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pact implicit integration factor (cIIF) method was later developed for efficient storage
and calculation of exponential matrices associated with the diffusion operators in two
and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF
cannot be directly extended to other curvilinear coordinates, such as polar and spherical
Semi-implicit methods coordinates, due to the compact_representation for th_e .diffusion te_rms in clIIF. In this paper,
Integration factor method we present a method to generalize clIIF for other curvilinear coordinates through examples
Reaction—diffusion equations of polar and spherical coordinates. The new clIF method in polar and spherical coordinates
Adaptive mesh refinement has similar computational efficiency and stability properties as the cIIF in Cartesian coor-
dinate. In addition, we present a method for integrating cIIF with adaptive mesh refine-
ment (AMR) to take advantage of the excellent stability condition for cIIF. Because the
second order clIIF is unconditionally stable, it allows large time steps for AMR, unlike a typ-
ical explicit temporal scheme whose time step is severely restricted by the smallest mesh
size in the entire spatial domain. Finally, we apply those methods to simulating a cell sig-
naling system described by a system of stiff reaction-diffusion equations in both two and
three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent per-
formance of the new methods is observed.

Keywords:

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Integration factor (IF) or exponentially differencing time (ETD) methods are widely used for solving temporal nonlinear
partial differential equations (PDEs). In this approach, a linear part, which is often taken as the terms of high order deriva-
tives of a nonlinear PDE, is exactly evaluated, leading to excellent temporal stability property (see [1] for review). One exam-
ple is an application to advection-diffusion equations using exact treatment of their linear part, and the resulted explicit
temporal scheme has stability properties similar to those of typical implicit schemes [2]. In general, IF methods and ETD
methods are particularly efficient for systems with high order derivatives that requires small time step for a typical explicit
temporal scheme [3-7].

For reaction-diffusion equations with stiff reactions, a class of semi-implicit integration factor (IIF) method was recently
developed to deal with stiffness of the systems [8]. In IIF, the diffusion term is treated exactly such that the stability
constraint due to spatial discretization for diffusion is removed while the reaction term is treated implicitly to handle the
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stiffness of reaction terms. This leads to great stability property for IIF while the extra cost associated with the implicit treat-
ment of reactions is minimal because of decoupling between calculations of diffusion and reactions in IIF. In particular, its
second order scheme is linearly unconditionally stable and the high order scheme has large stability regions.

While the IF and ETD (explicit or implicit) schemes improve the stability conditions, the schemes require storage of expo-
nentials of matrices resulted from discretization of the linear differential operators in the PDEs. Although the discretization
matrices are sparse, their exponentials are not. For two and three spatial dimensions, the storage sometimes may be prohib-
itive computationally. To overcome this difficulty, recently compact representation of the discretization matrices was intro-
duced in the context of implicit integration factor method [9]. This compact implicit integration factor (cIIF) has the same
stability properties as the original IIF [8] but with significant improvement on storages and CPU savings.

In clIF, the discretized solutions is represented in a form of matrix rather than a vector in IIF while the discretized diffu-
sion operator are represented in matrices whose size is much smaller than the standard sparse matrices for diffusion oper-
ators [9]. Such compact representation of diffusion operators, as demonstrated in terms of a Cartesian coordinate for
Laplacian operators in [9], is essential for derivation of compact IIF that has tremendous advantage in computational effi-
ciency and storage over standard IIF in high spatial dimensions. However, it is not clear how clIF can be directly applied
to systems in other curvilinear coordinates, such as polar, spherical or cylinder coordinates that are often convenient for rep-
resenting systems in non-rectangular geometries.

In this study, we generalize cIIF methods for Cartesian coordinate to other curvilinear coordinate systems using examples
of polar and spherical coordinates. In this approach, the matrices derived from a compact representation of diffusion oper-
ator in non-Cartesian coordinate need to be diagonalized once and to be pre-calculated before the solution is updated at each
time step. The new clIF for polar and spherical coordinates is found to have similar stability properties as the clIF for the
Cartesian coordinate along with a similar computational cost.

