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Abstract. The maintenance of a stable stem cell population in the epidermis is important
for robust regeneration of the stratified epithelium. The population size is usually regulated
by cell secreted extracellular signalling molecules as well as intracellular molecules. In this
paper, a simple model incorporating both levels of regulation is developed to examine the
balance between growth and differentiation for the stem cell population. In particular, the
dynamics of a known differentiation regulator c-Myc, its threshold dependent differentiation,
and feedback regulation on maintaining a stable stem cell population are investigated.
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1. Introduction

The fate of a cell, whether it dies, divides or differentiates, is usually governed by its gene
regulatory network interpreting external stimuli and internal regulations. The robust main-
tenance of a cell type population size, i.e. homeostasis, requires complex intracellular and
extracellular regulations. When homeostasis is lost, a cell population either grows unbound-
edly or loses its ability to reach optimal size. Consequently, birth defects or diseases such
as cancer, may occur. Epithelial development in the skin epidermis is an excellent model
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system for studying homeostasis maintained by dynamic interactions of feedback and adap-
tation occurring at scales involving both the cell population and individual cells.

The epidermis that undergoes constant regeneration has been traditionally proposed to
consist of three types of cells: stem, transit amplifying (TA), and terminally differentiated
cells. The stem cells divide into stem cells and/or differentiate into TA cells. The TA cells are
distinguished from the self-renewing stem cells by a limited proliferative potential, as they
can only undergo limited rounds of division before becoming terminally differentiated cells
[8]. The proto-oncogene c-Myc, an intracellular transcription factor, plays a paradoxal role
in epidermis by promoting both proliferation and terminal differentiation [23]. When c-Myc
levels are elevated in post-mitotic cells, these cells re-enter cell cycle to become proliferation-
competent TA cells [18]. However, when c-Myc levels are aberrantly elevated in stem/TA cells
using genetic means, this leads to increased terminal differentiation and depletion of the stem
cell pool [2, 21]. A solution to the paradox seems to reside in the ability of c-Myc to drive stem
cells into a TA phase, thereby initiating the irreversible process of terminal differentiation.
Together, these studies have led to the hypothesis that c-Myc levels are normally higher in
TA cells compared to stem cells [18]. In addition, cells occupying different lineage stages
produce secreted factors (extracellular molecules), such as TGF-β. Such secreted factors are
known to regulate intracellular molecules including c-Myc [9]. Thus, the cell populations are
clearly determined by both intracellular and extracellular regulation and their interactions.
As the populations of different cell lineage stages have different levels of c-Myc and the fate of
individual cells are c-Myc dependent, an understanding of c-Myc dynamics and distribution
is important for studying epidermal stem cell dynamics. Such knowledge may have general
implications for other multi-stage cell lineages, for example that in the hematopoietic system
where c-Myc is also found to promote differentiation [25].

To study the multi-scale interaction on stem cell populations, we present in this paper
a simple cell population model incorporating the level of c-Myc, its potential extracellu-
lar regulations, and c-Myc threshold dependent cell differentiation. Unlike a classic logistic
model [16] in which the steady state size of the cell population is limited by the carrying
capacity, a generic parameter used to model the external constraints on growth, such as cell-
cell competition for nutrients, spatial effects, and growth inhibition via contact [1], the new
model reaches steady state through intracellular and extracellular interactions and regula-
tions. This model has many similar features of population balance models [10], also referred
to as structured models. Such models have been used for biological populations in terms of
time and an intrinsic variable. The intrinsic variable of the population may correspond to cell
maturity or age [4, 22], cell size [3], the concentration of a cell division labelling dye [13], or
gene expression [15]. Our model in this paper emphasizes the study of the cell population as
a function of c-Myc, a key intracellular regulator of cell proliferation and differentiation. In
this regard, it is different from some other discrete (e.g. [7, 20]), continuous (e.g. [6, 11, 12]),
and stochastic (e.g. [14]) cell-lineage models.

The paper is organized as follows: in Section 2, we present the mathematical model; in
Section 3, we explore and discuss the limitations of a linear case; in Section 4, we study
a nonlinear model with regulated threshold dependent differentiation; and in Section 5, we
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summarize our results and discuss possible extensions of the model.

