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The satisfiability problem is a basic core NP-complete problem. In recent years, a lot of
heuristic algorithms have been developed to solve this problem, and many experiments
have evaluated and compared the performance of different heuristic algorithms. However,
rigorous theoretical analysis and comparison are rare. This paper analyzes and compares
the expected runtime of three basic heuristic algorithms: RandomWalk, (1 + 1) EA,
and hybrid algorithm. The runtime analysis of these heuristic algorithms on two 2-SAT
instances shows that the expected runtime of these heuristic algorithms can be exponential
time or polynomial time. Furthermore, these heuristic algorithms have their own advan-
tages and disadvantages in solving different SAT instances. It also demonstrates that the
expected runtime upper bound of RandomWalk on arbitrary k-SAT (k � 3) is O ((k − 1)n),
and presents a k-SAT instance that has �((k − 1)n) expected runtime bound.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The satisfiability problem (SAT) of a propositional formula plays a central role in computer science and artificial intelli-
gence. It is the first proposed NP-complete problem [5,21] and one of the basic core NP-complete problems [10]. In addition
to its theoretical importance, the SAT problem is also directly applied in VLSI formal verification, software automation, and
so on.

Researchers have been trying to look for an effective algorithm for the SAT problem. Since the SAT problem is an NP-
complete problem in nature, a polynomial algorithm is not currently available to solve it, although we cannot prove that
such an algorithm does not exist. In fact, a basic conjecture of modern computer science and mathematics is that no
polynomial algorithm exists for NP-complete problems. At present, the main methods for solving the SAT problems are
complete algorithms [3,6,34] and incomplete algorithms [7,12,13,15,20,25,27,29,31,32]. There are several very successful
complete algorithms (e.g., SATO [34]). A complete algorithm often explores the whole search space and can always de-
termine whether a given propositional formula is satisfiable or not; however, its time complexity is usually exponential.
An incomplete algorithm does not carry out a complete search on the search space; instead, it often explores some part
of the search space using heuristic information within a limited time; however it does not give the correct answer with
certainty.

Since the 1990s, the use of incomplete algorithm for solving the SAT problem has grown quickly. The basic incom-
plete heuristic methods are RandomWalk algorithm [25], GSAT algorithm [13,31], WalkSat algorithm [32], UnitWalk [15],
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population-search-based evolutionary algorithms [7,12,20] and so on. In recent years, some powerful concepts and tech-
niques of statistical physics have been applied to the SAT problem. One of these incomplete algorithms, known as “survey
propagation” [4,22], which is based on statistical physics methods, shows good performance on some difficult randomly
generated SAT instances. It is well known that one of the earliest applications of statistical physics in the optimization prob-
lem is the simulated annealing algorithm [19]. WalkSat [32] used a probability selection mechanism similar to that of the
simulated annealing algorithm.

For some heuristic algorithms for the SAT problem, theoretical results about computational complexities have been ob-
tained to some extent. Papadimitiou [25] was the first to prove that the average time upper bound of RandomWalk for
2-SAT is O (n2). Schöning [29] presented a restarting local-search algorithm to show that, for any satisfiable k-CNF formula
with n variables, the algorithm has to repeat O ((2(1 − 1

k ))n) times, on average, to find a satisfying assignment. Specially if
k = 3, the average time is O (1.334n) (the upper bound of an exhaustive search is O (2n)). There have been several improve-
ments on the upper bound by hybrid algorithms based on randomized algorithms by Paturi et al. [27] and Schöning [29],
e.g. O (1.324n) [18] and O (1.322n) [28]. Alekhnovich et al. [2] proved that, when the clause density is less than 1.63, the
average time complexity of RandomWalk for 3-SAT is linear.

Since there are many incomplete heuristic algorithms for SAT problems, comparing and understanding the working
principals of these heuristic algorithms is useful. The first thing we have to accept is that no one algorithm beats all other
algorithms on all problems. There have been many numerical experiments that compared various heuristic algorithms on
SAT problems, but theoretical study has been rare. This paper analyzes and compares the expected running time of three
basic heuristic algorithms: RandomWalk, (1+1) EA, and hybrid algorithm. We use absorbing Markov chains to model search
processes of these heuristic algorithms, and use explicit expressions of the first hitting time of a Markov chain to analyze
and estimate their expected runtime. Through runtime analysis of three SAT instances, we show that the expected runtime
of these heuristic algorithms can be exponential or polynomial. We also find that these heuristic algorithms have their own
comparative advantage under different circumstances.

The rest of this paper is organized as follows. Section 2 introduces the concepts of the SAT problem, some heuristic
algorithms for the SAT problem, and the first hitting time of an absorbing Markov chain. Section 3 discusses the worst-
case bound and the worst-case example on RandomWalk. Section 4 analyzes and compares the expected runtime bounds
of three heuristic algorithms on two 2-SAT instances. Section 5 presents our conclusions and suggestions for further re-
search.

2. Heuristic algorithms for satisfiability and the first hitting time of the Markov chain

2.1. The SAT problem

We begin by stating some definitions and notations that will be used throughout the paper.
In Boolean logic, a literal is a variable or its negation, and a clause is a disjunction of literals. The formula f = c1 ∧ c2 ∧

· · · ∧ cm is in k conjunctive normal form (k-CNF) if it is a conjunction of clauses with each clause as a disjunction of at most
k literals. We view a CNF Boolean formula as both a Boolean function and a set of clauses. Satisfiability is the problem of
determining whether the variables of a given Boolean formula can be assigned truth values in such a way as to make the
formula evaluate to true.

SAT is originally stated as a decision problem. In this paper we consider the more general MaxSAT, so, our goal is to look
for an assignment that satisfies the maximum number of clauses.

Evolutionary algorithms (EAs) are the heuristic algorithms that have been applied to SAT and to many other NP-complete
problems. EAs usually use a fitness value to guide the search process. In the MaxSAT formulation, the fitness value is defined
as the number of satisfied clauses, i.e.

fit(x) = c1(x) + c2(x) + · · · + cm(x) (1)

where ci(x) (1 � i � m) represents the true value of the ith clause. This fitness function is used in most EAs for SAT
problems.

Throughout this paper, for x = (x1 · · · xn), y = (y1 · · · yn) ∈ {0,1}n , we denote by H(x, y) the Hamming distance between
two points x and y, i.e. H(x, y) = ∑n

i=1 |xi − yi|. We also denote |x| = x1 + · · · + xn , and let Si = {x | x ∈ S = {0,1}n, |x| = i}
(i = 0,1, . . . ,n) be a partition of search space S = {0,1}n .