One natural application of cIIF methods in high spatial dimensions and in different coordinates is for temporal PDEs incor-
porated with spatially adaptive techniques. As we know, when solving nonlinear PDEs with sharp gradients in localized spa-
tial domain, a local mesh refinement technique is superior to the uniform grid approach because one can cluster the spatial
grid points in regions where needed. As a result, a smaller number of total spatial grid points are used for adaptive methods
compared to the uniform grid, leading to computational and storage savings in spatial discretization.

However, the temporal updating for typical explicit schemes on spatial adaptive approach still requires the time step be
restricted by the smallest spatial mesh size. For example, for reaction-diffusion equations, the time step must be propor-
tional to square of the smallest spatial mesh size. As a result, the time step for the entire spatial domain is dictated by
the finest mesh [10] and the saving gained from spatial adaptive mesh refinement is compensated by the extra costs asso-
ciated with the temporal schemes. One possible solution for this is to use multirate time integration schemes in which the
time step can vary across the spatial domain [11-14]. Another alternative is to use IF or ETD methods that have better sta-
bility conditions. In particular, unconditionally stable schemes which allow large time steps independent of the spatial grid
size, such as the second order clIIF (cIIF2), may be ideal for solving temporal solutions of nonlinear PDEs that requires adap-
tivity in spatial discretization.

In this paper, we apply clIF2 to reaction-diffusion equations using a block-structured adaptive mesh refinement (AMR)
algorithm [15] for both two and three spatial dimensions. The AMR, which is based on Cartesian meshes and overlapping
grids, was previously used for simulations in fluids [16-23], materials [24,25], and heart tissues [26-28]. In this approach,
a hierarchy of refinement grids is constructed dynamically based on a suitable error estimate of the solution, and then the
composite overlapping and structured grids are used to approximate the space domain [16,29-31]. Similar to other typical
temporal schemes for AMR, in our approach the solution at all grids, coarse and fine, are updated from the current step inde-
pendently. Then the solutions at the coarse grids that are in common with the fine grids are replaced by the solution at the
corresponding fine grids to form the overall updated solutions. Numerical examples show that cIIF2 with AMR allowing for
uniform large time steps is superior to the explicit temporal schemes which require much smaller time steps due to stability
constraints. To ease the programming complexity in implementation, we also use many capabilities of the Overture object-
oriented class library [32,33].

Finally, we integrate the clIF2 in polar coordinates for two spatial dimensions with AMR and integrate clIF2 in Cartesian
coordinates with AMR in three spatial dimension for a biological application in cell signaling. The integrated scheme is found
to be robust and efficient.

This paper is organized as follows. The generalization of cIIF for systems in polar coordinate and the corresponding
numerical examples are presented in Section 2; the clIIF in spherical coordinate is given in Section 3; the cIIF in combination
with AMR is introduced in Section 4; and a biological application using cIIF and AMR in polar and Cartesian coordinates is
presented in Section 5.

2. Compact implicit integration factor (cIIF) method in polar coordinate

2.1. Derivation

In this section, we derive cIIF method for a two-dimensional reaction-diffusion equation in an annular domain using a
polar coordinate. The system with no-flux boundary conditions for both directions takes a form
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{%—?—D(%+%%§‘+%3—3>+F(u), (r0)eQ={a<r<b, c<0<d}

1
2(0,0) =5 (b.0) = 5(.0) = 5(.d) =0, !

or —or 90
After discretizing the spatial domain by a rectangular mesh: (r;, ;) =(a+ (i — 1) h,, ¢+ (j — 1) hy) where h, = (b — a)/(N — 1),
hy=(d—-c)((M—-1),r;=(i—1)hyand 1 <i<Nand 1 <j <M, we use the second order central difference discretization for the

diffusion terms:

duu u,-+14—2u,~+u-,1- Uj; 1—2u--+u--,1 Ujr1j — Uj_1
-D J J i-1j ij+ ij ij i+1 i-1j Flu: ). 2
dt h2 + T,zhé + Zrihr + ( lJ) ( )

r

To express (2) in a compact form, we define the matrix U for the discretized solutions:

