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Exogenous environmental changes are known to affect the intrinsic characteristics of biological organ-
isms. For instance, the synthesis rate of the morphogen decapentaplegic (Dpp) in a Drosophila wing
imaginal disc has been found to double with an increase of 5.9◦C in ambient temperature. If not compen-
sated, such a change would alter the signaling Dpp gradient significantly and thereby the development
of the wing imaginal disc. To learn how flies continue to develop “normally” under such an exogenous
change, we formulate in this paper a spatially two-dimensional reaction-diffusion system of partial dif-
ferential equations (PDE) that accounts for the biological processes at work in the Drosophila wing disc
essential for the formation of signaling Dpp gradient. By way of this PDE model, we investigate the effect
of the apical-basal thickness and anteroposterior span of the wing on the shape of signaling gradients
and the robustness of wing development in an altered environment (including an enhanced morphogen
synthesis rate). Our principal result is a delineation of the role of wing disc size change in maintaining
the magnitude and shape of the signaling Dpp gradient. The result provides a theoretical basis for the
observed robustness of wing development, preserving relative but not absolute tissue pattern, when the
morphogen synthesis rate is significantly altered. A similar robustness consideration for simultaneous
changes of multiple intrinsic system characteristics is also discussed briefly.

1. Morphogen gradients and temperature change

Morphogens (also known as ligands in biochemistry and developmental biology) are molecular sub-
stances that bind to cell surface receptors and other molecules. The concentration gradients of different
morphogen-receptor complexes [Entchev et al. 2000; Gurdon and Bourillot 2001; Teleman and Cohen
2000] are known to be responsible for cell differentiation and patterning of biological tissues during the
developmental phase of a biological organism. For a number of morphogen families, including Dpp in the
wing imaginal disc of fruit flies of the genus Drosophila, it is well established experimentally and by anal-
yses of appropriate mathematical models that the signaling gradients are formed by morphogens being
transported from a localized source and binding to cell surface receptors downstream (see references cited
in [Lander et al. 2002; 2005a; 2005b]). However, biochemical processes leading to morphogen gradient
formation are influenced by highly cooperative events such as protein folding and membrane fluidity, and
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exhibit considerable idiosyncratic effects from exogenous (external environmental) changes. More specif-
ically, it has been observed that the wing size of an adult Drosophila may differ by about 15% for substan-
tially different ambient temperature, with larger fly parts in a colder climate and smaller near the equator
[de Moed et al. 1997; French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. However,
similar data on Drosophila wing imaginal discs relevant to our investigation do not seem to be available.
(An imaginal disc is a group of undifferentiated cells that develops, at the (later) pupa stage, into a specific
adult structure such as eyes, antennae, limbs and wings, with the developmental fate of cells in different
zones of such a disc determined by a different combination of morphogen gradients.) At the molecular
level, we expect correspondingly that rate constants for diffusion, protein synthesis, binding, internaliza-
tion, degradation, etc., of fruit flies to change in varying degrees in response to such a temperature change.
How significant would such rate constant changes be over the temperature ranges organisms encounter
in the wild? Surprisingly little data on this subject (at least for insect cells) can be found in the literature.
Preliminary results by metabolic labeling of Drosophila S2 cells (through the efforts in A. D. Lander’s
lab, particularly by his student S. Zhou) showed that overall protein synthesis rate doubles approximately
every 5.9◦C. In the absence of analogous data on biochemical processes other than protein synthesis rate,
we cannot explicitly explore the effects of temperature on any of the known morphogen gradient systems.

The necessity to accommodate temperature (or any other exogenous environmental) change is a major
performance objective of morphogen systems. A thorough quantitative analysis of the effects of such
a change on the signaling morphogen gradients is imperative. It is therefore important to be clear the
reasons why we do not (and cannot) undertake such an endeavor at this time. These include:

• Experimental and field study data are available for adult Drosophila while the impact of ambient
changes (including signaling morphogen gradient formation) starts at the embryonic stage.

• An ambient change typically affects many systems characteristics including the various rate con-
stants and synthesis rates) but there is a lack of data on most such effects.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. For example, we have recently
looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic rate
constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005c]. We consider such changes to constitute a crude model of the effects
due to a 5.9◦C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.

In contrast to the work in [Lander et al. 2005c] and in [Khong and Wan 2007] on the effect of a
Hill-type feedback (in Dpp synthesis rate) on the signaling Dpp gradient, we pursue a different and more
limited objective prompted by the observations in the works cited at the top of the page. Specifically, we
determine (by analyzing appropriate mathematical models) whether and how adjusting the size of the
wing disc (an abbreviation for “wing imaginal disc” henceforth) would maintain the morphogen gradient
shape and thereby provide optimal, or near-optimal, strategies for meeting the performance objective of
ensuring a normal development. For this more limited goal, we take as our starting point the available
experimental evidence (from the Lander lab) that the Dpp synthesis rate doubles with a 5.9◦C temperature
increase. With all other system characteristics fixed, a change in synthesis rate would cause a change
in the steady state signaling morphogen gradient, possibly substantial and unacceptable from the view
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point of normal development as quantified herein (see Section 8 and also [Lander et al. 2005c]). We
determine whether a particular aspect of system architecture, namely the size of wing disc, confers the
potential for the biological development to be robust to such change. More specifically, the principal aim
of our research is to understand
• the reason for the exaggerated slenderness of the wing disc cells in the apical-basal direction, and
• the role of a size change of the wing disc in its development.

In the process, how the signaling Dpp gradient may be maintained in the face of significant Dpp synthesis
rate changes (due to a temperature or any other exogenous environmental change) is delineated.

An interesting, but challenging aspect of robustness of biological development comes from the known
interrelationships between temperature, growth, and morphogen signaling. At colder temperature, flies
grow slower but end up larger, including having larger but otherwise normal wings; in contrast flies
grow faster and are smaller in a hotter climate [de Moed et al. 1997; French et al. 1998; Bitner-Mathé
and Klaczko 1999; Azevedo et al. 2002]. The remarkably normal patterning that they display [Bitner-
Mathé and Klaczko 1999] is only normal in the context of their altered size. This strongly suggests that
the objective of development is to preserve relative, not absolute, pattern. At the very least we need
to examine our models to see if they would allow for temperature-dependent scaling of field sizes and
size-normalized measures of robustness.

The effect of size on the robustness of biological species development has been investigated recently —
see [Umulis et al. 2008] and references therein — for general models in the form of partial differential
equations of the reaction diffusion type with Neumann or mixed conditions at the boundary of the solu-
tion domain. Their main concern is uncovering conditions on the biological system characteristics that
would ensure the corresponding model problem to be scale-invariant. Within a scale-invariant species,
a common structure in individuals of different size develops in proportion to size. (We will refer to such
size-mediated developments of a common biological structure as relative (or size-mediated) robustness
as the development of structural proportion is insensitivity to size changes.) Our concern here is with a
specific model of the Drosophila wing imaginal disc in the plane of the proximal-distal and apical-basal
axes which is not scale-invariant and does not satisfy the conditions for scale-invariance developed in
[Umulis et al. 2008]. Nevertheless, we show how size changes may still be exploited for such a system to
maintain near relative robustness for size-normalized development in the presence of a significant change
in its system characteristics caused by environmental perturbations. Specific quantitative measures of
(relative) robustness are adopted for determining (different levels of) robustness. We investigate at first
only a change in the Dpp synthesis rate for which we have experimental data, and then also simultaneous
changes in several system parameters including degradation and binding rate constants for multifactor
robustness. The results are consistent with the observations of smaller Drosophila melanogaster flies
near the earth’s equator and larger one in colder climates away from the equator.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. As mentioned earlier, we have re-
cently looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic
rate constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005c]. We consider such changes to constitute a crude model of the effects
due to a 5.9◦C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.



324 ARTHUR D. LANDER, QING NIE, BENJAMIN VARGAS AND FREDERIC Y. M. WAN

2. A spatially two-dimensional formulation

We take advantage of the approximate symmetry between the anterior compartment and posterior com-
partment of the Drosophila wing imaginal disc and consider here an extracellular model of the posterior
compartment. With the Dpp synthesis rate taken to be uniform in the distal-proximal direction, the
development is essentially uniform along the distal-proximal axis (Y -axis) except possibly for layer
phenomena near the edges (see [Vargas 2007]). Our model of the Dpp gradient formation focuses on
the uniform development. This allows us to consider a typical cross section of the wing imaginal disc
as in Figure 1 idealized as a rectangle orthogonal to the Y -axis away from the distal and proximal ends.
We take for this rectangle X -and Z -axis to be in the anteroposterior direction and the apical-proximal
direction, respectively.

The new model is essentially an extended version of the one-dimensional model in [Lander et al.
2005b] to allow for variations in the apical-basal direction including biologically realistic Dpp leakage
through the basement membrane. In this new two-dimensional model, morphogen is introduced into
the extracellular space at a rate VL through a localized source uniform in the plane perpendicular to the
anteroposterior direction. The localized source spans a small interval (−Xmin, 0), where −Xmin is the

Figure 1. Wing imaginal disc and posterior compartment of Drosophila. Courtesy
Dr. Oana Marcu of NASA Ames.
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location of the border between (and the line of symmetry of) the anterior compartment and the posterior
compartment of the wing disc. The morphogen produced in this localized region diffuses throughout the
extracellular space in the posterior compartment (according to Fick’s second law), between Z = 0 and
Z = Zmax in the apical-basal direction and from X =−Xmin toward the sink at the edge X = Xmax of the
posterior compartment. Along the way, some morphogen molecules bind themselves with cell surface
bound receptors at the binding rate kon[L][R], where [L(X, Z , T )] and [R(X, Z , T )] are, respectively,
concentration of free Dpp and unoccupied signaling receptor Thickvein (Tkv) at time T and location
(X, Z). The resulting morphogen-receptor complexes of concentration [LR(X, Z , T )] are bound to cell
surface membrane since the receptors are. These complexes in turn dissociate at the rate koff[LR] and
degrade at the rate kdeg[LR].