2. Mathematical Model

We model the stem cell population with c-Myc number threshold dependent differentiation.
Let us define C(t) as the number (or concentration) of c-Myc protein within individual stem
cells. The maximum number (or concentration) of c-Myc within a cell is cmax. The exact
number of c-Myc molecules in a cell is unknown, however, a transit amplifying cell is likely
to have more c-Myc than a stem cell. In the model, cmax, the maximum number of c-Myc
proteins in a cell, is chosen with an arbitrary unit. The quantities in the model related
to c-Myc are all scaled by cmax, and C = cmaxc. Let N(c, t) be the stem cell population
distribution in c. The typical epidermal cell division time is approximately 24 hours [24].
We chose the time unit as one day.

Then the model takes the form,

∂N

∂t
+

∂

∂c

(
dc

dt
N

)
(2.1)

=





− 1

τdiv

N(c, t) +
22
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︸ ︷︷ ︸

division

− 1

τdiff

N(c, t)H(c− cSC)

︸ ︷︷ ︸
loss through differentiation

, 0 ≤ c < 1
2
,
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N(c, t)
︸ ︷︷ ︸

division
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τdiff

N(c, t)H(c− cSC)

︸ ︷︷ ︸
loss through differentiation

, 1
2

< c ≤ 1.

where H() is the Heaviside function and cSC is the threshold value for cell differentiation. The
natural boundary conditions for this system are N = 0 at c = 0 and c = 1. The parameters
for cell division and differentiation are τdiv and τdiff , representing the mean times to divide
or differentiate, respectively. The second term on the left-hand side can be interpreted as
population flux with respect to c-Myc. The change of the cell population distribution is
dependent on the change of c-Myc, as well as cell division and differentiation. The number

of cells with c between a0 and a1 is clearly

∫ a1

a0

N dc, so the total stem cell number at time

t is

N(t) =

∫ 1

0

N(c, t) dc. (2.2)

The 22N(2c, t) term models symmetric cell divisions where the c-Myc level in the parent cell
is evenly distributed to the daughter cells after each division. A factor of 2 is the doubling
in cell number and the other factor of 2 is due to the different interval sizes occupied by the
daughter cells in (c, c + ∆c) and the mother cell in (2c, 2(c + ∆c)).
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The model (2.1) is solved numerically with a Matlab hyperbolic solver [19] using a Lax-
Wendroff scheme. This numerical scheme is second order accurate in time and space, which
corresponds to the c variable in this model. An independent implementation of the second
order Lax-Wendroff scheme is also carried out for testing the Matlab solver.

3. Non-regulated differentiation: a linear case

The classical Malthusian growth model shows that an unregulated population exhibits either
exponential growth or decay [16]. When the net growth rate of the population is zero, the
total population size should be fixed for all time. However, the distribution of a population
may change over time, even when the total population size is fixed. In this section, we
consider a case of population growth without any regulation. Feedback regulation by the

cell population on c-Myc dynamics, i.e.
dc

dt
= f(N, c), is studied in Section 4.

Consider the growth of a population where differentiation can occur for all c without any
threshold, i.e. cSC = 0. We assume that protein c is produced at a constant rate without
significant degradation, dc

dt
= c̄ > 0. The model (2.1) then reduces to

∂N

∂t
+

∂

∂c
(c̄N) (3.1)

=

{
− 1

τdiv
N(c, t) + 4

τdiv
N(2c, t)− 1

τdiff
N(c, t), 0 ≤ c < 1

2
,

− 1
τdiv

N(c, t)− 1
τdiff

N(c, t), 1
2

< c ≤ 1.

Analytical approaches for population balance equations (3.1) can be found in [10]. The total
cell number calculated by integrating Eq. (3.1) over C is

N(t) = N(0) exp

(
−

(
1

τdiff

− 1

τdiv

)
t

)
, (3.2)

and it is Malthusian growth.
For such a system, only balanced cell division and differentiation, τdiv = τdiff , can lead

to a steady state population distribution. We calculate and use the analytical steady state
distribution to test the accuracy of the numerical solution. While it appears c-Myc could
be unbounded as it is increasing at a constant rate, the c-Myc level inside the cell is in fact
halved after each cell division and c-Myc within the cell population remains bounded.