Up U2 -+ v UM
Upyp Uy -+ UM Um
U= ,
Ui Un2 - UNM UNM/ Nem
and
-2 2 o o --- 0
1 -2 1 0 --- O
0 1 -2 1 .- 0
GPXP = )
o o --- 1 -2 1
O 0 - 0 2 =-2/.,
0 0 0 0 e 0
-1 /Tz 0 1/T2 0 s 0
0 -1/r; O 1/r5 0
EP><P = . . 5
0 0 —1/Tp,1 0 1/Tp,1
0 0 0 e 0 0 PP
1/ 0 0 0 0
0 1/ 0 0 0
0 0 1/2 0 0
FPXP =
0 0 e 0113 0
0 0 U 0 1/r3 PxP
After defining A; = h%GNxN, B= h%Gsz\m A, = %ENxN, C =Fy,n, and A = A; + A,, we re-write the semi-discretized form (2)
as T 0
Z—?:AU—%CUB—&-}"(U). 3)

Assume B is diagonalizable: B = PDP !, where D is a diagonal matrix with the eigenvalues of B as the diagonal elements.
Let V=UP, then (3) can be written as

av _
dt
Notice that both matrices C and D are diagonal, with the ith and jth diagonal elements in C and D being c; and d;, respectively.

Define C = (¢j) = (cid;), wherei=1, 2,..,N,j=1, 2,...,M, and an operation ‘(e’) by taking exponentials of a matrix element
by element,

AV + CVD + F(VP1P. (4)

(e = (e%).
Define another operator ‘@’ for element by element multiplication between two matrices:
(HoL); = (hyly),

where H = (hy), L= (I;).
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Then, direct calculations on (4) leads to

—At «\—Ct =
d(e Avc?t(e ) ) _ eMFVP PO (e') . ()

Integration of (5) over one time step from ¢, to t, . ; = t, + At, where At is the time step, results in

~ At ~ ~
Voo = MV, © (€)' 4 eMon (/ e M F(V(ta+ )P PO <e*>*“fdr) © (). (6)
0

Since V = UP, then the equation for U can be recovered from (6):

-~ At ~ ~
Uyt = e MUP o () P e ([T e MEUty )P e ) Cdr) o @) P 7)
0

To construct a scheme of rth order truncation error, we define

G(t)=e M F(U(t,+1))P o (1), (8)
and approximate G(7) using a (r — 1)th order Lagrange polynomial, P(7), at a set of interpolation points &, + 1, ty,.. . th+2

T 4 jAt
(j—DAt ©)

r—2 ~ r=2

'P(’L’) = Z eiAAt]:(Un,,‘)P@ (e*)lCAt H
i=—1 j=-1

j#i

The second, third and fourth order approximations to G(7) are listed as the following.

1. Given G(0) = F(U,)P, G(At) = e A F(U,,1)P © (e*) Y, the second order approximation to G(t) is
_1
At

2. Given G(—At) = eP F(U,_1)P & ("), G(0) = F(U,)P,G(At) = e PA F (U, )P ® (e) Y, the third order approximation to
G(7) is

P(1) [f(Un)P(At —T)+eMFU,)Po (e) |, 0< T <AL

P(1) = 2;8 {e“‘“]—'(Un,l)P ® (€)M (T — At) — 2F(U,)P(T + A)(T — At) + e M F(U,q)P © () “Air(T + Ab) |,
0<1<AL

3. Given G(—2At) = e F (U, ,)P © (e*)*Y, G(—At) = e F(U,_1)P & (e) ™, G(0) = F(U,),G(At) = e PAF (U, )P o (e7) N,
the fourth order approximation to G(t) is

P(7) {—eZAAt}'(Un_z)P ® (e*)zzm(r — ADT(T 4 At) + 3eM F(U,_1)P O (e )E“(r — ADT(T 4 2At)