The time evolution of concentrations of free morphogen, morphogen-receptor complexes and unoccu-
pied receptors is then described by the partial differential equations (1)–(3) below governing the rate of
change of [L], [LR] and [R], respectively, with kon, koff, and kdeg known as the binding rate constant, the
dissociation rate constant, and the degradation rate constant, respectively. Altogether, the three (time)
rate of changes in (1)–(3) account for the reversible binding, degradation (of both bound and unoccupied
receptors), and synthesis of new morphogen and receptors, analogous to the one-dimensional system of
[Lou et al. 2004; Lander et al. 2005b]:

∂[L]
∂T
= D

(
∂2
[L]
∂X2 +

∂2
[L]
∂Z2

)
− kon[L][R] + koff[LR] + VL(X, Z , T ), (1)

∂[LR]
∂T
= kon[L][R] − (koff+ kdeg)[LR], (2)

∂[R]
∂T
= VR(X, Z , T )− kon[L][R] + koff[LR] − kR[R], (3)

for −Xmin < X < Xmax, 0 < Z < Zmax, and T > 0, where VL(X, Z , T ) and VR(X, Z , T ) are the rate
at which the morphogen Dpp and receptors Tkv are synthesized, respectively, and kR is the degradation
rate constant for unoccupied Tkv. As in [Lander et al. 2005b], we are interested principally in the [LR]
gradient in the portion of the wing disc corresponding to X > 0 where there is no morphogen production
(so that VL(X, Z , T )= 0 for X > 0). In this paper, we focus on a time-invariant morphogen and receptor
synthesis rates so that VL(X, Z , T )= VL(X, Z) and VR(X, Z , T )= VR(X, Z).

With −Xmin being the midpoint of the Dpp production region, we have by symmetry

at X =−Xmin:
∂[L]
∂X
= 0, (4)

for T > 0 and 0< Z < Zmax. At the far end, the edge of the posterior compartment is taken to be a sink,
so that

at X = Xmax: [L] = 0 (5)

for T > 0 and 0< Z < Zmax. We also investigate the limiting case of Xmax =∞ since the edge at Xmax

is not strictly absorbing. In the apical-basal direction, we have an essentially sealed wall at the apical
face Z = 0, so that

at Z = 0:
∂[L]
∂Z
= 0, (6)
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for T > 0 and −Xmin < X < Xmax,while at the basal face, there is leakage of free morphogens at a rate
proportional to its concentration:

at Z = Zmax:
∂[L]
∂Z
+

γz

Zmax
[L] = 0, (7)

for T > 0 and −Xmin < X < Xmax. Here, the dimensionless constant γz ≡ 1/σz = Zmax0z is a prescribed
leakage parameter. In one extreme case γz = 0, we have ∂[L]/∂Z = 0 so that the end is sealed without
leakage. At the other extreme σz = 0, the end Z = Zmax is absorbing. For a finite nonzero γz , the larger
the γz value the higher is the flux across the end surface.

At the onset of the morphogen synthesis (at T = 0), we have the initial conditions

[L] = [LR] = 0, [R] = R0(X, Z) (8)

for −Xmin ≤ X ≤ Xmax and 0≤ Z ≤ Zmax, reflecting the fact that there was no Dpp in the system and the
receptor concentration is in a steady state (as a consequence of a time-invariant receptor synthesis rate).

The extracellular model above is adequate for our purpose. The model can be extended to incorporate
the effects of internalization of [LR] complexes through endocytosis prior to degradation as was done in
[Lander et al. 2006; Lou et al. 2004] for one-dimensional studies. However, the corresponding system for
steady state gradients of interest here has been shown to reduce to the same BVP with modified system
rate constants (loc. cit.).

To reduce the number of parameters in the problem, we introduce a reference unoccupied receptor
concentration level R̄0 (to be specified later) and the normalized quantities

t =
D

Z2
max

T, {x, `M , xm, z} =
1

Zmax
{X, Xmax, Xmin, Z}, (9)

{vL , vR} =
Z2

max

DR̄0
{VL , VR}, {a, b, r, r0} =

1
R̄0
{[L], [LR], [R], R0}, (10)

{ fz, gz, gr , hz} =
1

D/Z2
max
{koff, kdeg, kR, kon R̄0}. (11)

In terms of these new quantities, we write the initial-boundary value problem (IBVP) (1)–(8) in the
normalized form

∂a
∂t
=∇

2a− hzar + fzb+ vL(x, z) (x, z) ε �, (12)

∂b
∂t
= hzar − ( fz + gz)b,

∂r
∂t
= vR(x, z)− hzar − grr + fzb, (x, z) ε �̄, (13)

where � is the rectangular domain {−xm < x < `M , 0< z < 1} and �̄= {−xm ≤ x ≤ `M , 0≤ z ≤ 1} is
its closure. The auxiliary conditions supplementing the differential equations become

at x =−xm :
∂a
∂x
= 0 at x = `M : a = 0 (0< z < 1), (14)

at z = 0:
∂a
∂z
= 0 at z = 1:

∂a
∂z
+ γza = 0 (−xm < x < `M), (15)
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for t > 0 and
at t = 0: a = b = 0, r = r0(x, z) (16)

for all (x, z) in �̄.

3. Time-independent steady state behavior

3.1. Time-independent synthesis rates. With both morphogen and the receptor synthesis rates uniform
in time, the possibility of a time-independent steady state behavior exists for our model. The two synthesis
rates VL and VR are to a good approximation uniform in Z so that VL = VL(X) and VR = VR(X). For the
present investigation, we ignore possible feedback effects and, unless indicated otherwise, approximate
VL to be a step function with VL(X)= V̄L H(−X) for some constant V̄L . Correspondingly, we have with

vL = vL(x)= v̄z H(−x)=
{
v̄z

0
with v̄z =

V̄L/R̄0

D/Z2
max

. (17)

We also take the nonnegative receptor synthesis rate to be

VR = V̄n H(−X)+ V̄p H(X)= V̄p
{
ρ2 H(−X)+ H(X)

}
,

for T > 0 with 0≤ ρ2
= V̄n/V̄p ≤ 1, unless indicated otherwise. In that case, we have

vR = vR(x)= v̄p
{
ρ2 H(−X)+ H(X)

}
≡ v̄pr0(x) (t > 0). (18)

where

v̄p =
V̄p/R̄0

D/Z2
max

, r0(x)=
{
ρ2 (x < 0),
1 (x > 0).

(19)

In the extreme case ρ2
= 0, there is no receptor synthesized in the morphogen production region. At the

other extreme, ρ2
= 1, the receptor synthesis rate is uniform through out the posterior compartment, i.e.,

for all (x, z) in �̄. With the initial receptor concentration taken to be the steady state receptor distribution
prior to the onset of morphogen production, R0(x)= VR(X)/kR = V pr0(x)/kR , we take

R̄0 =
V̄p

kR
, (20)

so that
v̄p = gr , R0(x)= R̄0r0(x)= R̄0{ρ

2 H(−X)+ H(X)}. (21)

We are interested in a time-independent steady state solution ā(x, z), b̄(x, z), and r̄(x, z) for the system
(12)–(16). For such a solution, we may set all time derivatives in these equations to zero to get

0=∇2ā− hz ār̄ + fz b̄+ vL(x), (22)

and
0= hz ār̄ − ( fz + gz)b̄, 0= vR(x)− hz ār̄ − gr r̄ + fz b̄, (23)

for (x, z) ∈�. The nonlinear system of ODE (22)–(23) is augmented by the boundary conditions (14)–
(15). With vL(x) and vR(x) both piecewise constant, the form of the (22)–(23) requires that ā and its
first derivative to be continuous at x = 0.
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3.2. Reduction to a single equation for ā(x). The two equations in (23) may be solved for b̄ and r̄ in
terms of ā to obtain

r̄ =
αzr0(x)
αz + ζ ā

, b̄ =
r0(x)ā
αz + ζ ā

, (24)

where

ζ =
gz

gr
=

kdeg

kR
, αz =

gz + fz

hz
. (25)

The expressions in (24) are now used to eliminate r̄ and b̄ from (22) to get a second-order PDE for ā
alone:

∇
2ā−

gzr0(x)ā
αz + ζ ā

+ vL(x)= 0 (x, z) ∈�. (26)

Equation (26) is supplemented by the four boundary conditions (14)–(15) applied to ā, keeping in mind
also the continuity conditions on the unknown and its normal derivative at x = 0.

For our choice of synthesis rates VL and VR , we have vL = 0 and r0(x)= 1 for the range 0< x < `M

so that

∇
2ā =

gz ā
αz + ζ ā

=
gr ā
αr + ā

, αr =
gr

gz
αz (27)

for (x, z) in �0= {0< x <`M , 0< z< 1}. In the complementary range �m = {−xm < x < 0, 0< z< 1},
we have vL = v̄z and r0(x)= ρ2 so that

∇
2ā−

gzρ
2ā

αz + ζ ā
+ v̄z = 0, (28)

for (x, z) in �m and for some known ρ2 in the range 0≤ ρ2
≤ 1.

3.3. Existence and uniqueness of steady state behavior. The governing PDE (26) for the present extra-
cellular model is similar to the corresponding ODE investigated in [Lander et al. 2005b]. This observation
effectively allows us to extend the results for the one-dimensional model there to show existence and
uniqueness for the two-dimensional model of this paper.

Proposition 1. There is a unique set of nonnegative steady state concentration gradients ā(x, z), b̄(x, z)
and r̄(x, z) characterized by the two-point boundary value problem (14), (15), (26) and the continuity
conditions on ā and ∂ ā/∂x at x = 0.

