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Abstract. In this paper, we consider a mathematical model for the forma-
tion of spatial morphogen territories of two key morphogens: Wingless (Wg)
and Decapentaplegic (DPP), involved in leg development of Drosophila. We
define a gene regulatory network (GRN) that utilizes autoactivation and cross-
inhibition (modeled by Hill equations) to establish and maintain stable bound-
aries of gene expression. By computational analysis we find that in the presence
of a general activator, neither autoactivation, nor cross-inhibition alone are suf-
ficient to maintain stable sharp boundaries of morphogen production in the leg
disc. The minimal requirements for a self-organizing system are a coupled
system of two morphogens in which the autoactivation and cross-inhibition
have Hill coefficients strictly greater than one. In addition, the GRN modeled
here describes the regenerative responses to genetic manipulations of positional
identity in the leg disc.

1. Introduction. A key biological question of current interest is how cells within
a field acquire spatial information. The acquisition of this positional identity is
important for normal development and growth. It is also key to understanding
regeneration. The signals which specify positional information are secreted proteins
called morphogens. Abnormal signaling by these proteins can lead to developmental
abnormalities and cancer.

Reaction diffusion systems have been used to model stages of embryonic devel-
opment since the seminal works of Gierer and Meinhardt [4, 17]. In these papers
it is shown that long-range inhibition coupled with short-range activation can lead
to complex patterns of morphogen distribution which in turn will lead to forma-
tion of localized structures. Recently, details of the biochemical reactions which
occur in developmental biology have been discovered, including estimates of many
of the key parameters. In this paper, we will examine the mechanisms discussed in
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[6], namely cross-inhibition and autoactivation of the production rates of the mor-
phogens Wingless and Decapentaplegic. The modeling of these mechanisms will be
based as closely as possible on the known biochemical reactions and using the best
available parameter estimates.

The Drosophila leg imaginal disc can be used to illustrate pattern formation,
which is the acquisition of positional information by cells. Drosophila has six leg
imaginal discs that become patterned during the larval stage and then undergo
morphogenesis in the pupal stage to form the six legs of the fly. Each leg imaginal
disc is a single layered field of cells that integrate positional information from three
morphogens, WNT/Wingless (WG), Decapentaplegic (DPP)/BMP, and Hedgehog
(HH). Dorsal/Ventral (D/V) positional information is specified by antagonizing
inputs from the dorsally expressed morphogen, DPP, and the ventrally expressed
morphogen, WG [24, 1, 9, 10, 20, 22, 25, 6]. The distal tip of the leg, where the
dorsal and ventral territories abut each other, is specified by the integration of Wg
and Dpp signaling. Abnormal expression of these genes causes patterning defects
in flies and developmental defects and cancer in humans.

Since restricted expression of these morphogens is critical for normal patterning,
the domain of production of these proteins must be maintained as the disc grows.
Here we model the GRN that maintains the mutually exclusive DPP/BMP and
WG expression domains during development and reestablishes these territories in
response to injury or genetic manipulations. The secreted signals that form this
GRN are HH, which is expressed in the posterior compartment; WG, which is
expressed in a ventral wedge in the anterior compartment; and DPP/BMP, which
is expressed in a dorsal stripe in the anterior compartment (Fig. 1). Activation of
wg and dpp gene expression, (i.e., the production of WG and DPP/BMP), requires
HH signaling. WG signaling inhibits ventral production of DPP [24, 25, 23, 6, 1, 10],
and DPP signaling inhibits dorsal production of WG [1, 9, 22, 25], thus setting up
a dorsal DPP expressing territory and a ventral WG expressing territory. WG and
DPP have also been shown to autoactivate their own production [2, 6, 33, 1, 8, 20,
11, 26]. We have generated a computational model for this GRN and used it to
test the requirements for autoactivation and cross-inhibition in maintaining stable
domains of expression.