2.2. Heuristic algorithms for the SAT problem

RandomWalk, first introduced by Papadimitiou [25], is one of the most basic incomplete algorithms, and many other
heuristics have been developed based on the improvement of this algorithm, e.g. the Walk-SAT [32], combines RandomWalk
with a greed bias towards assignments that satisfy more clauses. RandomWalk algorithm first randomly selects a clause that
is not satisfied with the CNF, then randomly selects a flip in the clause (see Algorithm 1).
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Algorithm 1 (The RandomWalk algorithm).

begin
initialization: Select an initial bit string x at random;
while (termination-condition does not hold) do

Select c := an unsatisfied clause chosen at random;
Select xi := a variable in c chosen at random;
Flip the value of xi ;

od
end

Evolutionary algorithms are inspired from modeling the processes of natural selection and genetic evolution. Here we
consider a simple EA using mutation and selection approaches with population size of 1 denoted as (1 + 1) EA [9]. (1 + 1)
EA is a simple but effective random hill-climbing EA. Its general description is:

Algorithm 2 ((1 + 1) EA).

begin
initialization: Choose randomly an initial bit string x;
while (termination-condition does not hold) do

Mutation: y := mutate(x);
Selection: If fitness(y) >fitness(x), x := y;

od
end

(1 + 1) EA generally uses two kinds of mutation, called local mutation and global mutation:

(1) Local mutation randomly chooses a bit xi (1 � i � n) from the individual x = (x1 · · · xn) ∈ {0,1}n and flips it.
(2) Global mutation flips each bit of individual x = (x1 · · · xn) ∈ {0,1}n independently with the probability of 1

n . The expected
number of bit flips for the global mutation is 1.

The hill-climbing algorithm is usually trapped in a region which is a local optimum and needs to be restarted with a
random new assignment. Another widely-used mechanism for escaping such a local optimum of the maximization problem
is to permit the search to make occasional downhill moves. The following hybrid strategy, which combines (1 + 1) EA and
RandomWalk, is closely related to WalkSat [32] in that it allows for the possibility of downhill moves.

Algorithm 3 (The hybrid algorithm of local (1 + 1) EA and RandomWalk).

begin
initialization: Set parameters, choose randomly an initial bit string;
while (termination-condition does not hold) do

With probability p, follow the RandomWalk scheme;
With probability 1 − p, follow the Local (1 + 1) EA scheme;

od
end

2.3. The absorbing Markov chain

Most heuristic algorithms are memory-less in the sense that the processes of selecting the next point in the search
space depend only on the current point. This allows us to model these search processes as absorbing Markov chains whose
absorbing set is the optimal solution (s). Such models are widely used in two heuristic algorithms: Simulated Annealing [1]
and Genetic Algorithms [14,24]. Basic knowledge of absorbing Markov chains can be found in any literature regarding
random processes, e.g. [17].

Let (Xt; t = 0,1, . . .) denote a discrete homogeneous absorbing Markov chain in a finite state space S . T is the transient
state set, H = S − T is the absorbing set. Assume there are r absorbing states and t transient states, i.e. |T | = t and |H| = r
where | · | denotes the cardinality of a set, then the transition matrix can be written in the canonical form as

P =
(

I O
R Q

)
where I is an r-by-r identity matrix, O is an r-by-t zero matrix, R is a nonzero t-by-r matrix, and Q is a t-by-t matrix. For
the power of P, a standard matrix argument shows that the region I remains I. This corresponds to the fact that once the
Markov chain reaches an absorbing state, it will never leave that absorbing state.
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Definition 1. Let (Xt; t = 0,1, . . .) be an absorbing Markov chain. The first hitting time from status i (i ∈ S) to the absorbing
status set H is:

τi = min{t: t � 0, Xt ∈ H | X0 = i}
if the right-hand side involves the empty set, let τi = ∞.

We are interested in the question: Given that the chain starts in state i, what is the expected number of steps before
the chain is absorbed? Theorem 1 provides an answer.

Theorem 1. Given that the absorbing Markov chain Xt starts in transient state i, let mi be the expected number of steps before the
chain is absorbed, i.e. mi = E[τi]. Denote m = [mi]i∈T . Then

m = (I − T)−11 (2)

where 1 represents the column vector all of whose entries are 1.

Proof. See Ref. [17]. �
Several corollaries can be derived directly from Theorem 1.

Corollary 1. Let {Xt | t = 0,1, . . .} be an absorbing Markov chain with finite state space S = {0,1, . . . ,n,n + 1} and absorbing state
set {0,n + 1}, and its transition probabilities are defined as follows:

(1) For i = 0 or n + 1,

pi j =
{

1, j = i,

0, otherwise.

(2) For 1 � i � n,

pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai, j = i − 1,

bi, j = i + 1,

1 − ai − bi, j = i,

0, otherwise.

Then for this absorbing Markov chain, its mean first hitting time to the absorbing state is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mn+1 = 0,

mn =
1

a1
+∑n−1

h=1
1

ah+1
(
∑h

j=1
∏h

i= j
bi
ai

+1)

1+∑n
j=1

∏n
i= j

bi
ai

,

mn−1 = mn(1 + bn
an

) − 1
an

,

mk−1 = mk + mn
∏n

i=k
bi
ai

− ∑n−(k+1)
j=0

1
a j+k+1

∏ j
i=0

bk+i
ak+i

− 1
ak

, k = n − 1, . . . ,2,

m0 = 0.

Corollary 2. Let {Xt | t = 0,1, . . .} be an absorbing Markov chain with finite state space S = {0,1, . . . ,n} and absorbing state set 0,
and its transition probabilities are defined as follows:

(1) For i = 0 or n + 1,

pi j =
{

1, j = i,

0, otherwise.

(2) For 1 � i < n,

pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai, j = i − 1,

bi, j = i + 1,

1 − ai − bi, j = i,

0, otherwise.
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(3) For i = n,

pi j =
⎧⎨
⎩

ai, j = i − 1,

1 − ai, j = i,

0, otherwise.

Then for this absorbing Markov chain, its mean first hitting time to the absorbing state is given by⎧⎪⎪⎨
⎪⎪⎩

m0 = 0,

mi = mi−1 + 1
ai

+ ∑n−(i+1)
j=0

1
a j+i+1

∏ j
h=0

bi+h
ai+h

, i = 1, . . . ,n − 1,

mn = mn−1 + 1
an

.