T BAL
C3F(U)P(T — A)(T + ALY (T + 2A0) + e P F(U,. )P o (€') “MT(T + AD)(T + 2A0)|, 0< T <AL

In terms of P(7), (5) takes the form,

~ .At ~
Upy = eMU,P o (&) NP 4 of “( ?(r)df) o ()P, (10)
0
So the new rth order implicit schemes are
~ r—2 ~
Uy = eMUPO ()P + At (ocnﬂjf(un+l )+ Y o e AN F(U, )P o (e*)““)CA[P1) : (11)
i=0

where o, + 1, 0, Oy _ 1,---,0n _ r+ 2 are coefficients calculated from integrals of the polynomial in P(7),

1 A =2 r4jAt .
= L -1<ig<r-2.
Otni At/o j:|7|10._1.)Atdr, 1<igr-2 (12)
j#I

In Table 1, the value of coefficients, o, for the schemes with order up to four are listed.
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Table 1
Coefficients for cIIF schemes of order one, two, three and four.
Order Olps+1 Ol On 1 On_2
1 1 0 0 0
2 1 1 0 0
3 2 4 0
In particular, the second order approximation of jo (t)dr is
At —AAt * *CA[
F(Uy)P+e M FU,1)PO (e
g(rydr ~ T UPTETTF U )POEY) 77 (13)
0 2
leading to the second order IIF scheme
At = At
Upr = (U + 5 F(Un) B+ 5 A Un) (14

where B=P © (e)*“P.

Like the one-dimensional form [8], the nonlinear reaction term at t,.; in (14) is decoupled from the diffusion term. As a
result, only a local nonlinear system needs to be solved at each spatial grid point. The two matrices e’ and (e*)" have a
size of N x Nand N x M, respectively, similar to the compact integration factor method in a Cartesian coordinate system [9].

Remark 1. If system (1) has Dirichlet boundary condition (s) in the r or (and) 0 direction (s), for instance, in 0 direction:

u(r, C) :f(r>7 u(r, d) = g(r)a

the solution matrix U becomes

Uip W3 -+ Uim—2 UM
Upp Ux3z -+ Uym—2 Uzm-1

U= ,
Unz UN3 -+ UNM-2 UNM-1/ Nem-2)

and the corresponding matrix B becomes

-2 1 o o0 --- O
1 -2 1 0 0
o 1 -2 1 --- 0
22
h; . . .
o o --- 1 -2 1
0 o .- 0 1 -2 (M=2)x(M-2)
All other three matrices A4, A,, C remain the same. The semi-discretized form (3) then becomes
Z—?:AU—%CUB—%]—'(U)—%CS, (15)
where
fl@ 0 - 0 g
g D|f@rid 0 - 0 glari
h? :

f(b) o -0 g(b) Nx(M=2)

By following a similar analysis, the second order scheme similar to (14) becomes

AL ercsB 4 Cs). (16)

2(

At ~ At
U, = ehat <Un + 7]:(Un)) B+ 7f(Un+1) +

Remark 2. Since the corresponding matrix B in (15) for the Dirichlet boundary in the ¢ direction is real symmetric positive
definite (SPD), the matrices P and D can be calculated analytically. Let # = /(M — 1), the eigenvalues of B are



X. Liu, Q. Nie/Journal of Computational Physics 229 (2010) 5692-5706 5697
2D . 4D . 5. .
W= =5 (1 -cos(jin) = —— sin’(jn/2), j=1.2,....M-2,
h hy
and the corresponding eigenvectors are
w; = [sin(jn), sin(2jn), ... sin(M — 2)jn)]" = [sin(jkn)}"?