To prove existence, we observe that a`(x, z)≡ 0 is a lower solution of the BVP for ā(x, z) [Sattinger
1972] since it satisfies the inequality

−∇
2
[a`] +

gzr0(x)a`
αz + ζa`

− vL(x)=−vL(x)=−v̄z H(−x)≤ 0, (x, z) ∈�

and the four relevant boundary conditions, the latter exactly. Also,

au(x, z)= v̄z
{
(`M − x)xm +

1
2(`

2
M − x2)

}
with

(i) au(x)≥ 0, (i i)
∂au

∂x
(x)=−v̄z(x + xm) < 0 (−xm < x ≤ `M), .
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is an upper solution [Sattinger 1972]. Note that property (ii) ensures 0≤ au(x)≤ au(−xm) in [−xm, `M ].
With au(x) > 0 for −xm ≤ x < `M , we have

−∇
2
[au] +

gzr0(x)au

αz + ζau
− vL(x)= v̄z +

gzau

αz + ζau
− vL(x)≥

gzau

αz + ζau
≥ 0 (x, z) ∈�

and [
∂au

∂x

]
x=−xm

= 0, au(`M)= 0,[
∂au

∂z
+ γzau

]
z=1
≥ 0,

[
∂au

∂z

]
z=0
= 0.

There exists then a solution ā(x, z) of the BVP (26), (14) and (15) with

0= a`(x)≤ ā(x, z)≤ au(x),

for (x, z) ∈� (see [Amann 1972], [Sattinger 1972], and [Smoller 1983]). It follows that ā(x, z) must be
nonnegative in the whole solution domain.

To show that there is only one solution, suppose a1(x, z) and a2(x, z) are two (nonnegative) solutions
and a(x, z)= a1(x, z)− a2(x, z). Then as a consequence of the differential equation (26) for a1 and a2,
the difference a(x, z) satisfies the differential equation

−∇
2a+

gzζαzr0(x)a
(αz + ζa1)(αz + ζa2)

= 0.

Form the following double integral of the PDE above over the solution domain to get∫ 1

0

∫ `M

−xm

[
−∇

2a+
gzζαzr0a

(αz + ζa1)(αz + ζa2)

]
a dx dz = 0. (29)

Upon integration by parts (by way of Green’s theorem), observing continuity of ā and its first derivatives,
and application of the boundary conditions in (14) and (15), the relation (29) may be transformed into∫ `M

−xm

[
a2

σz

]
z=1

dx +
∫ 1

0

∫ `M

−xm

{
| E∇a|2+

gzζαzr0a2

(αz + ζa1)(αz + ζa2)

}
dx dz = 0. (30)

All terms in the integrands in (30) are nonnegative; therefore we must have a(x)≡ 0 and uniqueness is
proved. �

Note that there is no restriction on the magnitude of the (dimensionless) morphogen production rate
v̄z or the (dimensionless) degradation rate gz for the existence of steady state concentration gradients.
Accordingly, Proposition 1 allows us to obtain exact or approximate solution of the BVP by any choice
of analytical or numerical methods.

4. Linear stability

4.1. A nonlinear eigenvalue problem. In addition to the existence of unique steady state concentrations
ā(x, z), b̄(x, z),and r̄(x, z), it is important for these concentrations to be asymptotically stable (at least
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with respect to small perturbations). To investigate the stability of the steady state solution known to
exist from Proposition 1, we consider small perturbations in the form

{a, b, r} = {ā(x, z), b̄(x, z), r̄(x, z)}+ e−ωt
{â(x, z), b̂(x, z), r̂(x, z)}. (31)

After linearization, the differential equations (12)–(13) become

−ωâ =∇2â− hz(r̄ â+ ār̂)+ fz b̂, (32)

−ωb̂ = hz(r̄ â+ ār̂)− ( fz + gz)b̂, (33)

−ωr̂ =−hz(r̄ â+ ār̂)− gr r̂ + fz b̂. (34)

The relations (33) and (34) are then solved for b̂ and r̂ in terms of â making use of b̄=
gr ā

gz(ā+αr )
to get

r̂ =
hz(ω− gz)r̄(x, z)â

(gr −ω)( fz + gz −ω)+ hz ā(x, z)(gz −ω)
, (35)

b̂ =
hz(gr −ω)r̄(x, z)â

(gr −ω)( fz + gz −ω)+ hz ā(x, z)(gz −ω)
. (36)

The expressions (36) and (35) are used to eliminate b̂ and r̂ from (32) to obtain

∇
2â+ [ω− qr (x; z, ω)] â = 0, (37)

where

qr (x; z, ω)=
hz r̄(x, z)(gr −ω)(gz −ω)

(gr −ω)(gz + fz −ω)+ hz ā(x, z)(gz −ω)
(38)

=
1

1+ ζ β̄m A
hzr0(x)(gr −ω)(gz −ω)

(gr −ω)(gz + fz −ω)+ (gz + fz)(gz −ω)β̄m A
(39)

≡
1

1+ ζ β̄m A(x, z)
Nr (x; z, ω)
Dr (x; z, ω)

, (40)

where we have set
ā(x, z)= αzβ̄m A(x, z), (41)

with A(−xm, 0)= 1 so that ā(−xm, 0)= αzβ̄m . Note that β̄m is known to be positive from the solution
of the steady state problem of the previous section. Let

β̄m =
βm

ρ2− ζβm
or equivalently βm =

ρ2β̄m

1+ ζ β̄m
; (42)

then βm = b̄(−xm, 0) is positive.
The PDE (37) is supplemented by the boundary conditions (14)–(15) applied to â(x, z). Together, (37),

(14) and (15) define an eigenvalue problem with ω as the eigenvalue parameter. Though the PDE for
â(x, z) is linear, the eigenvalue problem is nonlinear since ω appears nonlinearly in qr (x; z, ω) so that the
homogeneous boundary value problem defined by (37), (14) and (15) is not a Sturm–Liouville problem.
Given that r0(x) (and hence also r̄(x, z) and b̄(x, z)) may have at most a simple jump discontinuity at
x = 0, we expect â and ∂ â/∂x to be continuous at x = 0. In the next subsection, we show that the
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eigenvalues of the homogeneous boundary value problem must be positive. The steady state gradients
ā(x, z), b̄(x, z), and r̄(x, z) are therefore asymptotically stable by linear stability theory. Since the proof
is based on the same technique as that used for one-dimensional models (see [Lander et al. 2005b] for
example), we give it below for the simpler case of uniform receptor synthesis rate which can be easily
extended to a discontinuous vR(x) (leading to a discontinuous r0(x)).

4.2. Positive eigenvalues and asymptotic stability. For ρ2
= 1, so that r0(x) = 1 for (x, z) ∈ �̄, the

various gradient concentrations are continuous across x = 0.

Proposition 2. All the eigenvalues of the nonlinear eigenvalue problem (37), (14) and (15) are real.

To prove this assertion, suppose ω is a complex eigenvalue and aω(x) an associated nontrivial (gen-
erally complex) eigenfunction, then ω∗ is also an eigenvalue with eigenfunction a∗ω(x), where ∗ denotes
complex conjugation. The bilinear relation∫ 1

0

∫ `M

−xm

[a∗ω∇
2aω− aω∇2a∗ω] dx dz = 0

(which can be established by integration by parts and applications of the boundary conditions in (14) and
(15)) requires ∫ 1

0

∫ `M

−xm

{
(ω−ω∗)−

[
qr (x; z, ω)− qr (x; z, ω∗)

]}
(a∗ωaω) dx dz = 0. (43)

It is straightforward to verify qr (x; z, ω)− qr (x; z, ω∗)=−(ω−ω∗)8(x; z, ωω∗), where

8(x, z;ωω∗)=
hz{ fz Q(gp, ω)+ (gz + fz)β̄m A(x, z)Q(gz, ω)}

(1+ ζ β̄m A)Dr (x; z, ω)Dr (x; z, ω∗)
,

with Dr (x; z, ω) as defined in (40) and

Q(y, ω)= [y−Re(ω)]2+ [Im(ω)]2 > 0.

In that case, the condition (43) becomes

(ω−ω∗)

∫ 1

0

∫ `M

−xm

aωa∗ω[1+8(x; z, ωω
∗)] dx dz = 0. (44)

Since the double integral is positive for any nontrivial function aω(x, z;ω), we must have ω−ω∗ = 0.
Hence, ω does not have an imaginary part.

Proposition 3. All eigenvalues of the nonlinear eigenvalue problem (32)–(34), (14) and (15) are positive
and the steady state concentrations ā(x, z), b̄(x, z) and r̄(x, z) are asymptotically stable by a linear
stability analysis.

If the assertion is false and ω ≤ 0, let âω(x) be a nontrivial eigenfunction of the homogeneous BVP
(37), (14) and (15) for the nonpositive eigenvalue ω =− |ω|. Multiply (37) by âω and integrate over the
solution domain to get∫ 1

0

∫ `M

−xm

{
âω∇2âω− qr (x; z, ω)(âω)2

}
dx dz =−ω

∫ 1

0

∫ `M

−xm

(âω)2 dx dz.
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After integration by parts and applications of the homogeneous boundary conditions (14) and (15), we
obtain

ω

∫ 1

0

∫ `M

−xm

(âω)2 dx dz =
∫ 1

0

∫ `M

−xm

∣∣∣ E∇âω
∣∣∣2 dx dz+

∫ 1

0

∫ `M

−xm

qr (x; z, ω)(âω)2 dx dz. (45)

With ω =− |ω| ≤ 0, we have

qr (x; z,− |ω|)=
r̄(x, z)hz(gz + |ω|)(gp + |ω|)

(gr + |ω|)(gz + fz + |ω|)+ hz ā(x, z)(gz + |ω|)
> 0

in �. For any nontrivial solution of the eigenvalue problem under the assumption ω ≤ 0, the right-hand
side of (45) is positive, which contradicts the assumption ω =− |ω| ≤ 0. Hence the eigenvalues of the
eigenvalue problem for â must be positive and the proposition is proved.

