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Abstract
Many biological systems can switch between two distinct states. Once
switched, the system remains stable for a period of time and may switch back
to its original state. A gene network with bistability is usually required for
the switching and stochastic effect in the gene expression may induce such
switching. A typical bistable system allows one-directional switching, in
which the switch from the low state to the high state or from the high state
to the low state occurs under different conditions. It is usually difficult to
enable bi-directional switching such that the two switches can occur under
the same condition. Here, we present a model consisting of standard positive
feedback loops and an extra negative feedback loop with a time delay to study
its capability to produce bi-directional switching induced by noise. We find
that the time delay in the negative feedback is critical for robust bi-directional
switching and the length of delay affects its switching frequency.
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1. Introduction

Living cells can switch from one fate to another during growth, development and regeneration.
In unicellular organisms switching between different phenotypes is important for better survival
and adaptation to the ever-changing host environment [1, 36, 45, 49]. Once a cell switches, it
remains stable, acting as a cellular memory unit [16, 20, 50]. It becomes increasingly clear that
stochasticity in gene expression in conjunction with the architecture of the gene network that
underlies the cellular processes can generate such phenotypic variation and switching [14, 21–
23, 29, 33, 34, 37, 40, 46]. The underlying molecular mechanisms responsible for such an
event usually involve positive feedback loops and/or double-negative feedback loops, because
of their capability to produce bistability and switching responses in gene regulation [5, 10–
12, 15, 16, 28, 32, 38, 47].

For example, in Escherichia coli, a genetic toggle switch, which was a synthetic,
bistable gene-regulatory network constructed from any two repressible promoters arranged in a
mutually inhibitory network, could be flipped between two stable states [16]. In Saccharomyces
cerevisiae, an engineered cell strain can randomly switch between two cell phenotypes as a
result of stochastic gene expression [1]. Candida albicans, one of the fungi, can reversibly
switch between two visibly different cell types, white and opaque cells [35, 41–43]. White-
phase cells appear relatively round and they express a set of white-specific genes. Opaque
cells are larger and more elongated and they express a set of opaque-specific genes [43].
The opaque-phase cells are more virulent in cutaneous models of infection, and white-phase
cells are more virulent in systemic infection [7, 25, 48]. Although the molecular mechanisms
responsible for white-opaque switching and for the heritability of the white and opaque states
are not yet fully understood, recently wor1 (white-opaque regulator 1) has been identified as
the master regulator of white-opaque switching [20, 52]. WOR1 expression shows an all-or-
none pattern in single cell. It is not detectable in white cells and is highly expressed in opaque
cells. In particular, WOR1 forms a positive feedback loop by binding to its own promoter and
activates its own transcription [52].

The mathematical models on switching of cell phenotype primarily focus on modelling the
regulatory network that induces the gene expression from one state to another state [19, 47].
The switching may occur because of an external stimulus that can be converted into all-
to-none response [6, 16, 32, 51] or due to internal sources, such as the stochasticity in gene
expression [19, 44, 47]. Noise (e.g. in gene expression) has been found to be a critical factor
to destabilize one state to induce switching [19]. From the modelling point of view, the noise-
induced switching mechanism is achieved as the noise enables kinetic parameters to move
from one stability region to another stability region. In other words, a bi-stable system shifts
to another stable steady state from its current state. This mechanism requires the control kinetic
parameter, which is affected by noise, must be near the critical values of the stability region,
and it makes difficult for a system to be able to switch between two stable states under the
same set of parameters and the same level of noise effects.

In this paper, motivated by the white-opaque switch in Candida albicans, we present a
model that allows robust switching between two stable states under the same set of parameters
(a bi-directional switching). The model includes a combination of fast positive feedback loops
and a negative feedback with a time delay. Through simulation and analysis, we first show that
the system with the positive feedback alone cannot induce any bi-directional switches unless
the kinetic parameters are fine-tuned into a narrow range and the noise is unrealistically strong.
Next, we demonstrate that adding a negative feedback loop with large lag time can destabilize
the high state and induce bi-directional switching through noise effect between the low and
high states. The dynamics of the switching and the switching frequency are also discussed.
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Figure 1. Illustration of a gene regulation network with a delay for bi-directional switching. In
the system, the protein can bind to its own promoter to activate the expression forming a positive
feedback as well as inhibit the expression indirectly through many other genes.

