse sweep. In principle, storage of this graph is not too dif-
ficult to implement. Whenever an elementary operation is performed, we can form and store
anew node containing the intermediate result, pointers to the (one or two) parent nodes, and
the partial derivatives associated with these arcs. During the reverse sweep, the nodes can be
read in the reverse order to that in which they were written, giving a particularly simple access
pattern. The process of forming and writing the graph can be implemented as a straightfor-
ward extension to the elementary operations via operator overloading (asin ADOL-C [154]).
The reverse sweep/gradient evaluation can be invoked as a simple function call.

Unfortunately, the computational graph may require a huge amount of storage. If each
node can be stored in 20 bytes, then a function that requires one second of evaluation time
on a 100 megaflop computer may produce a graph of up to 2 gigabytes in size. The storage
requirements can be reduced, at the cost of some extra arithmetic, by performing partial
forward and reverse sweeps on pieces of the computational graph, reevaluating portions of
the graph as needed rather than storing the whole structure. Descriptions of this approach,
sometimes known as checkpointing, can be found in Griewank [150] and Grimm, Pottier, and
Rostaing-Schmidt [157]. An implementation of checkpointing in the context of variational
data assimilation can be found in Restrepo, Leaf, and Griewank [264] .

VECTOR FUNCTIONS AND PARTIAL SEPARABILITY

So far, we have looked at automatic differentiation of general scalar-valued functions
f : R" - R. In nonlinear least-squares problems (Chapter 10) and nonlinear equations

8.2. AUTOMATIC DIFFERENTIATION

(Chapter 11), we have to deal with vector functions r : R" — R™ with m components
rj, j =1,2,..., m. The rightmost column of the computational graph then consists of m
nodes, none of which has any children, in place of the single node described above. The
forward and reverse modes can be adapted in straightforward ways to find the Jacobian
J(x), the m x n matrix defined in (8.9).

Besides their applications to least-squares and nonlinear-equations problems, auto-
matic differentiation of vector functions is a useful technique for dealing with partially
separable functions. We recall that partial separability is commonly observed in large-scale
optimization, and we saw in Chapter 7 that there exist efficient quasi-Newton procedures for
the minimization of objective functions with this property. Since an automatic procedure for
detecting the decomposition of a given function f into its partially separable representation
was developed recently by Gay [118], it has become possible to exploit the efficiencies that
accrue from this property without asking much information from the user.

In the simplest sense, a function f is partially separable if we can express it in the form

f) =" filx), (8.34)
i=1

where each element function f;(-) depends on just a few components of x. If we construct
the vector function 7 from the partially separable components, that is,

fi (x)
fH(x)
r(x) =) ,
Sre(x)
it follows from (8.34) that
Vi x)=Jx)e, (8.35)
where, as usual, e = (1, 1,...,1)T. Because of the partial separability property, most

columns of J(x) contain just a few nonzeros. This structure makes it possible to calculate
J (x) efficiently by applying graph-coloring techniques, as we discuss below. The gradient
V f(x) can then be recovered from the formula (8.35).

In constrained optimization, it is often beneficial to evaluate the objective function f
and the constraint functions ¢;,i € ZUE, simultaneously. By doing so, we can take advantage
of common expressions (which show up as shared intermediate nodes in the computation
graph) and thus can reduce the total workload. In this case, the vector function r can be

211

212

CHAPTER 8. CALCULATING DERIVATIVES

defined as

) [fx)]
[Cj (x)]jeIUS .

An example of shared intermediate nodes was seen in Figure 8.2, where x, is shared during
the computation of x¢ and x.

CALCULATING JACOBIANS OF VECTOR FUNCTIONS

The forward mode is the same for vector functions as for scalar functions. Given a
seed vector p, we continue to associate quantities D ,x; with the node that calculates each
intermediate variable x;. At each of the rightmost nodes (containing r;, j = 1,2, ...,m),
this variable contains the quantity D,r; = (Vr j)T p, j = 1,2,...,m. By assembling
these m quantities, we obtain J(x)p, the product of the Jacobian and our chosen vector
p- As in the case of scalar functions (m = 1), we can evaluate the complete Jacobian
by setting p = ey, ey, ..., e, and evaluating the n quantities D, x; simultaneously. For
sparse Jacobians, we can use the coloring techniques outlined above in the context of finite-
difference methods to make more intelligent and economical choices of the seed vectors p.
The factor of increase in cost of arithmetic, when compared to a single evaluation of r, is
about equal to the number of seed vectors used.

The key to applying the reverse mode to a vector function r(x) is to choose seed
vectors ¢ € R™ and apply the reverse mode to the scalar functions r(x)”g. The result of
this process is the vector

m

Vir(x)'ql =V qurj(X) =J(x)q.
j=1

Instead of the Jacobian—vector product that we obtain with the forward mode, the reverse
mode yields a Jacobian-transpose—vector product. The technique can be implemented by

seeding the variables X; in the m dependent nodes that contain ry, r,, ..., ry, with the
components g1, ¢z, - - - , ¢ of the vector g. At the end of the reverse sweep, the node for
independent variables xy, x», . .., x,, will contain

%[r(x)rq], i=1,2,...,n,

which are simply the components of J (x)7g.

As usual, we can obtain the full Jacobian by carrying out the process above for the m
unit vectors ¢ = ey, ey, ..., ey. Alternatively, for sparse Jacobians, we can apply the usual
coloring techniques to find a smaller number of seed vectors g—the only difference being

8.2. AUTOMATIC DIFFERENTIATION

that the graphs and coloring strategies are defined with reference to the transpose J(x)”
rather than to J(x) itself. The factor of increase in the number of arithmetic operations
required, in comparison to an evaluation of r alone, is no more than 5 times the number
of seed vectors. (The factor of 5 is the usual overhead from the reverse mode for a scalar
function.) The space required for storage of the computational graph is no greater than in
the scalar case. As before, we need only store the graph topology information together with
the partial derivative associated with each arc.

The forward- and reverse-mode techniques can be combined to cumulatively reveal
all the elements of J(x). We can choose a set of seed vectors p for the forward mode to
reveal some columns of J, then perform the reverse mode with another set of seed vectors
q to reveal the rows that contain the remaining elements.

Finally, we note that for some algorithms, we do not need full knowledge of the
Jacobian J(x). For instance, iterative methods such as the inexact Newton method for
nonlinear equations (see Section 11.1) require repeated calculation of J (x) p for a succession
of vectors p. Each such matrix—vector product can be computed using the forward mode
by using a single forward sweep, at a similar cost to evaluation of the function alone.

CALCULATING HESSIANS: FORWARD MODE

So far, we have described how the forward and reverse modes can be applied to
obtain first derivatives of scalar and vector functions. We now outline extensions of these
techniques to the computation of the Hessian V2 f of a scalar function f, and evaluation of
the Hessian—vector product V2 f(x) p for a given vector p.

Recall that the forward mode makes use of the quantities D, x;, each of which stores
(Vx;)T p for each node i in the computational graph and a given vector p. For a given pair
of seed vectors p and g (both in R") we now define another scalar quantity by

Dy,x; = p'(Vx;)gq, (8.36)

for each node i in the computational graph. We can evaluate these quantities during the
forward sweep through the graph, alongside the function values x; and the first-derivative
values D,x;. The initial values of D, at the independent variable nodes x;,i =1,2...,n,
will be 0, since the second derivatives of x; are zero at each of these nodes. When the forward
sweep is complete, the value of D, x; in the rightmost node of the graph will be p” V2 f (x)gq.

The formulae for transformation of the D, x; variables during the forward sweep
can once again be derived from the chain rule. For instance, if x; is obtained by adding the
values at its two parent nodes, x; = x; + x;, the corresponding accumulation operations
on D,x; and D, x; are as follows:

Dyxi = Dpxj+ Dpxi, Dpgxi = Dpgxj + Dpgx. (8.37)

213

214 CHAPTER 8. CALCULATING DERIVATIVES

The other binary operations —, X, / are handled similarly. If x; is obtained by applying the
unitary transformation L to x ;, we have

x; = L(x;), (8.38a)
D,px; = L'(x;)(Dpx;), (8.38b)
Dygxi = L"(x;)(Dpx;)(Dygx;) + L'(x;)Dpgx;. (8.38¢)

We see in (8.38¢c) that computation of D,,x; can rely on the first-derivative quantities
D,x; and D,x;, so both these quantities must be accumulated during the forward sweep
as well.

We could compute a general dense Hessian by choosing the pairs (p, ¢) to be all
possible pairs of unit vectors (e, e), for j = 1,2,...,nand k = 1,2,..., j, a total of
n(n + 1)/2 vector pairs. (Note that we need only evaluate the lower triangle of V2 £ (x),
because of symmetry.) When we know the sparsity structure of V2 f(x), we need evaluate
Dy, x; only for the pairs (e}, ¢x) for which the (j, k) component of V2 f(x) is possibly
nonzero.

The total increase factor for the number of arithmetic operations, compared with the
amount of arithmetic to evaluate f alone, is a small multiple of 1 + n + N_(V? f), where
N, (V2 f) is the number of elements of V? f that we choose to evaluate. This number reflects
the evaluation of the quantities x;, D¢, x; (j = 1,2,...,n),and D, x; for the N.(V%f)
vector pairs (e;, e;). The “small multiple” results from the fact that the update operations
for D,x; and D,,x; may require a few times more operations than the update operation
for x; alone; see, for example, (8.38). One storage location per node of the graph is required
for each of the 1 + n + N,(V? f) quantities that are accumulated, but recall that storage of
node i can be overwritten once all its children have been evaluated.

When we do not need the complete Hessian, but only a matrix—vector product involv-
ing the Hessian (as in the Newton—CG algorithm of Chapter 7), the amount of arithmetic
is, of course, smaller. Given a vector ¢ € R”, we use the techniques above to compute

the first-derivative quantities D, x;, ... D, x; and D,x;, as well as the second-derivative
quantities De,¢X;, ..., De,qXi, during the forward sweep. The final node will contain the
quantities

ef (Vf()g=[Vfq],, Jj=12....n,

which are the components of the vector V2 f(x)g. Since 2n + 1 quantities in addition to
x; are being accumulated during the forward sweep, the increase factor in the number of
arithmetic operations increases by a small multiple of 2n.

An alternative technique for evaluating sparse Hessians is based on the forward-
mode propagation of first and second derivatives of univariate functions. To motivate this

8.2. AUTOMATIC DIFFERENTIATION

approach, note that the (i, j) element of the Hessian can be expressed as follows:

[sz(x)]ij = e,-TVZf(X)ej
(8.39)

= % [(ei +e)V2f(x)(ei +e;) — e VP f(x)e; — eJTVZf(x)ej])

We can use this interpolation formula to evaluate [V2 f (x)]ij> provided that the second
derivatives D ,,xi, for p = e;, p = ej, p = e; + e}, and all nodes x;, have been evaluated
during the forward sweep through the computational graph. In fact, we can evaluate all the
nonzero elements of the Hessian, provided that we use the forward mode to evaluate D ,x;
and D,,x; for a selection of vectors p of the form e; + e;, where i and j are both indices
in{l,2,...,n}, possibly withi = j.

One advantage of this approach is that it is no longer necessary to propagate “cross
terms” of the form D, x; for p # g (see, for example, (8.37) and (8.38¢)). The propagation
formulae therefore simplify somewhat. Each D,,x; is a function of x¢, Dpx¢, and D ppxe
for all parent nodes £ of node k.

Note, too, that if we define the univariate function ¥ by

Y(t) = f(x +1p), (8.40)

then the values of D, f and D, f, which emerge at the completion of the forward sweep,
are simply the first two derivatives of ¢ evaluated at r = 0; that is,

Dpf =p'VIx) =¥ (Olizo, Dppf =p"Vf(x)p=19"(1)liz0

Extension of this technique to third, fourth, and higher derivatives is possible. Inter-
polation formulae analogous to (8.39) can be used in conjunction with higher derivatives
of the univariate functions v defined in (8.40), again for a suitably chosen set of vectors p,
where each p is made up of a sum of unit vectors e;. For details, see Bischof, Corliss, and
Griewank [26].

CALCULATING HESSIANS: REVERSE MODE

We can also devise schemes based on the reverse mode for calculating Hessian—
vector products V2 f(x)g, or the full Hessian V2 f(x). A scheme for obtaining V2 f(x)g
proceeds as follows. We start by using the forward mode to evaluate both f and V f(x)7 ¢,
by accumulating the two variables x; and D,x; during the forward sweep in the manner
described above. We then apply the reverse mode in the normal fashion to the computed
function V f(x)7q. At the end of the reverse sweep, the nodes i = 1,2,...,n of the
computational graph that correspond to the independent variables will contain

d
E(Vf(x)Tq) = [sz(x)q]i, i=12,...,n.

215

216

CHAPTER 8. CALCULATING DERIVATIVES

The number of arithmetic operations required to obtain V2 f(x)q by this procedure
increases by only a modest factor, independent of n, over the evaluation of f alone. By
the usual analysis for the forward mode, we see that the computation of f and V f(x)"q
jointly requires a small multiple of the operation count for f alone, while the reverse sweep
introduces a further factor of at most 5. The total increase factor is approximately 12 over the
evaluation of f alone. If the entire Hessian V2 f (x) is required, we could apply the procedure
just described with ¢ = ey, e, . . ., e,. This approach would introduce an additional factor
of n into the operation count, leading to an increase of at most 12n over the cost of f alone.

Once again, when the Hessian is sparse with known structure, we may be able to
use graph-coloring techniques to evaluate this entire matrix using many fewer than n seed
vectors. The choices of g are similar to those used for finite-difference evaluation of the
Hessian, described above. The increase in operation count over evaluating f alone is a
multiple of up to 12N.(V?2 f), where N, is the number of seed vectors ¢ used in calculating
Vif.

CURRENT LIMITATIONS

The current generation of automatic differentiation tools has proved its worth through
successful application to some large and difficult design optimization problems. However,
these tools can run into difficulties with some commonly used programming constructs and
some implementations of computer arithmetic. As an example, if the evaluation of f(x)
depends on the solution of a partial differential equation (PDE), then the computed value
of f may contain truncation error arising from the finite-difference or the finite-element
technique that is used to solve the PDE numerically. That is, we have f (x)=f(x)+ t(x),
where f (+) is the computed value of f(-) and z(-) is the truncation error. Though |z (x)]| is
usually small, its derivative t/(x) may not be, so the error in the computed derivative f "(x)
is potentially large. (The finite-difference approximation techniques discussed in Section 8.1
experience the same difficulty.) Similar problems arise when the computer uses piecewise
rational functions to approximate trigonometric functions.

Another source of potential difficulty is the presence of branching in the code to
improve the speed or accuracy of function evaluation in certain domains. A pathological
example is provided by the linear function f(x) = x — 1. If we used the following (perverse,
but valid) piece of code to evaluate this function,

if (x =1.0) then f =0.0 else f =x—1.0,

then by applying automatic differentiation to this procedure we would obtain the derivative
value f/(1) = 0. For a discussion of such issues and an approach to dealing with them, see
Griewank [151, 152].

In conclusion, automatic differentiation should be regarded as a set of increasingly
sophisticated techniques that enhances optimization algorithms, allowing them to be applied
more widely to practical problems involving complicated functions. By providing sensitivity
information, it helps the modeler to extract more information from the results of the

8.2. AUTOMATIC DIFFERENTIATION

computation. Automatic differentiation should not be regarded as a panacea that absolves
the user altogether from the responsibility of thinking about derivative calculations.

NOTES AND REFERENCES

A comprehensive and authoritative reference on automatic differentiation is the book
of Griewank [152]. The web site www.autodiff.org contains a wealth of current infor-
mation about theory, software, and applications. A number of edited collections of papers
on automatic differentiation have appeared since 1991; see Griewank and Corliss [153],
Berz et al. [20], and Biicker et al. [40]. An historical paper of note is Corliss and Rall [78],
which includes an extensive bibliography. Software tool development in automatic dif-
ferentiation makes use not only of forward and reverse modes but also includes “mixed
modes” and “cross-country algorithms” that combine the two approaches; see for example
Naumann [222].

The field of automatic differentiation grew considerably during the 1990s, and and a
number of good software tools appeared. These included ADIFOR [25] and ADIC [28], and
ADOL-C [154]. Tools developed in more recent years include TAPENADE, which accepts
Fortran code through a web server and returns differentiated code; TAF, a commercial tool
that also performs source-to-source automatic differentiation of Fortran codes; OpenAD,
which works with Fortran, C, and C++; and TOMLAB/MAD, which works with MATLAB
code.

The technique for calculating the gradient of a partially separable function was de-
scribed by Bischof et al. [24], whereas the computation of the Hessian matrix has been
considered by several authors; see, for example, Gay [118].

The work of Coleman and Moré [69] on efficient estimation of Hessians was predated
by Powell and Toint [261], who did not use the language of graph coloring but nevertheless
devised highly effective schemes. Software for estimating sparse Hessians and Jacobians is
described by Coleman, Garbow, and Moré [66, 67]. The recent paper of Gebremedhin,
Manne, and Pothen [120] contains a comprehensive discussion of the application of graph
coloring to both finite difference and automatic differentiation techniques.

& EXERCISES

& 8.1 Show thata suitable value for the perturbation € in the central-difference formula

13, and that the accuracy achievable by this formula when the values of f contain
2/3

ise=u
roundoff errors of size u is approximately u*/>. (Use similar assumptions to the ones used

to derive the estimate (8.6) for the forward-difference formula.)

& 8.2 Derive a central-difference analogue of the Hessian—vector approximation
formula (8.20).

217

218

CHAPTER 8. CALCULATING DERIVATIVES

& 8.3 Verify the formula (8.21) for approximating an element of the Hessian using only
function values.

& 8.4 Verify that if the Hessian of a function f has nonzero diagonal elements, then its
adjacency graph is a subgraph of the intersection graph for V f. In other words, show that
any arc in the adjacency graph also belongs to the intersection graph.

& 8.5 Draw the adjacency graph for the function f defined by (8.22). Show that the
coloring scheme in which node 1 has one color while nodes 2, 3, ..., n have another color
is valid. Draw the intersection graph for V f.

& 8.6 Construct the adjacency graph for the function whose Hessian has the nonzero
structure

M x x x X 7]
X X X X
X X X X
b
X X
X X

and find a valid coloring scheme with just four colors.

& 8.7 Trace the computations performed in the forward mode for the function f(x) in
(8.26), expressing the intermediate derivatives Vx;, i = 4,5, ..., 9 in terms of quantities
available at their parent nodes and then in terms of the independent variables x;, x;, x3.

& 8.8 Formula (8.30) showed the gradient operations associated with scalar division.
Derive similar formulae for the following operations:

(s,t) > s+t addition;

t— ¢ exponentiation;
t — tan(t) tangent;
(s, 1) = s.

& 8.9 By calculating the partial derivatives dx;/dx; for the function (8.26) from the
expressions (8.27), verify the numerical values for the arcs in Figure 8.3 for the evaluation
point x = (1,2, 7/2)T. Work through the remaining details of the reverse sweep process,
indicating the order in which the nodes become finalized.

8.2. AUTOMATIC DIFFERENTIATION

& 8.10 Using (8.33) as a guide, describe the reverse sweep operations corresponding to
the following elementary operations in the forward sweep:

Xp < XiXj multiplication;
J

X < cos(x;) cosine.

In each case, compare the arithmetic workload in the reverse sweep to the workload required
for the forward sweep.

& 8.11 Define formulae similar to (8.37) for accumulating the first derivatives D ,x; and
the second derivatives D, x; when x; is obtained from the following three binary operations:
Xj = Xj — Xp, Xi = X;Xp, and x; = X /xp.

& 8.12 By using the definitions (8.28) of D,x; and (8.36) of D,,x;, verify the

differentiation formulae (8.38) for the unitary operation x; = L(x;).

& 8.13 Leta € R" be a fixed vector and define f as f(x) = % (xTx + (aTx)z). Count

the number of operations needed to evaluate f, V f, V2 f, and the Hessian—vector product
V2 f(x)p for an arbitrary vector p.

219

CHAPTER

Derivative-Free
Optimization

Many practical applications require the optimization of functions whose derivatives are
not available. Problems of this kind can be solved, in principle, by approximating the
gradient (and possibly the Hessian) using finite differences (see Chapter 8), and using these
approximate gradients within the algorithms described in earlier chapters. Even though
this finite-difference approach is effective in some applications, it cannot be regarded a
general-purpose technique for derivative-free optimization because the number of function
evaluations required can be excessive and the approach can be unreliable in the presence
of noise. (For the purposes of this chapter we define noise to be inaccuracy in the function
evaluation.) Because of these shortcomings, various algorithms have been developed that

9.1. FINITE DIFFERENCES AND NOISE

do not attempt to approximate the gradient. Rather, they use the function values at a set of
sample points to determine a new iterate by some other means.

Derivative-free optimization (DFO) algorithms differ in the way they use the sampled
function values to determine the new iterate. One class of methods constructs a linear
or quadratic model of the objective function and defines the next iterate by seeking to
minimize this model inside a trust region. We pay particular attention to these model-based
approaches because they are related to the unconstrained minimization methods described
in earlier chapters. Other widely used DFO methods include the simplex-reflection method
of Nelder and Mead, pattern-search methods, conjugate-direction methods, and simulated
annealing. In this chapter we briefly discuss these methods, with the exception of simulated
annealing, which is a nondeterministic approach and has little in common with the other
techniques discussed in this book.