5. Perturbation solution for ζ < 1 and gradient robustness

For Dpp gradients in Drosophila wing disc, kdeg is typically smaller than the degradation rate constant
kR of the signaling receptor Tkv so that ζ < 1. For this case, a perturbation solution in ζ is appropriate
for moderate Dpp synthesis rate resulting in low receptor occupancy (see [Bender and Orszag 1999]):

ā(x, z; ζ )=
∞∑

k=0

āk(x, z)ζ k . (46)

For sufficiently small values of ζ so that ζ ā� αz , the leading term ā0(x, z), determined by the linear
PDE

∇
2ā0−µ

2
zr0(x)ā0+ vL(x)= 0, µ2

z =
gz

αz
(47)

and the four boundary condition (14)–(15) applied to ā0, is an adequate approximation of the exact
solution. Here, we have, in terms of the Heaviside unit step function H( · ), r0(x)= {H(x)+ ρ2 H(−x)}
and vL(x) = v̄z H(−x) with v̄z = (V̄L/R̄0)/(D/Z2

max). The omission of the ζ ā term in (26) to get the
leading term approximation (47) may also be viewed as a case of low receptor occupancy resulting from
a sufficiently high receptor synthesis rate (or a sufficiently low morphogen synthesis rate). With plenty
of unoccupied receptors available to capture any free Dpp, the normalized morphogen concentration ā
would be sufficiently low for ζ ā to be negligible compared to αz .

The linear BVP (47), (14)–(15) can be solved by Fourier cosine series in the z variable:

{ā0(x, z), vL(x)} =
∞∑

n=1

{An(x), vn v̄z H(−x)} cos (λnz) (48)

where {λn} are roots of

cot(λ)= σzλ, σz =
1
γz
, (49)

so that ā0(x, z) satisfies the boundary condition at both z = 0 and z = 1. Orthogonality of the eigenfunc-
tions {cos (λnz)} requires

vn =
4 sin(λn)

2λn + sin(2λn)
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and
A′′n −3

2
n An + vn v̄z H(−x)= 0, 32

n = λ
2
n + r0(x)µ2

z , (50)

where µ2
z = gz/αz , with

A′n(−xm)= 0, An(`M)= 0 (51)

for n = 1, 2, 3, . . . . When ρ2
= 1, we expect An(x) and A′n(x) to be continuous at x = 0.

Remark 1. The leading term perturbation solution in the small parameter ζ is generally an accurate
characterization of the actual nonlinear phenomenon. If ζ ā(x, z) should not be small compared to αz ,
the gradient [LR] for ρ = 1 would be nearly uniform in the anteroposterior direction except for a boundary
layer near the edge of the wing disc. Such [LR] gradients are not biologically realistic for patterning. We
may therefore focus our attention on the low receptor occupancy case (with ζ ā(x, z)� αz) independent
of the magnitude of ζ to investigate the effects of size on the signaling morphogen gradient.

To extract useful information from the Fourier cosine series solution (48)–(51), we deduce below a
simple but adequate approximation of the leading term perturbation solution, focusing on the special
case ρ(x)= 1 so that r0(x)= 1 and give special attention to the limiting case of `M =∞.

5.1. Finite `M . For special case ρ(x)= 1, the exact solution for A j (x) is

A j (x)=


v̄zv j

32
j

(
1−

cosh(3 j`M)

cosh(3 j (`M + xm))
cosh(3 j (xM + x))

)
(−xm ≤ x ≤ 0),

v̄zv j sinh(3 j xm)

32
j cosh(3 j (`M + xm))

sinh(3 j (`M − x)) (0≤ x ≤ `M).

(52)

Correspondingly, we have

ā(0, z)∼ ā0(0, z)= v̄z

∞∑
j=1

v j

32
j

sinh(3 j xm) sinh(3 j`M)

cosh(3 j (`M + xm))
cos(λ j z),

ā(−xm, z)∼ ā0(−xm, z)= v̄z

∞∑
j=1

v j

32
j

(
1−

cosh(3 j`M)

cosh(3 j (`M + xm))

)
cos(λ j z).

With (v j/3
2
j )/(v1/3

2
1)� 1 for j > 1, we have as a leading term approximation

b(x, z)∼ 1
αz

ā(x, z)∼ 1
αz

ā0(x, z)≈
1
αz

A1(x) cos(λ1z)

=
v̄zv1

αz3
2
1

sinh(31xm)

cosh(31(`M+xm))
sinh(31(`M − x)) cos(λ1z).

(53)

5.2. The limiting case of `M = ∞. For the wing imaginal disc of Drosophila species, Xmax� Zmax so
`M � 1. It often suffices for our purpose to consider the limiting case of `M =∞ (and ρ = 1) for which

A j (x)=


v̄zv j

32
j
{1− e−3 j xm cosh(3 j (x + xm))} (−xm ≤ x ≤ 0),

v̄zv j

32
j

sinh(3 j xm)e−3 j (x+xm) (0≤ x <∞).
(54)
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with

ā(0, z)∼ ā0(0, z)= v̄z

∞∑
j=1

v j

32
j
e−3 j xm sinh(3 j xm) cos(λ j z), (55)

ā(−xm, z)∼ ā0(−xm, z)= v̄z

∞∑
j=1

v j

32
j

(
1− e−3 j xm

)
cos(λ j z). (56)

To a leading term approximation, we have for `M =∞

b(x, z)∼
1
αz

ā(x, z)∼
1
αz

ā0(x, z)≈
1
αz

A1(x) cos(λ1z)

=
v̄zv1

αz3
2
1

sinh(31xm)e−31(x+xm) cos(λ j z) (0≤ x <∞). (57)

For an [LR] gradient to be biologically useful in developing tissue patterns, its graph must be neither
nearly uniform nor a boundary layer phenomenon near the source. It follows that the concentration of
signaling Dpp–Tkv complexes [LR] should be in a state of low receptor occupancy throughout the wing
disc with both free and bound Dpp approximately in a state of simple exponential decay from the source
end to the sink at the edge of wing disc. With the free Dpp expression exponentially small away from
the source, the actual location of the absorbing edge should not have a significant effect on the signaling
Dpp gradient and may be taken to be far away at infinity.

6. Approximate expressions for the eigenvalues {λn}

6.1. A sealed basement membrane (γz = 0). For the limiting case of γz = 0, both apical and basal faces
are sealed (see (15)) given that [

∂ ā(x, z)
∂z

]
z=1
=

[
∂ ā(x, z)
∂z

]
z=0
= 0. (58)

Upon writing the equation (49) for the eigenvalues as

γz cos(λ)= λ sin(λ),

we have for γz = 0
λn = (n− 1)π (n = 1, 2, . . . ). (59)

It follows that
v1 = 1, vn = 0 (n ≥ 2).

The concentration gradient is therefore a uniform distribution in z. In that case, the solution for the
(normalized) free morphogen concentration ā is uniform in z so that

ā(x, z)∼ ā0(x){1+ O(ζ )}

and ā0(x) is just the corresponding solution for the spatially one-dimensional problem previously treated
in [Lander et al. 2005b].
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For the case `M =∞ (and ρ = 1), we have from (57)

[LR(x, z)]
R̄0

∼
ā0(x)
αz
=

{
(v̄z/gz){1− e−µz xm cosh(µz(x + xm))} (−xm ≤ x ≤ 0),

(v̄z/gz) sinh(µzxm)e−µz(x+xm) (0≤ x <∞).
(60)

with

µ2
z =

gz

αz
' hz, v̄z =

V̄L/R̄0

D/Z2
max

,
v̄z

gz
=

V̄L/R̄0

kdeg
. (61)

With hz = O(10−1) for typical wing disc parameter values, we have µzxm � 1 and therewith

e−µz xm sinh(µzxm)' µzxm{1+ O(µ2
z x2

m)},

so

[LR(x, z)]∼
R̄0

αz
ā0(x)≈

V̄L

kdeg
µzxme−µz x

=
V̄L Xmin

kdeg
k̄one−k̄on X (62)

for the signaling region 0≤ x <∞, with k̄on =
√

kon R̄0/D.
We know from biological evidence that the basal end is not sealed, so that the limiting case of γz = 0

only demonstrates the validity and consistency of our more general solution, but is otherwise biologically
unrealistic and of no relevance to the actual problem. The analytical consequences of a sealed end, as seen
from (62), are shown in the next section to be also unacceptable from the view point of size adjustment
for robustness with respect to a substantial change in the Dpp synthesis rate.

6.2. An absorbing basement membrane (σz = 0). At the other extreme, Equation (49) in the case of
σz = 1/γz = 0 becomes cot(λ)= 0, so that

λn = (n− 1
2)π (n = 1, 2, 3, . . . ). (63)

It follows that, for the limiting case of `M =∞ and ρ = 1,

A j (x)=

{
(v̄zv j/3

2
j ){1− e−3 j xm cosh(3 j (x + xm))} (−xm < x < 0),

(v̄zv j/3
2
j ) sinh(3 j xm)e−3 j (x+xm) (0< x <∞).

(64)

where

32
n = λ

2
n +µ

2
z = (n−

1
2)

2π2
+µ2

z , vn = (−)
n−1 2

λn
, (n = 1, 2, 3, . . . ).