2. Model formulation

In the model, the cell phenotype is assumed to be determined by the expression level of a
master gene (see in figure 1). A positive feedback functions through the protein binding
to its own promoter to further activate the gene expression, as the case for many systems
with bi-stability [3, 15, 16, 19, 28, 32, 47]. In the system, we also assume that the protein may
negatively regulate the master gene expression through many steps of regulation of some
downstream genes (illustrated by X1, . . . , Xn in figure 1). Delays usually occur for such
negative regulations, compared with the direct regulation such as the positive regulation in the
system, due to time needed for gene transcriptions, transport of the associated proteins and
regulation of a cascade of downstream transcriptions. To simplify the model, we lump these
steps as one negative feedback with a delay from the protein to the gene expression. A similar
approach was used in a study of the intracellular circadian rhythm generator [31], in which
a delay term was introduced to represent a cascade of actions in a feedback loop including
translation and protein synthesis.

Denote x as the protein concentration and y as the mRNA concentration of the master
gene. The protein is translated from mRNA, which is synthesized through the transcription of
the gene. The transcriptional rate is proportional to the promoter activity that depends on the
concentration of protein (x) and the negative regulation loop (i.e. through Xn in figure 1). The
concentration of Xn in turn depends on the history of x(t), i.e. x(t − τ) with τ being the lag
time for the intermediate genes at work. Accordingly, the dynamics of the model described in
figure 1 can be written in terms of the following delay differential equations:

τx

dx

dt
= βy − x,

τy

dy

dt
= αh0(x)h1(xτ ) − y.

(1)

Here xτ stands for x(t−τ), and h0(x) and h0(x) are the Hill functions modelling the feedbacks:

h0(x) = ρ0 + (1 − ρ0)
(x/θ0)

n0

1 + (x/θ0)n0
, (2)

h1(x) = ρ1 + (1 − ρ1)
1

1 + (x/θ1)n1
. (3)
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Here, ρi represents the ratio between the lowest promoter activity and the highest promoter
activity, and it takes values from 0 to 1. When ρi = 1, then hi(x) ≡ 1 implying no feedback
regulation. Therefore ρi is referred to as the effectiveness of the corresponding feedback,
e.g. smaller ρi implying stronger feedback regulation. The parameters θi (i = 0, 1) are 50%
effective concentration (EC50) of the feedback loops. With a suitable unit for the concentration,
one can assume one of the EC50s, say θ0, equals 1. Consequently, x, y and θ1 measure the
concentrations with respect to θ0, respectively. The exponents n0 and n1 in (2) and (3) are
the Hill coefficients that measure the steepness of the response in the Hill function. They are
usually related to the number of binding sites in the promoter that interact with the protein [2],
and a reaction with the Hill coefficient n > 1 is often referred to as cooperative reaction. The
cooperative reaction is usually required for achieving bistable expressions [9, 16, 32]. In this
paper, we will take n0 = n1 = 2.

In this formulation, the transcriptional rate of mRNA depends on the protein level through
the product of two Hill functions: an increasing function of x for the positive feedback and
a decreasing function of xτ for the negative feedback with delay time τ . The transcriptional
rate of mRNA depends on the protein concentration with a maximal value α. The parameter
β measures the average number of proteins produced by each mRNA, termed as translational
efficiency. The proteins and mRNA are depleted in a first-order reaction with time constants
τx and τy , respectively.

The extrinsic noise effect due to environment and system variability may be modelled
through the randomness of the two rate constants α and β in (1) [26, 39]. Here, we consider
only the noise perturbation to the translational efficiency β, and replace β by a log-normal
distribution noisy rate [4, 39]

β̄ξ (t) = βeσξ(t)/〈eσξ(t)〉, (4)

where ξ(t) is a standard white noise, and σ > 0 is a constant to indicate the perturbation
strength. The exponentiating σξ(t) ensures a positive β̄ξ (t). Log-normal rather than normal
distribution has been measured for gene expression rates [4].

In summary, the equation for the model described in figure 1 with the extrinsic noise on
the translational efficiency takes the form

τx

dx

dt
= β̄ξ (t)y − x,

τy

dy

dt
= αh0(x)h1(xτ ) − y.