Then P = [wy,Ws, ..., Wy_»]. One can then apply Gram-Schmidt process to obtain an orthogonal matrix P, i.e. P~' = P'.
For the case when matrix B is in a form as depicted in (3) for the no-flux boundary conditions in 6 direction, the analytical
form of P and D can be calculated similarly. Denote # = /(M — 1), the eigenvalues of B are

1 = —h%(l — cos(jn)) = _% sin’(jn/2), j=1,2,....M—=2, Wy = _%, Uy =0,
and the first M — 2 corresponding eigenvectors are
w; = [1, cos(jn), cos(2jn), ..., cos((M — 2)jn), (—1)j}T, j=12,....M-2.
The other two eigenvectors corresponding to p,, ; = —;‘1—”2? and uy =0 are
wyor = [1, =1, (=DM = ()TN wy, =11,1,.. 1)
SoP = [Wi,ws,...,wy] and a Gram-Schmidt process leads to an orthogonal matrix P, i.e. pl=pT.

For other cases in which the eigenvectors and eigenvalues of the corresponding matrix B cannot be calculated analytically,
one can pre-calculate those matrices, for example, using the function “eig” in Matlab. Because those matrices never change
during the temporal updating if a fixed time-step is used, one needs to compute them once and store them. Many numerical
methods are available for diagonalization of matrices [34,35]. The “eig” function in Matlab is based on LAPACK [36]. In prin-
ciple, as long as the errors for calculating the eigenvectors and eigenvalues are significantly smaller than the spatial and tem-
poral discretization errors, the calculations of such eigenvector and eigenvalue should not affect the order of accuracy of the
methods. This is observed in our simulations shown below. The CPU time for diagonalization of a matrix with dimensions
320 x 320, which is a typical size we use, is 0.25 s when using “eig”. Since this portion of CPU time, as shown in the following
sections, is significantly smaller than the overall CPU time for the entire temporal evolution of the simulation, we do not
include this portion of the CPU time in the tables shown below.

Remark 3. In comparison with the compact implicit integration factor (clIF) methods in Cartesian coordinates in two
dimensions, here we list the corresponding discretization form in space [9]:

Z—?:AU+UB+]—'(U); (17)
and the corresponding second order cIIF method:
At At
Un+1 = eAAt(Un +7~7‘-(Un))eBAt+7}—(Un+l)- (]8)

From the preceding derivation of cIIF methods in polar coordinates, we see diagonalization of matrix B as in Eq. (3) in general
is required and the extension from Cartesian to polar coordinates needs extra care and calculations.

2.2. Numerical test

To test the accuracy and efficiency of the cIIF scheme (16) in polar coordinate, we study the following system of the polar
coordinate:
%:0.1<%+,i23273+;g—:> +02u, (x,y)eQ={5<r<10,0<0<7);
u(r, 0)|,_s = %1 cos(5 cos 0) cos(5 sin 0); (19)
u(r, 0)|,_,, = €*'* cos(10 cos 0) cos(10 sin 0);
u(r,0)|,_, = e®t cos(r); u(r,0)|,_, = e cos(r).

This system (19) has an exact solution u(r,0) = e®‘cos (rcos 6) cos(rsin6).

The maximal error of solution is measured by the maximal difference between the numerical solution and the exact solu-
tion, denoted by L* error = max;;|U;;"™ — Uf}‘a“|. The simulation is carried up to time t = 2, and the number of grid points for r
and 0 is set equal to each other for convenience of comparison. The time-step size is chosen to be At = 0.5h, for checking
order of accuracy. As seen in Table 2, the simulation using the scheme (16) is of order two and the time step is not con-
strained like a typical explicit temporal scheme. The stability property and computational cost of the scheme (16) is similar
to the standard cIIF2 [9].
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Table 2

Error, order of accuracy, and CPU time for clIF2 in polar coordinate of (19). The unit for CPU time is second.
N x N L> error Order CPU
40 x 40 4.58 x 1073 - 0.23
80 x 80 123 x 1073 1.90 0.52
160 x 160 3.1 x10™* 1.99 241
320 x 320 8.23 x 107° 1.91 64.24