Derivative-free optimization methods are not as well developed as gradient-based
methods; current algorithms are effective only for small problems. Although most DFO
methods have been adapted to handle simple types of constraints, such as bounds, the
efficient treatment of general constraints is still the subject of investigation. Consequently,
we limit our discussion to the unconstrained optimization problem

n;gl f(x). (9.1)

Problems in which derivatives are not available arise often in practice. The evaluation
of f(x) can, for example, be the result of an experimental measurement or a stochastic
simulation, with the underlying analytic form of f unknown. Even if the objective function
f is known in analytic form, coding its derivatives may be time consuming or impractical.
Automatic differentiation tools (Chapter 8) may not be applicable if f(x) is provided only
in the form of binary computer code. Even when the source code is available, these tools
cannot be applied if the code is written in a combination of languages.

Methods for derivative-free optimization are often used (with mixed success) to
minimize problems with nondifferentiable functions or to try to locate the global minimizer
of a function. Since we do not treat nonsmooth optimization or global optimization in this
book, we will restrict our attention to smooth problems in which f has a continuous
derivative. We do, however, discuss the effects of noise in Sections 9.1 and 9.6.

9.1 FINITE DIFFERENCES AND NOISE

As mentioned above, an obvious DFO approach is to estimate the gradient by using finite
differences and then employ a gradient-based method. This approach is sometimes successful
and should always be considered, but the finite-difference estimates can be inaccurate when
the objective function contains noise. We quantify the effect of noise in this section.

Noise can arise in function evaluations for various reasons. If f(x) depends on a
stochastic simulation, there will be a random error in the evaluated function because of the

221

222

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

finite number of trials in the simulation. When a differential equation solver or some other
complex numerical procedure is needed to calculate f, small but nonzero error tolerances
that are used during the calculations will produce noise in the value of f.

In many applications, then, the objective function f has the form

f(x) = h(x) +¢(x), (9.2)

where / is a smooth function and ¢ represents the noise. Note that we have written ¢ to be
a function of x but in practice it need not be. For instance, if the evaluation of f depends
on a simulation, the value of ¢ will generally differ at each evaluation, even at the same x.
The form (9.2) is, however, useful for illustrating some of the difficulties caused by noise in
gradient estimates and for developing algorithms for derivative-free optimization.

Given a difference interval €, recall that the centered finite-difference approximation
(8.7) to the gradient of f at x is defined as follows:

(9.3)

Vef(x):|:f(x+€ei)_f(x_56i):| ’
i=1,2,...n

2¢€

where ¢; is the ith unit vector (the vector whose only nonzero element is a 1 in the ith
position). We wish to relate V. f (x) to the gradient of the underlying smooth function A (x),
as a function of € and the noise level. For this purpose we define the noise level 7 to be the
largest value of ¢ in a box of edge length 2¢ centered at x, that is,

n(x;e) = sup |¢(2)]. (9.4)

llz—xlloo <€

By applying to the central difference formula (9.3) the argument that led to (8.5), we can
establish the following result.

Lemma 9.1.
Suppose that V*h is Lipschitz continuous in a neighborhood of the box {z | |z — x|l o < €}
with Lipschitz constant Lj,. Then we have

Ve f(x) = VA(X)lloo < Li€® + @ (9.5)

Thus the error in the approximation (9.3) comes from both the intrinsic finite difference
approximation error (the O(e?) term) and the noise (the n(x; €)/e term). If the noise
dominates the difference interval €, we cannot expect any accuracy at all in V, f(x), so it
will only be pure luck if —V, f(x) turns out to be a direction of descent for f.

Instead of computing a tight cluster of function values around the current iterate, as
required by a finite-difference approximation to the gradient, it may be preferable to separate
these points more widely and use them to construct a model of the objective function. This

9.9. MODEL-BASED METHODS

approach, which we consider in the next section and in Section 9.6, may be more robust to
the presence of noise.

9.2 MODEL-BASED METHODS

Some of the most effective algorithms for unconstrained optimization described in the
previous chapters compute steps by minimizing a quadratic model of the objective function
f- The model is formed by using function and derivative information at the current iterate.
When derivatives are not available, we may define the model m as the quadratic function
that interpolates f at a set of appropriately chosen sample points. Since such a model is
usually nonconvex, the model-based methods discussed in this chapter use a trust-region
approach to compute the step.

Suppose that at the current iterate x; we have a set of sample points ¥ =
(3L ¥%, ..., y9), with y) € R%, i = 1,2,...,q. We assume that x; is an element of
this set and that no point in Y has a lower function value than x;. We wish to construct a
quadratic model of the form

me(xi+p)=c+g" p+3p" Gp. (9.6)

We cannot define g = V f(x;) and G = V2 f(x;) because these derivatives are not available.
Instead, we determine the scalar ¢, the vector g € R", and the symmetric matrix G € R"*"
by imposing the interpolation conditions

mk(yl) :f(yl), [=1,2,...,q. 9.7)

Since there are %(n + 1)(n + 2) coefficients in the model (9.6) (that is, the components of
¢, g and G, taking into account the symmetry of G), the interpolation conditions (9.7)
determine my uniquely only if

g=3n+1)(n+2). (9.8)

In this case, (9.7) can be written as a square linear system of equations in the coefficients of
the model. If we choose the interpolation points y!, ¥, ..., ¥¢ so that this linear system is
nonsingular, the model m; will be uniquely determined.

Once my has been formed, we compute a step p by approximately solving the trust-
region subproblem

min my(x¢ 4+ p), subjectto [pl2 <A, (9.9)
p

for some trust-region radius A > 0. We can use one of the techniques described in Chapter 4
to solve this subproblem. If x; + p gives a sufficient reduction in the objective function,

223

224

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

the new iterate is defined as x441 = x; + p, the trust region radius A is updated, and a
new iteration commences. Otherwise the step is rejected, and the interpolation set Y may
be improved or the trust region shrunk.

To reduce the cost of the algorithm, we update the model m; at every iteration,
rather than recomputing it from scratch. In practice, we choose a convenient basis for the
space of quadratic polynomials, the most common choices being Lagrange and Newton
polynomials. The properties of these bases can be used both to measure appropriateness of
the sample set ¥ and to change this set if necessary. A complete algorithm that treats all
these issues effectively is far more complicated than the quasi-Newton methods discussed
in Chapter 6. Consequently, we will provide only a broad outline of model-based DFO
methods.

Asis common in trust-region algorithms, the step-acceptance and trust-region update
strategies are based on the ratio between the actual reduction in the function and the
reduction predicted by the model, that is,

fl) = f(x)

S Al A 9.10
my(xg) — mi(x;) (5.10)

where x;” denotes the trial point. Throughout this section, the integer g is defined
by (9.8).

Algorithm 9.1 (Model-Based Derivative-Free Method).

Choose an interpolation set ¥ = {y!, y2, ..., 9} such that the linear system defined
by (9.7) is nonsingular, and select x, as a point in this set such that f(x,) < f(y’) for all
y' € Y. Choose an initial trust region radius Ay, a constant 1 € (0, 1), and set k <— 0.

repeat until a convergence test is satisfied:
Form the quadratic model my(x; + p) that satisfies the interpolation
conditions (9.7);
Compute a step p by approximately solving subproblem (9.9);
Define the trial point as x,j =x; + p;
Compute the ratio p defined by (9.10);
ifp>n
Replace an element of ¥ by x;;
Choose Apyy > Ag;
Set xg1q < x,j ;
Set k < k + 1 and go to the next iteration;
elseif the set Y need not be improved
Choose Apyy < Ay
Set Xp41 < Xi;
Set k <— k + 1 and go to the next iteration;
end (if)

9.9. MODEL-BASED METHODS

Invoke a geometry-improving procedure to update Y:
at least one of the points in Y is replaced by some other point,
with the goal of improving the conditioning of (9.7);
Set Agy1 < Ay
Choose x as an element in Y with lowest function value;
Set x;7 < £ and recompute p by (9.10);
ifp>n
Set xp41 < x,j ;
else
Set xp11 < Xp3
end (if)
Setk < k+1;
end (repeat)

The case of p > n, in which we obtain sufficient reduction in the merit function, is
the simplest. In this case we always accept the trial point x;" as the new iterate, include x;*
in Y, and remove an element from Y.

When sufficient reduction is not achieved (p < 1), we look at two possible causes:
inadequacy of the interpolation set Y and a trust region that is too large. The first cause
can arise when the iterates become restricted to a low-dimensional surface of R” that does
not contain the solution. The algorithm could then be converging to a minimizer in this
subset. Behavior such as this can be detected by monitoring the conditioning of the linear
system defined by the interpolation conditions (9.7). If the condition number is too high,
we change Y to improve it, typically by replacing one element of ¥ with a new element
so as to move the interpolation system (9.7) as far away from singularity as possible. If ¥
seems adequate, we simply decrease the trust region radius A, as is done in the methods of
Chapter 4.

A good initial choice for Y is given by the vertices and the midpoints of the edges of a
simplex in R”.

The use of quadratic models limits the size of problems that can be solved in
practice. Performing O(n?) function evaluations just to start the algorithm is onerous,
even for moderate values of n (say, n = 50). In addition, the cost of the iteration is
high. Even by updating the model m; at every iteration, rather than recomputing it
from scratch, the number of operations required to construct m; and compute a step
is O(n*) [257].

To alleviate these drawbacks, we can replace the quadratic model by a linear model in
which the matrix G in (9.6) is set to zero. Since such a model contains only n + 1 parameters,
we need to retain only n 4 1 interpolation points in the set ¥, and the cost of each iteration is
O(n®). Algorithm 9.1 can be applied with little modification when the model is linear, but it
is not rapidly convergent because linear models cannot represent curvature of the problem.
Therefore, some model-based algorithms start with n + 1 initial points and compute steps

225

226

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

using a linear model, but after ¢ = %(n + 1)(n + 2) function values become available, they
switch to using quadratic models.

INTERPOLATION AND POLYNOMIAL BASES

We now consider in more detail how to form a model of the objective function using
interpolation techniques. We begin by considering a linear model of the form

mi(xi + p) = flx) + &' p. (9.11)

To determine the vector g € R", we impose the interpolation conditions m(y') = f(»'),
[=1,2,...,n,which can be written as

(Sl)Tg:f(y[)_f(xk), l: 1,2,...,}1, (912)
where
sl=y—x, I=1,2,....n. (9.13)

Conditions (9.12) represent a linear system of equations in which the rows of the coefficient
matrix are given by the vectors (s')7 . It follows that the model (9.11) is determined uniquely

by (9.12) if and only if the interpolation points {y!, y2, ..., y"} are such that the set
{s':1=1,2,...,n}is linearly independent. If this condition holds, the simplex formed by
the points xy, y!, yz, ..., y" is said to be nondegenerate.

Let us now consider how to construct a quadratic model of the form (9.6), with
f = f(xx). We rewrite the model as

me(xi+p) = fx)+8 p+ Y Gijpipi+ 1 Y Gi; (9.14)
i< i

def AT A
= flx) + 2" p, (9.15)

where we have collected the elements of g and G in the (¢ — 1)-vector of unknowns

- T 1 T

g= (8 AGijli<j, {7§Gii})) (9.16)
and where the (¢ — 1)-vector p is given by

- T o))

p= (p Apipjli<js {jipi })

The model (9.15) has the same form as (9.11), and the determination of the vector of
unknown coefficients g can be done as in the linear case.

9.9. MODEL-BASED METHODS

Multivariate quadratic functions can be represented in various ways. The monomial
basis (9.14) has the advantage that known structure in the Hessian can be imposed easily by
setting appropriate elements in G to zero. Other bases are, however, more convenient when
one is developing mechanisms for avoiding singularity of the system (9.7).

We denote by {¢;(-)}7_, a basis for the linear space of n-dimensional quadratic
functions. The function (9.6) can therefore be expressed as

q
mi(x) =Y aighi(x),
i=1

for some coefficients «;. The interpolation set ¥ = {y!,y2,...,y9} determines the
coefficients «; uniquely if the determinant

&) o di ()
S(Y) X det : : (9.17)

¢q(yl) ¢q(yq)

is nonzero.

As model-based algorithms iterate, the determinant §(Y) may approach zero, leading
to numerical difficulties or even failure. Several algorithms therefore contain a mechanism
for keeping the interpolation points well placed. We now describe one of those mechanisms.

UPDATING THE INTERPOLATION SET

Rather than waiting until the determinant §(Y) becomes smaller than a threshold,
we may invoke a geometry-improving procedure whenever a trial point does not provide
sufficient decrease in f. The goal in this case is to replace one of the interpolation points
so that the determinant (9.17) increases in magnitude. To guide us in this exchange, we use
the following property of §(Y'), which we state in terms of Lagrange functions.

For every y € Y, we define the Lagrangian function L(-, y) to be a polynomial of
degree at most 2 such that L(y, y) = land L(y, y) = 0for y # y, y € Y. Suppose that the
set Y is updated by removing a point y_ and replacing it by some other point y_, to give the
new set Y*. One can show that (after a suitable normalization and given certain conditions
[256])

18QY)] < IL(y+, y)II8(Y)]. (9.18)

Algorithm 9.1 can make good use of this inequality to update the interpolation set.
Consider first the case in which trial point x* provides sufficient reduction in the
objective function (p > n). We include x™ in ¥ and remove another point y_ from Y.

227

228

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

Motivated by (9.18), we select the outgoing point as follows:

y_ =argmax [L(x", y)|.
yeY

Next, let us consider the case in which the reduction in f is not sufficient (p < 7).
We first determine whether the set ¥ should be improved, and for this purpose we use
the following rule. We consider Y to be adequate at the current iterate x; if for all y € ¥
such that ||x; — y'|| < A we have that |§(Y)| cannot be doubled by replacing one of these
interpolation points y’ with any point y inside the trust region. If Y is adequate but the
reduction in f was not sufficient, we decrease the trust-region radius and begin a new
iteration.

If Y is inadequate, the geometry-improving mechanism is invoked. We choose a point
y_ € Y and replace it by some other point y* that is chosen solely with the objective
of improving the determinant (9.17). For every point y' € Y, we define its potential
replacement y' as

I —arg max |L , H1.
Y=g M 020l

The outgoing point y_ is selected as the point for which |L(y!, y')| is maximized over all
indices y' € Y.

Implementing these rules efficiently in practice is not simple, and one must also
consider several possible difficulties we have not discussed; see [76]. Strategies for improving
the position of the interpolation set are the subject of ongoing investigation and new
developments are likely in the coming years.

A METHOD BASED ON MINIMUM-CHANGE UPDATING

We now consider a method that be viewed as an extension of the quasi-Newton
approach discussed in Chapter 6. The method uses quadratic models but requires only
O(n®) operations per iteration, substantially fewer than the O(n*) operations required by
the methods described above. To achieve this economy, the method retains only O (n) points
for the interpolation conditions (9.7) and absorbs the remaining degrees of freedom in the
model (9.6) by requiring that the Hessian of the model change as little as possible from
one iteration to the next. This least-change property is one of the key ingredients in quasi-
Newton methods, the other ingredient being the requirement that the model interpolate
the gradient V f at the two most recent points. The method we describe now combines the
least-change property with interpolation of function values.

At the kth iteration of the algorithm, a new quadratic model m; of the form (9.6)
is constructed after taking a step from x; to x44+1. The coefficients fy11, gkt+1, Gi41 of the

9.3. COORDINATE AND PATTERN-SEARCH METHODS

model myy, are determined as the solution of the problem

i G — Gi|l3 9.19
min Il Kl (9.19a)
subjectto G symmetric
mGy)= o 1=1,2,...,4q, (9.19b)
where || - || denotes the Frobenius norm (see (A.9)), Gy is the Hessian of the previous

model my, and ¢ is an integer comparable to n. One can show that the integer ¢ must be
chosen larger than n + 1 to guarantee that G, is not equal to G. An appropriate value in
practice is § = 2n + 1; for this choice the number of interpolation points is roughly twice
that used for linear models.

Problem (9.19) is an equality-constrained quadratic program whose KKT conditions
can be expressed as a system of equations. Once the model m; is determined, we compute
a new step by solving a trust-region problem of the form (9.9). In this approach, too,
it is necessary to ensure that the geometry of the interpolation set ¥ is adequate. We
therefore impose two minimum requirements. First, the set ¥ should be such that the
equations (9.19b) can be satisfied for any right-hand side. Second, the points y* should
not all lie in a hyperplane. If these two conditions hold, problem (9.19) has a unique
solution.

A practical algorithm based on the subproblem (9.19) resembles Algorithm 9.1 in that
it contains procedures both for generating new iterates and for improving the geometry
of the set Y. The implementation described in [260] contains other features to ensure that
the interpolation points are well separated and that steps are not too small. A strength of
this method is that it requires only O (n) interpolation points to start producing productive
steps. In practice the method often approaches a solution with fewer than %(n + 1)(n+2)
function evaluations. However, since this approach has been developed only recently, there
is insufficient numerical experience to assess its full potential.

9.3 COORDINATE AND PATTERN-SEARCH METHODS

Rather than constructing a model of f explicitly based on function values, coordinate search
and pattern-search methods look along certain specified directions from the current iterate
for a point with a lower function value. If such a point is found, they step to it and repeat the
process, possibly modifying the directions of search for the next iteration. If no satisfactory
new point is found, the step length along the current search directions may be adjusted, or
new search directions may be generated.

We describe first a simple approach of this type that has been used often in practice.
We then consider a generalized approach that is potentially more efficient and has stronger
theoretical properties.

229

230 CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

Figure 9.1
Coordinate search method makes slow
progress on this function of two variables.

COORDINATE SEARCH METHOD

The coordinate search method (also known as the coordinate descent method or
the alternating variables method) cycles through the n coordinate directions ey, e, . . ., €,,
obtaining new iterates by performing a line search along each direction in turn. Specifically,
at the first iteration, we fix all components of x except the first one x; and find a new value
of this component that minimizes (or at least reduces) the objective function. On the next
iteration, we repeat the process with the second component x,, and so on. After iterations,
we return to the first variable and repeat the cycle. Though simple and somewhat intuitive,
this method can be quite inefficient in practice, as we illustrate in Figure 9.1 for a quadratic
function in two variables. Note that after a few iterations, neither the vertical (x,) nor the
horizontal (x;) move makes much progress toward the solution at each iteration.

In general, the coordinate search method can iterate infinitely without ever approach-
ing a point where the gradient of the objective function vanishes, even when exact line
searches are used. (By contrast, as we showed in Section 3.2, the steepest descent method
produces a sequence of iterates {x;} for which ||V fi|| — 0, under reasonable assumptions.)
In fact, a cyclic search along any set of linearly independent directions does not guarantee
global convergence [243]. Technically speaking, this difficulty arises because the steepest de-
scent search direction —V f; may become more and more perpendicular to the coordinate
search direction. In such circumstances, the Zoutendijk condition (3.14) is satisfied because
cos 0, approaches zero rapidly, even when V f;. does not approach zero.

When the coordinate search method does converge to a solution, it often converges
much more slowly than the steepest descent method, and the difference between the two
approaches tends to increase with the number of variables. However, coordinate search may

9.3. COORDINATE AND PATTERN-SEARCH METHODS

still be useful because it does not require calculation of the gradient V f, and the speed
of convergence can be quite acceptable if the variables are loosely coupled in the objective
function f.

Many variants of the coordinate search method have been proposed, some of which
allow a global convergence property to be proved. One simple variant is a “back-and-forth”
approach in which we search along the sequence of directions

€1,€2,y ey Cn1,€y,€n_1,...,€2,€1,€, ... (repeats).

Another approach, suggested by Figure 9.1, is first to perform a sequence of coordinate
descent steps and then search along the line joining the first and last points in the cycle. Several
algorithms, such as that of Hooke and Jeeves, are based on these ideas; see Fletcher [101]
and Gill, Murray, and Wright [130].

The pattern-search approach, described next, generalizes coordinate search in that it
allows the use of a richer set of search directions at each iteration.

PATTERN-SEARCH METHODS

We consider pattern-search methods that choose a certain set of search directions
at each iterate and evaluate f at a given step length along each of these directions. These
candidate points form a “frame,” or “stencil,” around the current iterate. If a point with a
significantly lower function value is found, it is adopted as the new iterate, and the center
of the frame is shifted to this new point. Whether shifted or not, the frame may then be
altered in some way (the set of search directions may be changed, or the step length may
grow or shrink), and the process repeats. For certain methods of this type it is possible
to prove global convergence results—typically, that there exists a stationary accumulation
point.

The presence of noise or other forms of inexactness in the function values may affect
the performance of pattern-search algorithms and certainly impacts the convergence theory.
Nonsmoothness may also cause undesirable behavior, as can be shown by simple examples,
although satisfactory convergence is often observed on nonsmooth problems.

To define pattern-search methods, we introduce some notation. For the current iterate
xi, we define Dy to be the set of possible search directions and y; to be the line search
parameter. The frame consists of the points x; + yx p, for all p; € Dy. When one of the
points in the frame yields a significant decrease in f, we take the step and may also increase
Yk» 50 as to expand the frame for the next iteration. If none of the points in the frame has a
significantly better function value than fi, we reduce y; (contract the frame), set x;.1; = X,
and repeat. In either case, we may change the direction set D; prior to the next iteration,
subject to certain restrictions.