(5)

Here β̄ξ (t) depends on the white noise ξ(t) according to (4). Next, we investigate bistability,
the effect of delay and bi-directional switching of the above system.

3. Result

3.1. Noise-induced switching in the system with only a positive feedback

Here, we consider the case in which the indirect negative feedback loop is turned off by setting
ρ1 = 1 in equation (5), i.e. h1(x) ≡ 1. First, we study the condition under which bistability of
the protein level occurs when the noise is absent (i.e. β̄ξ (t) ≡ β). The corresponding steady
state concentrations of protein and mRNA, denoted by (x∗, y∗), are positive solutions of the
equation.

y∗ = αh0(βy∗) x∗ = βy∗. (6)

Figure 2(a) plots three parameter regions for the system to achieve (1) monostable state
at the high protein level or the low protein level and (2) bistable states like figure 2(b), which
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Figure 2. Bistability of the model with the positive feedback alone. (a) Parameter regions for
bistable expression; (b) the protein level normalized by the EC50 (x∗/θ0) at steady state as a
function of translational efficiency (β). In the simulation, α = 0.0625, ρ0 = 0.006, ρ1 = 1.9,
n0 = 2.

plots a bistable dependence of protein level (x∗/θ0) on the translational efficiency β. As seen
from figure 2(a), the bistable expression occurs only when ρ0 < 0.1 and αβ/x0, the maximal
level of proteins with respect to the EC50 of the positive feedback, takes an intermediate value.
For example, when ρ0 = 0.006, one needs 2 < αβ/x0 < 6.5 to ensure the bistable expression.
For bacteria, the average number of proteins produced by each mRNA was estimated to be
60 < β < 110 [17], then we need to require 0.045 < α < 0.083 if the EC50 θ0 = 1 by a
suitable unit for the concentration. In the simulations, we take α = 0.0625, a value around the
middle of the range.

Figure 2(b) shows the protein level normalized by the EC50 (x∗/θ0) at steady state as a
function of translational efficiency (β) . When 32 < β < 103, the cell has bistable expression
of the master gene (figure 2).

When the system is bistable with one stable low state and one stable high state, a
noise-induced perturbation to the gene expression has been thought to be able to induce the
switching between the two states [47, 52]. To study whether noise can robustly induce the
reliable switches, we numerically simulate system (5) (with h1 ≡ 1) for various translational
efficiencies.

In each simulation, we set the initial concentrations of protein level and mRNA at their
stable steady state solution level of the corresponding deterministic equations, and the solution
is computed up to the time of 10 h. To mimic the biological systems, we denote x(t = 10 h)

as the state (or phenotype) of the solution, and denote each solution as one cell. Figure 3(a)
plots the distribution of cells at different states at time of 10 h, starting with cells either at the
low state (lower panel) or the high state (upper panel), for a range of values of the translational
efficiency β.

As shown in figure 3(a), the cell initially at the high state can switch to the low state when
32 < β < 54 (upper panel) and the cell initially at the low state can switch to the high state
when 46 < β < 103 (low panel), due to noises. It is found from the simulations that the range
of β ensuring the switching from the low to the high state is larger than that for the switching
from the high to the low state, suggesting that the switching from the low state to the high state
may be more robust than the switching from the high state to the low state.

From figure 3(a), a bi-direction switching (i.e. switching can occur from the high state to
the low state and from the low state to the high state for the same set of parameters) occurs only
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Figure 3. (a) Distribution of the cell states at 10 h as a function of the mean translational
efficiency. Lower panel: each cell in this group is initially at the low state; upper panel:
each cell is initially at the high state. (b) Two sample solutions that initiate from low state
(low panel) and high state (upper panel), respectively. The parameters in the simulation are
ρ0 = 0.006, α = 0.0625, θ0 = 1.0, n0 = 2, τx = 50 s, τy = 50 s, τ0 = 10 s, σ = 1.0 and
β = 50 in (b).

when 46 < β < 54. In a real biological system, the cell stays at one state for a significant period
of time before switching to another state [20, 41, 50]. To be consistent with this, the master
gene level should not switch too frequently from one state to another state. This requirement
leads to a very tight range of β as indicated by our numerical simulations. For example, if we
require the fractions of cells staying at least 10 h at one state is larger than 90%, then β has to
be limited to a small neighbourhood around 50. Figure 3(b) shows two sample solutions with
β = 50, initiating from the low or the high state.