The difference between the two corollaries lies in the fact that the Markov chain of Corollary 1 has two absorbing states
while the Markov chain of Corollary 2 has only one. He et al. [14] used Corollary 2 to estimate the expected running time
of evolutionary algorithms.

For our time complexity discussion and analysis, Theorem 1 and its corollaries play a key role. These methods are close
to the Markov chain analysis of the stochastic local search algorithms by Schöning [29,30]. The main difference is: We use
linear system (2) to estimate the absorbing time of the Markov chain while Schöning calculated the “success probability”.

Now we introduce two vector norms, the average vector norm and the maximum vector norm, both of which are often
used in the vector analysis. For vector m = [mi]i∈S , let μ0(i) = P (X0 = i) be the initial distribution, the average vector norm
‖m‖1 and the maximum vector norm ‖m‖∞ are defined as

‖m‖1 =
∑
i∈S

μ(i)mi

and

‖m‖∞ = max
i∈S

{mi}.

Specially, if the initial distribution is the uniform distribution on S , i.e. μ0(i) = 1
|S| (i ∈ S), then we have

‖m‖1 = 1

|S|
∑
i∈S

mi .

Norms ‖m‖1 and ‖m‖∞ present average case and worst case performance measures respectively in the time complexity
analysis.

3. Bounds on RandomWalk

It is well known that the most simple algorithm, complete enumeration, needs �(2n) steps to find the satisfying assign-
ment of the SAT problem with n variables. In the following, we shall show that the general upper bound of the average
iteration number of RandomWalk for k-SAT is O ((k − 1)n). We also construct a SAT instance for which this bound is tight,
i.e. for which the expected runtime of RandomWalk is �((k − 1)n).

Proposition 1. The expected runtime of RandomWalk for any k-SAT (k � 3) instance is at most O ((k − 1)n).

Proof. Let S = {0,1}n be the search space, and S∗ the satisfying assignment set for given k-CNF formula ω. Let d(x) =
miny∈S∗ {H(x, y)} denote the distance between a point x ∈ S and the set S∗ .

Define Di to be Di = {x ∈ S | d(x) = i}, i = 0,1, . . . ,n. Then the search space S is partitioned into n + 1 subspaces:
S = ⋃n

i=0 Di .
Suppose we are given a string x ∈ Di (1 � i � n), for any clause σ that is not satisfied, there exists at least one of the k

bits to be flipped to decrease d(x) by 1. Since RandomWalk picks a variable in some unsatisfied clause and flips its truth
assignment, the probability that RandomWalk transfers x to some string y ∈ Di−1 is at least 1

k , and the probability that it

transfers x to some string y ∈ Di+1 is at most 1 − 1
k .

Construct an auxiliary homogeneous Markov chain which is defined on the state space {D0, D1, . . . , Dn} with the transi-
tion matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
1
k 0 k−1

k 0 . . . 0 0 0

0 1
k 0 k−1

k . . . 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 . . . 1

k 0 k−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 0 0 0 . . . 0 1 0
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According to Corollary 2, its mean first hitting time to the absorbing state D0 is⎧⎪⎨
⎪⎩

m0 = 0,

mi = mi−1 + k + k
∑n−(i+1)

j=0 (k − 1) j+1, i = 1, . . . ,n − 1,

mn = mn−1 + 1.

By induction, we have

mn = mn−1 + 1

= (n − 1)k + k(k − 1)

k − 2

(
n−1∑
l=1

(k − 1)n−l−1 − (n − 1)

)

= (n − 1)k + k(k − 1)

k − 2

(
(k − 1)n−1 − 1

k − 2
− (n − 1)

)
.

Hence

‖m‖∞ = mn = O
(
(k − 1)n)

.

This completes the proof. �
We have shown that the expected running time of RandomWalk for any k-SAT instance is O ((k − 1)n), but this does not

mean that RandomWalk needs, on average, �((k − 1)n) steps to find a satisfying assignment in every k-SAT instance. In the
following we present a k-SAT instance ϕ(k)(x) (k > 2), where the average case expected time complexity is �((k − 1)n).

Definition 2. The SAT instance ϕ(k)(x) (k < n) has the following clauses:

xi, and xi1 ∨ (x̄i2 ∨ · · · ∨ x̄ik )

where 1 � i � n, and (i1, . . . , ik) ranges over all k-element subsets of {1, . . . ,n}.

It is evident that the SAT instance ϕ(k)(x) has the unique satisfying assignment x∗ = (1 · · · 1).
Papadimitiou [26] first proposed the special cases k = 3 of ϕ(k)(x) and claimed that it was a difficult instance for Ran-

domWalk. Here we discuss the general situation and derive its worst case and average case bounds of the expected runtime
on RandomWalk.

Proposition 2. Given an integer k � 3, the expected runtime of RandomWalk for SAT instance ϕ(k)(x) is

(1) ‖m‖∞ = O ((k − 1)n),
(2) ‖m‖1 = �((k − 1)n).

Proof.

(1) It follows immediately from Proposition 1.
(2) From the consequence of (1), it is sufficient to show ‖m‖1 = �((k − 1)n).

Let Ti = {x | x ∈ S = {0,1}n , |x| = n − i} (i = 0,1, . . . ,n) be the partition of search space S . We denote by Xt (t = 0,1, . . .)

the random string describing at which point RandomWalk is during iteration t . Then Xt is a homogeneous Markov chain
with the absorbing state set T0. The transition probabilities among the subspaces can be described as follows.
When i = 0,

P (Xt+1 ∈ T0 | Xt ∈ T0) = 1.

When 1 � i � n − (k − 1),

P (Xt+1 ∈ Ti+1 | Xt ∈ Ti) = k − 1

k

(n−i
k−1

)
1 + (n−i

k−1

) ,

P (Xt+1 ∈ Ti−1 | Xt ∈ Ti) = 1 − k − 1

k

(n−i
k−1

)
1 + (n−i

k−1

) .

When n − (k − 1) < i � n,

P (Xt+1 ∈ Ti−1 | Xt ∈ Ti) = 1.
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Denote⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ai = 1 − k−1
k

(n−i
k−1)

1+(n−i
k−1)

, 1 � i � n − (k − 1),

bi = k−1
k

(n−i
k−1)

1+(n−i
k−1)

, 1 � i � n − (k − 1),

ai = 1, n − (k − 1) < i � n,

bi = 0, n − (k − 1) < i � n.