Correspondingly, we have for the signaling region 0< x <∞

[L]
R0
∼ A1(x) cos (λ1z)=

v̄zv1

32
1

sinh(31xm)e−31(x+xm) cos (λ1z) , (65)

[LR]
R0
∼

A1(x)
αz

cos (λ1z)=
v̄zv1

αz3
2
1

sinh(31xm)e−31(x+xm) cos (λ1z) . (66)

With fz � gz , the expression for µ2
z is accurately approximated by hz = kon R̄0/(D/Z2

max)= O(10−1).
Since µ2

z is small compared to π2/4 (and much smaller than (n− 1
2)

2π2 for n ≥ 2) and λ1xm � 1, we
have the following accurate approximation for the various Fourier components of the Dpp concentration:
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32
n = λ

2
n +µ

2
z ' λ

2
n = (n−

1
2)

2π2, sinh(λ1xm)e−λ1xm ≈ λ1xm, (67)

A j (x)'
v̄zv j

λ2
j

sinh(λ j xm)e−λ j (xm+x) (0< x <∞) (68)

so that

[L]∼ R̄0ā0(x, z)≈ R̄0 A1(x) cos(λ1z)'
R̄0v̄zv1xm

λ1
e−λ1x cos(λ1z), (69)

[LR] ∼
R̄0

αz
ā0(x, z)'

R̄0v̄zv1xm

αzλ1
e−λ1x cos(λ1z), (70)

for 0< x <∞. Upon observing (67) and setting 32
n ≈ λ

2
n , (69) and (70) become

[L] ∼
V̄L Xmin Zmax

D

[ 8
π2 e−πx/2 cos( 1

2π z)
]
, (71)

[LR] ∼
V̄L Xmin Zmax

D

[ 8
αzπ2 e−πx/2 cos( 1

2π z)
]
, (72)

for 0 < x <∞. The signaling Dpp gradient given in (70) and (72) is qualitatively different from that
in (62) and (72). While the limiting case of σz = 0 is also not biologically realistic as the basement
membrane is neither completely sealed nor absorbing [Dowd et al. 1999], the consequences of (70) are
more characteristic of the [LR] gradient than those of (62) in the actual range of γz as we shall see in the
next subsection.

It may seem rather remarkable that (the leading term asymptotic behavior of) [LR] does not depend
on the receptor synthesis rate. However the inherent assumption of low receptor occupancy in effect
corresponds to (an abundance of receptors resulting from) a sufficiently high receptor synthesis rate to
make its magnitude inconsequential in a first approximation theory.

6.3. Eigenvalues for small and large σz. We now turn to the biologically more realistic case of a leaky
basement membrane at Z = Zmax with a finite γz = 1/σz . For the wing disc problem, we have 0< σz < 1
and a perturbation solution for λ in a power series in σz gives

λn =
(
n− 1

2

)
π
[
1− σz + O(σ 2

z )
]
, (73)

for n = 1, 2, 3, . . . . No new eigenpairs arise from nonpositive integers n. We conclude (as in the limiting
case of an absorbing basal end):

Proposition 4. For 0< σz = 1/γz < 1, the expression (70) is an accurate leading term approximation for
the signaling Dpp gradient outside the Dpp production region where the [LR] gradient is instrumental
for the wing disc development. Thus, with a permeable (leaky) basement membrane with 0 < σz < 1,
the slope and convexity (but not the magnitude) of the signaling Dpp gradient in both X and Z direction
depends only on the parameter σz for the biologically realistic case of low receptor occupancy.

It appears that a leaky basement membrane serves the purpose of regulating the availability of Dpp
at a level that maintain the signaling Dpp gradient shape. That is, the slope and convexity of the [LR]
concentration gradient are not sensitive to the synthesis rate V̄L as it changes with significant environ-
mental perturbations. On the other hand, the magnitude of the bound morphogen concentration is seen
from (72) to be proportional to V̄L (as well as the two length quantities Xmin and Zmax and inversely
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proportional to the diffusion coefficient D and the composite parameter αz = (koff+ kdeg)/R̄0kon of the
binding, dissociation and degradation rate constants).

For completeness, consider also the low leakage case of σz � 1 or 0< γz � 1. For this case, we may
seek a singular perturbation solution for λ in γz to obtain

λ1 ∼
√
γz
[
1− 1

6γz + O(γ 2
z )
]
, λk+1 ∼ kπ

[
1+ 1

(kπ)2
γz + O(γ 2

z )
]

(74)

for k = 1, 2, . . . , with no new eigenpair arising from negative square roots and negative k. The results
reduce to those of the limiting case of γz = 0 given in (59) with leading term approximation for [LR(x, z)]
for `M =∞ and ρ = 1 as previously given in (62). For this (biologically unrealistic) low leakage case,
the signaling gradient shape is much more sensitive to the leakage parameter γz and the degradation-to-
binding rate ratio (but not the Dpp synthesis rate V̄L ) since we have now

32
1 = λ

2
1+µ

2
z ∼ γz +µ

2
z .

7. Signaling gradient and wing disc size change

The need to accommodate exogenous environmental changes is a major performance objective of mor-
phogen systems. Given a lack of information on the change in system characteristics caused by such
changes, we pursue in this and the next section a more limited objective by investigating the change of
signaling morphogen gradient in response to a doubling of Dpp synthesis rate (whatever the cause may
be) while all system characteristics remain unchanged. We determine here whether a specific aspect of
system architecture, namely, the wing disc size, offers the potential of meeting the performance objective
by maintaining the [LR] concentration magnitude and its gradient shape (and thereby preserving tissue
pattern) relative to the new size. The concept of robustness is quantified in the next section (see also
[Lander et al. 2005c; Vargas 2007]) and used to analyze the sensitivity of the signaling Dpp gradient to
the morphogen synthesis rate change and how wing disc size changes may ameliorate this sensitivity. In
this section, robustness is taken informally to mean no biologically or functionally significant change in
the magnitude and shape of the signaling Dpp gradient [LR] under a significant change in Dpp synthesis
rate. (More quantitative measures of robustness will be discussed in the next section.)

We begin by focusing on the case `M =∞ and recalling the following four observations from the
results of the previous sections:

1. The apical-basal height of wing disc cells of Drosophilas is considerably larger than the lineal di-
mension of its cross section in the plane of the wing disc. Typically, we have of xm = Xmin/Zmax =

O(10−1)� 1 or smaller so that 0< λ1xm � 1, resulting in sinh(λ1xm)e−λ1xm ≈ λ1xm .

2. The basal membrane is in reality neither sealed nor completely absorbing; instead there is a significant
amount of leakage with γz = 1/σz > 1. Consequently, the approximate expression (73) for the
eigenvalues {λ j } and Proposition 4 for the signaling gradient apply.

3. With µ2
z accurately given by hz = kon R̄0/(D/Z2

max)= O(10−1)� 1< π2/4 for a wing imaginal disc
with a relatively high leakage through the basal membrane, it follows from (67) that

32
1 = λ

2
1+µ

2
z ' λ

2
1 = O

(
π2

4

)
(75)

for γz = 1/σz > 1 so that λ1xm � 1 and sinh(31xm)e−31xm ' λ1xm .
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4. Anticipating the need to reduce wing disc span (Xmax and Xmin) and cell height (Zmax) to maintain
robustness, we note that the approximation 32

1 ≈ λ
2
1 for the relevant range γz = 1/σz > 1 improves

with smaller wing disc size. It follows from the fact that a reduction in Zmax further reduces the
effect of µ2

z (which was already minimal according to Proposition 4). This allows us to make the
same approximation for smaller Zmax (or Xmin and Xmax). For Z̃max = Zmax/

√
2, we have

3̃1

31
=

√
1+ µ̃2

z/λ
2
1√

1+µ2
z/λ

2
1

=

√
1+µ2

z/2λ
2
1√

1+µ2
z/λ

2
1

≈ 1−
µ2

z

4λ2
1

(76)

so that the approximation 3̃2
1 ≈3

2
1 is accurate to within than 4%.

Given that the higher harmonic terms in the eigenfunction expansion for ā0(x, z) are negligibly small
compared to the leading term, the four observations above lead to the following accurate approximate
expression for the signaling gradient

[LR] ≈ L R0
v1

αzλ1
e−λ1x cos(λ1z), L R0 =

V̄L Xmin Zmax

D
(77)

in the range 0< x <∞ as was found earlier in (70). Averaging [LR] over the interval [0, Zmax] gives

[LR] ≡
1

Zmax

∫ Zmax

0
[LR]d Z =

∫ 1

0
[LR]dz ≈ L R0

v1

αzλ1
e−λ1x sin(λ1)

λ1
(78)

with λ1 ≈ π(1− σz)/2 for 0≤ σz <
1
2 .

We now arrive at the key development of this paper. Suppose the Dpp synthesis rate is doubled from
V̄L to ṼL = 2V̄L . The maximum magnitude of the signal morphogen gradient (which, for the signaling
range [0,∞), occurs at x = 0) would then be doubled since the signaling gradient is proportional to
V̄L . The factor (v1/αzλ1)e−λ1x in (77) does not depend on Xmin and Zmax explicitly, so the magnitude of
[LR]z=0 (at least the leading term approximation) may be brought back down to the same level prior to the
synthesis rate doubling by reducing either Xmin or Zmax by half. Either change would lead to a significant
distortion of the developed wing disc. There is however the biologically more realistic alternative of
reducing both size parameters by a factor of

√
2. Given X̃min= Xmin/

√
2 and Z̃max= Zmax/

√
2 along with

observation (4) above, the new signaling gradient with the modified parameters of this option becomes

[L̃R]z=0 ≈ L̃ R0
v1

αzλ1
e−λ1x

= L R0
v1

αzλ1
e−λ1x (0< x <∞), (79)

with L̃ R0 = ṼL X̃min Z̃max/D = V̄L Xmin Zmax/D = L R0. The right-hand side is just the expression for
[LR]z=0 in (77). Since the signaling gradient [LR] remains a decaying exponential with the same mag-
nitude at the same scaled proximal-distal location, the size-normalized signaling gradient is identical to
the corresponding gradient prior to morphogen synthesis rate doubling (though the wing disc size has
been reduced). We refer to such preservation of signal gradient shape as size-normalized robustness in
subsequent developments. Note that the apical-basal average of [LR] as given in (78) is clearly also
size–normalized robust.