In this model, the domains of production of WG and DPP have sharp boundaries.
The free morphogen can diffuse away from this domain and form a gradient of
morphogen signaling. The domain of Wg production (Wp) is a function of WG
signaling (WR) and DPP/BMP signaling (BR), where WR represents WG bound
to its receptor and BR represents DPP/BMP bound to its receptor. Similarly, the
domain of DPP/BMP expression (Bp) is a function of WR and BR. In this system,
DPP/BMP acts as a dimer, which results in similar diffusivity coefficients for WG
and DPP [5]. This differs from a Turing-Meinhardt model, which predicts that the
diffusion constants for two interacting morphogens are different, often by several
orders of magnitude [27, 18, 12]. The objective of the modeling is to determine the
elements of a GRN required to establish stable sharp mutually exclusive boundaries
of expression of two morphogens from an initial shallow gradient of morphogen
concentration. The initial shallow gradient is formed by processes discussed in
[14, 15]. Once this shallow gradient is formed, the combination of autoactivation
and cross-inhibition will cause the gradients to steepen until two distinct territories
are formed.
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We now compare and contrast some of the recent mathematical models of GRNs
in Drosophila. In [13] , it is shown that a single diffusible morphogen with localized
production and interaction with its receptor can lead stable spatial gradients of
morphogen concentration. In [16, 19], it is shown that the presence of a competing
ligand can increase the strength of the spatial morphogen concentration gradient. In
[15], a well-defined production region is shown to result in the formation of shallow
spatial gradients. In [28], positive feedback acting through a cell surface-bound
BMP-binding protein can result in sharp gradients. In this paper, we will consider
two morphogens interacting with their respective receptors. Morphogen production
rate will be regulated by only autoactivation and cross-inhibition, and both the
feedbacks are assumed to be functions of bound morphogen. In the system, there
are no spatially dependent parameters.

1.1. A model and equations. The Drosophila leg initially develops as a flattened
disc with dorsal DPP/BMP and ventral WG production domains, which respectively
define dorsal and ventral territories. The disc is also divided into an anterior and
posterior compartment defined by the absence or presence respectively of engrailed
expression. The center of the disc will form the distal tip of the leg and the outer
edge will form the proximal leg structures. At this stage the disc can be treated as
a 2D structure. In Figure 1, we show the geometry of a leg imaginal disc, and the
domains of gene expression/protein production of wg and dpp/bmp. To simplify
the analysis, we consider a one-dimensional system in the dorsal-ventral direction
as illustrated in (Fig. 1(b)).

Figure 1. (a-b) leg imaginal discs with anterior to the left and
dorsal up. (a) schematic picture of a leg imaginal disc; (b) produc-
tion of both bmp/dpp (green) and wg (red). The line indicates the
x-axis of the proposed model.
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In this system, the following assumptions are made: (a) DPP/BMP and WG
are produced in the entire domain. (b) Both WG and DPP/BMP diffuse freely
from the site of production. (c) BMP/DPP and WG associate with their respective
receptors, RB (Tkv/Punt/Sax) and RW (Fz) to form receptor-ligand complexes
with defined association and dissociation rates. (d) The receptors and the receptor-
ligand complexes do not diffuse. (e) The receptor-ligand complexes are degraded
at the same rate throughout the field. (f) Receptor bound Wg (Wr) and receptor
bound DPP/BMP (Br) respectively stimulate the production (gene expression) of
WG (Wp) and DPP/BMP (Bp), (g) Wr and Br respectively inhibit the production
(gene expression) of WG (Wp) and BMP/DPP (Bp).

Table 1. Abbreviations used

W Concentration of free Wg.
Wr Concentration of bound Wg.
B Concentration of free BMP.
Br Concentration of bound BMP.
RW Total number of Wg receptors.
RB Total number of BMP receptors.
DW Diffusivity of Wg.
DB Diffusivity of BMP.

The biochemical reactions for receptor ligand interaction are as follows;

W + RW

h̃w−⇀↽−
fw

Wr
γw
−→

B + RB

h̃b−⇀↽−
fb

Br
γb
−→ .

Applying the law of mass action, the number of receptors available to bind with
ligand is RW–Wr and RB–Br for WG and BMP respectively. We will model the
unbound morphogens as freely diffusing chemicals and the bound morphogens as
spatially fixed. Thus the dynamics of the model are given by the following system
of differential equations.

Wt = DW Wxx − h̃w(RW − Wr)W + fwWr + Act(Wr) Inh(Br) , (1a)

Wrt = h̃w(RW − Wr)W − (fw + γw)Wr , (1b)

Bt = DBBxx − h̃b(RB − Br)B + fbBr + Act(Br) Inh(Wr) , (1c)

Brt = h̃b(RB − Br)B − (fb + γb)Br , (1d)

−xmax < x < xmax , t > 0 , (1e)

∂W

∂x
=

∂B

∂x
= 0 , at x = ±xmax . (1f)

We have assumed no-flux boundary conditions for WG and DPP, because far from
the interface, the concentration of the morphogens is roughly constant. The activa-
tion function (Act ) smoothly connects a minimum production value to a maximum
and is strictly increasing, while the inhibition function (Inh) connects a maximum
production value to a minimum production value and is strictly decreasing. These
functions will be further defined later (Section 3). Representing the feedback as the
product of the activation and inhibition function implies that the autoactivation
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and cross-inhibition mechanisms are linked. Initially we set the bound morphogens
concentration to 0 and set the free morphogen concentration to a slight linear slope.