Construct an auxiliary homogeneous Markov chain Zt (t = 0,1, . . .) which is defined on the state set S = {0,1, . . . ,n}
with the transition matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0

a1 1 − a1 − b1 b1 0 . . . 0 0 0

0 a2 1 − a2 − b2 b2 . . . 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 . . . an−1 1 − an−1 − bn−1 bn−1

0 0 0 0 . . . 0 an 1 − an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

For this absorbing Markov chain, according to Corollary 2, its mean first hitting time to the absorbing state 0 is given
by ⎧⎪⎨

⎪⎩
m0 = 0,

mi = mi−1 + 1
ai

+ ∑n−(i+k−1)
j=0

1
a j+i+1

∏ j
h=0

bi+h
ai+h

, 1 � i � n − (k − 1),

mi = mi−1 + 1, n − (k − 1) < i � n.

(4)

Note that for 1 � i � n − (k − 1),

1

ai
� 1

k
(5)

and

bi

ai
= (k − 1)

1

1 + k/
(n−i

k−1

) � (k − 1)e−k/(n−i
k−1). (6)

Here we use the inequality 1
1+x � e−x (x � 0).

From Eqs. (4), (5) and (6), we get

m1 = 1

a1
+

n−k∑
j=0

1

a j+2

j∏
h=0

bh+1

ah+1

� 1

k
+ 1

k

n−k∑
j=0

(
(k − 1) j+1)e

−∑ j+1
h=1

k

(
n−h
k−1) .

Because

j+1∑
h=1

k(n−h
k−1

) = k!
j+1∑
h=1

1(n−h
k−1

)
(k − 1)!

� k!
j+1∑
h=1

1

(n − h)(n − (h + 1))
(k > 2)

= k!
j+1∑
h=1

(
1

(n − (h + 1))
− 1

n − h

)
� k!,

we have

m1 � 1

k
+ 1

k
e−k!

n−k∑
j=0

(k − 1) j+1

= 1

k
+ 1

k
e−k! k − 1

k − 2

(
(k − 1)n−k+1 − 1

)
= �

(
(k − 1)n)

.
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Finally, by the monotonicity of the sequence mi we obtain

‖m‖1 = 1

2n

((
n

0

)
m0 +

(
n

1

)
m1 + · · · +

(
n

n

)
mn

)

� 2n − 1

2n
�

(
(k − 1)n) = �

(
(k − 1)n)

.

This completes the proof. �
From Proposition 2, it should be mentioned that even the exhaustive search (with upper bound of 2n) behaves much

better than RandomWalk on SAT instance ϕ(k)(x) (k > 3).
Droste et al. [8] studied the expected running time of (1 + 1) EA on the special case ϕ(3)(x) and demonstrated that the

average time complexity is a exponential time. Wei et al. [33] presented a class of formulas involving a so-called ternary
chain which is similar to ϕ(3)(x). They also showed the expected runtime of RandomWalk on the ternary chain formula is
exponential and proposed the “accelerating random walk” on this problem.

For ϕ(k)(x), according to Eq. (1), the fitness function used in evolutionary algorithms is

fitϕ(k) (x) =
∑

1�i�n

xi +
∑

1�i1�n

∑
1�i2�n

i2 �=i1

. . .
∑

1�ik�n
ik �=i1,...,ik �=ik−1

(
1 − (1 − xi1 )xi2 · · · xik

)

= s + k!
(

n

k

)
− (n − s)(k − 1)!

(
s

k − 1

) (|x| = s
)
.

The fitness function fitϕ(k) (x) induces the MaxSAT problem ϕ(k)(x) into a polynomial in s (the number of 1 in x) of degree k.
We might expect that the heuristic algorithms using fitness function have difficulty finding the all-one string because the
non-monotone polynomial fitness function might give misleading hints regarding the all-one string.

4. Behavior of three heuristic algorithms on SAT instances

In this section, in order to obtain a theoretical understanding of the behavior of different heuristic algorithms, we con-
struct two SAT instances and analyze the average time complexity of RandomWalk, (1 + 1) EA and hybrid algorithm on
these SAT instances.

Definition 3. For x = (x1 · · · xn) ∈ {0,1}n , the SAT instance ψ1(x) is defined as

ψ1(x) = (x1 ∨ x̄2) ∧ (x1 ∨ x̄3) ∧ · · · (x1 ∨ x̄n) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x3) ∧ · · · (x̄1 ∨ xn).

The satisfying assignments of ψ1(x) are (0 · · · 0) and (1 · · · 1).
We start from (1 + 1) EA for solving the MaxSAT instance ψ1(x). According to Eq. (1), for |x| = k, the fitness function of

ψ1(x) is given as

fitψ1
(x) =

{
2(n − 1) − k, x = (0 ∗ · · · ∗),

(n − 1) + (k − 1), x = (1 ∗ · · · ∗).

When x = (0 ∗ · · · ∗) (or x = (1 ∗ · · · ∗)), the fitness function fitψ1
(x) decreases (or increases) monotonously with an increase

of the number of ones. The fitness function fitψ1
(x) with n = 20 is shown in Fig. 1.

In the following, we consider local (1 + 1) EA and global (1 + 1) EA on ψ1(x) respectively. We shall show that they both
find the satisfying assignment in time �(n ln n).

For simplicity, in Proposition 3 below we assume that n is even.
We further divide the search space S into 2n subspaces:

S0,k = {
x | x = (0 ∗ · · · ∗) ∈ S, |x| = k

}
(k = 0, . . . ,n − 1),

S1,k = {
x | x = (1 ∗ · · · ∗) ∈ S, |x| = k

}
(k = 1, . . . ,n).
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Fig. 1. The fitness function of ψ1(x) with n = 20.

Proposition 3. For SAT instance ψ1(x), for any x ∈ Su,k (u = 0,1; k = 0, . . . ,n), denote by mu,k the mean first hitting time of local
(1 + 1) EA starting from state x, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0,0 = 0,

m0,k = n(1 + · · · + 1
k ), 1 � k � n

2 − 1,

m1,n = 0,

m1,k = n(1 + · · · + 1
n−k ), n

2 + 1 � k � n − 1,

m0,k = 1
k+1 (n + km0,k−1 + m1,k+1),

n
2 � k � n − 1,

m1,k = 1
n−k+1 (n + (n − k)m1,k+1 + m0,k−1), 1 � k � n

2 ,

i.e. the expected runtime of the local (1 + 1) EA is ‖m‖∞ = �(n ln n).