Among the three options for maintaining the signaling gradient shape after Dpp synthesis rate doubling,
halving the anteroposterior span (and hence Xmin and Xmax) alone would mean a more drastic reduction
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in the wing disc span in the distal-proximal direction. The resulting new wing disc would be skewed
in one direction. At the other extreme, halving Zmax alone would change the shape of the gradient for
x > 0, given that the exponential factor e−λ1x becomes e−λ1 X/Z̃max = e−λ1(X/Zmax)/2. Neither is consistent
with the often observed consequence of a substantial increase in ambient temperature: a smaller wing
disc that is essentially similar to the normal wing imaginal disc in tissue patterning [de Moed et al. 1997;
French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. Hence, we are led to the
following proposition (for `M =∞):

Proposition 5. When there is a significant increase in the Dpp synthesis rate by a factor M with ṼL =

MV̄L and the approximation (77) for [LR] holds, the Drosophila wing imaginal disc patterning is pre-
served by the size reduction X̃min = Xmin/

√
M and Z̃max = Zmax/

√
M.

The reduction of Xmin and Zmax (as well as Xmax in the case of a finite `M ) by the same amplification
factor 1/

√
M is known as self-similar size reduction. With such a size reduction, the development of

the wing disc is insensitive to an M fold increase in Dpp synthesis rate and is therefore size-normalized
robustness.

It is worth digressing to comment briefly on the biologically unrealistic case γz = 0. Had the basal
end been sealed so that (62) applies with

[LR(x, z)]∼
V̄L Xmin

kdeg
k̄one−k̄on X , (80)

the only way to maintain the concentration magnitude [LR(0, z)] by a size change when V̄L is doubled
would be to reduce Xmin by half (instead of by

√
2 as in the case of a leaking basal membrane). The

size reduction would not be self-similar unless Zmax is also reduced by half. In this latter case, the size
reduction would be self-similar size but substantially more drastic than those observed. Thus a porous
basement membrane appears to serve an important function in the robust development of the wing disc.

For the case of a large but finite Xmax, the expression (53) simplifies to

[LR(x, z)] ∼
R̄0

αz
ā(x, z)∼

R̄0

αz
ā0(x, z)≈

R̄0

αz
A1(x) cos(λ1z)

' L R0
v1e−λ1x

αzλ1

(
1− e−2λ1(`M−x)) cos(λ1z),

(81)

for 31xm ' λ1xm � 1 (keeping in mind that L R0 = V̄L Xmin Zmax/D). We have from this the following
extension of Proposition 5:

Proposition 6. For a finite (dimensionless) anteroposterior span `M , the signaling Dpp gradient is (size-
normalized) robust after a Dpp synthesis rate doubling provided that Xmax is also reduced by the same
factor

√
2 (as Xmin and Zmax).

We emphasize that there are at least three advantages in changing both Xmin and Zmax (as well as
Xmax) by the same factor to maintain the shape (that is, slope and convexity) of the signaling gradient
[LR] when the Dpp synthesis rate is doubled:

1. The size of the wing disc is reduced in all dimensions but the physical shape remains geometrically
similar before and after the reduction.
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2. The reduction is less drastic, by only a factor of
√

2 instead of half.

3. Most importantly, it is consistent with the observation that fly wings are smaller physically in all
directions under the higher temperature, not just in the direction of the anteroposterior axis.

8. Robustness of signaling gradients

We saw from the eigenfunction expansion for the leading term perturbation solution that the signaling
[LR] gradient is generally sensitive to system parameter changes. Yet actual biological systems are
generally robust to such changes (up to a self-similar size change [de Moed et al. 1997; French et al.
1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]). The analysis of the previous section
showed that the magnitude and shape of the signaling gradient [LR] can be maintained even when the
Dpp synthesis rate increases substantially by changing the anteroposterior span (including the width of
the localized Dpp synthesis region) and apical-basal cell height of the wing disc. In this section we
quantify this observation by way of either of the two robustness indices to be introduced below and
generalize the mechanism of self-similar size reduction for more flexible applications. To be concrete,
we focus on robustness with respect to a two-fold change in the Dpp synthesis rate in our model problem
as in [Lander et al. 2005c]. The general methodology developed for this parameter change is extended
to allow for multifactor changes and robustness with respect to other parameter changes in Section 9.

With a doubling of the morphogen synthesis rate ṼL = 2V̄L , we have chosen in the previous section an
“amplification” (or a “diminution”) factor κ (with X̃min= κXmin, Z̃max= κZmax as well as X̃max= κXmax)
to be 1/

√
M = 1/

√
2 to maintain the order of magnitude of A1(0). However, the shape of the new

signaling gradient is preserved by such a change only after the approximation 3̃2
n ≈ 3

2
n . For γz = 2

however, the error incurred for the dominant n = 1 term in the eigenfunction expansion is about 15%.
We explore in this section how we may limit the effects on 32

1 (and more generally 32
n) resulting from

more general size changes of Zmax and Xmin when γz = O(1) (but < 2).
For the particular case of Dpp synthesis rate doubling, there is nothing canonical about reducing Zmax

and Xmin by a factor
√

2 to minimize the change in [LR(0, z)]. If we should reduce Zmax (as well as
Xmin and Xmax) by a different factor κ instead,

{X̃min, Z̃max, X̃max} = κ {Xmin, Zmax, Xmax} , (82)

(e.g., κ = 1/
√

3), the new concentration parameter L̃ R0 would generally not be the same as L R0 as
desired, smaller if κ2 < 1

2 (e.g., L̃ R0 = 2L R0/3 when κ = 1/
√

3) and greater if κ2 > 1
2 . While neither

appears ideal for maintaining the magnitude of [LR] at x = 0 after synthesis rate doubling, the added
flexibility may offer alternative benefits for x > 0 given that (75) is only an approximate relation and
(73) only holds for the biologically realistic range σz � 1. This flexibility is explored in the next two
subsections. For those developments, it should be noted that the ratio (76) describing the change in the
gradient shape factor 31 is modified to become

3̃1

31
=

√
1+ κ2µ2

z/λ
2
1√

1+µ2
z/λ

2
1

≈ 1+ (κ2
− 1)

µ2
z

2λ2
1
, (83)
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which remains nearly 1 for a basal membrane with high leakage. The possibility of specifying κ enables
us to choose it to minimize the effect of size changes on two robustness indices that measures the relative
change in the magnitude and shape of the signaling [LR] gradient downstream.

8.1. Root-mean-square differential signaling. To quantify the advantage of a smaller κ (than 1/
√

2),
we let b̄(x, z) and b̃(x, z) be the normalized signaling morphogen-receptor gradients for morphogen
synthesis rate V̄L andṼL = 2V̄L , respectively. We have, for the low receptor occupancy case,

{b̄(x, z), b̃(x, z)} ∼ 1
αz
{ā0(x, z), ã0(x, z)} ≈ cos(λ1z)

αz
{A1(x), Ã1(x)}

where A1(x) (for ρ = 1 and `M =∞) is as in (54) and Ã1(x, z) is A1(x) with v̄z = (V̄L/R̄0)/(D/Z2
max)

replaced by ṽz = (ṼL/R̄0)/(D/Z̃2
max), for Z̃max = κZmax (and {X̃min, X̃max} = κ{Xmin, Xmax}). Con-

sider the following measure of deviation from the signaling Dpp concentration [LR], namely, the signal
robustness index Rb defined by

Rb(κ)=
(1b)rms

bh − b`
=

1
bh − b`

√
1

x`− xh

∫ x`

xh

[b̃(x, 0)− b̄(x, 0)]2dx (84)

where 0< b` = b̄(x`, 0) < bh = b̄(xh, 0)≤ b̄(0, 0), with 0≤ xh < x` ≤ `M . It is just the root-mean-square
deviation from b̄(x, 0), the normalized signaling gradient [LR]/R̄0 along the apical face over a relevant
span of the wing disc. The quantities x` and xh (or b` and bh) may be chosen away from the extremities
to minimize the effects of outliers. (A more encompassing measure would be to use the average value
of b̃(x, z) and b̄(x, z) over the interval 0< z < 1 instead of their respective value at z = 0. However, it
suffices to use the simpler expression (84) in a proof of concept discussion.)

With the doubling of the morphogen synthesis rate from V̄L toṼL = 2V̄L , we reduce both Xmin and
Zmax (as well as Xmax) by an amplification factor κ to make Rb(κ) as small as possible to minimize the
sensitivity of the signaling gradient to the synthesis rate doubling (and size changes). Alternatively, we
may choose instead a value for κ so that Rb(κ) is in an acceptable range of values, say Rb(κ) < 0.1, in
order for the root mean square deviation to be effectively less than 10% of the gradient prior to the Dpp
synthesis rate doubling.

For the low receptor occupancy case, an explicit expression can be obtained for Rb. For xh = 0 and
x` = 2 (for which e−23̃1x` is negligibly small), we have

Rb(κ)'
1
√

10

(
4κ4

3̃3
1

+
1
33

1

−
8κ2

313̃1(3̃1+31)

)1/2

. (85)

The minimum value for this Rb expression is attained at

κ2
min =

ξ 2

1+ ξ
, ξ =

3̃1

31
. (86)

Table 1 on the next page shows some results for κmin and several other values of κ for x`= 2, xh = 0 and
the typical set of system parameter values used in [Lander et al. 2005c] (with the dimensionless parameter
values gz = 0.002, fz = 0.00001, hz = 0.1, gr = 0.01 and xm = Xmin/Zmax = 0.1). For the three values of
the leakage parameters used, σz = 0.2, 0.5, and 1.0, the corresponding first eigenvalue being λ1 ' 1.31,
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σz = 1/γz

1/κ2 1.0 0.5 0.2

1 0.5223 0.4720 0.4301
2 0.0258 0.0153 0.0095
2.025 0.0198 0.0099 0.0048
2.05 0.0144 0.0057 0.0034
2.10 0.0084 0.0094 0.0119
2.15 0.0147 0.0191 0.0213
3 0.1522 0.1444 0.1354

Table 1. Values of Rb.