In figure 3, the noise amplitude σ = 1.9, which corresponds to a very large noise effect on
the translation efficiency. For this value, the standard deviation of the translational efficiency
divided by its mean (often referred to as coefficient of variance) is 4.3, a number much larger
than the experimentally measured normal fluctuation in gene expression [14, 46]. For example,
in this case the probability of reducing the translational efficiency to 1/10 of its original mean
value is larger than 38%, which is unrealistic.

In summary, in the system with only a positive feedback loop, we find bi-directional
switching occurs only when σ is very large and β is well tuned in a very narrow range as seen
in figure 3. In other words, the bistable switching observed in the system with only a positive
feedback is not robust at all.

3.2. A negative feedback with a delay can destabilize the high state

Next, we consider the full model in figure 1. First, like the system without a negative feedback
with delay we study the steady state (x∗, y∗) of the system, which satisfies the following
equations:

y∗ = αh0(βy∗)h1(βy∗) x∗ = βy∗. (7)

The stability of the steady state (x∗, y∗) is determined by the characteristic equation [18]

h(λ) := λ2 + cλ − a − be−λτ = 0, (8)
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where

a = 1

τxτy

(αβh′
0(x

∗)h1(x
∗) − 1),

b = 1

τxτy

αβh0(x
∗)h′

1(x
∗), c = τx + τy

τxτy

.

The steady state is stable if and only if all roots for (8) have negative real parts [18].
It is easy to show that when the delay τ = 0, the eigenvalues are given by

λ1,2 = −c ±
√

c2 + 4(a + b)

2
.

Since c > 0, the steady state is stable if and only if a + b < 0.
When τ > 0 and the condition a + b < 0 is satisfied, we will show further that if and

only if

a2 − b2 < 0, (9)

there exists a critical delay τcrit > 0 such that the steady state is unstable when τ > τcrit .
When τ = 0, the condition a + b < 0 implies all roots of (8) have negative real parts.

When τ > 0, as τ increases from zero, the real parts of the roots change continuously with
respect to the system parameters. Thus, the critical value of the parameters is determined by
the condition by which one root of (8) has zero real part, i.e. (8) has a root of the form λ = iω.
Let λ = iω (ω > 0), then (8) is equivalent to

−ω2 − a − b cos ωτ = 0,

cω + b sin ωτ = 0.
(10)

Thus, ω satisfies

ω4 + (2a + c2)ω2 + (a2 − b2) = 0. (11)

Note that h′
0(x

∗) > 0, it is easy to see

2a + c2 = 2αβh′
0(x

∗)h1(x
∗)

τxτy

+
τ 2
x + τ 2

y

(τxτy)2
> 0.

Thus, equation (11) has a positive solutionω2 if and only if (9) is satisfied, and the corresponding
ω is given by

ω =
√√

4ac2 + c4 + 4b2 − (2a + c2)

2
. (12)

Substituting (12) into (10), we obtain the critical delay

τcrit =
cos−1[−

√
4ac2 + c4 + 4b2 − c2

2b
]√√

4ac2 + c4 + 4b2 − (2a + c2)

2

. (13)

Note that condition (9) ensures 0 < −
√

4ac2+c4+4b2−c2

2b
< 1, consequently τcrit > 0. Thus,

from the above discussion, the steady state is stable when 0 < τ < τcrit , and unstable when
τ > τcrit . The critical delay time τcrit , which depends on other parameters in the system, is
essential in destabilizing the steady states. Similarly, condition (9) depends on the system
parameters as well as the protein concentration at steady state, and the low state steady state
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Figure 4. (a) The value a2 − b2 as a function of β and the protein level x∗ at steady state. (b) The
protein level (x∗/θ0) at steady state and the critical delay τcrit of the high state at different values
of the translational efficiency β. In the simulation, ρ1 = 0.1, n1 = 2, and θ1 = 2.5 and other
parameters are the same as those in figure 3.

does not satisfy condition (9) (see more discussion below). Figure 4(a) plots a2 − b2 as a
function of β and the protein level x∗. In figure 4(b) the normalized protein level (x∗/θ0) at
steady state and the critical delay τcrit for the high state are plotted at different values of β.