When the cell division rate and the differentiation rate are different, the cell population
grows or decays exponentially depending on the relative strength of the two rates. When
cell differentiation occurs more frequently than division, i.e. τdiff < τdiv, the population
eventually goes extinct even though the cell population distribution centered at c = 1

2
divides

and differentiates over time, and successive rounds of cell division create transient peaks in
the population distribution (Figure 1). The total cell number of the numerical solution is
consistent with the analytical solution given by Eq. (3.2) (Figure 1 (c)). When cell division
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Figure 1: Extinction of a cell population, c̄ = 0.1, τdiv = 1, τdiff = 0.5. (a) The cell popula-
tion distribution over time. (b) The cell population distribution at different times. (c) The
total cell number over time; Solid line: exact solution; “+”: numerical solution.

is more frequent than differentiation τdiv < τdiff , the population blows up over time (Figure
2). In both cases, the initial cell distribution is

N(c, 0) = 20 exp

(
−160

(
c− 1

2

)2
)

. (3.3)

When cell division and differentiation are equal (τdiv = τdiff ≡ τ), the total population
size remains unchanged over time while the cell population distribution varies over time
and reaches a non-uniform steady state. Such detailed dynamical behavior could not be
captured by classical homogeneous population growth models. In particular, for this case,
the governing equation for N(c) becomes a linear system,

c̄
dN(c)

dc
= −2

τ
N(c) +

4

τ
N(2c), 0 ≤ c <

1

2
, (3.4)

c̄
dN(c)

dc
= −2

τ
N(c),

1

2
< c ≤ 1. (3.5)
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Figure 2: Unbounded growth of a cell population. c̄ = 0.1, τdiv = 1, τdiff = 2. (a) The cell
population distribution over time. (b) The cell population distribution at different times.
(c) The total cell number over time. Solid line: exact solution; “+”: numerical solution.

One may seek an analytical solution to the steady state with a Dirichlet series [5],

N(c) =
∞∑

n=0

dne−2nac. (3.6)

Then the recurrence relation
dn

dn−1

=
2

(1− 2n)
is obtained, with a =

2

c̄τ
, and the steady state

solution becomes

N(c) = d0

{ ∑∞
n=0 2n

∏n
i=1

1
1−2i e

−a2nc, 0 ≤ c < 1
2
,∑∞

n=0 2n
∏n

i=1
1

1−2i e
−ac+a/2−a2n/2, 1

2
< c ≤ 1,

(3.7)

where the constant d0 can be expressed in terms of the total cell number N(0),

d0 = N(0)/
∞∑

n=0

2n

n∏
i=1

1

1− 2i

(
1

a2n

(
1− e−a2n/2

)
+

ea−a2n/2

a

(
e−a/2 − e−a

))
. (3.8)

Figures 3 and 4 show the approach towards the same steady state solution when two
different initial cell distributions with the same total cell number are used. In Figure 3, Eq.

(3.3) is used as the initial condition while in Figure 4 we use N(c, 0) = 10erf(2
√

10)

erf(
√

10/2)
exp(−40(c−

1/2)2) as the initial condition. The exact steady state distributions calculated using (3.6)
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are shown in Figure 3 (b) and Figure 4 (b) in red. It is interesting to observe that both
populations starting with one peak exhibit multiple transient peaks before reaching the one-
peak steady state.

As seen in Figure 3 (c) and Figure 4 (c), the maximum absolute error between the exact
analytical steady state solution and the numerical solution at t = 10 for successive halving
of ∆C is roughly 0.25, 0.07, and 0.025, and 0.25, 0.06, 0.02, respectively. The maximum
error is reduced by a factor of four when the spatial resolution increases by a factor of two.
This suggests the numerical calculation is second-order accurate.
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Figure 3: Balanced cell division and differentiation; c̄ = 0.1, τ = 1. (a) The population
distribution over time. (b) The analytical solution of the steady state distribution is in red.
The cell population at different times. (c) The absolute error of the numerical result with
∆C = 0.01 in green, ∆C = 0.005 in red, and ∆C = 0.0025 in blue.