Proof. Let Xt ∈ {0,1}n (t = 0,1, . . .) be the random variable describing the state of local (1 + 1) EA solving SAT instance
ψ1(x) at time t , then the transition probabilities can be described as follows.

When k = 0,

P (Xt+1 ∈ S0,k | Xt ∈ S0,k) = 1.

When 1 � k � n
2 − 1,

P (Xt+1 ∈ S0,k−1 | Xt ∈ S0,k) = k

n
,

P (Xt+1 ∈ S0,k | Xt ∈ S0,k) = 1 − k

n
.

When n
2 � k � n − 1,

P (Xt+1 ∈ S0,k−1 | Xt ∈ S0,k) = k

n
,

P (Xt+1 ∈ S1,k+1 | Xt ∈ S0,k) = 1

n
,

P (Xt+1 ∈ S0,k | Xt ∈ S0,k) = 1 − k + 1

n
.

Similarly, when k = n,

P (Xt+1 ∈ S1,k | Xt ∈ S1,k) = 1.

When n + 1 � k � n − 1,
2
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P (Xt+1 ∈ S1,k+1 | Xt ∈ S1,k) = 1 − k

n
,

P (Xt+1 ∈ S1,k | Xt ∈ S1,k) = k

n
.

When 1 � k � n
2 ,

P (Xt+1 ∈ S1,k+1 | Xt ∈ S1,k) = 1 − k

n
,

P (Xt+1 ∈ S0,k−1 | Xt ∈ S1,k) = 1

n
,

P (Xt+1 ∈ S1,k | Xt ∈ S1,k) = k − 1

n
.

Introduce an auxiliary homogeneous Markov chain Zt (t = 0,1, . . .) with the state space {z0,0, z0,1, . . . , z0,n−1; z1,1,

z1,2, . . . , z1,n}, the transition probabilities are defined by

P (Zt+1 = zv,h | Zt = zu,k) = P (Xt+1 ∈ S v,h | Xt ∈ Su,k)

where u, v ∈ {0,1}, and h,k ∈ {0, . . . ,n}.
Then Zt is an absorbing Markov chain with the absorbing state z0,0 and z1,n , and for any x ∈ Su,k (u ∈ {0,1},k ∈

{0, . . . ,n}), the mean first hitting time mx equals mzu,k .
According to Theorem 1, the mean first hitting time of stochastic process Zt is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0,0 = 0,

− k
n m0,k−1 + k

n m0,k = 1, 1 � k � n
2 − 1,

− k
n m0,k+1 + k+1

n m0,k − 1
n m1,k+1 = 1, n

2 � k � n − 1,

m1,n = 0,

−n−k
n m1,k+1 + n−k

n m1,k = 1, n
2 + 1 � k � n − 1,

−n−k
n m1,k+1 + n−k+1

n m1,k − 1
n m0,k−1 = 1, 1 � k � n

2 .

The above linear equations can be solved as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0,0 = 0,

m0,k = n(1 + · · · + 1
k ), 1 � k � n

2 − 1,

m1,n = 0,

m1,k = n(1 + · · · + 1
n−k ), n

2 + 1 � k � n − 1,

m0,k = 1
k+1 (n + km0,k−1 + m1,k+1),

n
2 � k � n − 1,

m1,k = 1
n−k+1 (n + (n − k)m1,k+1 + m0,k−1), 1 � k � n

2 .

(7)

In the following, we prove

m0,k � n

(
1 + · · · + 1

k

) (
n

2
� k � n − 1

)
(8)

by induction.
When k = n

2 , from (7), we obtain

m0,n/2 = 1

n/2 + 1

(
n + n

2

(
1 + · · · + 1

n/2 − 1

)
+ n

(
1 + · · · + 1

n − (n/2 + 1)

))

� n

(
1 + · · · + 1

n/2

)
.

Thus we have that (8) holds for k = n
2 .

Assume it is true for some k � n
2 , i.e. m0,k � n(1 + · · · + 1

k ), from (7), we have

m0,k+1 = 1

k + 2

(
n + (k + 1)m0,k + m1,k+2

)
� n

k + 2
+ n

(
1 + · · · + 1

k

)

� n

(
1 + · · · + 1

k + 1

)
.

Therefore (8) holds for all k.
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Similarly, we have m1,k � n(1 + · · · + 1
n−k ) (1 � k � n

2 ).

This proves the claim. �
Proposition 4. For SAT instance ψ1(x), the expected runtime of the global (1 + 1) EA is

(1) ‖m‖∞ = O (n ln n),
(2) ‖m‖1 = �((n ln n).

Proof.

(1) We decompose the state space S = {0,1}n into n subspaces by the Hamming distance between the string in S and the
satisfying assignment: S = ⋃n−1

k=0 Uk where

Uk = T0,k ∪ T1,k (k = 0,1, . . . ,n − 1),

and

T0,k = {
x | x = (0 ∗ · · · ∗) ∈ S, H

(
x, (0 · · · 0)

) = k
}
,

T1,k = {
x | x = (1 ∗ · · · ∗) ∈ S, H

(
x, (1 · · ·1)

) = k
}
.

In contrast to the notations S0,k and S1,k , both of which are used in the proof of Proposition 3, we see that T0,k = S0,k
and T1,k �= S1,k . For x = (1 ∗ · · · ∗) ∈ S , x ∈ S1,k means that the Hamming distance between x and (0 · · ·0) is k while
x ∈ T1,k means that the Hamming distance between x and (1 · · · 1) is k.
For x ∈ Uk(k = 1 · · ·n − 1), note that fitψ1

(x) = 2n − k. Thus the probability that the global (1 + 1) EA leads x to some

y ∈ Uk−1 ∪ · · · ∪ U0 is greater than k
n .

Therefore we get ‖m‖∞ � (1 + · · · + 1
n−1 ) = O (n ln n).