1.2. Scaling. In section §4.1 we will use asymptotic methods to construct a solution
and analyze its stability. To perform this analysis, we will need to know the relative
orders of each of the terms in (1). We will now scale the variables to normalize the
solution and the length of the domain. We thus set

y =
x

xmax
, (2)

w(y, t) =
W (yxmax, t)

RW
, (3)

b(y, t) =
B(yxmax, t)

RB
, (4)

wr(y, t) =
Wr(yxmax, t)

RW
, (5)

br(y, t) =
Br(yxmax, t)

RB
. (6)

We now define the new parameters as

D̄W = DW

(xmax)2 D̄B = DB

(xmax)2

hw = h̃w

RW
hB = h̃B

RB

Since the diffusivities D̄B and D̄W are small and equal, we will let ε2 = D̄B = D̄W

and use ε as an asymptotically small parameter. With this choice, we expect the
thickness of the transition layer to be O(ε). The new equations may now be written
as

wt = ε2wyy − hw(1 − wr)w + fwwr + Act(wr) Inh(br) , (7a)

wrt = hw(1 − wr)w − (fw + γw)wr , (7b)

bt = ε2byy − hb(1 − br)b + fbbr + Act(br) Inh(wr) , (7c)

brt = hb(1 − br)b − (fb + γb)br , (7d)

−1 < y < 1 , t > 0 , (7e)

∂w

∂y
=

∂b

∂y
= 0 , at y = ±1 . (7f)

The remainder of the paper will proceed as follows. In §2 we will consider spa-
tially homogeneous equilibrium solutions of (7). In §3, we consider explicit forms
of the feedback functions. In §4, we will consider a simplification which reduces the
model to two uncoupled second order differential equations. We will show that it is
possible to construct a territoried solution with a single morphogen, but such a so-
lution will not be sufficiently robust. We will also show that even if such a solution
exists, it will be unstable. In §5 we will give some numerical results and compare
with experimental results. Finally, we will discuss the relevance of the results for
the simplified system to the full coupled systems and consider further avenues of
study.

2. Construction of solution. We are interested in steady state solutions with
two distinct regions. In one of the regions, corresponding to the dorsal region, b
will be a relatively large constant and w a smaller constant value. In the other
region, corresponding to the ventral region, w will be the large constant and b will
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have a smaller constant value. These regions will be connected by a thin layer in
which both w and b concentrations will have steep gradients. As a first step in the
construction of a solution, we look at the spatially constant steady-states.

Before we can proceed, we must first provide some details for the functions Act
and Inh. We let

Kmax = lim
u→0+

Inh(u) = lim
u→∞

Act(u) ,

Kmin = lim
u→0+

Act(u) = lim
u→∞

Inh(u) .

In the most general case, each instance of Act(u) and Inh(u) may have distinct
limits, but as this generalization will only make the notation more cumbersome, we
will not consider it here.

We now find the values of the steady state solution in the two regions (dorsal and
ventral). In the dorsal region, the value of br will be relatively high and wr relatively
low. Thus, in this region, the terms Act(wr) Inh(br) ≈ K2

min and Act(br) Inh(wr) ≈
K2

max. In these regions, the solution is constant, so the diffusion terms will all be
zero. The steady state equations in the dorsal region are then

0 = −hw(1 − wr)w + fwwr + K2
min , (8)

0 = hw(1 − wr)w − (fw + γw)wr , (9)

0 = −hb(1 − br)b + fbbr + K2
max , (10)

0 = hb(1 − br)b − (fb + γb)br . (11)

The solution to the above system is given by

w̄ =
(fw + γw)K2

min

hw(γw − K2
min)

, (12a)

w̄r =
K2

min

γw
, (12b)

b̄ =
(fb + γb)K

2
max

hb(γb − K2
max)

, (12c)

b̄r =
K2

max

γb
. (12d)

We may repeat the process in the ventral region to find the ventral steady state
values:

ŵ =
(fw + γw)K2

max

hw(γw − K2
max)

, (13a)

ŵr =
K2

max

γw
, (13b)

b̂ =
(fb + γb)K

2
min

hb(γb − K2
min)

, (13c)

b̂r =
K2

min

γb
. (13d)

Note, we will require γb > K2
min/max and γw > K2

min/max for a positive solution.

For a steady state solution connecting these two equilibria to exist, each equilib-
rium must itself be stable in the absence of diffusion. Thus, we set ε to zero and



FEEDBACK IN TERRITORY FORMATION 283

linearize about (12) and (13). The eigenvalues of this linearization are given by

λi =
−ai ±

√

a2
i − 4hi(γi − K2

i )

2
,

ai = hi

(

1 −
K2

i

γi
+

fi + γi

hi

(

γi

γi − K2
i

))

> 0 .

where

h1 = h3 = hw , h2 = h4 = hb , γ1 = γ3 = γb , γ2 = γ4 = γw ,

f1 = f3 = fw , f2 = f4 = fb , K1 = K4 = Kmax , K2 = K3 = Kmin .