A more precise description of the algorithm follows.

231

232 CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

Algorithm 9.2 (Pattern-Search).
Given convergence tolerance Yy, contraction parameter Oy,
sufficient decrease function p : [0, 00) — R with p(#) an increasing
function of t and p(¢)/t — Oast | 0;
Choose initial point xy, initial step length yy > 4.1, initial direction set Dy;
fork=1,2,...
if i < Vil
stop;
if O + vepi) < f(xx) — p(y) for some py € Dy
Set X411 < X + yx pr for some such py;
Set Yiy1 < dryx for some ¢ > 1; (* increase step length *)

else
Set Xp41 < Xp3
Set Vi1 < Ok Yk, where 0 < 6 < Opax < 15
end (if)
end (for)

A wise choice of the direction set Dy is crucial to the practical behavior of this approach
and to the theoretical results that can be proved about it. A key condition is that at least one
direction in this set should give a direction of descent for f whenever V f(x;) # 0 (that is,
whenever x; is not a stationary point). To make this condition specific, we refer to formula
(3.12), where we defined the angle between a possible search direction d and the gradient
V fi as follows:

_kaTP

cosf) = —————.
IVl lipl

(9.20)

Recall from Theorem 3.2 that global convergence of a line-search method to a stationary
point of f could be ensured if the search direction d at each iterate x; satisfied cos > §,
for some constant § > 0, and if the line search parameter satisfied certain conditions. In
the same spirit, we choose Dy so that at least one direction p € Dy will yield cos8 > §,
regardless of the value of V f;. This condition is as follows:

T

k(Dy) e 1 nin max (9.21)

veR" peDy ||v|| ||P|| B

A second condition on Dy is that the lengths of the vectors in this set are all roughly
similar, so that the diameter of the frame formed by this set is captured adequately by the
step length parameter y;. Thus, we impose the condition

IBmin =< ||P|| E ,Bmax’ fOI' auP € Dka (922)

for some positive constants By, and By and all k. If the conditions (9.21) and (9.22) hold,

9.3. COORDINATE AND PATTERN-SEARCH METHODS

we have for any k that

V£ = kDIIV AP = 8BminllV fill, for some p € Dy.

Examples of sets Dy that satisfy the properties (9.21) and (9.22) include the coordinate
direction set

{617627"~7en7_ela_627"'a_en}a (9'23)

and the set of n + 1 vectors defined by

1 1
pi = Ee —e, i=1,2,...,n, ppy = Ze, (9.24)

wheree = (1, 1, ..., 1)T. For n = 3 these direction sets are sketched in Figure 9.2.

The coordinate descent method described above is similar to the special case of
Algorithm 9.2 obtained by setting D, = {¢;, —e;} forsomei = 1, 2, ..., n at each iteration.
Note that for this choice of Dy, we have «(D;) = 0 for all k. Hence, as noted above, cos 6
can be arbitrarily close to zero at each iteration.

Often, the directions that satisfy the properties (9.21) and (9.22) form only a subset of
the direction set Dy, which may contain other directions as well. These additional directions
could be chosen heuristically, according to some knowledge of the function f and its
scaling, or according to experience on previous iterations. They could also be chosen as
linear combinations of the core set of directions (the ones that ensure § > 0).

Note that Algorithm 9.2 does not require us to choose the point x; + v pr, pr € Ds,
with the smallest objective value. Indeed, we may save on function evaluations by not
evaluating f at all points in the frame, but rather performing the evaluations one at a time
and accepting the first candidate point that satisfies the sufficient decrease condition.

€3

)
e

¢y
e,

—e3

Figure 9.2 Generating search sets in R’: coordinate direction set (left) and simplex
set (right).

233

234

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

Another important detail in the implementation of Algorithm 9.2 is the choice of
sufficient decrease function p(z). If p(-) is chosen to be identically zero, then any candidate
point that produces a decreasein f isacceptable asanew iterate. As we have seen in Chapter 3,
such a weak condition does not lead to strong global convergence results in general. A more
appropriate choice might be p(¢) = Mt*?, where M is some positive constant.

9.4 A CONJUGATE-DIRECTION METHOD

We have seen in Chapter 5 that the minimizer of a strictly convex quadratic function
fx)= %xTAx —bTx (9.25)

can be located by performing one-dimensional minimizations along a set of n conjugate
directions. These directions were defined in Chapter 5 as a linear combination of gradients.
In this section, we show how to construct conjugate directions using only function values,
and we therefore devise an algorithm for minimizing (9.25) that requires only function
value calculations. Naturally, we also consider an extension of this approach to the case of a
nonlinear objective f.

We use the parallel subspace property, which we describe first for the case n = 2.
Consider two parallel lines /; (@) = x; + ap and [,(a) = x; + ap, where x1, x,, and p are
given vectors in R? and « is the scalar parameter that defines the lines. We show below that
if x{ and x; denote the minimizers of f(x) along [/, and l,, respectively, then x} — xJ is
conjugate to p. Hence, if we perform a one-dimensional minimization along the line joining
x{ and x5, we will reach the minimizer of f, because we have successively minimized along
the two conjugate directions p and x5 — x{. This process is illustrated in Figure 9.3.

This observation suggests the following algorithm for minimizing a two-dimensional
quadratic function f. We choose a set of linearly independent directions, say the coordinate
directions e; and e,. From any initial point xg, we first minimize f along e, to obtain the
point x;. We then perform successive minimizations along e; and e,, starting from xi, to
obtain the point z. It follows from the parallel subspace property that z — x; is conjugate
to e, because x; and z are minimizers along two lines parallel to e,. Thus, if we perform a
one-dimensional search from x, along the direction z — x1, we will locate the minimizer of f.

We now state the parallel subspace minimization property in its most general form.
Suppose that x1, x; are two distinct points in R” and that {py, py, ..., p;} is a set of linearly
independent directions in R”". Let us define the two parallel linear varieties

1

Slz x1+2aipi|oc,~€]R,i=1,2,...,l s
i=1
1

S={xn+) apleeR i=12...1

i=1

9.4, A CONJUGATE-DIRECTION METHOD

Figure 9.3

Geometric construction of
conjugate directions. (The
minimizer of f is denoted by
x*))

If we denote the minimizers of f on S; and S, by x} and xJ, respectively, then xJ — x| is
conjugate to py, pa, ..., pi. [tis easy to verify this claim. By the minimization property, we
have that

of (57 +aipi)

=Vfa)'pi=0, i=1,2,...,1,
80[,'

o; =0

and similarly for x,. Therefore we have from (9.25) that

0=(Vf(x)) =V) pi
= (Ax] — b — Ax] +b) p;
=(x;—x)T Ap;, i=1,2,...,1 (9.26)

We now consider the case n = 3 and show how the parallel subspace property
can be used to generate a set of three conjugate directions. We choose a set of linearly
independent directions, say e;, €;, es. From any starting point xo we first minimize f along
the last direction e; to obtain a point x;. We then perform three successive one-dimensional
minimizations, starting from x;, along the directions e;, e,, ¢3 and denote the resulting
point by z. Next, we minimize f along the direction p; = z — x; to obtain x;. As noted
earlier, p; = z — X is conjugate to e5. We note also that x; is the minimizer of f on the set
Si ={y+aoes+arpi|a; € R, oy € R}, where y is the intermediate point obtained after
minimizing along e; and e,.

A new iteration now commences. We discard e; and define the new set of search
directions as e, €3, p1. We perform one-dimensional minimizations along e, e3, p1, starting

235

236 CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

from x,, to obtain the point z. Note that Z can be viewed as the minimizer of f on the set
S ={y+a1es + aap1 | € R, ap € R}, for some intermediate point 3. Therefore, by
applying the parallel subspace minimization property to the sets S; and S, just defined, we
have that p, = Z — x; is conjugate to both e; and p;. We then minimize f along p, to
obtain a point x3, which is the minimizer of f. This procedure thus generates the conjugate
directions e3, py, pa.

We can now state the general algorithm, which consists of an inner and an outer
iteration. In the inner iteration, n one-dimensional minimizations are performed along a set
of linearly independent directions. Upon completion of the inner iteration, a new conjugate
direction is generated, which replaces one of the previously stored search directions.

Algorithm 9.3 (DFO Method of Conjugate Directions).

Choose an initial point xy and set p; = ¢;, fori = 1,2, ..., n;
Compute x; as the minimizer of f along the line xo + ap,;
Setk <« 1.

repeat until a convergence test is satisfied
Set 71 <« xp;3
forj=1,2,...,n
Calculate «; so that f(z; + «;p;) is minimized;
Setzjp <z +ajpj;
end (for)
Setpj <~ pjiforj=1,2,...,n—1and p, < Zy41 — 215
Calculate a,, so that f(z,41 + o, py) is minimized;
Set Xg41 <= Znt1 + X Pps
Setk < k+1;
end (repeat)

The line searches can be performed by quadratic interpolation using three function
values along each search direction. Since the restriction of (9.25) to a line is a (strictly
convex) quadratic, the interpolating quadratic matches it exactly, and the one-dimensional
minimizer can easily be computed. Note that at the end of (the outer) iteration k, the
directions p,—k, Pn—k+1, - - - » Pn are conjugate by the property mentioned above. Thus the
algorithm terminates at the minimizer of (9.25) after n — 1 iterations, provided none of the
conjugate directions is zero. Unfortunately, this possibility cannot be ruled out, and some
safeguards described below must be incorporated to improve robustness. In the (usual)
case that Algorithm 9.3 terminates after n — 1 iterations, it will perform O(n?) function
evaluations.

Algorithm 9.3 can be extended to minimize nonquadratic objective functions. The
only change is in the line search, which must be performed approximately, using interpola-
tion. Because of the possible nonconvexity, this one-dimensional search must be done with
care; see Brent [39] for a treatment of this subject. Numerical experience indicates that this

9.4, A CONJUGATE-DIRECTION METHOD

extension of Algorithm 9.3 performs adequately for small-dimensional problems but that
sometimes the directions { p;} tend to become linearly dependent. Several modifications of
the algorithm have been proposed to guard against this possibility. One such modification
measures the degree to which the directions {p;} are conjugate. To do so, we define the
scaled directions

p=—Lt =120 (9.27)

VPl Api

One can show [239] that the quantity

|det(ﬁl7 ﬁ27~"7ﬁn)| (928)

is maximized if and only if the vectors p; are conjugate with respect to A. This result suggests
that we should nof replace one of the existing search directions in the set {py, ps, ..., pn}
by the most recently generated conjugate direction if this action causes the quantity (9.28)
to decrease.

Procedure 9.4 implements this strategy for the case of the quadratic objective function
(9.25). Some algebraic manipulations (which we do not present here) show that we can
compute the scaled directions p; without using the Hessian A because the terms p! Ap;
are available from the line search along p;. Further, only comparisons using computed
function values are needed to ensure that (9.28) does not increase. The following pro-
cedure is invoked immediately after the execution of the inner iteration (or for-loop) of
Algorithm 9.3.

Procedure 9.4 (Updating of the Set of Directions).
Find the integer m € {1, 2, ..., n} such that ¥, = f(xu—1) — f(xm)
is maximized;
Let fi = f(z1), f2 = f(zas1),and f5 = f(2zp41 — 21);
if 3> fior(fi—2f+ f)(fi— fo—¥m) = 3¥u(fi — f3)?

Keep the set p1, pa, ..., p, unchanged and set Xg41 <— Zp41;
else
Set p < z,41 — z1 and calculate & so that f(z,4; + @ p) is minimized;
Set Xj11 <= Znt1 + P
Remove p,, from the set of directions and add p to this set;
end (if)

This procedure can be applied to general objective functions by implementing inexact
one-dimensional line searches. The resulting conjugate-gradient method has been found to
be useful for solving small dimensional problems.

237

238

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

9.5 NELDER-MEAD METHOD

The Nelder—-Mead simplex-reflection method has been a popular DFO method since its
introduction in 1965 [223]. It takes its name from the fact that at any stage of the algorithm,
we keep track of n 4+ 1 points of interest in R”, whose convex hull forms a simplex. (The
method has nothing to do with the simplex method for linear programming discussed
in Chapter 13.) Given a simplex S with vertices {z1, 22, ..., Zn+1}, we can define an as-
sociated matrix V(S) by taking the n edges along V from one of its vertices (z;, say), as
follows:

V(S) = [ZZ_ZlaZS_le--,Zn-H —-z1].

The simplex is said to be nondegenerate or nonsingular if V is a nonsingular matrix.
(For example, a simplex in R’ is nondegenerate if its four vertices are not
coplanar.)

In a single iteration of the Nelder—-Mead algorithm, we seek to remove the vertex with
the worst function value and replace it with another point with a better value. The new
point is obtained by reflecting, expanding, or contracting the simplex along the line joining
the worst vertex with the centroid of the remaining vertices. If we cannot find a better point
in this manner, we retain only the vertex with the best function value, and we shrink the
simplex by moving all other vertices toward this value.

We specify a single step of the algorithm after some defining some notation. The
n + 1 vertices of the current simplex are denoted by {x;, x5, ..., x,+1}, where we choose the
ordering so that

Fx) < fxa) <--- < flxps).

The centroid of the best n points is denoted by

n
X = Z.X,’.
i=1
Points along the line joining x and the “worst” vertex x, ;1 are denoted by
X(t) =X + 1(xp41 — X).

Procedure 9.5 (One Step of Nelder—-Mead Simplex).
Compute the reflection point x(—1) and evaluate f_; = f(x(—1));
if £(0) < o < flx)
(* reflected point is neither best nor worst in the new simplex *)
replace x,, 41 by ¥(—1) and go to next iteration;

elseif /) < f(x;)

9.5. NELDER—MEAD METHOD

(* reflected point is better than the current best; try to

go farther along this direction *)
Compute the expansion point x(—2) and evaluate f_, = f(x(—2));
if fo < fo

replace x4 by x_, and go to next iteration;
else

replace x,,+1 by x_; and go to next iteration;

elseif f_; > f(x,)

(* reflected point is still worse than x,,; contract *)
if f(x,) < for < fxnt)

(* try to perform “outside” contraction *)

evaluate f_;/, = x(—1/2);

if L1 < fo

replace x,, by x_;,, and go to next iteration;

else

(* try to perform “inside” contraction *)

evaluate fi,, = x(1/2);

if fi 2 < Jut1

replace x,.41 by x;/, and go to next iteration;

(* neither outside nor inside contraction was acceptable;

shrink the simplex toward x; *)
replace x; < (1/2)(x; 4+ x;) fori =2,3,...,n+1;

Procedure 9.5 is illustrated on a three-dimensional example in Figure 9.4. The worst
current vertex is x3, and the possible replacement points are x(—1), X(—2),)E(—%),)E(%). If
none of the replacement points proves to be satisfactory, the simplex is shrunk to the smaller
triangle indicated by the dotted line, which retains the best vertex x;. The scalars ¢ used
in defining the candidate points X (¢) have been assigned the specific (and standard) values
—1, =2, —3, and § in our description above. Different choices are also possible, subject to
certain restrictions.

Practical performance of the Nelder—Mead algorithm is often reasonable, though
stagnation has been observed to occur at nonoptimal points. Restarting can be used when
stagnation is detected; see Kelley [178]. Note that unless the final shrinkage step is performed,
the average function value

n+1

1
— ;f (x;) (9.29)

will decrease at each step. When f is convex, even the shrinkage step is guaranteed not to
increase the average function value.

239

240 CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

X(-2) x(-1) xX(-1/2) X(1/2) 5

R

Figure 9.4 One step of the Nelder-Mead simplex method in R?, showing current
simplex (solid triangle with vertices x1, X3, x3), reflection point x(—1), expansion
point x(—2), inside contraction point)E(%), outside contraction point)E(—%), and
shrunken simplex (dotted triangle).

A limited amount of convergence theory has been developed for the Nelder-Mead
method in recent years; see, for example, Kelley [179] and Lagarias et al. [186].

9.6 IMPLICIT FILTERING

We now describe an algorithm designed for functions whose evaluations are modeled by
(9.2), where h is smooth. This implicit filtering approach is, in its simplest form, a variant of
the steepest descent algorithm with line search discussed in Chapter 3, in which the gradient
V fx is replaced by a finite difference estimate such as (9.3), with a difference parameter ¢
that may not be particularly small.

Implicit filtering works best on functions for which the noise level decreases as the
iterates approach a solution. This situation may occur when we have control over the noise
level, as is the case when f is obtained by solving a differential equation to a user-specified
tolerance, or by running a stochastic simulation for a user-specified number of trials (where
an increase in the number of trials usually produces a decrease in the noise). The implicit
filtering algorithm decreases € systematically (but, one hopes, not as rapidly as the decay in
error) so as to maintain reasonable accuracy in V. f(x), given the noise level at the current
value of x. For each value of €, it performs an inner loop that is simply an Armijo line search
using the search direction —V, f(x). If the inner loop is unable to find a satisfactory step
length after backtracking at least am,x times, we return to the outer loop, choose a smaller
value of €, and repeat. A formal specification follows.

9.6. [MPLICIT FILTERING

Algorithm 9.6 (Implicit Filtering).
Choose a sequence {¢;} | 0, Armijo parameters ¢ and p in (0, 1),
maximum backtracking parameter dpmay;
Set k < 1, Choose initial point x = x;
repeat
increment_k < false;
repeat
Compute f(x)and V, f(x);
if [V, f ()| < &
increment_k <« true;
else
Find the smallest integer m between 0 and @,y such that
f(x=p"Ve f(x)) < fx) —cp™ | Ve f(x)

if no such m exists

2
2

increment_k < true;
else
x < x— p"Vf(x);
until increment _k;
Xy < X3k <—k+1;
until a termination test is satisfied.

Note that the inner loop in Algorithm 9.6 is essentially the backtracking line search
algorithm—Algorithm 3.1 of Chapter 3—with a convergence criterion added to detect
whether the minimum appears to have been found to within the accuracy implied by the dif-
ference parameter €. If the gradient estimate V,, f is small, or if the line search fails to find a
satisfactory new iterate (indicating that the gradient approximation V,_ f (x) is insufficiently
accurate to produce descentin f), we decrease the difference parameter to €441 and proceed.

A basic convergence result for Algorithm 9.6 is the following.

Theorem 9.2.
Suppose that V*h is Lipschitz continuous, that Algorithm 9.6 generates an infinite
sequence of iterates {x; }, and that

n(xg; €)

€k

lim € + 0.

k—o00

Suppose, too, that all but a finite number of inner loops in Algorithm 9.6 terminate with
|| Ve, f (xx) || < €. Then all limit points of the sequence {x;} are stationary.

ProOF. Using {ex} | 0, we have under our assumptions on inner loop termination that
Ve, f (xx) — 0. By invoking the error bound (9.5) and noting that the right-hand side of
this expression is approaching zero, we conclude that Vi (x;) — 0. Hence all limit points
satisfy Vh(x) = 0, as claimed. O

241

242

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

More sophisticated versions of implicit filtering methods can be derived by using
the gradient estimate V, f to construct quasi-Newton approximate Hessians, and thus
generating quasi-Newton search directions instead of the negative-approximate-gradient
search direction used in Algorithm 9.6.

NOTES AND REFERENCES

A classical reference on derivative-free methods is Brent [39], which focuses primarily
on one-dimensional problems and includes discussion of roundoff errors and global min-
imization. Recent surveys on derivative-free methods include Wright [314], Powell [256],
Conn, Scheinberg, and Toint [76], and Kolda, Lewis, and Torczon [183].

The first model-based method for derivative-free optimization was proposed by Win-
field [307]. It uses quadratic models, which are determined by the interpolation conditions
(9.7), and computes steps by solving a subproblem of the form (9.9). Practical procedures
for improving the geometry of the interpolation points were first developed by Powell in
the context of model-based methods using linear and quadratic polynomials; see [256] for
a review of this work.

Conn, Scheinberg, and Toint [75] propose and analyze model-based methods and
study the use of Newton fundamental polynomials. Methods that combine minimum change
updating and interpolation are discussed by Powell [258, 260]. Our presentation of model-
based methods in Section 9.2 is based on [76, 259, 258].

For a comprehensive discussion of pattern-search methods of the type discussed here,
we refer the reader to the review paper of Kolda, Lewis, and Torczon [183], and the references
therein.

The method of conjugate directions given in Algorithm 9.3 was proposed by Pow-
ell [239]. For a discussion on the rate of convergence of the coordinate descent method and
for more references about this method, see Luenberger [195]. For further information on
implicit filtering, see Kelley [179] and Choi and Kelley [60] and the references therein.

Software packages that implement model-based methods include cosyLa [258], DFO
[75], UOBYQA [257], WEDGE [200], and NEWUOA [260]. The earliest code is coBYLA, which
employs linear models. DFO, UOBYQA, and WEDGE use quadratic models, whereas the method
based on minimum change updating (9.19) is implemented in NEWUOA. A pattern-search
method is implemented in Apps [171], while DIRECT [173] is designed to find a global solution.