(2) According to the result of (1), it is sufficient to prove that ‖m‖1 = �((n ln n). The proof below is similar to that of the
linear functions with nonzero weights by Droste et al. [9]. The main difference is that the linear function has only one
optimum (0 · · · 0) while SAT instance ψ1(x) has two satisfying assignments (0 · · · 0) and (1 · · ·1).
By Chernoff bounds [23], for any 0 < ε < 1

2 , the probability that the initial string x satisfies ( 1
2 − ε)n � |x| � ( 1

2 + ε)n

(for the simplicity of analysis, we assume that ( 1
2 − ε)n is an integer) is exponentially close to one, i.e. 1 − e−�(n) . It is

equivalent that with probability 1 − e−�(n) the randomly initialized string has at least ( 1
2 −ε)n zeros and ( 1

2 −ε)n ones.
In order to reach the satisfying assignment, each of these strings needs to flip its all zeros (or all ones) at least once.
Let X be a random variable defined to be the number of generations required to flip the all zeros (or ones) of the above
initialized string at least once, then its expectation is

E(X) =
∞∑

t=1

t P (X = t) =
∞∑

t=1

P (X � t).

Since the probability that one bit does not flip at all in t − 1 steps is (1 − 1
n )t−1, the probability for the event that at

least one of the ( 1
2 − ε)n bits never flips in t − 1 steps is 1 − (1 − (1 − 1

n )t−1)(
1
2 −ε)n .

Hence we have

E(X) �
∞∑

t=1

(
1 −

(
1 −

(
1 − 1

n

)t−1)( 1
2 −ε)n)

� (n − 1) ln n

(
1 −

(
1 −

(
1 − 1

n

)(n−1) ln n)( 1
2 −ε)n)

� (n − 1) ln n
(
1 − e−( 1

2 −ε)
) = �(n ln n).

In the above, we use (1 − 1
n )n � e−1(n > 1).

Therefore

‖m‖1 �
(
1 − e−�(n)

)
�(n ln n) = �(n ln n).

This completes the proof. �
Papadimitiou [25] proved that RandomWalk on any satisfiable 2-SAT will reach a satisfying assignment in time O (n2) by

the theory of random walks. In the following Proposition 5, we shall demonstrate that RandomWalk has the �(n2) worst
case and average case expected runtime bound on 2-SAT instance ψ1(x).

Now we introduce a lemma which provides the upper bound for the tail of the binomial distribution function. It will be
used in Proposition 5 for estimating the average case expected runtime of RandomWalk.
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Lemma 1. Let X be a random variable following the binomial distribution with parameters n and p. Given a integer 0 � k � n, the
cumulative distribution is expressed as

F (k) = P (X � k) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i .

Then F (k) � e− 2(np−k)2

n .

Proof. It follows immediately from Hoeffding’s inequality [16]. �
Proposition 5. For SAT instance ψ1(x), the average case expected runtime of RandomWalk is ‖m‖1 = �(n2).

Proof. According to the above discussion, it is sufficient to show that ‖m‖1 = �(n2).

We denote by Xt (t = 0,1, . . .) the stochastic process of RandomWalk for SAT instance ψ1(x). Then Xt is a homogeneous
Markov chain with two absorbing states (0 · · ·0) and (1 · · ·1). The transition probabilities among the subspaces can be
described as follows.

When i = 0,

P (Xt+1 ∈ Si | Xt ∈ Si) = 1.

When 1 � i � n − 1,

P (Xt+1 ∈ Si+1 | Xt ∈ Si) = 1/2,

P (Xt+1 ∈ Si−1 | Xt ∈ Si) = 1/2.

When i = n,

P (Xt+1 ∈ Si | Xt ∈ Si) = 1.

Construct an auxiliary homogeneous Markov chain Zt (t = 0,1, . . .) which is defined on the state space {0,1, . . . ,n} with
the transition probabilities

P (Zt+1 = j | Zt = i) = P (Xt+1 ∈ S j | Xt ∈ Si)

where i, j = 0, . . . ,n.
According to Corollary 1, the mean first hitting time of absorbing chain Zt is given by

mi = i(n − i) (i = 0,1, . . . ,n).

Hence

‖m‖1 = 1

2n

((
n

0

)
m0 +

(
n

1

)
m1 + · · · +

(
n

n

)
mn

)

= 1

2n

n∑
i=1

i(n − i)

(
n

i

)

� 3n2

16

1

2n

3n/4∑
i=n/4

(
n

i

)

� 3n2

16

(
1 − 2e− n3

8
)

(by Lemma 1)

= �
(
n2).

Finally, we reach the conclusion. �
For SAT instance ψ1(x), from Propositions 3–5, we see that the �(n ln n) expected runtime bound of (1 + 1) EA is better

than the �(n2) expected runtime bound of RandomWalk. In the following, we construct another SAT instance ψ2(x), for
which we shall have an opposite situation under some conditions.

Definition 4. The SAT instance ψ2(x) has the following clauses:

xi, 1 � i � n, and xi ∨ x̄ j, (i, j) ∈ {1, . . . ,n}2, i �= j.
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Fig. 2. The fitness function of ψ2(x) with n = 21.

The only satisfying assignment of SAT instance ψ2(x) is the all True assignment (1 · · · 1).
According to Eq. (1), for |x| = k, the fitness function of ψ2(x) is given as

fitψ2
(x) = n(n − 1) + k(k − n + 1),

which is a polynomial in k of degree 2. The fitness function fitψ2
(x) with n = 21 is shown in Fig. 2. We note that this fitness

function has its local minimum at |x| = 10 while all one string is the only global optimum. If the local hill-climbing (1 + 1)
EA starts from x (|x| < 10), it will never reach the global optimum.

Proposition 6. Let Tk = {x | x ∈ S = {0,1}n, |x| = n − k} (k = 0,1, . . . ,n) be the partition of search space {0,1}n, and n an odd
number. For SAT instance ψ2(x), for any i ∈ Tk (k = 1, . . . ,n) the expected runtime of the local (1 + 1) EA is

mi =
{+∞ k < n−1

2 ,

O (n ln n) k � n−1
2 .

Proof. When k < n−1
2 , since the fitness function fitψ2

(x) decrease monotonously as |x| increases, the local (1+1) EA starting
from any initial string i ∈ Tk will never reach the satisfying assignment (1 · · ·1).

When k � n−1
2 , similar to that of OneMAX[11], the local (1 + 1) EA starting from any initial string i ∈ Tk will find the

satisfying assignment in O (n ln n) on average. �
RandomWalk on ψ2(x) has the same worst case expected runtime bound as that of ψ1(x):

Proposition 7. For SAT instance ψ2(x), the expected runtime of RandomWalk is ‖m‖∞ = �(n2).

Proof. It is sufficient to show that ‖m‖∞ = �(n2).