For the equilibria to be stable we need the real parts of the above eigenvalues to be
negative. The two restrictions γb > K2

min/max and γw > K2
min/max imply that all

the steady states must be stable.

3. Feedback. We now consider an explicit form for the functions Act and Inh. We
require that the activation function go from Kmin to Kmax monotonically and the
inhibition function go from Kmax to Kmin monotonically, where Kmax > Kmin > 0.
We will characterize these functions with four parameters. The two parameters
Kmin and Kmax, have already been discussed. The two remaining parameters will
control the sharpness of the transition (from Kmax to Kmin) and the point at which
the transition occurs.

The most critical parameter value is the point at which the activation and in-
hibition switches off/on. If this value is too high or low, the activation/inhibition
will have no effect. We can find an appropriate value by considering the values of
br and wr. Since 0 ≤ wr, br ≤ 1, we may set the switching value to 1

2 .
A natural choice for the activation and inhibition functions are

Act(u) =
Kmax − Kmin

1 +
(

u
u0

)−m + Kmin , (14)

Inh(u) =
Kmax − Kmin

1 +
(

u
u0

)m + Kmin . (15)

Here m controls the steepness of the transition and is referred to as the Hill
coefficient. The value at which the transition occurs is controlled by u0, for our
application, we set u0 = 1

2 . This form of activation/inhibition was first considered
by Archibald Hill in [7]. The basis for this form of activation/inhibition is consid-
ering the simultaneous binding of m ligands to an enzyme to produce a product
which will either initiate or inhibit protein production. The fact that simultaneous
binding is required makes choices of m large unreasonable [32]. Using a negative
Hill coefficient for inhibition is considered in [31].

We will now consider the conditions necessary for the formation of morphogen
territories with this feedback model. A morphogen-territoried solution corresponds
to a heteroclinic connection between two equilibria of the system. To find the
conditions which will allow for such a connection, we consider a simplification.
When we consider steady-state solutions, (7) reduces to two second order differential
equations which are coupled by the inhibition functions. To simplify the system,
we take the inhibition function to be a constant and thus decouple the equations.
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Figure 2. Sample graphs of the functions Act and Inh with m = 4,
u0 = 1

2 , Kmax = 1 and Kmin = 0.

4. Heteroclinic connection: The simplified system. In this section, we will
construct a heteroclinic connection for a system in which the Inh function is a
constant. This will reduce the steady state problem for (7) to a single second order
ordinary differential equation. We find levels of inhibition which will result in a
heteroclinic connection between two states. The existence of a heteroclinic orbit in
the situation of a constant inhibition field will require a specific isolated value of
inhibition, and thus the heteroclinic will not be robust. Further, we show that any
such connection will be unstable.

To simplify our situation, we will consider the case Inh(x) = I where I is some
constant. We now look for steady state solutions with a heteroclinic connection.
Since wr does not diffuse, we may solve for wr in terms of w and eliminate it from
the equation.

wr(w) =
w

β + w
, (16)

where β = γw+fw

hw
. We plug into the steady-state equation for w to get,

ε2wyy + Q(w; I) = 0 , (17)

where,

Q(w; I) =
−2mγwwr(w)m+1 + 2mIKmaxwr(w)m − γwwr + IKmin

2mwr(w)m + 1
. (18)
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We will leave wr(w) as a function in the equations to simplify the analysis. We note
that the function wr(w) : R

+ → [0, 1) is one-to-one and onto.
We now consider some general results for the existence of heteroclinic connec-

tions. For an equation of the form,

u′′ + Q(u) = 0 , (19)

to have a heteroclinic connection (a front solution) joining the values u = u− to
u = u+, the following restrictions on Q(u) must be met:

1. Q(u) must have three consecutive roots u−, u0, and u+ with u− < u0 < u+.
2. Q′(u−) < 0, Q′(u+) < 0 and Q′(u0) > 0.
3.

∫ u+

u−
Q(u)du = 0

The constructed heteroclinic orbit will connect the two states u = u− and u = u+

as y → ±∞.
The system we are considering is posed on a finite domain, and is of the form so

the ε2wyy +Q(w; I) = 0. First we apply the coordinate change z = y
ε to magnify the

region about the interface. The equation then will be of the form wzz + Q(w) = 0
with wz(±

1
ε ) = 0. If we assume that we can satisfy the conditions necessary for

the existence of a heteroclinic orbit, the constructed orbit will fail to satisfy the
boundary conditions, but only by exponentially small terms. We may thus expect
a solution to exist which is exponentially close to the constructed heteroclinic. In
§4.1 we will carefully consider the effects of the finite boundary on the stability of
the constructed solution.