& EXERCISES

& 9.1 Prove Lemma 9.1.
& 9.2

(a) Verify that the number of interpolation conditions to uniquely determine the
coefficients in (9.6) are ¢ = %(n + 1)(n+2).

9.6. [MPLICIT FILTERING

(b) Verify that the number of vertices and midpoints of the edges of a nondegenerate
simplex in R" add up to ¢ = %(n + 1)(n + 2) and can therefore be used as the initial
interpolation set in a DFO algorithm.

(c) How many interpolation conditions would be required to determine the coefficients
in (9.6) if the matrix G were identically 02 How many if G were diagonal? How many
if G were tridiagonal?

& 9.3 Describe conditions on the vectors s’ that guarantee that the model (9.14) is
uniquely determined.

& 9.4 Consider the determination of a quadratic function in two variables.
(a) Show that six points on a line do not determine the quadratic.
(b) Show that six points in a circle in the plane do not uniquely determine the quadratic.

& 9.5 Useinduction to show that at the end of the outer iteration k of Algorithm 9.3, the
directions py—k, Pn—k+1s - - - » Pn are conjugate. Use this fact to show that if the step lengths
o; in Algorithm 9.3 are never zero, the iteration terminates at the minimizer of (9.25) after
at most n outer iterations.

& 9.6 Write a program that computes the one-dimensional minimizer of a strictly
convex quadratic function f along a direction p using quadratic interpolation. Describe
the formulas used in your program.

& 9.7 Find the quadratic function
1 o 1 o o,
m(.X1, x2) = f+g1x1 +82x2+5G11X1 +G]2X1X2+EG22X2

that interpolates the following data: x, = y! = (0,0)7, y*> = (1,0)7, y° = (2,0)7,
yi=1,D7,9 =(0,2)",y°=(0,1)7,and f(y") = 1, f(y?) = 2.0084, f(y*) = 7.0091,
FOY) =1.0168, f(y°) = —0.9909, and f(y®) = —0.9916.

& 9.8 Find the value of § for which the coordinate generating set (9.23) satisfies the
property (9.21).

& 9.9 Show that k(Dy) = 0, where «(-) is defined by (9.21) and D, = {e;, —e;} for any
i=1,2,...,n.

& 9.10 (Hard) Prove that the generating set (9.24) satisfies the property (9.21) for a
certain value § > 0, and find this value of §.

& 9.11 Justify the statement that the average function value at the Nelder—-Mead simplex
points will decrease over one step if any of the points ¥ (—1), X(—2), X (— %), X(%) are adopted
as a replacement for x, ;1.

243

244

CHAPTER 9. DERIVATIVE-FREE OPTIMIZATION

& 9.12 Show that if f is a convex function, the shrinkage step in the Nelder-Mead
simplex method will not increase the average value of the function over the simplex vertices
defined by (9.29). Show that unless f(x1) = f(x2) = -+ = f(x,41), the average value will
in fact decrease.

& 9.13 Suppose for the f defined in (9.2), we define the approximate gradient V. f (x)
by the forward-difference formula

Véf(x):[f(XwLeei)—f(X)] ’
i=1,2 n

€ dizi2.,

rather than the central-difference formula (9.3). (This formula requires only half as many
function evaluations but is less accurate.) For this definition, prove the following variant
of Lemma 9.1: Suppose that Vi(x) is Lipschitz continuous in a neighborhood of the box
{z]z > x, ||z — x|l < €} with Lipschitz constant L. Then we have

IVe f(x) = VAX)lloo < L€ + n(xe; 2

where n(x; €) is redefined as follows:

n(x;e) = sup [p(2)].

22X, lz—x]lo <€

CHAPTER1 0

east-Sguares
Problems

In least-squares problems, the objective function f has the following special form:
) =1 riw), (10.1)
Jj=1

where each r; is a smooth function from R" to R. We refer to each r; as a residual, and we
assume throughout this chapter that m > n.

Least-squares problems arise in many areas of applications, and may in fact be the
largest source of unconstrained optimization problems. Many who formulate a parametrized

246

CHAPTER 10. LEAST-SQUARES PROBLEMS

model for a chemical, physical, financial, or economic application use a function of the
form (10.1) to measure the discrepancy between the model and the observed behavior of
the system (see Example 2.1, for instance). By minimizing this function, they select values
for the parameters that best match the model to the data. In this chapter we show how to
devise efficient, robust minimization algorithms by exploiting the special structure of the
function f and its derivatives.

To see why the special form of f often makes least-squares problems easier to solve than
general unconstrained minimization problems, we first assemble the individual components
rj from (10.1) into a residual vectorr : R" — R™, as follows

r(x) = (r(x), r2(x), ..., rm(x))". (10.2)
Using this notation, we can rewrite f as f(x) = %||r(x)||§. The derivatives of f(x) can be

expressed in terms of the Jacobian J(x), which is the m x n matrix of first partial derivatives
of the residuals, defined by

VVI(X)T
o Vra(x)"

J(x) = [a_xjj:lz = E , (10.3)
Vi (x)"

where each Vr;(x), j = 1,2, ..., m is the gradient of r;. The gradient and Hessian of f
can then be expressed as follows:

V@) =Y rix)Vrix) = J(x)r(x), (10.4)

j=1

Vif(x) = Z Vr; (x)Vr.,-(x)T + er(x)Vzl’j(x)

Jj=1 Jj=1

= J@)T(x) + D () V(). (10.5)

j=1

In many applications, the first partial derivatives of the residuals and hence the
Jacobian matrix J(x) are relatively easy or inexpensive to calculate. We can thus obtain
the gradient V f(x) as written in formula (10.4). Using J(x), we also can calculate the
first term J (x)7 J(x) in the Hessian V2 f(x) without evaluating any second derivatives of
the functions r;. This availability of part of V2 f(x) “for free” is the distinctive feature of
least-squares problems. Moreover, this term J(x)? J(x) is often more important than the
second summation term in (10.5), either because the residuals r; are close to affine near
the solution (that is, the V2r;(x) are relatively small) or because of small residuals (that

10.1. BACKGROUND

is, the r;(x) are relatively small). Most algorithms for nonlinear least-squares exploit these
structural properties of the Hessian.

The most popular algorithms for minimizing (10.1) fit into the line search and
trust-region frameworks described in earlier chapters. They are based on the Newton and
quasi-Newton approaches described earlier, with modifications that exploit the particular
structure of f.

Section 10.1 contains some background on applications. Section 10.2 discusses lin-
ear least-squares problems, which provide important motivation for algorithms for the
nonlinear problem. Section 10.3 describes the major algorithms, while Section 10.4 briefly
describes a variant of least squares known as orthogonal distance regression.

Throughout this chapter, we use the notation || - || to denote the Euclidean norm || - ||,,
unless a subscript indicates that some other norm is intended.

10.1 BACKGROUND

We discuss a simple parametrized model and show how least-squares techniques can be
used to choose the parameters that best fit the model to the observed data.

(d ExampLE 10.1

We would like to study the effect of a certain medication on a patient. We draw blood
samples at certain times after the patient takes a dose, and measure the concentration of the
medication in each sample, tabulating the time ¢; and concentration y; for each sample.

Based on our previous experience in such experiments, we find that the following
function ¢ (x; t) provides a good prediction of the concentration at time 7, for appropriate
values of the five-dimensional parameter vector x = (xy, X,, X3, X4, X5):

O(x:1) = x1 + txs + t2x3 + x4, (10.6)

We choose the parameter vector x so that this model best agrees with our observation, in
some sense. A good way to measure the difference between the predicted model values and
the observations is the following least-squares function:

Y o) — il (10.7)

m
j=1

which sums the squares of the discrepancies between predictions and observations at each
t;. This function has precisely the form (10.1) if we define

ri(x) =¢(x;t;) —y;. (10.8)

247

248 CHAPTER 10. LEAST-SQUARES PROBLEMS

Figure 10.1 Model (10.7) (smooth curve) and the observed measurements, with
deviations indicated by vertical dotted lines.

Graphically, each term in (10.7) represents the square of the vertical distance between
the curve ¢(x;) (plotted as a function of) and the point (¢;, y;), for a fixed choice
of parameter vector x; see Figure 10.1. The minimizer x* of the least-squares problem is
the parameter vector for which the sum of squares of the lengths of the dotted lines in
Figure 10.1 is minimized. Having obtained x*, we use ¢(x*;) to estimate the concentration

a

of medication remaining in the patient’s bloodstream at any time 7.

This model is an example of what statisticians call a fixed-regressor model. It assumes
that the times ¢; at which the blood samples are drawn are known to high accuracy, while
the observations y; may contain more or less random errors due to the limitations of the
equipment (or the lab technician!)

In general data-fitting problems of the type just described, the ordinate ¢ in the model
¢(x;t) could be a vector instead of a scalar. (In the example above, for instance, ¢ could
have two dimensions, with the first dimension representing the time since the drug was
admistered and the second dimension representing the weight of the patient. We could then
use observations for an entire population of patients, not just a single patient, to obtain the
“best” parameters for this model.)

The sum-of-squares function (10.7) is not the only way of measuring the discrepancy
between the model and the observations. Other common measures include the maximum
absolute value

omax |@(x; 1) — yjl (10.9)
=1,2 m

,,,,,,

10.1. BACKGROUND

and the sum of absolute values
m
Zld)(x;tj)—yjl- (10.10)
Jj=1

By using the definitions of the £, and £; norms, we can rewrite these two measures as

J&) = lrllse, fx) = llr(x)lh, (10.11)

respectively. As we discuss in Chapter 17, the problem of minimizing the functions (10.11)
can be reformulated a smooth constrained optimization problem.

In this chapter we focus only on the £,-norm formulation (10.1). In some situations,
there are statistical motivations for choosing the least-squares criterion. Changing the no-
tation slightly, let the discrepancies between model and observation be denoted by ¢}, that
is,

€ =¢x;t) —y;.

It often is reasonable to assume that the €;’s are independent and identically distributed
with a certain variance o and probability density function g, (-). (This assumption will
often be true, for instance, when the model accurately reflects the actual process, and when
the errors made in obtaining the measurements y; do not contain a systematic bias.) Under
this assumption, the likelihood of a particular set of observations y;, j =1, 2, ..., m, given
that the actual parameter vector is x, is given by the function

m m
p(yix,0) =[] () =[] 8 (Bx: 1)) — y)). (10.12)
j=1 j=1
Given the observations yy, ¥2, . . ., ym, the “mostlikely” value of x is obtained by maximizing

p(y; x, o) with respect to x. The resulting value of x is called the maximum likelihood
estimate.
When we assume that the discrepancies follow a normal distribution, we have

gU(E) =

1 €2
expl —— .
V2mo? P\ 2
Substitution in (10.12) yields

m

1
p(y;x,0) = 2mo?) ™" exp ey Z[d’(x; 1) —y;?
=1

249

250

CHAPTER 10. LEAST-SQUARES PROBLEMS

For any fixed value of the variance o2, it is obvious that p is maximized when the sum
of squares (10.7) is minimized. To summarize: When the discrepancies are assumed to be
independent and identically distributed with a normal distribution function, the maximum
likelihood estimate is obtained by minimizing the sum of squares.

The assumptions on €; in the previous paragraph are common, but they do not
describe the only situation for which the minimizer of the sum of squares makes good
statistical sense. Seber and Wild [280] describe many instances in which minimization of
functions like (10.7), or generalizations of this function such as

r(x)TWr(x), where W € R™*™ ig symmetric,

is the crucial step in obtaining estimates of the parameters x from observed data.

10.2 LINEAR LEAST-SQUARES PROBLEMS

Many models ¢(x; t) in data-fitting problems are linear functions of x. In these cases, the
residuals 7;(x) defined by (10.8) also are linear, and the problem of minimizing (10.7) is
called a linear least-squares problem. We can write the residual vector as r(x) = Jx — y for
some matrix J and vector y, both independent of x, so that the objective is

fx)=317x =yl (10.13)
where y = r(0). We also have
Vix)=JT(Jx —y), Vif(x)=J"J.

(Note that the second term in V2 f(x) (see (10.5)) disappears, because Vzrj = 0 for all
Jj=1,2,...,m.) Itis easy to see that the f(x) in (10.13) is convex—a property that does
not necessarily hold for the nonlinear problem (10.1). Theorem 2.5 tells us that any point x*
for which V f(x*) = 0is the global minimizer of f. Therefore, x* must satisfy the following
linear system of equations:

JTIx* =JTy. (10.14)

These are known as the normal equations for (10.13).

We outline briefly three major algorithms for the unconstrained linear least-squares
problem. We assume in most of our discussion that m > n and that J has full column
rank.

10.2. LINEAR LEAST-SQUARES PROBLEMS

The first and most obvious algorithm is simply to form and solve the system (10.14)
by the following three-step procedure:

e compute the coefficient matrix /7 J and the right-hand-side J7 y;
e compute the Cholesky factorization of the symmetric matrix J7 J;

e perform two triangular substitutions with the Cholesky factors to recover the solution

x*.

The Cholesky factorization

JTJ=RT

=

(10.15)

(where R is an n x n upper triangular with positive diagonal elements) is guaranteed
to exist when m > n and J has rank n. This method is frequently used in practice
and is often effective, but it has one significant disadvantage, namely, that the condi-
tion number of J7 J is the square of the condition number of J. Since the relative error
in the computed solution of a problem is usually proportional to the condition num-
ber, the Cholesky-based method may result in less accurate solutions than those obtained
from methods that avoid this squaring of the condition number. When J is ill condi-
tioned, the Cholesky factorization process may even break down, since roundoff errors
may cause small negative elements to appear on the diagonal during the factorization
process.

A second approach is based on a QR factorization of the matrix J. Since the Euclidean
norm of any vector is not affected by orthogonal transformations, we have

I7x =yl = 12" (Jx =y (10.16)

for any m x m orthogonal matrix Q. Suppose we perform a QR factorization with column
pivoting on the matrix J (see (A.24)) to obtain

R R
JH:Q|: 0 j|:[01 O]|: 0 i|=Q1R, (10.17)

where

ITisan n x n permutation matrix (hence, orthogonal);

Q is m x m orthogonal;

Q) is the first n columns of Q, while Q5 contains the last m — n columns;
R is n x n upper triangular with positive diagonal elements.

251

252 CHAPTER 10. LEAST-SQUARES PROBLEMS

By combining (10.16) and (10.17), we obtain

2

2 QIT T
x—yi2=|| L |onn’x—y)
0,

2

_ R T\ QlTy
|5 Jmeo-[22]

= [R"x) = QI y[; + Ly’ (10.18)

2

No choice of x has any effect on the second term of this last expression, but we can minimize
||/x — y|| by driving the first term to zero, that is, by setting

x*=TIR'QTy.

(In practice, we perform a triangular substitution to solve Rz = QT y, then permute the
components of 7 to obtain x* = Tlz.)

This QR-based approach does not degrade the conditioning of the problem unnec-
essarily. The relative error in the final computed solution x* is usually proportional to the
condition number of J, not its square, and this method is usually reliable. Some situations,
however, call for greater robustness or more information about the sensitivity of the solu-
tion to perturbations in the data (J or y). A third approach, based on the singular-value
decomposition (SVD) of J, can be used in these circumstances. Recall from (A.15) that the
SVD of J is given by

J=U|:S:|VT=[U1 U2]|:ii|VT=U1SVT, (10.19)

where

U is m x m orthogonal;

U, contains the first n columns of U, U, the last m — n columns;

V isn x n orthogonal;

S is n x n diagonal, with diagonal elements oy > 0, > -+ > 0, > 0.
(Note that JTJ = VS?VT, so that the columns of V are eigenvectors of J7J with
eigenvalues JJ?, Jj =1,2,...,n.) By following the same logic that led to (10.18), we obtain

T S T _ uf
IJx yII—H[O}(V x) |:U2T}y

= IS(Vx) = Ul yI? + 11U yII%. (10.20)

2

10.2. LINEAR LEAST-SQUARES PROBLEMS

Again, the optimum is found by choosing x to make the first term equal to zero; that is,
x*=VSuly.
Denoting the ith columns of U and V by u; € R™ and v; € R", respectively, we have

. Uy
x _,-Z=1: il (10.21)
This formula yields useful information about the sensitivity of x*. When o; is small, x*
is particularly sensitive to perturbations in y that affect u] y, and also to perturbations in
J that affect this same quantity. Such information is particularly useful when J is nearly
rank-deficient, that is, when o, /07 < 1. It is sometimes worth the extra cost of the SVD
algorithm to obtain this sensitivity information.

All three approaches above have their place. The Cholesky-based algorithm is partic-
ularly useful when m > n and it is practical to store J7 J but not J itself. It can also be less
expensive than the alternatives when m >> n and J is sparse. However, this approach must
be modified when J is rank-deficient or ill conditioned to allow pivoting of the diagonal
elements of J7J. The QR approach avoids squaring of the condition number and hence
may be more numerically robust. While potentially the most expensive, the SVD approach
is the most robust and reliable of all. When J is actually rank-deficient, some of the singular
values o; are exactly zero, and any vector x* of the form

T
x* = Z;—ivi-i—Zr,-v,- (1022)
G,’=O

(7,’#0

(for arbitrary coefficients 7;) is a minimizer of (10.20). Frequently, the solution with smallest
norm is the most desirable, and we obtain it by setting each 7; = 0in (10.22). When J has
full rank but is ill conditioned, the last few singular values o,,, 0,_1, ... are small relative
to 1. The coefficients u] y/o; in (10.22) are particularly sensitive to perturbations in u! y
when o; is small, so an approximate solution that is less sentitive to perturbations than the
true solution can be obtained by omitting these terms from the summation.

When the problem is very large, it may be efficient to use iterative techniques, such
as the conjugate gradient method, to solve the normal equations (10.14). A direct imple-
mentation of conjugate gradients (Algorithm 5.2) requires one matrix vector multiplication
with JT J to be performed at each iteration. This operation can be performed by means of
successive multiplications by J and J7; we need only the ability to perform matrix-vector
multiplications with these two matrices to implement this algorithm. Several modifications
of the conjugate gradient approach have been proposed that involve a similar amount of
work per iteration (one matrix-vector multiplication each with J and J7) but that have
superior numerical properties. Some alternatives are described by Paige and Saunders [234],

253

254

CHAPTER 10. LEAST-SQUARES PROBLEMS

who propose in particular an algorithm called LSQR which has become the basis of a highly
successful code.

10.3 ALGORITHMS FOR NONLINEAR LEAST-SQUARES
PROBLEMS

THE GAUSS-NEWTON METHOD

We now describe methods for minimizing the nonlinear objective function (10.1) that
exploit the structure in the gradient V f (10.4) and Hessian V2 £ (10.5). The simplest of these
methods—the Gauss—Newton method—can be viewed as a modified Newton’s method with
line search. Instead of solving the standard Newton equations V2 f(xi)p = —V f(xz), we
solve instead the following system to obtain the search direction p;™:

JEhp = —Jl'r. (10.23)

This simple modification gives a number of advantages over the plain Newton’s method.
First, our use of the approximation

Vifi ~ Il (10.24)

saves us the trouble of computing the individual residual Hessians Vir H»i=12,...,m,
which are needed in the second term in (10.5). In fact, if we calculated the Jacobian J; in the
course of evaluating the gradient V f; = J/'r, the approximation (10.24) does not require
any additional derivative evaluations, and the savings in computational time can be quite
significant in some applications. Second, there are many interesting situations in which the
first term J7 J in (10.5) dominates the second term (at least close to the solution x*), so
that J J; is a close approximation to V? fi and the convergence rate of Gauss—Newton is
similar to that of Newton’s method. The first term in (10.5) will be dominant when the
norm of each second-order term (that is, |r;(x)[||V2r;(x)|)) is significantly smaller than the
eigenvalues of J7J. As mentioned in the introduction, we tend to see this behavior when
either the residuals r; are small or when they are nearly affine (so that the || V27 ;|| are small).
In practice, many least-squares problems have small residuals at the solution, leading to
rapid local convergence of Gauss—Newton.

A third advantage of Gauss—Newton is that whenever J; has full rank and the gradient
V fi is nonzero, the direction p;™ is a descent direction for f, and therefore a suitable
direction for a line search. From (10.4) and (10.23) we have

POV i = (D) I e = =0 I Dep = =117 < 0. (10.25)

10.3. ALGORITHMS FOR NONLINEAR LEAST-SQUARES PROBLEMS

The final inequality is strict unless J; p;™ = 0, in which case we have by (10.23) and full rank
of Ji that J i = V fi = 0; that is, x; is a stationary point. Finally, the fourth advantage
of Gauss—Newton arises from the similarity between the equations (10.23) and the normal
equations (10.14) for the linear least-squares problem. This connection tells us that p;™ is
in fact the solution of the linear least-squares problem

min 31 Jep + el (10.26)

Hence, we can find the search direction by applying linear least-squares algorithms to the
subproblem (10.26). In fact, if the QR or SVD-based algorithms are used, there is no need
to calculate the Hessian approximation J; Ji in (10.23) explicitly; we can work directly with
the Jacobian J. The same is true if we use a conjugate-gradient technique to solve (10.26).
For this method we need to perform matrix-vector multiplications with J; Ji, which can
be done by first multiplying by J; and then by J;!.