1.08, and 0.86, respectively. These results are calculated from the leading term approximation of the
eigenfunction expansion for [LR] obtained in a previous subsection. Their accuracy has been confirmed
by numerical simulations of the nonlinear IBVP in [Vargas 2007].

If the organism size remains unchanged (κ = 1), the signal robustness index well into the unacceptable
range as specified in [Lander et al. 2005c]. A reduction factor of κ = 1/

√
2 reduces Rb by a factor greater

than 20 to well below the acceptable range of 10%. A slightly smaller κ would reduce Rb toward the
minimum point but not practical. Beyond κmin given in (86), further reduction would only worsen the
robustness index (and hence the gradient differential).

8.2. Root-mean-square signal displacement. The signal robustness index Rb is not the only measure
of the deviation of the modified signaling gradient from the original one prior to Dpp synthesis rate
doubling. Given an existing genetic program for individual cells, a more relevant measure of robustness
may be the displacement of the same level of morphogen-receptor complex concentration due to a change
of morphogen synthesis rate. Let b̄(x, 0) and b̃(x, 0) again be the normalized signaling morphogen-
receptor gradients at location x on the apical cell surface, z = 0, for morphogen synthesis rate V̄L and
ṼL = 2V̄L , respectively. Let x and x̃ be the corresponding location where they attain the value b, i.e.,
b̄(x, 0) = b̃(x̃, 0) = b. With a change of ligand synthesis rate, x̃ is generally different from x with
x̃ − x =1x . The root-mean-square of 1x over the range of b would be another meaningful measure of
robustness:

Rx =
(1x)rms

x`− xu
=

1
x`− xu

√
1

bu − b`

∫ bu

b`
(1x)2db. (87)

To minimize the effects of outliers, we may limit the range of b to be the interval (b`, bu) with 0≤ b` <
bu ≤ b̄(0). (We may take b` = 1

10 b̄(0) and bu =
9

10 b̄(0), for instance.)
In general, the dependence of displacement 1x on κ is through the expression

b̄(x, 0)∼
1
αz

A1(x)≈
v̄zxmv1

αz31
exp(−31x)

for x ≥ 0 and the corresponding expression for b̃(x, 0). Inverting these relations, we obtain

x ≈−
1
31

ln (η31b) , x̃ ≈−
1

3̃1
ln(η̃3̃1b), (88)
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where
η =

αz

v̄zxmv1
=

1
βzxmv1µ2

z
, η̃ =

η

2κ2 , βz =
v̄z

gz
. (89)

From these we obtain

1x = 1
31

ln(η31b)− 1
3̃1

ln(η̃3̃1b)≡ c0(31, 3̃1)+ c1(31, 3̃1) ln b, (90)

with

c0(31, 3̃1)=
1
31

ln(31η)−
1

3̃1
ln(3̃1η̃), c1(31, 3̃1)=

(
1
31
−

1

3̃1

)
. (91)

It follows that

Rx =
(1x)rms

x`− xu
=

1
x`−xu

√
1

bu−b`

∫ bu

b`

[
c0(31, 3̃1)+ c1(31, 3̃1) ln b

]2db

=
1

x`−xu

√
1

bu−b`

[
c2

0b+ 2c0c1b(ln b− 1)+ c2
1

(
b(ln b)2− 2b(ln b− 1)

)]bu

b`

For sample calculations, we take bu = b(0) and b` = b(5)≈ 0, so that

Rx =
1
5

√
c2

0+ 2c0c1(ln bu − 1)+ c2
1

(
(ln bu)2− 2(ln bu − 1)

)
(92)

Evidently, Rx should be as small as possible to minimize the deviation from the normal gradient with
Rx = 0 being no change. Alternatively, we may choose κ so that Rx(κ) is in an acceptable range of
values. Below are some results for Rx(κ) for several choice values of κ for the same typical set system
parameter values used for Table 1. However, unlike Rb, the parameter v̄z now appears explicitly (through
η in c0, see (92), (89) and (91); it was taken so that βz = v̄z/gz =

1
4 for the results in Table 2. These results

are calculated from the leading term approximation of the eigenfunction expansion for [LR] obtained in
a previous subsection. Again, their accuracy has been confirmed by numerical simulations [Strikwerda
1989] of the nonlinear IBVP in [Vargas 2007].

If the organism size remains unchanged, the value of the signal robustness index is well above the
acceptable range (see also [Lander et al. 2005c]). An amplification factor κ = 1/

√
2 reduces Rx by at least

an order of magnitude to well within the acceptable range for (size-normalized) robustness. Beyond the

σz = 1/γz

1/κ2 1.0 0.5 0.2

1 0.7564 0.6177 0.5130
1/2 0.0761 0.0407 0.0231
1/2.025 0.0649 0.0316 0.0156
1/2.05 0.0546 0.0239 0.0109
1/2.10 0.0392 0.0200 0.0185
1/2.15 0.0373 0.0331 0.0340
1/2.16 0.0388 0.0365 0.0373
1/3 0.3713 0.3229 0.2783

Table 2. Values of Rx .
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exact linear
1/κ2 Rb Rx Rb Rx

1 0.3833 0.2488 0.3873 0.2460
2 0.1477 0.1570 0.1422 0.1652
2.75 0.0627 – 0.0543 –
3 0.0503 0.1017 0.0467 0.939
3.75 – 0.0687 – 0.0757
4 0.0661 0.0736 0.0701 0.1206

Table 3. Comparison of exact and approximate values of Rb and Rx (linear approximation).

minimum point (slightly smaller than 1/
√

2), a further reduction in κ does not improve Rx but worsens
it instead.

8.3. General receptor occupancy. The analysis and numerical results presented in the previous subsec-
tions are based on the leading term perturbation solution for the steady state problem though confirmed by
numerical simulation of the corresponding nonlinear IBVP for the low receptor occupancy case. Without
the assumption of low receptor occupancy, numerical simulations for the nonlinear BVP (14), (15), and
(26) have been carried out in [Vargas 2007] to show that

• size–normalized robustness persists for typical sets of biologically realistic system parameter values,
and

• linearized theory is adequate in estimating appropriate self-similar size reduction for size-normalized
robustness for the same sets of system parameter values.

Some sample results are shown in Table 3 for v̄z = 10−3 and `M = 5 with the remaining parameter
values identical to those used for Tables 1 and 2.

9. Multifactor robustness

An exogenous change affects more than just one intrinsic characteristic of a biological organism. While
we do not have experimental data to document the effects of a temperature change on other system
parameters beside the Dpp synthesis rate, we generally expect the rate constants kdeg, koff, kg and V̄R to
increase with temperature, but are less certain about the effect on the remaining system parameters such
as D and kon. We examine here how simultaneous (hypothetical) changes in several system parameters
(in response to an external change) may alter the wing disc gradient, at least as dictated by our model. For
simplicity, we assume the effect of the external change on the diffusion coefficient D to be negligible in
the range of the change considered. Typically, we proceed with the analytical results for the biologically
realistic case of low receptor occupancy which enable us to explore how size changes may ameliorate the
net effects of the changes in several system characteristics on the signaling gradient. Such an investiga-
tion constitutes a first attempt to address theoretically the multifactor robustness of temperature change
beyond its effects through the single parameter of Dpp synthesis rate.

Some observations can be made immediately about the effect of changing two of the system parameters.
First, the dissociation rate constant koff is known to be much smaller than kdeg so that αz = (gz+ fz)/hz '

gz/hz . The following is an immediate consequence of this observation and (26):
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Proposition 7. Changes in the dissociation rate constant koff have negligible effect on the signaling Dpp
gradient [LR].

This conclusion is not restricted to the low receptor saturation case, since (26) holds in general.
Next, with µ2

z = gzhz/(gz + fz)' hz = O(10−1), the approximate expression (67) applies as long as
the change in hz is not larger by an order of magnitude. In that case, Proposition 4 continues to hold and,
upon rewriting (70) as

[LR] ∼
V̄L Xmin Zmax

D(kdeg+ koff)/kon R̄0

v1

λ1
e−λ1x cos(λ1z)'

V̄L

kdeg

V̄R

kg

kon

D/(Xmin Zmax)

v1

λ1
e−λ1x cos(λ1z) (93)

for 0< x <∞, which shows the magnitude of [LR] to increase with the binding rate constant kon, we
have the following observation:

Proposition 8. A substantial change in the binding rate (such as doubling its magnitude) would have an
effect only on the magnitude of the signaling [LR] gradient.

With many rate constants playing a substantive role in the magnitude of the signaling Dpp gradient
[LR], many scenarios are possible depending on relative effects of a particular kind of exogenous per-
turbation (such as a temperature change) on these constants, resulting in the new rate constants ṼL , ṼR ,
k̃deg, k̃g, etc., with mL = ṼL/VL , mdeg = k̃deg/kdeg, and so on. An attempt will be made below to identify
some reasonable scenarios and their consequences.

One possible scenario involves the degradation rate constants kdeg and kg changing at the same rate
as the corresponding protein synthesis rate V̄L and V̄R , respectively. In that case, the following is an
immediate consequence of (93), with the diffusion rate constant D assumed to be unaffected by the
exogenous change:

Proposition 9. For the low receptor occupancy case, if

mL

mdeg
≡

ṼL/V̄L

k̃deg/kdeg
= 1,

m R

mg
≡

ṼR/V̄R

k̃g/kg
= 1,

then a size-normalized robust gradient is attained by a self-similar reduction (of all spatial lengths, Xmin,
Zmax and Xmax) by a factor of

√
2 when the binding rate doubles (in response to a substantial exogenous

change).