Now we will examine the polynomial in the numerator of Q(w; I),

P (wr) = −2mγwwr
m+1 + 2mIKmaxwr

m − γwwr + IKmin , (20)

to determine the conditions which will ensure the existence of a heteroclinic orbit.
For Q(w; I) to have three positive roots, (20)(as a function of wr) must have three
roots in (0, 1). This immediately implies that m ≥ 2. This result agrees with
numerical observations (see Fig. 5). We will assume now m ≥ 2. Descartes’ rule
of signs implies that (20) has exactly one or three positive real roots (counting
multiplicity). If m is even, we have no negative roots and if m is odd we will have
exactly one negative root.

If we assume that we have three distinct roots in (0, 1), the second constraint
will be satisfied due to the sign of the highest power of wr and the fact that the
denominator of Q is positive and increasing. We will label the three roots wr−, wr0

and wr+ where wr− < wr0 < wr+. We denote the corresponding values of w as,
w−, w0 and w+.

We find necessary and sufficient condition for (20) to have 3 distinct roots in
(0, 1). We will not give this condition in an explicit form as the resulting expression
is cumbersome and provides no illumination. We let wrmax be the value at which
P attains its local maximum.

wrmax(I) =
2IKmax +

√

4I2K2
max − 3γ2

6γ
. (21)

We now let Ī be the value of I for which P (wrmax(Ī)) = 0. So for all three roots to
be in (0, 1), we require that wrmax(Ī) < 1. If this condition is met then for I > Ī
and I − Ī sufficiently small, all three roots of P (wr) must lie in (0, 1).

We must satisfy one final condition to ensure the existence of the heteroclinic
orbit. We need to satisfy the integral condition

∫ w+

w−
Q(w; I)dw = 0. We would like
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to have a large range of I values for which all three roots will be in (0, 1) as this will
make it easier to solve the integral condition. The closer wrmax is to 1

2 at I = Ī,
the easier it will be to satisfy the integral condition (this will result in a larger
interval of I values for which we will have three positive roots in (0, 1). Finding
an explicit restriction on parameter values which are necessary and sufficient for
the satisfaction of this condition does not seem possible. The difficulty lies in the
fact that changing the value of I to satisfy the integral condition may cause wr+ to
move past 1.

We demonstrate that it is quite simple to find a value of I which satisfies the
integral condition and for which the three roots of (20) are in (0, 1). We will use the
same rate and diffusion constants before but with m = 2, but we can pick Kmax and
Kmin. To check the integral condition, we make the change of variables w = βwr

1−wr
.

Then the integral condition is
∫ wr+

wr−

βP (wr)

(4wr
2 + 1)(1 − wr)2

dwr = 0 . (22)

Using numerical integration is sufficient to determine if there are values of I for
which the above integral is negative and values for which it is positive. We set
Kmin = 0.001 and Kmax = 0.0511. Using I = 0.01, we have the following zeros of
P (wr):

wr− ≈ 0.0219 , wr0 ≈ 0.3544 , wr+ ≈ 0.6437 . (23)

and
∫ wr+

wr−

βP (wr)

(4wr
2 + 1)(1 − wr)2

dwr ≈ 0.0000063 . (24)

For I = 0.0097 we get the three zeros of P (wr) to be,

wr− ≈ 0.0211 , wr0 ≈ 0.4145 , wr+ ≈ 0.5537 . (25)

and
∫ wr+

wr−

βP (wr)

(4wr
2 + 1)(1 − wr)2

dwr ≈ −0.00007056 . (26)

Hence there must be a value of I for which the integral condition is satisfied exactly
and maintains the root condition. We can solve for the heteroclinic orbit implicitly.
We can write (17) as a first-order system:

w′ = u , (27)

u′ = −Q(w) . (28)

This system is Hamiltonian with Hamiltonian function H(w, u) = 1
2u2+

∫ w

w−
Q(s; I) ds.

With this choice of Hamiltonian function, the heteroclinic orbit is given by H(w, u) =
0. Thus,

u2 = (w′)2 = −2

∫ w

w0

Q(s; I) ds . (29)

We can solve this equation implicitly to find the following implicit expression for
the heteroclinic orbit:

∫ w

w−

dω

±
√

−2
∫ ω

w0
Q(s; I) ds

= y . (30)

1Although it appears that γw < K2
min and thus there shouldn’t even be two positive homoge-

neous solutions, this is not really the case here. The value we need to consider in the inequalities
are not K2

max/min
, but Kmax/minI.
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The ± determines which heteroclinic we find with the plus sign corresponding to a
connection from w− to w+. We can solve this integral numerically to get the profile
for the heteroclinic orbit (see Fig. 3).
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Figure 3. Approximation of the heteroclinic connection for (17).
For this simulation, I = 0.0099805992, m = 2, Kmax = 0.051,
Kmin = 0.001. For these values, w− ∼= 0.0000950097 and w+ ∼
0.0075233436.