The following proof is similar to that of Proposition 2.
Let Xt (t = 0,1, . . .) be the random variable describing at which point RandomWalk is during iteration t . Then Xt is

an homogeneous Markov chain with the absorbing state set T0. The transition probabilities among the subspace can be
described as follows.

When k = 0,

P (Xt+1 ∈ T0 | Xt ∈ T0) = 1.

When 1 � k � n − 1,

P (Xt+1 ∈ Tk−1 | Xt ∈ Tk) = 1 − 1

2
× n − k

1 + (n − k)
,

P (Xt+1 ∈ Tk+1 | Xt ∈ Tk) = 1 × n − k
.

2 1 + (n − k)
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When k = n,

P (Xt+1 ∈ Tk−1 | Xt ∈ Tk) = 1.

Denote⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ak = 1 − 1
2 × n−k

1+(n−k)
, 1 � k � n − 1,

bk = 1
2 × n−k

1+(n−k)
, 1 � k � n − 1,

ak = 1, k = n,

bk = 0, k = n.

Construct an auxiliary homogeneous Markov chain Zt (t = 0,1, . . .) which is defined on the state set {0,1, . . . ,n} with the
transition matrix (3) (see the proof of Proposition 2).

For this absorbing Markov chain, according to Corollary 2, its mean first hitting time to the absorbing state 0 is given by⎧⎪⎪⎨
⎪⎪⎩

m0 = 0,

mk = mk−1 + 1
ak

+ ∑n−(k+1)
j=0

1
a j+k+1

∏ j
i=0

bi+k
ai+k

, 1 � k � n − 1,

mn = mn−1 + 1
an

= 1
a1

+ ∑n−1
k=1

1
ak+1

(1 + ∑k
j=1

∏k
i= j

bi
ai

).

(9)

When n � 2 and k � n
2 , we have

1 +
k∑

j=1

k∏
i= j

bi

ai
= 1 + n − k

n − k + 2
+ (n − k)(n − k + 1)

(n − k + 2)(n + 1)
(k − 1) � 1 + 1

4
(k − 1).

It follows that

mn � 1

a1
+

n/2−1∑
k=1

1

ak+1

(
1 +

k∑
j=1

k∏
i= j

bi

ai

)

� 1

2

n/2−1∑
k=1

(
1 + 1

4
(k − 1)

)
= �

(
n2).

This completes the proof. �
Contrary to the prior result that the expected runtime of (1 + 1) EA for SAT instance ψ1(x) is better than that of

RandomWalk, here we demonstrate that for SAT instance ψ2(x), the worst case expected runtime of RandomWalk is better
than that of local (1 + 1) EA.

In the following, we analyze the behavior of the hybrid algorithm of (1 + 1) EA and RandomWalk on SAT instance ψ2(x).
We first set the selection probability p = 0.5.

Proposition 8. If the selection probability p = 0.5, then for SAT instance ψ2(x), the expected runtime of the hybrid algorithm is

�

(
1

n2

(
4

e

)n/2)
� ‖m‖∞ � O

((
4

e

)n/2)
.

Proof. For simplicity, we assume that n is odd.
The proof is similar to that of Proposition 7 and the notations are the same as specified in the proof of Proposition 7.
The transition probability of the stochastic process Xt (t = 0,1, . . .) introduced by the hybrid algorithm of local (1 + 1)

EA and RandomWalk with a probability p = 0.5 can be described as follows.
When k = 0,

P (Xt+1 ∈ T0 | Xt ∈ T0) = 1.

When 1 � k � (n + 1)/2,

P (Xt+1 ∈ Tk−1 | Xt ∈ Tk) = p

(
1 − n − k

2(n − k + 1)

)
+ (1 − p)

k

n
,

P (Xt+1 ∈ Tk | Xt ∈ Tk) = (1 − p)

(
1 − k

n

)
,

P (Xt+1 ∈ Tk+1 | Xt ∈ Tk) = p
n − k

.

2(n − k + 1)
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When (n + 1)/2 < k � n,

P (Xt+1 ∈ Tk−1 | Xt ∈ Tk) = p

(
1 − n − k

2(n − k + 1)

)
,

P (Xt+1 ∈ Tk | Xt ∈ Tk) = (1 − p)
k

n
,

P (Xt+1 ∈ Tk+1 | Xt ∈ Tk) = p
n − k

2(n − k + 1)
+ (1 − p)

n − k

n
.

Denote

ak =
{

p(1 − n−k
2(n−k+1)

) + (1 − p) k
n , 1 � k � (n + 1)/2,

p(1 − n−k
2(n−k+1)

), (n + 1)/2 < k � n.
(10)

bk =
{

p n−k
2(n−k+1)

, 1 � k � (n + 1)/2,

p n−k
2(n−k+1)

+ (1 − p)n−k
n , (n + 1)/2 < k � n.

(11)

Construct an auxiliary homogeneous Markov chain Zt (t = 0,1, . . .) which is defined on the state {0,1, . . . ,n} space with
the transition matrix (3). Its mean first hitting time to the absorbing state 0 is given by Eqs. (9).

Now we show that the lower bound is �( 1
n2 ( 4

e )n/2).
By assumption p = 0.5, according to Eqs. (9), we have

mn = 1

a1
+

n−1∑
i=1

1

ai+1

(
1 +

i∑
j=1

i∏
k= j

bk

ak

)

� 1

an

n−1∏
k=(n+1)/2+1

bk

ak

= 2
n−1∏

k=(n+1)/2+1

n − k

n − k + 2

(
1 + 2(n − k + 1)

n

) (
from (10) and (11)

)

= 16

(n − 1)(n + 1)

(n−3)/2∏
k=1

(
1 + 2(k + 1)

n

)
.

Note that

I :=
(

(n−3)/2∑
k=1

(
1 + 2(k + 1)

n

))2

=
(

n + 4

n

n + 6

n
· · · 2n − 1

n

)2

� (n + 3)(n + 4) · · · (2n − 1)

nn−3

= 1

2

n2

(n + 1)(n + 2)

(2n)!
nnn! .