If the number of residuals m is large while the number of variables n is relatively
small, it may be unwise to store the Jacobian J explicitly. A preferable strategy may be to
calculate the matrix J7 J and gradient vector J 7 r by evaluating r; and Vr; successively for
Jj =1,2,...,m and performing the accumulations

JTT = (V)" T =Y (V). (10.27)

i=1 i=1

The Gauss—Newton steps can then be computed by solving the system (10.23) of normal
equations directly.

The subproblem (10.26) suggests another motivation for the Gauss—Newton search
direction. We can view this equation as being obtained from a linear model for the the vector
function r(x; + p) =~ ry + Jip, substituted into the function %H - ||I*. In other words, we
use the approximation

f+p) = 3lrGa + pI> = 2Jip + rell’,

and choose p;™ to be the minimizer of this approximation.

Implementations of the Gauss—Newton method usually perform a line search in the
direction p;N, requiring the step length oy to satisfy conditions like those discussed in
Chapter 3, such as the Armijo and Wolfe conditions; see (3.4) and (3.6).

GN
k >

CONVERGENCE OF THE GAUSS-NEWTON METHOD

The theory of Chapter 3 can applied to study the convergence properties of the
Gauss—Newton method. We prove a global convergence result under the assumption that
the Jacobians J(x) have their singular values uniformly bounded away from zero in the

255

256 CHAPTER 10. LEAST-SQUARES PROBLEMS

region of interest; that is, there is a constant y > 0 such that
I/ (x)zll = ylizll (10.28)

for all x in a neighborhood N of the level set

L=A{x]fx)= flxo)}, (10.29)

where x is the starting point for the algorithm. We assume here and in the rest of the chapter
that £ is bounded. Our result is a consequence of Theorem 3.2.

Theorem 10.1.

Suppose each residual function r; is Lipschitz continuously differentiable in a neigh-
borhood N of the bounded level set (10.29), and that the Jacobians J (x) satisfy the uniform
full-rank condition (10.28) on N. Then if the iterates x; are generated by the Gauss—Newton
method with step lengths oy, that satisfy (3.6), we have

lim J r = 0.
k—o00

PrOOF. First, we note that the neighborhood A of the bounded level set £ can be chosen
small enough that the following properties are satisfied for some positive constants L and S:

Irj(x)| < B and [|Vr;(x)] < B,
Irj(x) —rj(¥)] < Lllx = x|l and [|Vr;(x) = Vr;(X)|| < L|lx — XI|,

forallx,X € Nandall j = 1,2, ..., m. It is easy to deduce that there exists a constant
B > 0 such that ||[J(x)T|| = ||J(x)|| < B for all x € L. In addition, by applying the
results concerning Lipschitz continuity of products and sums (see for example (A.43)) to
the gradient V f(x) = Z'}’zl rj(x)Vr;(x), we can show that V f is Lipschitz continuous.
Hence, the assumptions of Theorem 3.2 are satisfied.

We check next that the angle 6, between the search direction p;™ and the negative
gradient —V f is uniformly bounded away from /2. From (3.12), (10.25), and (10.28),
we have for x = x; € £ and p™ = p;™ that

(VT p™ IIJ p™ |12 a2
cos ek == GN = GN T GN z Q2 GN |2 = __2 >0
IV AL eI I p™I = B2Ip™ B
It follows from (3.14) in Theorem 3.2 that V f(x;) — 0, giving the result. O

If J, is rank-deficient for some k (so that a condition like (10.28) is not satisfied), the
coefficient matrix in (10.23) is singular. The system (10.23) still has a solution, however,
because of the equivalence between this linear system and the minimization problem (10.26).

10.3. ALGORITHMS FOR NONLINEAR LEAST-SQUARES PROBLEMS

In fact, there are infinitely many solutions for p;™ in this case; each of them has the form
of (10.22). However, there is no longer an assurance that cos 6 is uniformly bounded away
from zero, so we cannot prove a result like Theorem 10.1.

The convergence of Gauss—Newton to a solution x* can be rapid if the leading term
Jl Ji dominates the second-order term in the Hessian (10.5). Suppose that x; is close to
x* and that assumption (10.28) is satisfied. Then, applying an argument like the Newton’s
method analysis (3.31), (3.32), (3.33) in Chapter 3, we have for a unit step in the Gauss—
Newton direction that

X+ p = xF = x —xF = [JTT ()] 7'V F ()
= [JT T [TTT) (k= x*) + V(%) = V f(x)]

where JT J (x) is shorthand notation for J (x)” J (x). Using H (x) to denote the second-order
term in (10.5), we have from (A.57) that

1
Vf(x) - V) = / JT T+ 1 — X)) — x7) di
0

1
+/ H(S +t(x — x™) (e — x¥) dt.
0

A similar argument as in (3.32), (3.33), assuming Lipschitz continuity of H(-) near x*,
shows that

llxk + pg~ — x|
1
sf 17T o)) H(* + (e — X)) [l — x* [dt + O(llxg — x*[1%)
0

~NITTCDTH)| xe — x5+ O(flxg — x*[1%). (10.30)

Hence, if ||[J7 J(x*)] 7' H (x*)|| < 1, we can expect a unit step of Gauss—Newton to move
us much closer to the solution x*, giving rapid local convergence. When H (x*) = 0, the
convergence is actually quadratic.

When n and m are both large and the Jacobian J (x) is sparse, the cost of computing
steps exactly by factoring either J; or J; Ji at each iteration may become quite expensive
relative to the cost of function and gradient evaluations. In this case, we can design inexact
variants of the Gauss—Newton algorithm that are analogous to the inexact Newton algo-
rithms discussed in Chapter 7. We simply replace the Hessian V2 f (x;) in these methods by
its approximation J;” J;. The positive semidefiniteness of this approximation simplifies the
resulting algorithms in several places.

257

258

CHAPTER 10. LEAST-SQUARES PROBLEMS

THE LEVENBERG-MARQUARDT METHOD

Recall that the Gauss—Newton method is like Newton’s method with line search, except
that we use the convenient and often effective approximation (10.24) for the Hessian. The
Levenberg—Marquardt method can be obtained by using the same Hessian approximation,
but replacing the line search with a trust-region strategy. The use of a trust region avoids
one of the weaknesses of Gauss—Newton, namely, its behavior when the Jacobian J(x) is
rank-deficient, or nearly so. Since the same Hessian approximations are used in each case,
the local convergence properties of the two methods are similar.

The Levenberg—Marquardt method can be described and analyzed using the trust-
region framework of Chapter 4. (In fact, the Levenberg—Marquardt method is sometimes
considered to be the progenitor of the trust-region approach for general unconstrained
optimization discussed in Chapter 4.) For a spherical trust region, the subproblem to be
solved at each iteration is

min HJep +rell?, subjectto [Ipll < Ay, (10.31)

where Ay > 01is the trust-region radius. In effect, we are choosing the model function m (-)
in (4.3) to be

me(p) = el + p" Il re + 3p" I Jep. (10.32)

We drop the iteration counter k during the rest of this section and concern ourselves
with the subproblem (10.31). The results of Chapter 4 allow us to characterize the solution
of (10.31) in the following way: When the solution p°™ of the Gauss—Newton equations
(10.23) lies strictly inside the trust region (that s, || p™|| < A), then this step p~ also solves
the subproblem (10.31). Otherwise, there is a A > 0 such that the solution p = p™ of
(10.31) satisfies || p|| = A and

(JTT+al)p=—J"r (10.33)

This claim is verified in the following lemma, which is a straightforward consequence of
Theorem 4.1 from Chapter 4.

Lemma 10.2.

The vector p™ is a solution of the trust-region subproblem
min |[Jp+r|?, subjectto|p| <A,
P
if and only if p™ is feasible and there is a scalar .. > 0 such that

JTT+1Dp™=—JTr, (10.34a)
LA = I p™) = 0. (10.34b)

10.3. ALGORITHMS FOR NONLINEAR LEAST-SQUARES PROBLEMS

PROOF. In Theorem 4.1, the semidefiniteness condition (4.8¢c) is satisfied automatically,
since JTJ is positive semidefinite and A > 0. The two conditions (10.34a) and (10.34b)
follow from (4.8a) and (4.8b), respectively. O

Note that the equations (10.33) are just the normal equations for the following linear

least-squares problem:
J r
+
Jir |77 o

Just as in the Gauss—Newton case, the equivalence between (10.33) and (10.35) gives us a
way of solving the subproblem without computing the matrix-matrix product J” J and its
Cholesky factorization.

2

min (10.35)

P 2

IMPLEMENTATION OF THE LEVENBERG-MARQUARDT METHOD

To find a value of A that approximately matches the given A in Lemma 10.2, we can
use the rootfinding algorithm described in Chapter 4. It is easy to safeguard this procedure:
The Cholesky factor R is guaranteed to exist whenever the current estimate () is positive,
since the approximate Hessian B = JTJ is already positive semidefinite. Because of the
special structure of B, we do not need to compute the Cholesky factorization of B + A/
from scratch in each iteration of Algorithm 4.1. Rather, we present an efficient technique
for finding the following QR factorization of the coefficient matrix in (10.35):

Bed_or] 7 (10.36)
0 =% VAT '

(Q, orthogonal, R, upper triangular). The upper triangular factor R; satisfies R,\T R, =
(JTT +AI).

We can save computer time in the calculation of the factorization (10.36) by using
a combination of Householder and Givens transformations. Suppose we use Householder
transformations to calculate the QR factorization of J alone as

J:Q[K } (10.37)
0

We then have

A RE P
il I vl

259

260

CHAPTER 10. LEAST-SQUARES PROBLEMS

The leftmost matrix in this formula is upper triangular except for the n nonzero terms of
the matrix A7. These can be eliminated by a sequence of n(n + 1)/2 Givens rotations, in
which the diagonal elements of the upper triangular part are used to eliminate the nonzeros
of AT and the fill-in terms that arise in the process. The first few steps of this process are as
follows:

rotate row n of R with row n of /A1, to eliminate the (n, n) element of NV E

rotate row n — 1 of R with row n — 1 of /A1 to eliminate the (n — 1, n — 1) element
of the latter matrix. This step introduces fill-in in position (n — 1, n) of /X1, which
is eliminated by rotating row n of R with row n — 1 of +/A1, to eliminate the fill-in
element at position (n — 1, n);

rotate row n — 2 of R with row n — 2 of +/A1, to eliminate the (n — 2) diagonal in the
latter matrix. This step introduces fill-in in the (n — 2, n — 1) and (n — 2, n) positions,
which we eliminate by - - -

and so on. If we gather all the Givens rotations into a matrix Q;, we obtain from (10.38)
that

R R,
of| o = o |,

NIV 0

and hence (10.36) holds with

QA:|: e I:|Qx-

The advantage of this combined approach is that when the value of A is changed in the
rootfinding algorithm, we need only recalculate Q; and not the Householder part of the
factorization (10.38). This feature can save a lot of computation in the case of m > n, since
just O(n®) operations are required to recalculate 0, and R, for each value of A, after the
initial cost of O (mn?) operations needed to calculate Q in (10.37).

Least-squares problems are often poorly scaled. Some of the variables could have
values of about 104, while other variables could be of order 107°. If such wide variations are
ignored, the algorithms above may encounter numerical difficulties or produce solutions of
poor quality. One way to reduce the effects of poor scaling is to use an ellipsoidal trust region
in place of the spherical trust region defined above. The step is confined to an ellipse in
which the lengths of the principal axes are related to the typical values of the corresponding
variables. Analytically, the trust-region subproblem becomes

min 1(|Jip +rill®, subjectto | Depll < Ay, (10.39)
p

10.3. ALGORITHMS FOR NONLINEAR LEAST-SQUARES PROBLEMS

where D is a diagonal matrix with positive diagonal entries (cf. (7.13)). Instead of (10.33),
the solution of (10.39) satisfies an equation of the form

(S Te +aD7) pi = = I 7 (10.40)

and, equivalently, solves the linear least-squares problem

i L5

The diagonals of the scaling matrix Dy can change from iteration to iteration, as we gather
information about the typical range of values for each component of x. If the variation in
these elements is kept within certain bounds, then the convergence theory for the spherical

2

min
14

(10.41)

case continues to hold, with minor modifications. Moreover, the technique described above
for calculating R; needs no modification. Seber and Wild [280] suggest choosing the
diagonals of D} to match those of J;' J, to make the algorithm invariant under diagonal
scaling of the components of x. This approach is analogous to the technique of scaling
by diagonal elements of the Hessian, which was described in Section 4.5 in the context of
trust-region algorithms for unconstrained optimization.

For problems in which m and n are large and J(x) is sparse, we may prefer to solve
(10.31) or (10.39) approximately using the CG-Steihaug algorithm, Algorithm 7.2 from
Chapter 7, with J J; replacing the exact Hessian V? f;. Positive semidefiniteness of the
matrix J J; makes for some simplification of this algorithm, because negative curvature
cannot arise. It is not necessary to calculate J;! Ji explicitly to implement Algorithm 7.2; the
matrix-vector products required by the algorithm can be found by forming matrix-vector
products with J; and J;' separately.

CONVERGENCE OF THE LEVENBERG-MARQUARDT METHOD

It is not necessary to solve the trust-region problem (10.31) exactly in order for
the Levenberg—Marquardt method to enjoy global convergence properties. The following
convergence result can be obtained as a direct consequence of Theorem 4.6.

Theorem 10.3.

Letn € (0, 1) in Algorithm 4.1 of Chapter 4, and suppose that the level set L defined
in (10.29) is bounded and that the residual functionsr;(-), j = 1,2,...,m are Lipschitz
continuously differentiable in a neighborhood N of L. Assume that for each k, the approximate

solution py. of (10.31) satisfies the inequality

) 77l
my(0) — mi(px) > c1||J] re | min (Ak, kT , (10.42)
I Jill

261

262

CHAPTER 10. LEAST-SQUARES PROBLEMS

for some constant ¢; > 0, and in addition || pr|| < y Ax for some constant y > 1. We then
have that

lim Vf, = lim Jr, = 0.
k—00 k—00

ProOF. The smoothness assumption on 7 (-) implies that we can choose a constant M > 0
such that ||JkT Ji|l < M for all iterates k. Note too that the objective f is bounded below
(by zero). Hence, the assumptions of Theorem 4.6 are satisfied, and the result follows
immediately. 0

As in Chapter 4, there is no need to calculate the right-hand-side in the inequality
(10.42) or to check it explicitly. Instead, we can simply require the decrease given by our
approximate solution py of (10.31) to at least match the decrease given by the Cauchy point,
which can be calculated inexpensively in the same way as in Chapter 4. If we use the iterative
CG-Steihaug approach, Algorithm 7.2, the condition (10.42) is satisfied automatically for
¢1 = 1/2, since the Cauchy point is the first estimate of p; computed by this approach,
while subsequent estimates give smaller values for the model function.

The local convergence behavior of Levenberg—Marquardt is similar to the Gauss—
Newton method. Near a solution x* at which the first term of the Hessian V2 f (x*) (10.5)
dominates the second term, the model function in (10.31), the trust region becomes inactive
and the algorithm takes Gauss—Newton steps, giving the rapid local convergence expression
(10.30).

METHODS FOR LARGE-RESIDUAL PROBLEMS

In large-residual problems, the quadratic model in (10.31) is an inadequate repre-
sentation of the function f because the second-order part of the Hessian V2 f(x) is too
significant to be ignored. In data-fitting problems, the presence of large residuals may
indicate that the model is inadequate or that errors have been made in monitoring the
observations. Still, the practitioner may need to solve the least-squares problem with the
current model and data, to indicate where improvements are needed in the weighting of
observations, modeling, or data collection.

On large-residual problems, the asymptotic convergence rate of Gauss—Newton and
Levenberg—Marquardt algorithms is only linear—slower than the superlinear convergence
rate attained by algorithms for general unconstrained problems, such as Newton or quasi-
Newton. If the individual Hessians V?r; are easy to calculate, it may be better to ignore the
structure of the least-squares objective and apply Newton’s method with trust region or line
search to the problem of minimizing f. Quasi-Newton methods, which attain a superlin-
ear convergence rate without requiring calculation of Vir j» are another option. However,
the behavior of both Newton and quasi-Newton on early iterations (before reaching a
neighborhood of the solution) may be inferior to Gauss—Newton and Levenberg—Marquardt.

10.3. ALGORITHMS FOR NONLINEAR LEAST-SQUARES PROBLEMS

Of course, we often do not know beforehand whether a problem will turn out to
have small or large residuals at the solution. It seems reasonable, therefore, to consider
hybrid algorithms, which would behave like Gauss—Newton or Levenberg—Marquardt if the
residuals turn out to be small (and hence take advantage of the cost savings associated with
these methods) but switch to Newton or quasi-Newton steps if the residuals at the solution
appear to be large.

There are a couple of ways to construct hybrid algorithms. One approach, due to
Fletcher and Xu (see Fletcher [101]), maintains a sequence of positive definite Hessian ap-
proximations By. If the Gauss—Newton step from x; reduces the function f by a certain
fixed amount (say, a factor of 5), then this step is taken and By is overwritten by JkT Ji.
Otherwise, a direction is computed using By, and the new point x4 is obtained by per-
forming a line search. In either case, a BFGS-like update is applied to By to obtain a new
approximation By.;. In the zero-residual case, the method eventually always takes Gauss—
Newton steps (giving quadratic convergence), while it eventually reduces to BFGS in the
nonzero-residual case (giving superlinear convergence). Numerical results in Fletcher [101,
Tables 6.1.2, 6.1.3] show good results for this approach on small-, large-, and zero-residual
problems.

A second way to combine Gauss—Newton and quasi-Newton ideas is to maintain
approximations to just the second-order part of the Hessian. That is, we maintain a sequence
of matrices Sy that approximate the summation term Z;-”:l r (x)V3r ;(x;) in (10.5), and
then use the overall Hessian approximation

Be=JlJi + S,

in a trust-region or line search model for calculating the step p;. Updates to Sy are devised
so that the approximate Hessian By, or its constituent parts, mimics the behavior of the
corresponding exact quantities over the step just taken. The update formula is based on a
secant equation, which arises also in the context of unconstrained minimization (6.6) and
nonlinear equations (11.27). In the present instance, there are a number of different ways
to define the secant equation and to specify the other conditions needed for a complete
update formula for S;. We describe the algorithm of Dennis, Gay, and Welsch [90], which
is probably the best-known algorithm in this class because of its implementation in the
well-known NL2soL package.

In [90], the secant equation is motivated in the following way. Ideally, Sy, should be
a close approximation to the exact second-order term at x = x;;; that is,

m
~ 2
Spp1 & er(xk+l)v 7 (Xgg1)-
j=1

Since we do not want to calculate the individual Hessians V?2r ; in this formula, we could
replace each of them with an approximation (B})i+ and impose the condition that (B})i+

263

264

CHAPTER 10. LEAST-SQUARES PROBLEMS

should mimic the behavior of its exact counterpart Vr; over the step just taken; that
is,

(Bj)k+1(xk+1 — X)) = Vrj(ka) - V”j(xk)
= (row j of J (xx11))" — (row j of J (xx))T.

This condition leads to a secant equation on Si1, namely,

Serr(eer = x) = D7 (1) (B iy (ki1 — xe)
j=1

3

=D i) [(row j of J (xa))” — (row j of J (o))"]

j=1

T
J+ Fk+1 _Jk Fk+1-

As usual, this condition does not completely specify the new approximation Si. Dennis,
Gay, and Welsch add requirements that S;,; be symmetric and that the difference Sy — Sk
from the previous estimate S, be minimized in a certain sense, and derive the following
update formula:

g o)y t_ 56T P Ses)T
(y k$)y' +y(y)y k) Sny, (10.43)
yTs (yTs)?

Sk+1 = S +

where

$ = Xp1 — Xk,
T T
Y= JepiTerr — i T,

g _ gT T
y = Jk+1rk+1 — Jk Fk4+1-

Note that (10.43) is a slight variant on the DFP update for unconstrained minimization. It
would be identical if y* and y were the same.

Dennis, Gay, and Welsch use their approximate Hessian J;! J; + Sk in conjunction
with a trust-region strategy, but a few more features are needed to enhance its performance.
One deficiency of its basic update strategy for Sy is that this matrix is not guaranteed to
vanish as the iterates approach a zero-residual solution, so it can interfere with superlinear
convergence. This problem is avoided by scaling Sy prior to its update; we replace Sy by t; Sk
on the right-hand-side of (10.43), where

. IsT y¥|
T =min | 1, .
IsT S|

10.4. ORTHOGONAL DISTANCE REGRESSION

A final modification in the overall algorithm is that the Sy term is omitted from the Hessian
approximation when the resulting Gauss—Newton model produces a sufficiently good step.

10.4 ORTHOGONAL DISTANCE REGRESSION

In Example 10.1 we assumed that no errors were made in noting the time at which the blood
samples were drawn, so that the differences between the model ¢ (x; ;) and the observation
y; were due to inadequacy in the model or measurement errors in y;. We assumed that
any errors in the ordinates—the times #;—are tiny by comparison with the errors in the
observations. This assumption often is reasonable, but there are cases where the answer can
be seriously distorted if we fail to take possible errors in the ordinates into account. Models
that take these errors into account are known in the statistics literature as errors-in-variables
models [280, Chapter 10], and the resulting optimization problems are referred to as fotal
least squares in the case of a linear model (see Golub and Van Loan [136, Chapter 5]) or as
orthogonal distance regression in the nonlinear case (see Boggs, Byrd, and Schnabel [30]).