Here are some remarks on the existence of the critical delay:

(i) Condition (9) together with a + b < 0 yields

b < a < −b, (14)

which automatically implies b < 0, i.e. h′
1(x∗) < 0. This condition indicates the

importance of the negative feedback in the system figure 1.
(ii) In condition (14), the relationship b < a means

αβh0(x
∗)h′

1(x
∗) < αβh′

0(x
∗)h1(x

∗) − 1,

which implies

1

x∗ <
h′

0(x
∗)

h0(x∗)
− h′

1(x
∗)

h1(x∗)
(15)

by (7). If the low state satisfies x∗ � min{θ0, θ1}, we have in approximation

h′
0(x

∗)
h0(x∗)

− h′
1(x

∗)
h1(x∗)

≈ 1

x∗

(
n(1 − ρ0)

(
x∗

θ0

)n0

+ n(1 − ρ1)

(
x∗

θ1

)n1
)

= o

(
1

x∗

)
.

Thus, condition (15) is not satisfied for this case. As a result, the low state is unlikely
to be unstable. However, condition (15) can easily be satisfied at the high state since the
1/x∗ is a small value for this case, as seen in figure 4(a).

(iii) A similar characteristic equation like (8) was previously studied for a model of
instantaneous damping with a delayed restoring force [13]. Following [13] to obtain
a positive solution ω2, one needs to require one of the following: (1) a2 − b2 < 0;
(2) a2 − b2 � 0 and 2a + c2 < 0; or (3) 2b + c2 = 0 and 2a + c2 < 0. However, in the
present system we always have 2a + c2 > 0, leading to condition (9).

All the analyses shown above suggest that the high state in a bistable system can be
destabilized by the added negative feedback regulation and a delay in the feedback further
amplify such a destabilization effect.
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Figure 5. (a) Regions of stability in the (β, τ ) plan; (b) example of the deterministic solutions for
different values (β, τ ), shown in the figure. The other parameters are the same as those in figure 4.

3.3. Dynamics of bi-directional switching

Based on the analysis, there exist two critical values β1 < β2 for the translational efficiency β

and a critical delay τcrit curve that divide the parameter plane β–τ into five regions (figure 5(a)).
In particular, in the absence of noise, the dynamics of the system can be summarized as follows:

(i) If β < β1, there is only one steady state (low state) and it is stable.
(ii) If β1 < β < β2 and τ < τcrit , there are three steady states, among which the low and the

high states are stable, and the intermediate state is unstable.
(iii) If β1 < β < β2 and τ > τcrit , there are three steady states, among which the low state is

stable, and the other two states (intermediate and high) are unstable.
(iv) If β > β2 and τ < τcrit , there is one steady state (high) and it is stable.
(v) If β > β2 and τ > τcrit , there is one steady state (high) and it is unstable, and the solutions

are oscillatory.

Figure 5(b) shows the example solutions for different values of β and τ .
In the presence of noise, the region of interest is β1 < β < β2 and τ > τcrit , in which

bi-directional switching is possible. In this case, the two steady states, low state (x∗
low) and

high state (x∗
high) are well defined, which are roots of the equation

αh0(x
∗)h1(x

∗) − βx∗ = 0.

When the solution is initially at the low state, and the noise may induce the switches to the high
state as we have seen in previous simulations (figure 2). Assume the switching occurs around
t = t0, note that x(t0 − τ) = x∗

low, the protein level x(t) does not reach the steady state x∗
high

at t0 immediately after the switch, but approaches a transition state x∗
tran that is approximately

governed by the equation

αh0(x
∗
tran)h1(x

∗
low) − βx∗

tran = 0. (16)

And y(t) approaches y∗
tran = x∗

tran/β. Here x∗
tran is the maximum positive root of equation (16).

In particular, if x∗
low � θ1, i.e. the negative feedback is off at the low state, then h1(x

∗
low) ≈ 1

and hence x∗
tran is just the high state of the system without the negative feedback (figure 2).