These calculations also indicate that without any regulation on cell population growth,
a steady state population can only be maintained with equal cell division and differentiation
rates for all time. The same steady state population distribution can be reached from
different initial population distributions (i.e., cells expressing different levels of c-Myc) as
long as initial total cell numbers are the same. In addition, (3.6-3.8) show the total initial
cell number only affects the height of the steady state, not the distribution of the steady
state, and the steady state is only controlled by c̄τ , a product of the mean growth rate for
c-Myc and the differentiation and division rate.
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Figure 4: Balanced cell division and differentiation; c̄ = 0.1, τ = 1. (a) The cell population
distribution over time. (b) The analytical solution of the steady state distribution is in red.
(c) The absolute error of the numerical result with ∆C = 0.01 in green, ∆C = 0.005 in red,
and ∆C = 0.0025 in blue.

4. Regulated threshold dependent differentiation

In this section we consider the full model, where cell differentiation is possible only when
c-Myc inside a cell is above the threshold cSC .

After integrating the full model (2.1), the total cell number at steady state satisfies the
following relationship:

N =
1

τdiff

(
1

τdiff

− 1

τdiv

)−1 ∫ cSC

0

N dc. (4.1)

Eq. (4.1) suggests that τdiff < τdiv is a necessary condition for existence of a steady state.
This is in contrast to the case without differentiation threshold in Section 3. where the
division rate must equal the differentiation rate for maintaining steady state population size.

With a differentiation threshold, there is only cell division in the region [0, cSC ]. To
counter this extra growth for achieving steady state, it is necessary for the cells with c above
the threshold to be more likely to differentiate than to divide. In order to maintain stable
population size, intuitively, we expect a regulation mechanism to bias cell differentiation
when population size is large, and bias division when the population is small. Such regulation
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Figure 5: The population may grow exponentially when the regulation strength is not strong
enough. Solid line: c1 = 0.6, a case of exponential growth; “+”: c1 = 0.8, a case of existence
of steady state. Other parameters are τdiv = 1, τdiff = 0.2, c0 = 0.2, γ0 = 2, cdeg = 1, n0 =
1, cSC = 0.4.

could be achieved via diffusible secreted factors and may occur directly by regulating c-Myc,
or indirectly through other genes such as Ovol1 which regulates c-Myc [17]. It is natural to
assume that the amounts of the diffusive cell-secreted factors are proportional to the total
cell numbers. Here, we consider a simple positive regulation on the synthesis of c through a
Hill function:

dc

dt
= c0 + (c1 − c0)

Nn0

Nn0 + γn0
0

− cdegc (4.2)

where c0 < c1. The positive regulation is to bias differentiation as the population size
increases. Increasing population size leads to increased c-Myc synthesis via putative mech-
anisms mentioned above, thus intracellular c-Myc will reach the differentiation threshold
faster. The parameter γ0 is a reference value for which the regulation becomes significant.
The c-Myc synthesis rate is c0 when the stem cell population is relatively small N ¿ γ0 and
c1 when N À γ0. The Hill exponent, n0, measures the slope of transition between the two
states: c0 and c1.

There are two asympotic limits for (4.2). When the population size is relatively small, i.e.
N ¿ γ0, then c approaches the value c0/cdeg. As the population size increases, the regulatory
effect of the population becomes more significant when N À γ0 and c-Myc approaches the
value c1/cdeg. It should be expected that when c1/cdeg < cSC the cell population will grow
out of control because the c-Myc level within cells never increases above the differentiation
threshold. However, the condition c1/cdeg > cSC can not guarantee existence of a steady
state. As seen in Figure 5, both cases have c1/cdeg > cSC but when regulation strength is not
strong enough the population grows exponentially within the time frame under examination.
When the regulation becomes stronger, the population reaches a steady state.