We formulate this problem mathematically by introducing perturbations §; for the
ordinates ¢, as well as perturbations €, for y;, and seeking the values of these 2m perturba-
tions that minimize the discrepancy between the model and the observations, as measured
by a weighted least-squares objective function. To be precise, we relate the quantities ¢;, y;,
dj,and €; by

yi =¢(x;t; +8;) €, j=12,...,m, (10.44)

and define the minimization problem as

m
min % Z wief + d?s8? subject to (10.44). (10.45)
j=1

X,Sj,éj 7

The quantities w; and d; are weights, selected either by the modeler or by some automatic
estimate of the relative significance of the error terms.

It is easy to see how the term “orthogonal distance regression” originates when we
graph this problem; see Figure 10.2. If all the weights w; and d; are equal, then each term
in the summation (10.45) is simply the shortest distance between the point (¢;, y;) and the
curve ¢(x;t) (plotted as a function of #). The shortest path between each point and the
curve is orthogonal to the curve at the point of intersection.

Using the constraints (10.44) to eliminate the variables € ; from (10.45), we obtain the
unconstrained least-squares problem

m 2m
min F(x,8) =3 wily; = ot +8)P +djs} =3 rix.8)., (1046)
, : =

Jj=1

265

266 CHAPTER 10. LEAST-SQUARES PROBLEMS

Figure 10.2 Orthogonal distance regression minimizes the sum of squares of the
distance from each point to the curve.

where 8 = (81,65, ..., 8,)" and we have defined

rn g = | WPE)yl J= 12, (10.47)
7 dj_mBj_m,]=m+l,,2m '

Note that (10.46) is now a standard least-squares problem with 2m residuals and m + n
unknowns, which we can solve by using the techniques in this chapter. A naive implementa-
tion of this strategy may, however, be quite expensive, since the number of parameters (2n)
and the number of observations (m + n) may both be much larger than for the original
problem.

Fortunately, the Jacobian matrix for (10.46) has a special structure that can be ex-
ploited in implementing the Gauss—Newton or Levenberg—Marquardt methods. Many of its
components are zero; for instance, we have

orj _ 3ty +8;5x) — y)]
06; 94;

=0, i,j=L12....m i#]

and

10.4. ORTHOGONAL DISTANCE REGRESSION

Additionally, we have for j = 1,2,...,mandi = 1,2, ..., m that

96; 0 otherwise.

s { d; ifi=j,
Hence, we can partition the Jacobian of the residual function r defined by (10.47) into
blocks and write

J(x,8)=[; Z } (10.48)

where V and D are m x m diagonal matrices and J is the m x n matrix of partial derivatives
of the functions w;¢(t; 4 8;; x) with respect to x. Boggs, Byrd, and Schnabel [30]) apply
the Levenberg—Marquardt algorithm to (10.46) and note that block elimination can be used
to solve the subproblems (10.33), (10.35) efficiently. Given the partitioning (10.48), we can
partition the step vector p and the residual vector r accordingly as

Px ’,"\1
P =) r=1{ . ,

and write the normal equations (10.33) in the partitioned form

JTT + a1 JTv De JTH (10.49)
vi V4 D2+ Al ps | Vi + DR | '

Since the lower right submatrix V2 + D? + A is diagonal, it is easy to eliminate ps from
this system and obtain a smaller n x n system to be solved for p, alone. The total cost
of finding a step is only marginally greater than for the m x n problem arising from the
standard least-squares model.

NOTES AND REFERENCES

Algorithms for linear least squares are discussed comprehensively by Bjorck [29],
who includes detailed error analyses of the different algorithms and software listings. He
considers not just the basic problem (10.13) but also the situation in which there are bounds
(for example, x > 0) or linear constraints (for example, Ax > b) on the variables. Golub
and Van Loan [136, Chapter 5] survey the state of the art, including discussion of the
suitability of the different approaches (for example, normal equations vs. QR factorization)
for different problem types. A classical reference on linear least-squares is Lawson and
Hanson [188].

267

268

CHAPTER 10. LEAST-SQUARES PROBLEMS

Very large nonlinear least-squares problems arise in numerous areas of application,
such as medical imaging, geophysics, economics, and engineering design. In many instances,
both the number of variables n and the number of residuals m is large, but it is also quite
common that only m is large.

The original description of the Levenberg—Marquardt algorithm [190, 203] did not
make the connection with the trust-region concept. Rather, it adjusted the value of A in
(10.33) directly, increasing or decreasing it by a certain factor according to whether or not
the previous trial step was effective in decreasing f (). (The heuristics for adjusting A were
analogous to those used for adjusting the trust-region radius Ay in Algorithm 4.1.) Similar
convergence results to Theorem 10.3 can be proved for algorithms that use this approach
(see, for instance, Osborne [231]), independently of trust-region analysis. The connection
with trust regions was firmly established by Moré [210].

Wright and Holt [318] present an inexact Levenberg—Marquardt approach for
large-scale nonlinear least squares that manipulates the parameter A directly rather than
making use of the connection to trust-region algorithms. This method takes steps py that,
analogously to (7.2) and (7.3) in Chapter 7, satisfy the system

[(7E T+ 2ed) pe+ T re | < mell T vl for some n; € [0, n],

where n € (0, 1) is a constant and {n;} is a forcing sequence. A ratio of actual to pre-
dicted decrease is used to decide whether the step p; should be taken, and convergence
to stationary points can be proved under certain assumptions. The method can be imple-
mented efficiently by using Algorithm LSQR of Paige and Saunders [234] to calculate the
approximate solution of (10.35) since, for a small marginal cost, this algorithm can compute
approximate solutions for a number of different values of 1, simultaneously. Hence, we can
compute values of p; corresponding to a range of values of Ay, and choose the actual step to
be the one corresponding to the smallest A for which the actual-predicted decrease ratio is
satisfactory.

Nonlinear least squares software is fairly prevalent because of the high demand
for it. Major numerical software libraries such as IMSL, HSL, NAG, and sas, as well as
programming environments such as Mathematica and Matlab, contain robust nonlinear
least-squares implementations. Other high quality implmentations include DFNLP, MINPACK,
NL2SOL, and NLSSOL; see Moré and Wright [217, Chapter 3]. The nonlinear programming
packages LANCELOT, KNITRO, and SNOPT provide large-scale implementions of the Gauss—
Newton and Levenberg—Marquardt methods. The orthogonal distance regression algorithm
is implemented by ORDPACK [31].

All these routines (which can be accessed through the web) give the user the option
of either supplying Jacobians explicitly or else allowing the code to compute them by finite
differencing. (In the latter case, the user need only write code to compute the residual vector
r(x); see Chapter 8.) Seber and Wild [280, Chapter 15] describe some of the important
practical issues in selecting software for statistical applications.

10.4. ORTHOGONAL DISTANCE REGRESSION

& EXERCISES

& 10.1 Let J bean m x n matrix with m > n, and let y € R™ be a vector.
(a) Show that J has full column rank if and only if J7 J is nonsingular.

(b) Show that J has full column rank if and only if J7 J is positive definite.
& 10.2 Show that the function f(x) in (10.13) is convex.

& 10.3 Show that

(a) if Q is an orthogonal matrix, then || Qx| = ||x|| for any vector x;

(b) the matrices R in (10.15) and R in (10.17) are identical if IT = I, provided that J has
full column rank n.

& 10.4

(a) Show that x* defined in (10.22) is a minimizer of (10.13).

(b) Find ||x*|| and conclude that this norm is minimized when t; = 0 for all i with o; = 0.
& 10.5 Suppose that each residual function r; and its gradient are Lipschitz continuous
with Lipschitz constant L, that is,

Ilrj(x) —r; (Ol < Lllx = XIl, [IVrj(x) = Vr(X)]| < Lllx — x|

forall j = 1,2,...,m and all x, X € D, where D is a compact subset of R". Assume also
that the r; are bounded on D, that is, there exists M > 0 such that |r;(x)| < M for all
j=1,2,...,mandall x € D. Find Lipschitz constants for the Jacobian J (10.3) and the
gradient V f (10.4) over D.

& 10.6 Express the solution p of (10.33) in terms of the singular-value decomposition
of J(x) and the scalar A. Express its squared-norm || p||? in these same terms, and show that

269

CHAPTER

Nonlinear
Equations

In many applications we do not need to optimize an objective function explicitly, but rather
to find values of the variables in a model that satisfy a number of given relationships. When
these relationships take the form of n equalities—the same number of equality conditions
as variables in the model—the problem is one of solving a system of nonlinear equations.
We write this problem mathematically as

r(x) =0, (11.1)

CHAPTER T1T1. NONLINEAR EQUATIONS

where r : R” — " is a vector function, that is,

ri(x)
r2(x)
r(x) =
ra(x)
In this chapter, we assume that each functionr; : R* — R,i = 1,2,...,n, is smooth. A

vector x* for which (11.1) is satisfied is called a solution or root of the nonlinear equations.
A simple example is the system

xf —1
rix)=1| . =0,
SINx; — X

which is a system of n = 2 equations with infinitely many solutions, two of which are
x* = (37/2, —1)T and x* = (r/2, 1)T. In general, the system (11.1) may have no solutions,
a unique solution, or many solutions.

The techniques for solving nonlinear equations overlap in their motivation, analysis,
and implementation with optimization techniques discussed in earlier chapters. In both
optimization and nonlinear equations, Newton’s method lies at the heart of many important
algorithms. Features such as line searches, trust regions, and inexact solution of the linear
algebra subproblems at each iteration are important in both areas, as are other issues such
as derivative evaluation and global convergence.

Because some important algorithms for nonlinear equations proceed by minimizing
a sum of squares of the equations, that is,

n
min Zriz(x),
X
i=1

there are particularly close connections with the nonlinear least-squares problem discussed
in Chapter 10. The differences are that in nonlinear equations, the number of equations
equals the number of variables (instead of exceeding the number of variables, as is typically
the case in Chapter 10), and that we expect all equations to be satisfied at the solution, rather
than just minimizing the sum of squares. This point is important because the nonlinear
equations may represent physical or economic constraints such as conservation laws or
consistency principles, which must hold exactly in order for the solution to be meaningful.

Many applications require us to solve a sequence of closely related nonlinear systems,
as in the following example.

271

272

CHAPTER T1T1. NONLINEAR EQUATIONS

(d ExampLE 11.1 (RHEINBOLDT; SEE [212])

An interesting problem in control is to analyze the stability of an aircraft in response
to the commands of the pilot. The following is a simplified model based on force-balance
equations, in which gravity terms have been neglected.

The equilibrium equations for a particular aircraft are given by a system of 5 equations
in 8 unknowns of the form

F(x)= Ax 4+ ¢(x) =0, (11.2)

where F : R® — R®, the matrix A is given by

—3.933 0.107 0.126 0 —9.99 0 —45.83 —7.64
0 —0.987 0 —22.95 0 —28.37 0 0
A= 0.002 0 —0.235 0 5.67 0 —0.921 —6.51 |,
0 1.0 0 —-1.0 0 —0.168 0 0
0 0 -1.0 0 —0.196 0 —0.0071 0

and the nonlinear part is defined by

[—0.727x,x3 + 8.39x3x4 — 684.4x,x5 + 63.5x,x5 |
0.949x1x3 + 0.173x1x5

o(x) = —0.716x;x; — 1.578x1x4 + 1.132x4x

—X1X5

X1X4

The first three variables x,, x,, x3, represent the rates of roll, pitch, and yaw, respec-
tively, while x, is the incremental angle of attack and x5 the sideslip angle. The last three
variables x¢, X7, xg are the controls; they represent the deflections of the elevator, aileron,
and rudder, respectively.

For a given choice of the control variables x¢, x7, xg we obtain a system of 5 equations
and 5 unknowns. If we wish to study the behavior of the aircraft as the controls are changed,
we need to solve a system of nonlinear equations with unknowns x1, x, ..., x5 for each

a

setting of the controls.

Despite the many similarities between nonlinear equations and unconstrained and
least-squares optimization algorithms, there are also some important differences. To ob-
tain quadratic convergence in optimization we require second derivatives of the objective
function, whereas knowledge of the first derivatives is sufficient in nonlinear equations.

CHAPTER T1T1. NONLINEAR EQUATIONS

ot J

Figure 11.1 The function 7 (x) = sin(5x) — x has three roots.

Quasi-Newton methods are perhaps less useful in nonlinear equations than in optimiza-
tion. In unconstrained optimization, the objective function is the natural choice of merit
function that gauges progress towards the solution, but in nonlinear equations various merit
functions can be used, all of which have some drawbacks. Line search and trust-region tech-
niques play an equally important role in optimization, but one can argue that trust-region
algorithms have certain theoretical advantages in solving nonlinear equations.

Some of the difficulties that arise in trying to solve nonlinear equations can be
illustrated by a simple scalar example (n = 1). Suppose we have

r(x) =sin(5x) — x, (11.3)

as plotted in Figure 11.1. From this figure we see that there are three solutions of the
problem r(x) = 0, also known as roots of r, located at zero and approximately £0.519148.
This situation of multiple solutions is similar to optimization problems where, for example,
a function may have more than one local minimum. It is not quite the same, however: In
the case of optimization, one of the local minima may have a lower function value than
the others (making it a “better” solution), while in nonlinear equations all solutions are
equally good from a mathematical viewpoint. (If the modeler decides that the solution

273

274

CHAPTER T1T1. NONLINEAR EQUATIONS

found by the algorithm makes no sense on physical grounds, their model may need to be
reformulated.)

In this chapter we start by outlining algorithms related to Newton’s method and
examining their local convergence properties. Besides Newton’s method itself, these in-
clude Broyden’s quasi-Newton method, inexact Newton methods, and tensor methods.
We then address global convergence, which is the issue of trying to force convergence to
a solution from a remote starting point. Finally, we discuss a class of methods in which
an “easy” problem—one to which the solution is well known—is gradually transformed
into the problem F(x) = 0. In these so-called continuation (or homotopy) methods, we
track the solution as the problem changes, with the aim of finishing up at a solution of
F(x)=0.

Throughout this chapter we make the assumption that the vector function r is con-
tinuously differentiable in the region D containing the values of x we are interested in. In
other words, the Jacobian J(x) (the matrix of first partial derivatives of r (x) defined in the
Appendix and in (10.3)) exists and is continuous. We say that x* satisfying 7 (x*) = O is a
degenerate solution if J (x*) is singular, and a nondegenerate solution otherwise.

11.1 LOCAL ALGORITHMS

NEWTON'’S METHOD FOR NONLINEAR EQUATIONS

Recall from Theorem 2.1 that Newton’s method for minimizing f : R” — R formsa
quadratic model function by taking the first three terms of the Taylor series approximation
of f around the current iterate x;. The Newton step is the vector that minimizes this model.
In the case of nonlinear equations, Newton’s method is derived in a similar way, but with a
linear model, one that involves function values and first derivatives of the functions r;(x),
i =1,2,..., matthe current iterate x;. We justify this strategy by referring to the following
multidimensional variant of Taylor’s theorem.

Theorem 11.1.
Suppose thatr : R" — R" is continuously differentiable in some convex open set D and
that x and x + p are vectors in D. We then have that

1
r(x+p):r(x)+/ J(x +tp)pd:t. (11.4)
0

We can define a linear model M, (p) of r(x; + p) by approximating the second term on the
right-hand-side of (11.4) by J (x) p, and writing

Mi(p) € r(x) + J(x)p. (11.5)

11.1. LoOCAL ALGORITHMS

Newton’s method, in its pure form, chooses the step py to be the vector for which My (py) =
0, that is, pr = —J (xx)~'r (x;). We define it formally as follows.

Algorithm 11.1 (Newton’s Method for Nonlinear Equations).
Choose xg;
fork=0,1,2,...
Calculate a solution py to the Newton equations

J) pe = —r(xg); (11.6)

Xp+1 < Xk + Pis
end (for)

We use a linear model to derive the Newton step, rather than a quadratic model as in
unconstrained optimization, because the linear model normally has a solution and yields an
algorithm with rapid convergence properties. In fact, Newton’s method for unconstrained
optimization (see (2.15)) can be derived by applying Algorithm 11.1 to the nonlinear
equations V f(x) = 0. We see also in Chapter 18 that sequential quadratic programming
for equality-constrained optimization can be derived by applying Algorithm 11.1 to the
nonlinear equations formed by the first-order optimality conditions (18.3) for this problem.
Another connection is with the Gauss—Newton method for nonlinear least squares; the
formula (11.6) is equivalent to (10.23) in the usual case in which J (x;) is nonsingular.

When the iterate x; is close to a nondegenerate root x*, Newton’s method converges
superlinearly, as we show in Theorem 11.2 below. Potential shortcomings of the method
include the following.

e When the starting point is remote from a solution, Algorithm 11.1 can behave
erratically. When J (x;) is singular, the Newton step may not even be defined.

e First-derivative information (the Jacobian matrix J) may be difficult to obtain.

e It may be too expensive to find and calculate the Newton step p; exactly when n is
large.

e The root x* in question may be degenerate, that is, J (x*) may be singular.

An example of a degenerate problem is the scalar function r(x) = x2, which has a single
degenerate root at x* = 0. Algorithm 11.1, when started from any nonzero x,, generates the
sequence of iterates

1
Xk = z—kxo,

which converges to the solution 0, but only at a linear rate.

As we show later in this chapter, Newton’s method can be modified and enhanced in
various ways to get around most of these problems. The variants we describe form the basis
of much of the available software for solving nonlinear equations.

275

276 CHAPTER 11. NONLINEAR EQUATIONS

We summarize the local convergence properties of Algorithm 11.1 in the following
theorem. For part of this result, we make use of a Lipschitz continuity assumption on the
Jacobian, by which we mean that there is a constant 8, such that

I/ (x0) = J(x) Il < Brllxo — x1ll, (11.7)

for all xy and x; in the domain in question.

Theorem 11.2.

Suppose that r is continuously differentiable in a convex open set D C R". Let x* € D
be a nondegenerate solution of r(x) = 0, and let {x;} be the sequence of iterates generated by
Algorithm 11.1. Then when x; € D is sufficiently close to x*, we have

et — x* = oflx — x*|), (11.8)

indicating local Q-superlinear convergence. When r is Lipschitz continuously differentiable
near x*, we have for all x; sufficiently close to x* that

Xt = X% = O ([l = x*|1%), (11.9)
indicating local Q-quadratic convergence.
ProOF. Since r(x*) = 0, we have from Theorem 11.1 that
r(xe) = r(x) —r(x®) = J () (i — x%) + wx, x7), (11.10)

where
1
Wi, x%) = / [+ 1% = x0)) — T ()] Gxg — 1), (11.11)
0

From (A.12) and continuity of J, we have

1
/ﬁuﬂ+mﬂ—m»—ummM—ﬂwr
0

nwmwﬂw{
1
S/Hﬂf+ﬂf—m»—ﬂmmwwﬂww (11.12)
0
— o(lx — x"])-

Since J(x*) is nonsingular, there is a radius § > 0 and a positive constant 8* such that for
all x in the ball B(x*, §) defined by

B(x*,8) = {x | llx —x™|| <4}, (11.13)

11.1. LoOCAL ALGORITHMS

we have that
IJx) ' <p* and xeD. (11.14)

Assuming that x; € B(x*, §), and recalling the definition (11.6), we multiply both sides of
(11.10) by J (x) ™! to obtain

—pr = (x¢ — x*) + I () Hlollxe — x*),
= x4+ pr — x" = o(llx — x*|)),
= X1 — XF = o[l — x*)), (11.15)

which yields (11.8).

When the Lipschitz continuity assumption (11.7) is satisfied, we can obtain a sharper
estimate for the remainder term w(xy, x*) defined in (11.11). By using (11.7) in (11.12), we
obtain

lw(xe, x)IF = Ol — x*[1%). (11.16)
By multiplying (11.10) by J (x;)~! as above, we obtain
—pr — (e = x%) = J () " wlxg, x9),
so the estimate (11.9) follows as in (11.15).

INEXACT NEWTON METHODS

Instead of solving (11.6) exactly, inexact Newton methods use search directions py
that satisfy the condition

Irk + Jepell < nellrell, for some ne € [0, n], (11.17)

where n € [0, 1) is a constant. As in Chapter 7, we refer to {n;} as the forcing sequence.
Different methods make different choices of the forcing sequence, and they use different
algorithms for finding the approximate solutions p;. The general framework for this class
of methods can be stated as follows.

Framework 11.2 (Inexact Newton for Nonlinear Equations).
Given n € [0, 1);
Choose xg;
fork=0,1,2,...
Choose forcing parameter n; € [0, n];
Find a vector p; that satisfies (11.17);
Xk+1 < Xp + Pis
end (for)

277

278 CHAPTER 11. NONLINEAR EQUATIONS

The convergence theory for these methods depends only on the condition (11.17)
and not on the particular technique used to calculate p;. The most important methods
in this class, however, make use of iterative techniques for solving linear systems of the
form Jp = —r, such as GMRES (Saad and Schultz [273], Walker [302]) or other Krylov-
space methods. Like the conjugate-gradient algorithm of Chapter 5 (which is not directly
applicable here, since the coefficient matrix J is not symmetric positive definite), these
methods typically require us to perform a matrix—vector multiplication of the form Jd for
some d at each iteration, and to store a number of work vectors of length n. GMRES requires
an additional vector to be stored at each iteration, so must be restarted periodically (often
every 10 or 20 iterations) to keep memory requirements at a reasonable level.