Once switched, we will show that the solution x(t) does not switch back to the low state
during the time period t0 < t < t0 + τ . When t > t0, the deterministic solution is governed



2854 J Lei et al

approximately by the equations

τy

dx

dt
= βy − x,

τx

dy

dt
= αh0(x)h1(xτ ) − y,

x(t) = x∗
low (t < t0),

x(t0) = x∗
tran, y(t0) = y∗

tran.

(17)

When t0 < t < t0 + τ , (17) can be written as

τy

dx

dt
= βy − x,

τx

dy

dt
= αh1(x

∗
low)h0(x) − y,

x(t0) = x∗
tran, y(t0) = y∗

tran.

(18)

Consider equation (18), the steady state (x∗
tran, y

∗
tran) is stable based on the discussion above.

Therefore, the solution of (18) remains at the high state with x(t) around x∗
tran. In particular,

the solution of (17) will not switch back to the low state during t0 < t < t0 + τ .
When t = t0 + τ , x(tτ ) switches to x∗

tran, and equation (18) is not valid for t � t0 + τ . On
the other hand, the deterministic solution is governed by the equations

τy

dx

dt
= βy − x,

τx

dy

dt
= αh0(x)h1(xτ ) − y,

x(t) = x∗
tran (t0 < t � t + τ),

y(t + τ) = y∗
tran

(19)

when t > t + τ . Since the delay τ > τcrit , the high state is unstable. Equation (19) has only
one stable steady state, the low state, the solution will switch back to the low state at some
time after t0 + τ .

In short, the analysis above suggests the following underlying mechanism for a noise-
induced bi-directional switching. First, a cell at the low state may switch to the high state due
to noise perturbation in the expression efficiency and bistability (due to the positive feedback
loop) of the system. Once switched, the cell at the high state stays stable for a period of time
due to the delay of the negative feedback loop in the system. And then, the high state becomes
unstable once the effect of the negative feedback kicks in, and the cell switches back to the
low state.

To test this mechanism, we numerically simulate a case with noise in which β = 60, and
other parameters are the same as those in figure 3(b), i.e. no high to low state switching occurs,
but add the negative feedback with a delay. To make the delay work, we choose the delay
τ = 2 h, which is larger than the critical τcrit ≈ 1000 s as seen in figure 4. Figure 6 shows the
dynamics of protein level (x∗/θ0) of 20 independent sample solutions, with each starting from
the low state or the high state, for 50 h. As seen in figure 6, each solution switches between
the two well-separated states: the low state with 0 < x∗/θ0 < 0.2 and the high state with
x∗/θ0 > 1.0. It can be seen that once the cell switches to the high state, it remains at the high
state for about 4.3 h before switching back to the low state. How long does a cell stay at the
low state or the high state? In general, how frequently does a cell switch? Next, we will study
how switching frequency of a cell depends on some of the key system parameters.
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Figure 6. Bi-directional switching induced by noises. Time course of 20 independent solutions
with each starting from (a) the low state or (b) the high state, respectively. Here, β = 60, τ = 7200
and the other parameters are the same as in figure 3 and 4.

3.4. Switching frequency

Switching frequency is a quantity often measured in experiment to study the capability of a
cell to switch from one state to other state under different genetic conditions [35]. One may
estimate the switching frequency of a cell in the following way. Assume that the solution x(t)

of a cell initially is at the low state. Define {ti} and {si} to be two time series as

ti = min{t |t > si−1, x(t) reaches the high state} (20)

and

si = min{s|s > ti, x(s) reaches the low state}. (21)

It is easy to have

0 = s0 < t1 < s1 < t2 < s2 < · · · .
Then, the duration time (lifetime) of the solution (cell) staying at the high state and the low
state can be estimated by the two time series

T i
high = si − ti (i = 1, 2, . . .)

and

T i
low = ti − si−1, (i = 1, 2, . . .),

respectively. So the averaging of the above time intervals

Thigh = lim
n→∞

1

n

n∑
i=1

T i
high (22)

and

Tlow = lim
n→∞

1

n

n∑
i=1

T i
low (23)

are natural estimation of the average lifetimes of the high state and the low state, respectively.
First, we vary τ to study how Thigh depends on τ . As seen in figure 7(a), the average

lifetime of the high state is linearly correlated with the delay τ . In particular, the numerically
estimated average lifetime of a cell can be fitted by the following linear relation:

Thigh = 1.90τ + 0.35(τ > τcrit). (24)
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Figure 7. (a) Average lifetime of high state as a function of delay τ . (b) Dependence of frequency
for switching from low to high on β. Circles are from the direct simulations and solid curves are
data fitting. Other parameters in the simulation are the same as in figure 6.