The existence of this solution requires a specific value of I. This implies that the
front will be structurally unstable. Any small change in inhibition will mean that
the connecting steady-state solution will cease to exist.

4.1. Stability of heteroclinic. We now examine the stability of the heteroclinic
orbit constructed in the previous section. The projection method is used to deter-
mine the stability of the orbit [30, 21]. We constructed the heteroclinic orbit on
an unbounded domain. However, it will fail to satisfy the boundary conditions on
any finite domain by exponentially small terms. We can expect a solution to exist
on a bounded domain that is exponentially close to the constructed heteroclinic.
To study the stability of this orbit, we will construct an eigenvalue problem by
linearizing about the constructed solution. We will show the operator associated
with the linearization will have an exponentially small eigenvalue. This eigenvalue
is related to the translation invariance of the interface when the problem is posed
on an unbounded domain. We estimate the eigenvalue in the limit ε → 0 and show
it is positive, but exponentially small. So although the orbit is unstable, it can
persist for an extremely long time.

First we list some asymptotic estimates for the behaviour of the heteroclinic
solution. We assume we have a heteroclinic connection given by wH(y

ε ). Then we
have that

wH

(y

ε

)

∼ w± ∓ a±e∓ε−1ν±y as y → ±∞ , (31)

where

ν± =
√

−Q′(w±) (32)

log(a±) = log(|w0 − w±|) ±

∫ w±

w0





ν±
√

2
∫ z

w−
−Q(ζ) dζ

+
1

z − w±



 dz (33)
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Now we construct the associated eigenvalue problem by linearizing about the
heteroclinic orbit,

w = wH + φ(y)eλt , (34)

and substitute (34) into (17) to get the following eigenvalue problem

Lφ ≡ ε2φyy + Q′(wH)φ = λφ , (35)

φy(±1) = 0 . (36)

If we differentiate (17) with respect to y we find Lw′
H = 0. So the operator L

posed on an unbounded domain has a eigenvalue λ = 0 with eigenfunction φ = w′
H .

Since wH is a monotonic function connecting the two equilibria, w′
H must be of

one sign. Thus it must be the principal eigenvalue. Since w′
H fails to satisfy the

boundary conditions of (35) by only exponentially, small terms we expect there to
be an exponentially small eigenvalue with eigenfunction φ0 exponentially close to
w′

H . To determine the stability of the heteroclinic orbit, we must determine the
sign of the perturbed eigenvalue.

We now construct this eigenfunction using boundary layer correction terms. In
the interior of the domain we expect the eigenfunction to be very close to w′

H , the
correction terms should be localized to the area near the boundaries. We thus write,

φ0 ∼ C
(

w′
H(ε−1y) + φ−(ε−1(y + 1)) + φ+(ε−1(1 − y))

)

. (37)

We define boundary layer coordinates η− = ε−1(y + 1) and η+ = ε−1(1 − y). The
boundary layer correction term will then satisfy,

φ′′
− − ν2

−φ− = 0 , 0 ≤ η− < ∞ , (38)

φ′
−(0) = −w′′

H(−1) ∼ −a−ν2
−e−

ν−

ε , (39)

φ′′
+ − ν2

+φ+ = 0 , 0 ≤ η+ < ∞ , (40)

φ′
+(0) = w′′

H(1) ∼ −a+ν2
+e−

ν+

ε . (41)

The solution to (38) is given by

φ±(η±) ∼ a±ν±e−
ν±

ε e−ν±η± . (42)

Now we can start to estimate the small eigenvalue. First we define the dot product

as (f, g) =
∫ 1

−1
f(y)g(y) dy. We then have the identity

(u, Lv) = ε2 (uv′ − u′v)|
1
−1 + (Lu, v) . (43)

We apply this identity to the function w′
H and φ0 to get

λ0(w
′
H , φ0) = −ε w′′

Hφ0|
1
−1 + (Lw′

H , φ0) . (44)

Since Lw′
h = 0 and φ0 ∼ w′

H in the interior of the domain, we have the following
asymptotic estimate:

λ0 ∼ −
ε w′′

Hφ0|
1
−1

C(w′
H , w′

H)
. (45)

Near x = ±1, we have that φ0(±1) ∼ (w′
H(±1) + φ±(0)) ∼ 2a±ν±e−ν±ε−1

. Using
all our asymptotic estimates we find that,

λ0 ∼
2

∫ ∞

−∞
w′

H(y)2 dy

(

a2
+ν3

+e−ε−12ν+ + a2
−ν3

−e−ε−12ν−

)

, as ε → 0 . (46)
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As can be seen from (46), the principle eigenvalue is positive and thus the hetero-
clinic orbit is unstable. However the eigenvalue is exponentially small and we can
thus expect that a heteroclinic solution may persist for long times.