The matrix—vector products Jd can be computed without explicit knowledge of the
Jacobian J. A finite-difference approximation to Jd that requires one evaluation of r(-)
is given by the formula (8.11). Calculation of Jd exactly (at least, to within the limits of
finite-precision arithmetic) can be performed by using the forward mode of automatic
differentiation, at a cost of at most a small multiple of an evaluation of r(-). Details of this
procedure are given in Section 8.2.

We do not discuss the iterative methods for sparse linear systems here, but refer
the interested reader to Kelley [177] and Saad [272] for comprehensive descriptions and
implementations of the most interesting techniques. We prove a local convergence theorem
for the method, similar to Theorem 11.2.

Theorem 11.3.

Suppose that r is continuously differentiable in a convex open set D C R". Let x* € D
be a nondegenerate solution of r(x) = 0, and let {x;} be the sequence of iterates generated by
the Framework 11.2. Then when x;, € D is sufficiently close to x*, the following are true:

(1) Ifnin (11.17) is sufficiently small, the convergence of {x} to x* is Q-linear.
(i) Ifni — 0, the convergence is Q-superlinear.

(iii) If, in addition, J (-) is Lipschitz continuous in a neighborhood of x* and ny = O(||r|l),
the convergence is Q-quadratic.

PrROOF. We first rewrite (11.17) as
J(x)pe +r(xx) = v, where |luell < mellr (x|l (11.18)

Since x* is a nondegenerate root, we have as in (11.14) that there is a radius § > 0 such that
|J(x)7Y|| < B* for some constant 8* and all x € B(x*, §). By multiplying both sides of
(11.18) by J (x;) ™! and rearranging, we find that

e+ T)™ r ()| = ([I G || < B miellr (i) I (11.19)

11.1. LoOCAL ALGORITHMS

As in (11.10), we have that
r(x) =Jx)(x —x*) + wx, x¥), (11.20)

where p(x) af lw(x, x*)||/lx —x*|| = 0asx — x*. By reducing § if necessary, we have
from this expression that the following bound holds for all x € B(x*, §):

Gl < 207) Hlx = x*|| 4+ o(lx — x*[1) < 41T ()| flx —x™|. (11.21)
We now set x = x; in (11.20), and use (11.19) and (11.21) to obtain

Ik + px — x* = | e+ J (e0) ™ (r (i) — wlaeg, x5))|
< Bl (Il + 11 (xi) ™ HTw (e, x) |
< [4I1T OB me + B p(x)] llxi — x*|I. (11.22)

1/(8]|J (x*)||B*), we have that the term in square brackets in (11.22) is at most 1/2. Hence,
since xy+1 = Xx + pi, this formula indicates Q-linear convergence of {x;} to x*, proving
part (i).

Part (ii) follows immediately from the fact that the term in brackets in (11.22) goes to
zero as x; — x* and n, — 0. For part (iii), we combine the techniques above with the logic
of the second part of the proof of Theorem 11.2. Details are left as an exercise. O

By choosing x; close enough to x* that p(xx) < 1/(48*), and choosing n =

BROYDEN'’S METHOD

Secant methods, also known as quasi-Newton methods, do not require calculation of
the Jacobian J (x). Instead, they construct their own approximation to this matrix, updating
it at each iteration so that it mimics the behavior of the true Jacobian J over the step just
taken. The approximate Jacobian, which we denote at iteration k by By, is then used to
construct a linear model analogous to (11.5), namely

M (p) = r(xx) + Byp. (11.23)

We obtain the step by setting this model to zero. When By is nonsingular, we have the
following explicit formula (cf. (11.6)):

pr = —B.'r(x). (11.24)

The requirement that the approximate Jacobian should mimic the behavior of the
true Jacobian can be specified as follows. Let s; denote the step from x; to x4, and let y;

279

280

CHAPTER T1T1. NONLINEAR EQUATIONS

be the corresponding change in r, that is,

Sk = Xgq1 — Xks Vi =1 (Xe1) — r(xe). (11.25)

From Theorem 11.1, we have that s; and y; are related by the expression

1
i =f T+ ts)sedt ~ T (xean)si + olsell. (11.26)
0

We require the updated Jacobian approximation By; to satisfy the following equation,
which is known as the secant equation,

Yk = Brqisk, (11.27)

which ensures that By,; and J(x441) have similar behavior along the direction s;. (Note
the similarity with the secant equation (6.6) in quasi-Newton methods for unconstrained
optimization; the motivation is the same in both cases.) The secant equation does not say
anything about how By should behave along directions orthogonal to sy. In fact, we can
view (11.27) as a system of n linear equations in n?> unknowns, where the unknowns are
the components of By, so for n > 1 the equation (11.27) does not determine all the
components of Byi; uniquely. (The scalar case of n = 1 gives rise to the scalar secant
method; see (A.60).)

The most successful practical algorithm is Broyden’s method, for which the update
formula is

(k — Bisi)s{

Biyy = By + ———+. (11.28)
Sk Sk

The Broyden update makes the smallest possible change to the Jacobian (as measured by the

Euclidean norm || By — By41||2) that is consistent with (11.27), as we show in the following
Lemma.

Lemma 11.4 (Dennis and Schnabel [92, Lemma 8.1.1]).
Among all matrices B satisfying Bs; = yi, the matrix By defined by (11.28) minimizes
the difference || B — Bx||.

PROOF. Let B be any matrix that satisfies Bsy = y;. By the properties of the Euclidean
norm (see (A.10)) and the fact that ||ss” /s”s|| = 1 for any vector s (see Exercise 11.1), we
have

‘ (e — Brsi)si
s

[Ber — Bill = ' T
k Sk

(B — Bi)sis) spsT
='T—" <IIB =Bl | == = I1B = Bll.
S Sk Sk Sk

11.1. LoOCAL ALGORITHMS

Hence, we have that

Biyi €arg min [|B — By,
B :yy=Bsi

and the result is proved. O

In the specification of the algorithm below, we allow a line search to be performed
along the search direction py, so that sy = apy for some & > 0 in the formula (11.25). (See
below for details about line-search methods.)

Algorithm 11.3 (Broyden).
Choose x and a nonsingular initial Jacobian approximation By;
fork=0,1,2,...

Calculate a solution py to the linear equations
By pr = —r(x¢); (11.29)

Choose a; by performing a line search along py;
Xk41 <= Xp + O Pis
Sk < X1 — Xk
Yk < r(xegn) — r(x);
Obtain By, from the formula (11.28);
end (for)

Under certain assumptions, Broyden’s method converges superlinearly, that is,
Xk — x| = o(llxx — x*). (11.30)

This local convergence rate is fast enough for most practical purposes, though not as fast as
the Q-quadratic convergence of Newton’s method.

We illustrate the difference between the convergence rates of Newton’s and Broyden’s
method with a small example. The function r : R> — R? defined by

(x1 +3)(x; —7) + 18
r(x) = ! o (11.31)
sin(x,e™ — 1)
has a nondegenerate root at x* = (0,1)”. We start both methods from the point

xo = (—0.5,1.4)7, and use the exact Jacobian J(xo) at this point as the initial Jacobian
approximation By. Results are shown in Table 11.1.

Newton’s method clearly exhibits Q-quadratic convergence, which is characterized by
doubling of the exponent of the error at each iteration. Broyden’s method takes twice as

281

282 CHAPTER 11.

NONLINEAR EQUATIONS

Table 11.1 Convergence of Iterates in Broyden
and Newton Methods
llxi — x* 12
Iteration k | Broyden Newton
0 0.64 x 10° 0.64 x 10°
1 0.62 x 1071 0.62 x 107!
2 0.52x 107 0.21 x 107°
3 0.25x107% 0.18 x 1077
4 0.43 x 107* 0.12 x 1071
5 0.14 x 107°
6 0.57 x 107°
7 0.18 x 1071
8 0.87 x 10715

Table11.2 Convergence of Function Norms in

Broyden and Newton Methods

Il (xie) [l
Iteration k | Broyden Newton

0 0.74 x 10! 0.74 x 10"
1 0.59 x 10° 0.59 x 10°
2 0.20 x 1072 0.23 x 1072
3 0.21 x 107 0.16 x 107°
4 0.37 x 107? 0.22 x 1071
5 0.12 x 1073

6 0.49 x 1078

7 0.15 x 1071

8 0.11 x 107'8

many iterations as Newton’s, and reduces the error at a rate that accelerates slightly towards
the end. The function norms ||r (x;)|| approach zero at a similar rate to the iteration errors
[lxx — x*||. As in (11.10), we have that

r(xg) =r(xg) —r(x®) = J(x") (g — x"),

so by nonsingularity of J(x*), the norms of 7(x;) and (x; — x*) are bounded above and
below by multiples of each other. For our example problem (11.31), convergence of the
sequence of function norms in the two methods is shown in Table 11.2.

The convergence analysis of Broyden’s method is more complicated than that of
Newton’s method. We state the following result without proof.

Theorem 11.5.
Suppose the assumptions of Theorem 11.2 hold. Then there are positive constants € and

8 such that if the starting point xo and the starting approximate Jacobian By satisfy
llxo —x*|l <6,

[Bo — J(x)|l <e, (11.32)

11.1. LoOCAL ALGORITHMS

the sequence {x; } generated by Broyden’s method (11.24), (11.28) is well-defined and converges
Q-superlinearly to x*.

The second condition in (11.32)—that the initial Jacobian approximation By must
be close to the true Jacobian at the solution J(x*)—is difficult to guarantee in practice.
In contrast to the case of unconstrained minimization, a good choice of By can be crit-
ical to the performance of the algorithm. Some implementations of Broyden’s method
recommend choosing By to be J(xq), or some finite-difference approximation to this
matrix.

The Broyden matrix By will be dense in general, even if the true Jacobian J is sparse.
Therefore, when n is large, an implementation of Broyden’s method that stores By as a full
n X n matrix may be inefficient. Instead, we can use limited-memory methods in which
By is stored implicitly in the form of a number of vectors of length n, while the system
(11.29) is solved by a technique based on application of the Sherman—Morrison—-Woodbury
formula (A.28). These methods are similar to the ones described in Chapter 7 for large-scale
unconstrained optimization.

TENSOR METHODS

In tensor methods, the linear model M (p) used by Newton’s method (11.5) is aug-
mented with an extra term that aims to capture some of the nonlinear, higher-order,
behavior of r. By doing so, it achieves more rapid and reliable convergence to degenerate
roots, in particular, to roots x* for which the Jacobian J(x*) has rank n — 1 or n — 2.
We give a broad outline of the method here, and refer to Schnabel and Frank [277] for
details.

We use Mk(p) to denote the model function on which tensor methods are based; this
function has the form

Mi(p) = r(xi) + J (x)p + 3 Tepp, (11.33)

where T}, is a tensor defined by n* elements (7) 1 whose action on a pair of arbitrary vectors
u and v in R” is defined by

(Tauw); = > (Te)ijiujvr.

j=1 1=1

If we followed the reasoning behind Newton’s method, we could consider building 7} from
the second derivatives of r at the point x, that is,

(To)iji = [Vri(xe)] -

283

284

CHAPTER T1T1. NONLINEAR EQUATIONS

For instance, in the example (11.31), we have that

0 3x2
(T(x)uv); = u’ V2ri(x)v = u’ 5 2 v
3x; 6x3(x1 +3)

= 3x§(u1v2 + urv1) + 6x2(x1 + 3)uyv;.

However, use of the exact second derivatives is not practical in most instances. If we were to
store this information explicitly, about 7n° /2 memory locations would be needed, about n
times the requirements of Newton’s method. Moreover, there may be no vector p for which
Mk(p) = 0, so the step may not even be defined.

Instead, the approach described in [277] defines T} in a way that requires little
additional storage, but which gives My some potentially appealing properties. Specifically,
T is chosen so that Mk(p) interpolates the function r(x; + p) at some previous iterates
visited by the algorithm. That is, we require that

Mk(xk_j—xk):r(xk_j), forj=1,2,...,q, (11.34)

for some integer ¢ > 0. By substituting from (11.33), we see that 7, must satisfy the
condition

ITisjusje = r(xe—;) — () — J(xe)s k.,

where

def .
Sik = Xk—j — Xk, J=1,2,...,9.

In [277] it is shown that this condition can be ensured by choosing 7} so that its action on
arbitrary vectors u and v is

q
T T
Tiuv = Zaj(sjku)(sjkv),
j=1

where aj, j = 1,2,...,q, are vectors of length n. The number of interpolating points ¢
is typically chosen to be quite modest, usually less than /n. This T} can be stored in 2ng
locations, which contain the vectors a; and sj for j = 1,2, ..., q. Note the connection
between this idea and Broyden’s method, which also chooses information in the model
(albeit in the first-order part of the model) to interpolate the function value at the previous
iterate.

This technique can be refined in various ways. The points of interpolation can be
chosen to make the collection of directions s ;; more linearly independent. There may still
not be a vector p for which M, (p) = 0, but we can instead take the step to be the vector that

11.2. PRACTICAL METHODS

minimizes || My(p)|I3, which can be found by using a specialized least-squares technique.
There is no assurance that the step obtained in this way is a descent direction for the merit
function % [l (x)||* (which is discussed in the next section), and in this case it can be replaced
by the standard Newton direction —J;"'ry.

11.2 PRACTICAL METHODS

We now consider practical variants of the Newton-like methods discussed above, in which
line-search and trust-region modifications to the steps are made in order to ensure better
global convergence behavior.

MERIT FUNCTIONS

As mentioned above, neither Newton’s method (11.6) nor Broyden’s method (11.24),
(11.28) with unit step lengths can be guaranteed to converge to a solution of 7 (x) = 0 unless
they are started close to that solution. Sometimes, components of the unknown or function
vector or the Jacobian will blow up. Another, more exotic, kind of behavior is cycling, where
the iterates move between distinct regions of the parameter space without approaching a
root. An example is the scalar function

r(x) = —x° 4+ x° + 4x,

which has five nondegenerate roots. When started from the point xo = 1, Newton’s method
produces a sequence of iterates that oscillates between 1 and —1 (see Exercise 11.3) without
converging to any of the roots.

The Newton and Broyden methods can be made more robust by using line-search and
trust-region techniques similar to those described in Chapters 3 and 4. Before describing
these techniques, we need to define a merit function, which is a scalar-valued function of x
that indicates whether a new iterate is better or worse than the current iterate, in the sense of
making progress toward a root of r. In unconstrained optimization, the objective function
f is itself a natural merit function; most algorithms for minimizing f require a decrease
in f at each iteration. In nonlinear equations, the merit function is obtained by combining
the n components of the vector r in some way.

The most widely used merit function is the sum of squares, defined by

F@) =3P =3 r). (11.35)
i=1

(The factor 1/2 is introduced for convenience.) Any root x* of r obviously has f(x*) = 0,
and since f(x) > 0 for all x, each root is a minimizer of f. However, local minimizers of
f are not roots of r if f is strictly positive at the point in question. Still, the merit function

285

286 CHAPTER 11. NONLINEAR EQUATIONS

Figure 11.2 Plot of % [sin(5x) — x]2, showing its many local minima.

(11.35) has been used successfully in many applications and is implemented in a number of
software packages.

The merit function for the example (11.3) is plotted in Figure 11.2. It shows three
local minima corresponding to the three roots, but there are many other local minima (for
example, those at around +1.53053). Local minima like these that are not roots of f satisfy
an interesting property. Since

Vf(x*) =JxHTr*) =0, (11.36)

we can have r (x*) # 0 only if J (x*) is singular.

Since local minima for the sum-of-squares merit function may be points of attraction
for the algorithms described in this section, global convergence results for the algorithms
discussed here are less satisfactory than for similar algorithms applied to unconstrained
optimization.

Other merit functions are also used in practice. One such is the £; norm merit function
defined by

m

AG) =1r @)l =Y).

i=1

This function is studied in Chapters 17 and 18 in the context of algorithms for constrained
optimization.

11.2. PRACTICAL METHODS

LINE SEARCH METHODS

We can obtain algorithms with global convergence properties by applying the line-
search approach of Chapter 3 to the sum-of-squares merit function f(x) = %||r(x)||2.
When it is well defined, the Newton step

J) pe = —r(xx) (11.37)
is a descent direction for f(-) whenever ry # 0, since
PV Fx) =—pl Il r = —lndl* <o. (11.38)

Step lengths «;, are chosen by one of the procedures of Chapter 3, and the iterates are defined
by the formula

Xk4+1 = Xk + O Pk, k=0,1,2,.... (11.39)

For the case of line searches that choose ¢ to satisfy the Wolfe conditions (3.6), we have the
following convergence result, which follows directly from Theorem 3.2.

Theorem 11.6.

Suppose that J(x) is Lipschitz continuous in a neighborhood D of the level set L =
{x: f(x) < f(x0)}, and that ||J(x)| and ||r(x)| are bounded above on D. Suppose that a
line-search algorithm (11.39) is applied to f, where the search directions py satisfy pI V fi < 0
while the step lengths oy, satisfy the Wolfe conditions (3.6). Then we have that the Zoutendijk
condition holds, that is,

> cos® Ol I 7l < oo,

k>0
where

TV
S@k Pk f(xk)

TV ol (11.40)

We omit the proof, which verifies that V f is Lipschitz continuous on D and that f is
bounded below (by 0) on D, and then applies Theorem 3.2.
Provided that the sequence of iterates satisfies

cosBy > 8, forsomed € (0, 1) and all k sufficiently large, (11.41)
Theorem 11.6 guarantees that J/ r, — 0, meaning that the iterates approach stationarity of

the merit function f. Moreover, if we know that || J (x;)~!| is bounded then we must have
ry — 0.

287

288 CHAPTER 11. NONLINEAR EQUATIONS

We now investigate the values of cos 6 for the directions generated by the Newton
and inexact Newton methods. From (11.40) and (11.38), we have for the exact Newton step
(11.6) that

PV () [l 1 - 1 1

_ S > S . (11.42)
IV EC 1 rel I el — 0TI (k)

cosO =

When py is an inexact Newton direction—that is, one that satisfies the condition
(11.17)—we have that

I + Jepell® < nelirll® = 2pf i+ Ir® + 1 e pell> < 0P Ml
= p{ V= pl I < [(n* = 1)/2]lIrell.

Meanwhile,
1Pl < 1 Hire =+ Jepell + el < 17+ Dllrell,
and
IV ficll = I el < Wl
By combining these estimates, we obtain

AN/ 1—7’ _1-n
12kl fiell = 20 el 4+ 1) — 26 (k)

cosb; =

We conclude that a bound of the form (11.41) is satisfied both for the exact and inexact
Newton methods, provided that the condition number « (J;) is bounded.

When « (J;) is large, however, this lower bound is close to zero, and use of the Newton
direction may cause poor performance of the algorithm. In fact, the following example
shows that condition cos §; can converge to zero, causing the algorithm to fail. This example
highlights a fundamental weakness of the line-search approach.

(J EXAMPLE 11.2 (POWELL [241])
Consider the problem of finding a solution of the nonlinear system
X1

r(x) = 10x;
(.X1 + 01)

: 11.43
+2x3 ()

11.2. PRACTICAL METHODS

with unique solution x* = 0. We try to solve this problem using the Newton iteration (11.37),
(11.39) where oy is chosen to minimize f along py. It is proved in [241] that, starting from
the point (3, 1)7, the iterates converge to (1.8016, 0)” (to four digits of accuracy). However,
this point is not a solution of (11.43). In fact, it is not even a stationary point of f, and a
step from this point in the direction —V f will produce a decrease in both components of
r. To verify these claims, note that the Jacobian of r, which is

1 0
J(x) = 1 A ,
D — X
(x; +0.1)2 :

is singular at all x for which x, = 0. For such points, we have

+ 10.X1

U

Vi) =| ' (a40.1)3
0

so that the gradient points in the direction of the positive x; axis whenever x; > 0. The
point (1.8016, 0)7 is therefore not a stationary point of f.

For this example, a calculation shows that the Newton step generated from an iterate
that is close to (but not quite on) the x; axis tends to be parallel to the x, axis, making it
nearly orthogonal to the gradient V f(x). That is, cos 6 for the Newton direction may be
arbitrarily close to zero. a

In this example, a Newton method with exact line searches is attracted to a point of
no interest at which the Jacobian is singular. Since systems of nonlinear equations often
contain singular points, this behavior gives cause for concern.