Unlike the non-regulated population growth model presented in Section 3. the steady
state population distribution through regulation is independent of the initial cell population
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Figure 6: Temporal dynamics for six different initial populations: (a) N(c, 0) =
20 exp(−40(c − 1)2), (b) N(c, 0) = 40 exp(−40c2), (c) N(c, 0) = 40 exp(−40(c − 1)2), (d)
N(c, 0) = 2.5 exp(−40(c− 1)2), (e) N(c, 0) = 5 exp(−40c2), (f) N(c, 0) = 5 exp(−40(c− 1)2).

size. Figures 6 and 7 are simulations of populations with different initial distributions and
initial cell numbers, and all the populations reach the same steady state (Figures 7 (b)). In
the six cases of Figure 6, the total numbers of stem cells at the steady state are smaller than
the initial total cell numbers for the first three cases, and it is the opposite for the second
three cases.

In these calculations, c0/cdeg < cSC < c1/cdeg. The regulation causes c to approach a
value within the exclusive cell division region when the population size is small relative to
γ0, and c to approach a value greater than the differentiation threshold otherwise. Transient
proliferation can be seen where the initial distribution is concentrated below the differen-
tiation threshold of c < cSC . Most notably in Figure 6 (b), the cell population reaches a
maximum before declining towards the steady state. The parameter values used for Figures
6 and 7 are τdiv = 1, τdiff = 0.2, c1 = 1, c0 = 0.2, γ0 = 2, cdeg = 1, n0 = 1, cSC = 0.4.
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Figure 7: The systems with different initial population distributions all approach the same
steady state. (a) The total cell number over time for the six different initial conditions. (b)
The population distributions at t = 12 for the six cases shown in Figure 6.

Finally, we study the effect of the different parameter values on the steady state distri-
bution in Figure 8. When differentiation rate τdiff becomes larger, the total steady state
population size becomes larger as well (Figure 8 (a)) because the time to differentiation is
longer. Smaller c0 values usually lead to a larger population at the steady state (Figure 8
(b)). This is because slower c-Myc synthesis results in a longer time to reach the differentia-
tion threshold, hence, more proliferation occurs before reaching steady state. The parameter
γ0 measures the population size for which the feedback regulation becomes significant (i.e.,
large population size resulting in higher c-Myc expression). For larger γ0, the steady state
population size is greater (Figure 8 (c)) because the population grows to a larger size before
being constrained by the regulation.

5. Discussion

We have studied a simple model of cell population growth with threshold dependent differ-
entiation. One of the important features in the model is a multi-scale regulation between
the putative extracellular secreted factors and intracellular molecules. Such regulation along
with the threshold dependent differentiation is found to be critical for maintaining home-
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Figure 8: Steady state profiles at different parameter values. (a) τdiff = 0.1, 0.2, 0.4; (b)
c0 = 0.05, 0.2, 0.6; (c) γ0 = 1, 2, 4. The other parameters are τdiv = 1, c1 = 1, cdeg = 1, n0 =
1, cSC = 0.4.

ostasis of the cell population. A necessary condition for the existence of a steady state is
the mean time to differentiation is less than the mean time for division. In addition, various
conditions for creating a steady state cell population and dependence of the cell population
on parameters have been discussed.

It would be of interest to further study the nature of the steady states systematically.
Computationally, we have observed that different initial cell numbers (Figure 6 and 7) with
different mean numbers of c-Myc approach the same steady state in some regions of pa-
rameter space. However, we also observed non-existence of steady state solutions for some
other parameters (Figure 5). One question at hand is to investigate whether the steady state
solution is a global attractor using an analytical approach.

In the current model, we have only considered a threshold for stem cell differentiation;
there may very well be a threshold for cell division. Because quiescent stem cells tend to
have very low levels of c-Myc [23], we might use a lower threshold on c for cell division. Also,
we have observed that the stem cell population in our current model tends to either reach
homeostasis or grow without control for most of the parameter values, with very few cases of
vanishing population. This suggests that the simple model has a simple form that prevents
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the stem cell population from going to extinction. It would be interesting to study the growth
of stem cells when the transit amplifying cells, whose cell cycle exit and differentiation might
also be threshold dependent, are included in the model. Such extensions to multi-stage
cell lineage should be straightforward. As more detailed and realistic intracellular controls
through gene regulatory networks are built into such models, their study will provide better
insights for the role of each regulatory component and the system behavior of the multi-stage
cell lineage system.
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