In this section, we have shown that a heteroclinic solution is possible for a single
morphogen with self regulation, but the requirements for the existence make such a
system unlikely to exist in a natural setting. The restrictions on the auto inhibition
function are far too severe to make this a viable alternative. Even if these restrictions
are satisfied, the heteroclinic will be unstable and must eventually collapse.

5. Numerical simulations. In the previous section, we found that a steady-state
solution in which the two morphogens are confined to distinct regions in not a
practical possibility with just autoactivation. We would like to show that the for-
mation of such solutions is possible when in addition to autoactivation, the two
morphogens mutually cross-inhibit each other’s production. The numerical method
is based on the method of lines with a central difference on the diffusion terms and
a second-third-order adaptive Runge-Kutta time integrator.

There are four pairs of biological parameter values in the model, excluding any
for the activation and inhibition, for Wg and BMP respectively. In the numerical
simulation, we use the same rate constants and diffusivity for both Wg and BMP.
The size of the tissue is xmax = 0.02 cm ([3]). The diffusion coefficients for Wg and
BMP are chosen to be the same: Db = 1 × 10−7 cm2/s based on the measurement

[29]; The rate constants are fw = 1× 10−5/s , h̃w = 0.12/(sµM), γw = 5× 10−4/s,
and the total receptor concentration is Rd = 1µM [14, 19]. For the initial conditions
we set the concentration of bound receptor to be uniformly zero. We set the initial
concentration of free morphogen to the following linear gradient:

W (x) =
w̄(x + 0.02) + ŵ(0.02 − x)

0.04
,

B(x) =
b̄(x + 0.02) + b̂(0.02 − x)

0.04
,

where w̄,ŵ,b̄ and b̂ are defined in (12) and (13).
The parameters we will vary are those dealing with activation/inhibition. Figures

4, 5, 7, 9 are graphs of numerical solutions to (1). In each figure we provide 20
concentration profiles equally spaced in time. Initially we set no bound morphogen
and a linearly decaying free morphogen concentration profile. The initial condition
is displayed in green, the last time step is displayed in red and intermediate steps
are displayed in blue.

In this first set of numerical simulations of (1), we demonstrate the robustness
of the solution. Repeated simulations of the system with different parameter values
result in similar qualitative results. We provide one example by repeating the
simulation with twice the maximum production rates.

The result that we need m, n ≥ 2 is only proven for a single morphogen with no
external inhibition, however numerical results suggest that the requirement m, n ≥ 2
is also true for the full system. Setting just one of the values to 1 results in an
unstable front (see Fig. 5).

In Figures 7 and 9, we demonstrate simulations with one cross-inhibition and
one autoactivation disabled. In both cases the fronts are unstable and move across
the domain until the solution is spatially homogeneous.
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Figure 4. Numerical simulation of full system with parameter
values kmin = 0.0001 m = n = 3. In both runs the final time is
t = 150000 seconds. The plots of w signal and b signal are plots of
the production rates of w and b respectively.

In Figures 5, 7, and 9, the system has not reached a steady-state by the end of
the run. This is done in order to display the initial transient in which the gradient
vanishes. In Figures 6, 8 and 10 we repeated the respective simulations with much
larger time-steps to demonstrate the convergence to equilibrium.
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Figure 5. A numerical simulation of system (1) with m = 1,
n = 3, kmin = 0.001 and kmax = 0.01. The final time step is at
t = 100 seconds.
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Figure 6. A continuation of the simulation given in Figure 5 with
a much larger time-step in order to display the convergence to an
equilibrium. The final time step is at t = 5000 seconds.

5.1. Modeling regeneration. Based on this model, autoactivation is insufficient
to maintain mutually exclusive territories of wg and dpp production. Stable sharp
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Figure 7. A numerical simulation of system (1) for m = 3, n = 3
and cross-inhibition of Br on W shut off. The values of Kmax and
Kmin are adjusted to produce maximum and minimum production
rates of 0.012 and 0.0012 respectively for all terms. Final time step
is at t = 300 seconds.
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Figure 8. A continuation of the simulation given in Figure 7 with
a much larger time-step in order to display the convergence to an
equilibrium. Final time step is at t = 10000 seconds.

boundaries of wg and dpp expression are dependent on both autoactivation and
cross-inhibition. We tested whether this GRN could describe the phenotypes pro-
duced by genetically modifying wg and/or dpp production and/or signaling. We