To prevent this undesirable behavior and ensure that (11.41) holds, we may have to
modify the Newton direction. One possibility is to add some multiple A, I of the identity to
JkT Ji» and define the step py to be

o=~ e+ a7 (11.44)

Forany A; > 0the matrixin parentheses is nonsingular, and if 1, is bounded away from zero,
a condition of the form (11.41) is satisfied. Therefore, some practical algorithms choose A,
adaptively to ensure that the matrix in (11.44) does not approach singularity. This approach
is analogous to the classical Levenberg-Marquardt algorithm discussed in Chapter 10. To
implement it without forming J;' J; explicitly and performing trial Cholesky factorizations
of the matrices (JkT Ji + A1), we can use the technique (10.36) illustrated earlier for the
least-squares case. This technique uses the fact that the Cholesky factor of (JkT Je + A1) is

289

290 CHAPTER 11. NONLINEAR EQUATIONS

identical to RT, where R is the upper triangular factor from the QR factorization of the
matrix

T (11.45)
ol | '

A combination of Householder and Givens transformations can be used, as for (10.36), and
the savings noted in the discussion following (10.36) continue to hold if we need to perform
this calculation for several candidate values of A;.

The drawback of this Levenberg-Marquardt approach is that it is difficult to choose
Ar. If too large, we can destroy the fast rate of convergence of Newton’s method. (Note
that py approaches a multiple of —J'r; as Ax 1 00, so the step becomes small and tends
to point in the steepest-descent direction for f.) If A; is too small, the algorithm can be
inefficient in the presence of Jacobian singularities. A more satisfactory approach is to follow
the trust-region approach described below, which chooses A indirectly.

We conclude by specifying an algorithm based on Newton-like steps and line searches
that regularizes the step calculations where necessary. Several details are deliberately left
vague; we refer the reader to the papers cited above for details.

Algorithm 11.4 (Line Search Newton-like Method).
Given ¢y, co with0 < ¢ < ¢ < %;
Choose xg;
fork=0,1,2,...

Calculate a Newton-like step from (11.6) (regularizing with (11.44)
if Ji appears to be near-singular), or (11.17) or (11.24);

if @ = 1 satisfies the Wolfe conditions (3.6)
Setoy = 1;

else
Perform a line search to find «; > 0 that satisfies (3.6);

end (if)

Xk41 <= Xg + O Pis

end (for)

TRUST-REGION METHODS

The most widely used trust-region methods for nonlinear equations simply ap-
ply Algorithm 4.1 from Chapter 4 to the merit function f(x) = %||r(x)||§, using
By = J(x;)TJ(xx) as the approximate Hessian in the model function m;(p), which is
defined as follows:

mi(p) = 3lre + Jeply = fi + p" I re + 5" I dipi.

11.2. PRACTICAL METHODS

The step py is generated by finding an approximate solution of the subproblem

min my(p), subject to || p|| < A, (11.46)
P

where Ay is the radius of the trust region. The ratio p; of actual to predicted reduction (see
(4.4)), which plays a critical role in many trust-region algorithms, is therefore

Il Ce) 1> = lIr (e + pi) 12

= . 11.4
I Ga)l2 — (e + 7o) pal? (1147)

Pk

We can state the trust-region framework that results from this model as follows.

Algorithm 11.5 (Trust-Region Method for Nonlinear Equations).
Given A > 0, Ag € (0, A), and ne [0, i):
fork=0,1,2,...
Calculate py as an (approximate) solution of (11.46);
Evaluate oy from (11.47);
If,O]< < i
Aisr = ipills
else
if pr > 2 and || pyl| = Ar
Ary1 = min(2Ag, A);

else
Apr1 = Ags
end (if)
end (if)
if o > 1
Xk+1 = Xk + Pis
else
Xk+1 = Xi>
end (if)
end (for).

The dogleg method is a special case of the trust-region algorithm, Algorithm 4.1,
that constructs an approximate solution to (11.46) based on the Cauchy point p; and the
unconstrained minimizer of m. The Cauchy point is

. T T
Pr = —w(A/ riD) Iy res (11.48)

where

T = min{l, ||JkTrk||3/(AkrkTJk(JkTJk)JkTrk)} ; (11.49)

291

292

CHAPTER T1T1. NONLINEAR EQUATIONS

By comparing with the general definition (4.11), (4.12) we see that it is not necessary to
consider the case of an indefinite Hessian approximation in my (p), since the model Hessian
JkT Jy that we use is positive semidefinite. The unconstrained minimizer of my (p) is unique
when J; is nonsingular. In this case, we denote it by p; and write

=3I == e

The selection of py in the dogleg method proceeds as follows.

Procedure 11.6 (Dogleg).
Calculate py;
if | pll = Ax
Pk < Dis
else
Calculate p;;
Pk < pi + t(p, — pg), where T is the largest value in [0, 1]
such that || px|l < Ags
end (if).

Lemma 4.2 shows that when J; is nonsingular, the vector p; chosen above is the
minimizer of m, along the piecewise linear path that leads from the origin to the Cauchy
point and then to the unconstrained minimizer p). Hence, the reduction in model function
at least matches the reduction obtained by the Cauchy point, which can be estimated by
specializing the bound (4.20) to the least-squares case by writing

. I 7l
mi(0) — mi(pe) = c1|lJ/ ric| min (Ak, - , (11.50)
17 Jill

where ¢; is some positive constant.
From Theorem 4.1, we know that the exact solution of (11.46) has the form

pe=—(I T+ D), (11.51)

forsome Ay > 0,and that A, = 0ifthe unconstrained solution p; satisfies || p; || < A. (Note
that (11.51) is identical to the formula (10.34a) from Chapter 10. In fact, the Levenberg—
Marquardt approach for nonlinear equations is a special case of the same algorithm for
nonlinear least-squares problems.) The Levenberg—Marquardt algorithm uses the techniques
of Section 4.3 to search for the value of A; that satisfies (11.51). The procedure described
in the “exact” trust-region algorithm, Algorithm 4.3, is based on Cholesky factorizations,
but as in Chapter 10, we can replace these by specialized algorithms to compute the QR
factorization of the matrix (11.45). Even if the exact A4 corresponding to the solution of
(11.46) is not found, the p; calculated from (11.51) will still yield global convergence if it

11.2. PRACTICAL METHODS

satisfies the condition (11.50) for some value of ¢;, together with
lpell < YAy, for some constant y > 1. (11.52)

The dogleg method requires just one linear system to be solved per iteration, whereas
methods that search for the exact solution of (11.46) require several such systems to be
solved. As in Chapter 4, there is a tradeoff to be made between the amount of effort to spend
on each iteration and the total number of function and derivative evaluations required.

We can also consider alternative trust-region approaches that are based on different
merit functions and different definitions of the trust region. An algorithm based on the ¢;
merit function with an £,,-norm trust region gives rise to subproblems of the form

min ||Jyp +rilli subjectto ||pllee < A, (11.53)
P

which can be formulated and solved using linear programming techniques. This approach
is closely related to the S¢; QP and SLQP approaches for nonlinear programming discussed
in Section 18.5.

Global convergence results of Algorithm 11.5 when the steps py satisfy (11.50) and
(11.52) are given in the following theorem, which can be proved by referring directly to
Theorems 4.5 and 4.6. The first result is for n = 0, in which the algorithm accepts all steps
that produce a decrease in the merit function f, while the second (stronger) result requires
a strictly positive choice of 7.

Theorem 11.7.

Suppose that J(x) is Lipschitz continuous and that ||J(x)|| is bounded above in a
neighborhood D of the level set L = {x : f(x) < f(x0)}. Suppose in addition that all
approximate solutions of (11.46) satisfy the bounds (11.50) and (11.52). Then ifn = 0 in
Algorithm 11.5, we have that

liminf ||J/r || =0,
k—o0
. . 1
while ifn € (0, Z)’ we have
lim [|J]r] = 0.
k—o00

We turn now to local convergence of the trust-region algorithm for the case in which
the subproblem (11.46) is solved exactly. We assume that the sequence {x;} converges to
a nondegenerate solution x* of the nonlinear equations r(x) = 0. The significance of
this result is that the algorithmic enhancements needed for global convergence do not, in
well-designed algorithms, interfere with the fast local convergence properties described in
Section 11.1.

293

294

CHAPTER T1T1. NONLINEAR EQUATIONS

Theorem 11.8.

Suppose that the sequence {x; } generated by Algorithm 11.5 converges to a nondegenerate
solution x* of the problemr (x) = 0. Suppose also that J (x) is Lipschitz continuous in an open
neighborhood D of x* and that the trust-region subproblem (11.46) is solved exactly for all
sufficiently large k. Then the sequence {x;} converges quadratically to x*.

PROOF. We prove this result by showing that there is an index K such that the trust-region
radius is not reduced further after iteration K; thatis, Ay > Ak for all k > K. We then
show that the algorithm eventually takes the pure Newton step at every iteration, so that
quadratic convergence follows from Theorem 11.2.

Let p; denote the exact solution of (11.46). Note first that p; will simply be the uncon-
strained Newton step —J; ', whenever this step satisfies the trust-region bound. Otherwise,
we have || Jk_lrk || > Ay, while the solution py satisfies || px|| < Ag. In either case, we have

I pell < 1 rell (11.54)

We consider the ratio p; of actual to predicted reduction defined by (11.47). We have
directly from the definition that

e + Jipill® = I (e + p)lP?|

1—p] < . (11.55)
()12 = 7 (xx) + J () pell?
From Theorem 11.1, we have for the second term in the numerator that
I (e + pll* = 117 () + J (xi) pr] + wxi, X + poll®, (11.56)

where w(-, -) is defined as in (11.11). Because of Lipschitz continuity of J with Lipschitz
constant 8; (11.7), we have

1
llw(xe, xi + p)ll S/ I (e + 2pi) — J (i) [l pell dt
0

1
< /O Bl Pl dt = (BL/2) I pills

so that using (11.56) and the fact that ||ry + Jipll < Ilrell = f(xx)'/? (since py is the
solution of (11.46)), we can bound the numerator as follows:

[re + Jepicll® = lIr Gee + po) I

< 2|lr + T prllllw e, X+ po)ll + llw(xe, x¢ + pi)ll®

<) 2Bl pell® + (BL/2) N pecll*

< e(xo)ll pell?, (11.57)

11.2. PRACTICAL METHODS

where we define

e(u) = f) B+ (BL/2) Il pell.

Since x; — x™* by assumption, it follows that f(x;) — 0 and |[r¢|| — 0. Because x* is a
nondegenerate root, we have as in (11.14) that ||J (x;)~!|| < B* for all k sufficiently large,
so from (11.54), we have

Ipell < 1 rell < B¥llrell — 0. (11.58)

Hence, €(x;) — 0.
Turning now to the denominator of (11.55), we define p; to be a step of the same
length as the solution py in the Newton direction —Jk_lrk, that is,

I Y
= T -1 k
I rell

Since py is feasible for (11.46), and since py is optimal for this subproblem, we have

2

2 2 2 Il x|l
lrell” = llre + Jepell” = Mlrell” — |re — ———1«
e rell
Il pill) | prcll*)
o lrell” = === lIr«ll
I rell I rell
I pell)
7ell”,

Z =
I rell

where for the last inequality we have used (11.54). By using (11.58) again, we have from this
bound that

[z 1
Il = e + Jipil® = —=—lIrell> = —= I pilllirell. (11.59)

I el B
By substituting (11.57) and (11.59) into (11.55), and then applying (11.58) again, we have

* 2
[T — il < M < (B")*€(xx) — 0. (11.60)

Il il

Therefore, for all k sufficiently large, we have p; > ‘—11, and so the trust region radius A will
not be increased beyond this point. As claimed, there is an index K such that

Ay > Ag, forallk > K.

295

296

CHAPTER T1T1. NONLINEAR EQUATIONS

Since ||Jk_1rk|| < B*|Irkll = 0, the Newton step —Jk_lr;< will eventually be smaller
than Ak (and hence Ay), so it will eventually always be accepted as the solution of (11.46).
The result now follows from Theorem 11.2. O

We can replace the assumption that x; — x* with an assumption that the nonde-
generate solution x* is just one of the limit points of the sequence. (In fact, this condition
implies that x; — x*; see Exercise 11.9.)

11.3 CONTINUATION/HOMOTOPY METHODS

MOTIVATION

We mentioned above that Newton-based methods all suffer from one shortcoming:
Unless J(x) is nonsingular in the region of interest—a condition that often cannot be
guaranteed—they are in danger of converging to a local minimum of the merit function
rather that is not a solution of the nonlinear system. Continuation methods, which we
outline in this section, are more likely to converge to a solution of 7 (x) = 0 in difficult cases.
Their underlying motivation is simple to describe: Rather than dealing with the original
problem r(x) = 0 directly, we set up an “easy” system of equations for which the solution
is obvious. We then gradually transform the easy system into the original system r(x), and
follow the solution as it moves from the solution of the easy problem to the solution of the
original problem.

One simple way to define the so-called homotopy map H(x, 1) is as follows:

Hx, M) =xx)+1-1)(x —a), (11.61)

where A is a scalar parameter and a € R” is a fixed vector. When A = 0, (11.61) defines the
artificial, easy problem H(x, 0) = x — a, whose solution is obviously x = a. When A = 1,
we have H(x, 1) = r(x), the original system of equations.

To solver(x) = 0, consider the following algorithm: First, set . = 0in (11.61) and set
x = a. Then, increase A from 0 to 1 in small increments, and for each value of A, calculate
the solution of the system H(x, 1) = 0. The final value of x corresponding to A = 1 will
solve the original problem r(x) = 0.

This naive approach sounds plausible, and Figure 11.3 illustrates a situation in which
it would be successful. In this figure, there is a unique solution x of the system H(x,A) =0
for each value of A in the range [0, 1]. The trajectory of points (x, A) for which H(x, A) =0
is called the zero path.

Unfortunately, however, the approach often fails, as illustrated in Figure 11.4. Here,
the algorithm follows the lower branch of the curve from A = 0 to A = Ar, but it then loses
the trail unless it is lucky enough to jump to the top branch of the path. The value A7 is

11.3. CONTINUATION/HOMOTOPY METHODS 297

Figure 11.3 Plot of a zero path: Trajectory of points (x,) with H(x, 1) = 0.

0 by M 1

Figure11.4 Zero path with turning points. The path joining (a, 0) to (x*, 1) cannot
be followed by increasing A monotonically from 0 to 1.

known as a turning point, since at this point we can follow the path smoothly only if we no
longer insist on increasing X at every step. In fact, practical continuation methods work by
doing exactly as Figure 11.4 suggests, that is, they follow the zero path explicitly, even if this
means allowing A to decrease from time to time.

PRACTICAL CONTINUATION METHODS

In one practical technique, we model the zero path by allowing both x and A to be
functions of an independent variable s that represents arc length along the path. That is,

298

CHAPTER T1T1. NONLINEAR EQUATIONS

(x(s), A(s)) is the point that we arrive at by traveling a distance s along the path from the
initial point (x(0), A(0)) = (a, 0). Because we have that

H(x(s),A(s)) =0, foralls >0,

we can take the total derivative of this expression with respect to s to obtain

(11.62)

ad d . . dx di
a—xH(x, AXx + G_AH(X’ MA =0, where(x,)) = (d—;c, a) .

The vector (x(s), A(s)) is the tangent vector to the zero path, as we illustrate in Figure 11.4.
From (11.62), we see that it lies in the null space of the n x (n 4+ 1) matrix

ad d

When this matrix has full rank, its null space has dimension 1, so to complete the definition
of (&, 1) in this case, we need to assign it a length and direction. The length is fixed by
imposing the normalization condition

()12 + |A(s)> =1, foralls, (11.64)

which ensures that s is the true arc length along the path from (0, a) to (x(s), A(s)). We need
to choose the sign to ensure that we keep moving forward along the zero path. A heuristic
that works well is to choose the sign so that the tangent vector (%, 1) at the current value of
s makes an angle of less than /2 with the tangent point at the previous value of s.

We can outline the complete procedure for computing (x, 1) as follows:

Procedure 11.7 (Tangent Vector Calculation).
Compute a vector in the null space of (11.63) by performing a QR
factorization with column pivoting,

QT[%H(x,,\) %H(x,k)]H:[R w],

where Q is n x n orthogonal, R is n x n upper triangular, IT is
an (n 4+ 1) x (n + 1) permutation matrix, and w € R".
Set

11.3. CONTINUATION/HOMOTOPY METHODS

Set (x, A) = £v/||v]l», where the sign is chosen to satisfy the angle
criterion mentioned above.

Details of the QR factorization procedure are given in the Appendix.

Since we can obtain the tangent at any given point (x, A) and since we know the initial
point (x(0), 1(0)) = (a, 0), we can trace the zero path by calling a standard initial-value
first-order ordinary differential equation solver, terminating the algorithm when it finds a
value of s for which A(s) = 1.

A second approach for following the zero path is quite similar to the one just described,
except that it takes an algebraic viewpoint instead of a differential-equations viewpoint.
Given a current point (x, A), we compute the tangent vector (x, 1) as above, and take a
small step (of length €, say) along this direction to produce a “predictor” point (x”, AF);
that is,

(xP,AP) = (x, 1) + €(x, 1).

Usually, this new point will not lie exactly on the zero path, so we apply some “corrector”
iterations to bring it back to the path, thereby identifying a new iterate (x*, A*) that satisfies
H(x*,A") = 0. (This process is illustrated in Figure 11.5.) During the corrections, we
choose a component of the predictor step (x”, A¥)—one of the components that has been
changing most rapidly during the past few steps—and hold this component fixed during
the correction process. If the index of this component is i, and if we use a pure Newton
corrector process (often adequate, since (x”, A”) is usually quite close to the target point

Figure 11.5 The algebraic predictor—corrector procedure, using A as the fixed
variable in the correction process.

299

300

CHAPTER T1T1. NONLINEAR EQUATIONS

(xt, AT)), the steps will have the form

8_H G_H 8x —H
ox dA |: i :| = |: 0 :|)
€
where the quantities d H /dx, d H/dX, and H are evaluated at the latest point of the corrector
process. The last row of this system serves to fix the ith component of (8x, §A) at zero; the
vector ¢; € R"*! is a vector with n + 1 components containing all zeros, except for a 1
in the location i that corresponds to the fixed component. Note that in Figure 11.5 the A
component is chosen to be fixed on the current iteration. On the following iteration, it may
be more appropriate to choose x as the fixed component, as we reach the turning point in A.
The two variants on path-following described above are able to follow curves like

those depicted in Figure 11.4 to a solution of the nonlinear system. They rely, however, on
the n x (n + 1) matrix in (11.63) having full rank for all (x, 1) along the path, so that the
tangent vector is well-defined. The following result shows that full rank is guaranteed under
certain assumptions.

Theorem 11.9 (Watson [305)).

Suppose that r is twice continuously differentiable. Then for almost all vectorsa € R",
there is a zero path emanating from (0, a) along which then x (n + 1) matrix (11.63) has full
rank. If this path is bounded for A € [0, 1), then it has an accumulation point (X, 1) such that
r(x) = 0. Furthermore, if the Jacobian J (X) is nonsingular, the zero path between (a, 0) and
(x, 1) has finite arc length.

The theorem assures us that unless we are unfortunate in the choice of a, the algorithms
described above can be applied to obtain a path that either diverges or else leads to a point
X that is a solution of the original nonlinear system if J(x) is nonsingular. More detailed
convergence results can be found in Watson [305] and the references therein.

We conclude with an example to show that divergence of the zero path—the less
desirable outcome of Theorem 11.9—can happen even for innocent-looking problems.

(d ExampPLE 11.3

Consider the system r(x) = x* — 1, for which there are two nondegenerate solutions

+1 and —1. Suppose we choose a = —2 and attempt to apply a continuation method to the
function
H(x,A) = A(x* = 1)+ (1 = A)(x +2) = Ax 4+ (1 — A)x + (2 — 34), (11.65)

obtained by substituting into (11.61). The zero paths for this function are plotted in
Figure 11.6. As can be seen from that diagram, there is no zero path that joins (—2, 0)

11.3. CONTINUATION/HOMOTOPY METHODS 301

| | | | |
0.2 0.4 0.6 0.8 1
lambda

Figure11.6 Zero pathsfor the exampleinwhich H (x, 1) = A(x?—1)+(1—1)(x+2).
There is no continuous zero path fromA =0to A = 1.

to either (1, 1) or (—1, 1), so the continuation methods fail on this example. We can find the
values of A for which no solution exists by using the formula for a quadratic root to obtain

(1= £/ -2 — 402 -32)
*= 21 '

Now, when the term in the square root is negative, the corresponding values of x are complex,
that is, there are no real roots x. It is easy to verify that such is the case when

13 13

5-23 54243
/\e(*/_, + f>%(0.118,0.651).

Note that the zero path starting from (—2, 0) becomes unbounded, which is one of the
possible outcomes of Theorem 11.9. a

This example indicates that continuation methods may fail to produce a solution even
to a fairly simple system of nonlinear equations. However, it is generally true that they are
more reliable than the merit-function methods described earlier in the chapter. The extra
robustness comes at a price, since continuation methods typically require significantly more
computational effort than the merit-function methods.

302

CHAPTER T1T1. NONLINEAR EQUATIONS

NOTES AND REFERENCES

Nonlinear differential equations and integral equations are a rich source of nonlinear
equations. When formulated as finite-dimensional nonlinear equations, the unknown vector
x is a discrete approximation to the (infinite-dimensional) solution. In other applications,
the vector x is intrinsically finite-dimensional; it may represent the quantities of materials
to be transported between pairs of cities in a distribution network, for instance. In all cases,
the equations 7; enforce consistency, conservation, and optimality principles in the model.
Moré [212] and Averick et al. [10] discuss a number of interesting practical application