Using Stirling formula

√
2πn

(
n

e

)n

< n! (12)

and

n! <
(

1 + 1

12n − 1

)√
2πn

(
n

e

)n

, (13)

we have

I � 1

2

n2

(n + 1)(n + 2)

1

nnn!
√

2π2n

(
2n

e

)2n (
by Stirling formula (12)

)

= 1 n2 √
2π2n

(
2
)2n nn
2 (n + 1)(n + 2) e n!
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� 1

2

n2

(n + 1)(n + 2)

√
2π2n

(
2

e

)2n 1√
2πn

12n − 1

12n
en (

by Stirling formula (13)
)

= �
(
(4/e)n)

.

Therefore mn � �( 1
n2 ( 4

e )n/2). That proves the lower bound.
The upper bound can be proved as follows.
Similar to the above equations, we have

I =
(

n + 4

n

n + 6

n
· · · 2n − 1

n

)2

� (n + 4)(n + 5) · · · (2n)

nn−3

= n3

(n + 1)(n + 2)(n + 3)

(2n)!
n!nn

� 1

n!nn

√
2π2n

(
1 + 1

24n − 1

)(
2n

e

)2n (
by Stirling formula (13)

)

�
√

2π2n

(
1 + 1

24n − 1

)(
2

e

)2n 1√
2πn

en (
by Stirling formula (12)

)
= O

(
(4/e)n)

. (14)

Note that 1
ak

� 4 (1 � k � n) and bk
ak

� 1 (1 � k � (n + 1)/2), we obtain

mn = 1

a1
+

n−1∑
i=1

1

ai+1

(
1 +

i∑
j=1

i∏
k= j

bk

ak

)

� 4n + 4(n − 1)2
n−1∏

k=(n+1)/2+1

bk

ak

= 4n + 32
n − 1

n + 1

(n−3)/2∏
k=1

(
1 + 2(k + 1)

n

)

= O
(
(4/e)n) (

by (14)
)
.

This completes the proof. �
In the above Proposition 8, we fixed the selection probability p = 0.5. In fact, when p � 0.5, the result of the upper

bound still holds.

Proposition 9. If the selection probability p � 0.5, then for SAT instance ψ2(x), the expected runtime of the hybrid algorithm
is �( 1

n2 ( 4
e )n/2).

Proof. The proof is essentially the same that of Proposition 8. �
Proposition 10. If the selection probability p � n−1

n , then for SAT instance ψ2(x), the expected runtime of the hybrid algorithm
is O (n2).

Proof. The proof is similar to that of Proposition 8.
For 1 � k � n+1

2 , according to Eqs. (10) and (11), notice that p � n−1
n , we have bk

ak
� 1.

For n+1
2 < k < n, we have

bk

ak
= n − k

n − k + 2

(
1 + 2(1 + (n − k))

n

1 − p

p

)

� n − k

n − k + 2

(
1 + 2(1 + (n − k))

n

1

n − 1

)

� 1 + 1
.

n
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Table 1
The expected runtime bounds of RandomWalk and (1 + 1) EA on SAT instance ψ1(x).

Local (1 + 1) EA (Prop. 3) Global (1 + 1) EA (Prop. 4) RandomWalk (Prop. 5)

�(n ln n) �(n lnn) �(n2)

Table 2
The expected runtime bounds of three heuristic algorithms on SAT instance ψ2(x).

Local (1 + 1) EA (Prop. 6) RandomWalk (Prop. 7) Hybrid algorithm (Prop. 9, 10)

+∞ (|x| < n−1
2 ) �(n2) �( 1

n2 ( 4
e )n/2) (p � 0.5)

O (n lnn) ( n−1
2 � |x| � n) O (n2) ( n−1

n � p � 1)

Then, for 1 � j � k < n, we get

k∏
i= j

bi

ai
�

(
1 + 1

n

)k− j+1

�
(

1 + 1

n

)n

� e.

Note that 1
ak

� 2
p (1 � k � n), we have

mn = 1

a1
+

n−1∑
i=1

1

ai+1

(
1 +

i∑
j=1

i∏
k= j

bk

ak

)

� 2

p

(
1 +

n−1∑
i=1

(e × i + 1)

)
= O

(
n2).

This completes the proof. �
Remark 1. For the selecting probability p � 0.5 or p � n−1

n , we obtain lower and upper bounds of the expected runtime for
the hybrid algorithm on ψ2(x). Can we do better for it, i.e. can we get the tight bounds?

Remark 2. For 0.5 < p < n−1
n , the time complexity analysis of the hybrid algorithm on ψ2(x) is much more complicated.

However, we conjecture that the expected runtime changes from an exponential time to a polynomial time.

Tables 1 and 2 summarize the expected runtime bounds of three heuristic algorithms solving two SAT instances ψ1(x)
and ψ2(x). From Table 1, we see that for instance ψ1(x), (1 + 1) EA is faster than RandomWalk. From Table 2, for instance
ψ2(x), starting from the initial string x satisfying |x| � (n − 1)/2, (1 + 1) EA can never reach the satisfying assignment and
RandomWalk finds the satisfying assignment in �(n2) on average. But (1 + 1) EA is still faster than RandomWalk when the
initial string x satisfies |x| � (n − 1)/2.

For instance ψ2(x), our analysis demonstrates the hybrid algorithm may help local (1 + 1) EA to escape from the local
optimum. It also shows that the expected runtime of the hybrid algorithm changes from a exponential time bound to a
polynomial time bound as the selection probability varies. However, it remains unclear how this phase transition gradually
happens, and it is worth further investigating.

5. Conclusion

Incomplete heuristic algorithms are now among the most prominent and frequently applied techniques for SAT problems.
Many experimental comparisons with different heuristic algorithms have been reported, although theoretic comparisons
are rare. This paper contributes to the theory of heuristic algorithms for SAT problems. We derive the expected runtime
bounds of RandomWalk on k-SAT problem. We construct two 2-SAT instances and provide analytic comparisons among
RandomWalk, (1 + 1) EA, and hybrid algorithm on these instances. It is shown that these heuristic algorithms have their
own advantages and disadvantages in solving two SAT instances and their expected runtime ranges from a polynomial
time to an exponential time. Our analysis provides an insight into the runtime behavior among these heuristic algorithms.
Admittedly, two SAT instances ψ1(x) and ψ2(x) considered in this paper are relatively simple. Future investigation should
be extended to a broader class of SAT problems and more heuristic algorithms, such as UnitWalk [15] and PPSZ [27].

Theoretic runtime analysis and comparison for heuristic algorithms on the SAT problem lag far behind experimental
comparisons. Effort should be made to fill in the gap between theoretical studies on SAT and the design and application of
practical algorithms, even though such an investigation will be challenging.
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