More generally, when mL 6= mdeg and m R 6= mg, the situation is more complicated. Upon making use
of (93) to form the ratio

[L̃R]
[LR]
'

mL

mdeg

m R

mg

mon

κ2 (94)

where mon = k̃on/kon and where all wing dimensions are changed by the same factor κ so that X̃min =

κXmin, etc., the next proposition also follows from (93):

Proposition 10. With m D = D̃/D = 1, size-normalized robustness is attained by changing all wing disc
dimension by

κ2
= mon

mL

mdeg

m R

mg
. (95)
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Evidently, a more optimal κ can be found with the help of the robustness indices Rb and Rx as was
done in a previous section on the change for the rate constant V̄L alone. While the observations in the
last two propositions are based on the analytical results, numerical simulations show that they continue
to hold for the general model for typical sets of realistic system parameter values.

10. Patterning of a smaller wing disc

It is of some interest to determine also how a higher Dpp synthesis rate and a self-similar size-reduction
of the wing imaginal disc may affect the elapsed time to a steady state gradient. Note that the lowest
eigenvalue, ω(0), of the nonlinear eigenvalue problem (37)–(41) provides a good first estimate of this half-
life measure. An asymptotic solution for this lowest eigenvalue can be obtained by a regular perturbation
solution for ω(0) in powers of the parameter ζ = gz/gr < 1,

ω(0) = ω0+ ζω1+ ζ
2ω2+ · · · .

Consistent with the low receptor occupancy assumption of this paper (and similar to the development in
[Lander et al. 2005b] for the one-dimensional model), the leading term ω0 is determined by the simpler
eigenvalue problem

∇
2a0+ [ω0− q0(x; z, ω0)] a0 = 0, (96)

where

q0(x; z, ω0)=
hzr0(x, z)(gz −ω0)

gz + fz −ω0
, r0(x, z)= ρ2 H(−x)+ H(x), (97)

with the four boundary conditions (14)–(15) applied to a0(x, z;ω0).
To solve this simpler eigenvalue problem, we note that q0(x; z, ω0) is independent of z given that the

receptor synthesis rate is chosen so that r0 depends only on x . We can then separate out the z-dependent
part by setting

a0(x, z)=
∞∑
j=1

A j (x) cos(λ j z),

where {λ j } are the solutions of (49). Orthogonality of the functions {cos(λ j z)} leads to the eigenvalue
problem

A′′j +
(
ω0− λ

2
j − q0(x;ω0)

)
A j = 0, A′j (−xm)= 0, A j (`M)= 0, (98)

where a prime ′ indicates differentiation with respect to x and j = 1, 2, 3, . . . . For ρ2
= 1 so that

r0(x, z)= 1 for all (x, z) ∈ �̄, the solutions of the eigenvalue problem (98) are the eigenpairs

Ak j (x)= ak j cos(πk(x + xm)), πk =
π(2k− 1)

2(`M + xm)
(99)

for k, j = 1, 2, . . . , with

ω0 = π
2
k + λ

2
j +

hz(gz −ω0)

gz + fz −ω0
. (100)
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The relation (100) is a quadratic equation for ω0; finding its two roots, denoted by ω(1)k j and ω(2)k j , is
straightforward. Given fz � gz � hz < 1, these roots are approximated by

ω
(1)
k j ≈ ξk j ≈ π

2
k + λ

2
j + hz, ω

(2)
k j ≈

δk j

ξk j
≈ gz. (101)

with gz ≈ ω
(2)
k j � ω

(1)
k j ≈ π

2
k +λ

2
j +hz . The decay rate is dominated by the smallest (lowest) ω(2)k j , namely

ω
(2)
k j ≈ ω

(2)
11 ≈ gz . With

ω
(2)
k j t ≈ gzt = kdegT,

the expression e−gz t
= e−kdegT gives a half life of 1/kdeg which does not vary with size changes in Zmax,

Xmin or Xmax. We have then the following result on time to steady state gradient:

Proposition 11. Starting with some small initial (perturbation from the steady) state, the time to a time-
independent steady state is determined by the lowest member of the second family of frequencies, which
is approximately gz . Moreover, the corresponding actual half-life is independent of size changes and
depends only on kdeg.

It follows that the half life of transients would vary only with a change in kdeg (caused by some
exogenous change) and a size change (self-similar or not) would have no effects on this change. In
particular, doubling the magnitude of kdeg (caused by a temperature rise) would reduce by half the half
life of transients independent of any size changes.

We note that the situation is not the same for the other family {ω(1)k j }. With

ω
(1)
k j ≈ ω̃

(1)
k j ≡ π

2
k + λ

2
j

(which is also independent of the size parameters {Zmax, Xmin, Xmax}) and with t = DT/Z2
max, a size

change via Zmax by an amplification factor κ leads to

T =
t
D

Z̃2
max, ω

(1)
k j t =

Dω(1)k j

Z̃2
max

T =
D

κ2 Z2
max

T (π2
k + λ

2
j ). (102)

Hence, it would take less time for all harmonics of a smaller disc associated with the first family of
(faster) decay rates ω(1)k j to reach the same level of concentration of [LR]. As previously mentioned, size
changes have no effect on the actual time to steady state given (102). The main purpose in discussing the
family {ω(1)k j } at all is to show that its effect on half life is in the same direction as that of ω(2)k j ' gz and
hence preserving the size-normalized robust nature of the latter when there is a significant exogenous
change.

While a reduction of half life of transients is not synonymous with the speed of growth observed
in nature, e.g., faster growth of fruit flies in hotter temperature [de Moed et al. 1997; French et al.
1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002], it certainly is not inconsistent with such
observations and may very well contribute to its realization.

11. Concluding remarks

Exogenous (environmental) changes, such as a substantial change in ambient temperature, are expected
to affect multiple intrinsic system characteristics such as morphogen and receptor synthesis rates, various
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binding, dissociation and degradation rate constants, and diffusion rates, of a biological organism. If the
effects are substantial as in the case of a 6◦C change in ambient temperature on the Dpp synthesis rate
in the Drosophila wing imaginal disc, they could alter the biological development of the organism. The
temperature–Dpp synthesis rate relation, being the only known data of this type, prompted us to initiate an
investigation, of at first limited scope, on the effects of exogenous changes on biological development by
examining the effect of the synthesis rate change on the signaling Dpp–Tkv concentration gradient. For
biologically realistic gradients occurring in the low receptor occupancy range, we show that a signaling
gradient is approximately proportional to the Dpp synthesis rate. It is then shown that the effect of a
synthesis rate change may be ameliorated by self-similar size changes to result in a (size-normalized)
robust development as measured by several different robustness indices introduced in Section 8.

To the extent that a single exogenous perturbation affects generally more than a single system char-
acteristic, the paper also investigates briefly, in the absence of experimental data, how the effects of
multiple system characteristic changes on the signaling gradient can also be ameliorated by self-similar
size changes, resulting again in size-normalized robustness.

Changes in morphogen gradient shape with temperature and changes in wing disc size with tempera-
ture are probably not independent phenomena, given that Dpp and its receptor Tkv control not just cell
identity, but also proliferation [Martin et al. 2004; Martin-Castellanos and Edgar 2002]. Indeed, we do
not know whether the primary effect of temperature is to change the size of a morphogen field, and then
the morphogen gradient responds by re-scaling to fit the new size, or if the primary effect of temperature
is on the morphogen gradient, and the patterned field changes its size in response to the morphogen
gradient. Most likely reality lies somewhere between these extremes. (We do know, however, that the
wing disc BMP gradient can re-scale to fit alterations in disc size imposed by perturbations other than
temperature [Teleman and Cohen 2000].)

Clearly, there is much we do not know about the effects of temperature on biological development or,
more fundamentally, its interaction with morphogen gradients. Given how important temperature effects
are likely to have been in evolution, there is a great need to gather some of the basic information that
will be required to understand these effects. The effort of this paper is a step in this direction. Our results
have shown that, whether synthesis rate change is a direct or downstream effect of a temperature change,
a (self-similar) change of wing disc size would nearly offset the effects of a doubling of morphogen
synthesis rate on the signaling gradient to orchestrate a size-normalized development of wing discs.

At the organismic level, flies grow slower at low temperature and to larger size including having
larger wings; they have smaller wings and grow faster (but smaller) at higher temperatures [de Moed
et al. 1997; French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. The faster
growth rate of the flies at higher temperature is probably related to faster biochemical reactions not
addressed by the mathematical model of the present investigation. While the molecular mechanisms
that lead to a speed up of the relevant biochemical reactions are unknown to the authors, faster growth
may simply be a consequence of (self-similar) size reduction (to maintain size-normalized development
robustness) requiring less biological constituent parts for a smaller fly. Time to a steady-state signaling
gradient is not synonymous with biological growth rate. Nevertheless, it seems reasonable that the half
life to steady state signaling gradient should be consistent with the different growth rate. Given the
result of the previous section, it would appear that degradation rate constants kdeg should also change
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with exogenous temperature perturbations in order to affect the time to a steady state signaling Dpp–
Tkv complex gradient (which should contribute to but is unlikely to be completely responsible for the
speed of general development and growth). As there are no measurements available to validate the size-
normalized multifactor robustness of development (and growth) predicted by our analysis and numerical
simulations, it is hoped that observations made herein would stimulate experimental work for measuring
the effects of a significant change in temperature on the various rate constants as was done for the Dpp
synthesis rate V̄L (in the Lander lab) mentioned in the first section of this paper.
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