FEEDBACK IN TERRITORY FORMATION 293

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

-0.02 -0.01  0  0.01  0.02
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-0.02 -0.01  0  0.01  0.02

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

-0.02 -0.01  0  0.01  0.02
 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

-0.02 -0.01  0  0.01  0.02

W
B

W
r

B
r

xx

xx

Figure 9. A numerical simulation of system (1) for m = 3, n = 3
and autoactivation of W shut off. The values of Kmax and Kmin

are adjusted to produce maximum and minimum production rates
of 0.012 and 0.0012 respectively for all terms. Final time step is at
t = 300 seconds.
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Figure 10. A continuation of the simulation given in Figure 9
with a much larger time-step in order to display the convergence
to an equilibrium. Final time step is at t = 5000 seconds.

will now look at the models ability to capture the behavior of various experimen-
tal mutations observed in [6]. These mutations will be mimicked in the model by
altering the value of either or both of Act and Inh on specified subintervals of the
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domain. In all cases, the experimental results are well represented by the appropri-
ately modified version of (1). Each graph represents 20 equally spaced time steps.
The initial condition is given in green. The final state is given in red. All interme-
diate states are displayed in blue. Where available, the results of the mutation are
also displayed.

A mitotic clone of dsh blocks Wg signal transduction. In the model, this can
be mimicked by absence of the WG receptor in a small region. In the region
0.012 < x < 0.016 we set Wr and Wrt to 0 (Figure 11). This can also be modeled by
defining WR as inactive or unable to signal (Figure 12). In the second simulation,
the wg receptors in a part of the ventral region can bind with wg, but there is no
response. The mutation is in the region 0.013 < x < 0.018 (Figure 12). When
this occurs in a clone of cells in the fly leg, it results in pattern duplications that
are predicted by the GRN modeled here. Similarly, the model predicts that pro-
duction of WG at high levels in the dorsal dpp/bmp domain also produces pattern
duplications. For this simulation (Figure 13), Wg production is fixed at a high
rate independent of receptor binding for the region 0.012 < x < 0.016. The model
predicts patterning duplications that mimic those seen in fly legs where a clone of
dorsal cells is mutant for an antagonist of Wg signaling (GSK/sgg). In these cells,
Wg signaling is ectopically activated.
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Figure 11. In this simulation there are no Wg receptors for
0.012 < x < 0.016. The final time step is at t = 15000 seconds.
The slight localized increase in W is due to lack of receptor to bind
with. The localized increase in B is due to the local lack of inhibi-
tion.

6. Discussions. As we have seen from the analysis, although it is possible for a
single morphogen to form a territory solution based only on auto-regulation, such a
situation is unstable and unlikely. However, numerical simulations of two interacting
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Figure 12. Simulation of region with defective Wg receptors in
the region 0.013 < x < 0.018. Since Wg is still able to bind to its
receptor there is no localized increase as seen in Figure 11. The
final time step is at t = 15000 seconds. The experimental image
from [6] is reproduced with the permission of the Company of Bi-
ologists.

morphogens show that morphogen territory solutions are not only possible, but very
robust. The only requirement is that the interaction must be strong. If we use a
Hill equation to model the interaction, we require a Hill coefficient of at least two.
Such a coefficient would be achieved by requiring two or more morphogen molecules
bound to a receptor for activation/inhibition to be turned on.

The study of the full system is still open. Since the diffusion coefficients of the
two morphogens are of the same order, it is not possible to separate (7) into two
second order equations. It may be possible to force symmetries into the system
with an appropriate parameter choices, however there is no numerical evidence that
such restrictions are required.
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discussions.



296 IRON, SYED, THEISEN, LUKACSOVICH, NAGHIBI, MARSH, WAN AND NIE

 5e-07
 1e-06

 1.5e-06
 2e-06

 2.5e-06
 3e-06

 3.5e-06
 4e-06

 4.5e-06
 5e-06

 5.5e-06

-0.02 -0.01  0  0.01  0.02
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

-0.02 -0.01  0  0.01  0.02

 5e-07
 1e-06

 1.5e-06
 2e-06

 2.5e-06
 3e-06

 3.5e-06
 4e-06

 4.5e-06
 5e-06

 5.5e-06

-0.02 -0.01  0  0.01  0.02
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

-0.02 -0.01  0  0.01  0.02

W
B

W
r

B
r

xx

xx

BMP WG

Figure 13. Simulation of region with Wg production set to its
maximum rate independent of receptor binding for 0.012 < x <
0.016 causing localized increases in W and decreases in B. The
final time step is at t = 15000 seconds. The experimental image
from [6] is reproduced with the permission of the Company of Bi-
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