Such a linear relationship is expected from our analysis in the previous sections since the
stability of the high state is mainly affected by the negative feedback and the timing of such
an effect is dictated by the delay constant τ .

Unlike the high to low switching, which is affected by deterministic factors, the switching
from the low to high is mainly driven by noises. Thus, the lifetime of the low state should
depend on noise and its interactions with other parameters in the system. Assume that the
lifetime {T i

low} is the Poisson distributed and let p be the probability that a cell switches
from the low to the high state within 1 h, then the probability of T i

low = n hours is given by
(1 − p)n−1p. The average lifetime for the cell at the low state becomes

Tlow =
∑
n>0

n(1 − p)n−1p = 1/p. (25)

Thus, the switching frequency, or the probability of the switching, is p = 1/Tlow. Figure 7(b)
shows the dependence of switching frequency on the translational efficiency β. The switching
frequency is an increasing function of β, as expected, and the relationship can be well fitted
by a sigmoid function

p = 0.36

1 + e−(β−93.3)/13.5
(β < 103). (26)

Here the low to high switch is meaningful only when the low state is stable in the absence of
noise. Thus, function (26) is valid only when β < 103 according to the bifurcation diagram
shown in figure 2. Of course, the details in the fitting form (24) and (26) depend on other
parameters, the general trend of dependence remains similar.

In general, the switching frequency from the high to the low state is determined by
the delay of the negative feedback, and the frequency of the switching from the low to the
high state is determined by the noise and translational efficiency. For example, from (26),
if 13.8 < β < 45.3, then the switching frequency is between 0.001 < p < 0.01 (h−1).
The range of parameters ensuring the bi-directional switching in the presence of a negative
feedback is usually much larger than the system without a negative feedback.
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4. Discussion

In this paper, we have studied noise-induced switching using a model consisting of a positive
feedback and a negative feedback with a time delay. Similar to other switching systems, the
positive feedback loop is responsible for creating bistability that is necessary for switching.
The time delay in the negative feedback has been found to be critical to induce robust bi-
directional switching, that is the system can robustly switch from one state to another back
and forth under the same set of parameters. In particular, the negative feedback in the system
mainly functions to destabilize the high state and the time delay allows the system staying for
a period of time at the high state. Negative feedbacks with delay were previously found in
other gene regulation networks to induce oscillations [27, 31].

Our model provides a simple mechanism for bi-directional switching induced by noise.
Clearly, in real biological systems, the biochemical machinery responsible for bistability may
be much more complex than just a simple positive feedback loop. For example, double-negative
feedbacks exist in the toggle switch and there are double-negative feedbacks in addition to
positive feedback loops in white-opaque switching in Candida albicans. Our framework
should be able to include those detailed regulations in a straightforward way, and similar
results are expected. The time delay in feedback loops has been observed in many biological
systems [8, 24, 27, 30, 31]. Such time delay may come from transcription and translation of
mRNAs and proteins in many regulations that exhibit an overall effect of a negative feedback
in regulating the master gene, or from the master gene’s interaction with other pathways in
the system. Anyway, it would be interesting to experimentally search for and identify such
negative regulations in real biological systems to study their effect on switching, for example,
through mutations on the components required for the negative feedback loops to remove the
negative feedback regulation.

Switching frequency, which may be estimated experimentally by counting the number
of cells at different cell states during a time course [35], is an important quantity that can be
used to characterize stability of different cell fates. While many modelling studies have been
conducted to figure out whether a system allows switching, little work exists on study of how
likely a system switches. By comparing switching frequency obtained through modelling with
those measured by experiments, we may find limitation of one model and advantage of another,
potentially leading to prediction of new regulations for experimental testing. For a biological
system switching between two states, a good model for the system should not only exhibit
bistability but also need to capture the switching frequency of the real biological system.
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