3. cIIF in spherical coordinate
3.1. Derivation

We now derive the clIF in spherical coordinate. Without loss of generality, we consider a system with no flux Neumann
boundary conditions in each direction:

p 52 ‘ 2 ¢

2= D(58+ 25+ oy S8+ 255 2+ 5 58) + Flu),

2(a,0,¢) =£(b,0,¢) =0, (20)
w(rc.¢)=5(rd¢) =0,

o (r.0.e) =3 (r.0.f) =0,

where (x, y) e Q={a<r<b, c<0<d, e<¢<f}. Similar to the two-dimensional system (1) in polar coordinate, we denote
h:, hy, hy as the spatial step size, and N, Ny, Ny as the number of grid points in r, 0, ¢ direction, respectively. After apply-
ing the second order central difference discretization on the diffusion, we obtain a system of nonlinear ODEs as the
following,

dujje D (uiﬂj,k —2Uij + Ui1je Uitk — Uis1k n Uijir e — 2Uijk + Uij—1k COS ¢y (Uijgs1 — Uijk—1)

dt hf r2h, r? sin® ¢ 2r? sin ¢yhy
Uj; — 2U;; Ujik—
+ ij,k+1 z‘gk + ij,k—1 + F(u”’)k). (2])
r?h¢

Next we define A; = h%GNrXerAZ = h%EerNr,A, =Fy,xn,, B = I%GNMN”,C] = ,%GNMN«»' where G, E, F are defined in the pre-
. . T 0 q
vious section and ’

1/sin® ¢, 0 0
0 1/sin” ¢, 0 0
0 0 1/sin”¢5 0 0
C, =
0 0 0
0 1/sin’ ¢y, 0
2
0 0 0 0 1/sin ¢N¢ Ny,
and
0 0 0
N U 0
p | 0 e o0 g 0
CG=—-
2hy | o . .
—COSdN, 1 COS N, -1
sin z/)Nd),] cos </;N¢,1
0 0 0 NyxNg

Denoting U = (u;;x) and defining A= A; + A, and C=C; + C,. We write (20) in the following compact representation,

U, = AoU + A,aBaC,0U + AaCoU + F(U), (22)
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Table 3

Error, order of accuracy, and CPU time for cIIF2 in spherical coordinate of (26). The unit for CPU time is second.
NxNxN L error Order CPU
20 x 20 x 20 9.26 x 1072 - 0.56
40 x 40 x 40 243 x 1073 1.93 123
80 x 80 x 80 6.27 x 107 1.95 80.5

where

(AsU) = <2<A>i_,ulj,k>7

=1

Ny
(BoU) = (Z(B) j,zui,l,k) : (23)

=1

(CaU) = (ZJC),(,IuW).

=1

Assuming both matrices B, C can be diagonalized, we have B = P;D;P;',C = P,D,P,', where D; and D, are diagonal
matrices. Let V = P;@P,@U, then (22) becomes

V; = AV + AoD1@C,0V + A;@D26V + P1@PyoF (P P, aV). (24)

_ Denote g, d,i,~ci. dy; as the ith diagonal element of matrices A, D;, C; D, respectively, and define
(D1)u‘k = (aidyjcy), (DZ)U‘ = (a;dy;). After defining a new operation similar to the system in polar coordinate:

(€)™ O V)yj = ("% yp);
and
(€2 V) = (€ vip);

we obtain the second order scheme for (24) using a similar approach to the scheme (16) for polar coordinate,

D D At At
U, = P;I@P;@e}\m@(e*)mm o (e*)DzAt 0 P,@P2@<Un +7F(Un)> + 7F(U,m). (25)

The higher order schemes can be derived similarly. The approach for deriving the cIIF scheme in polar or spherical coordinate
can be easily extended to systems in cylindrical coordinate.

3.2. Numerical test

We test the numerical scheme (25) using the following simple system in spherical coordinates,

a0 am

ou ou 2 0u 1 du cosp ou 1 d%u
=0t s T e o Y 2sing 90 T 2 a2
or* 1 or r2sin®¢ 00° T°SINg I T 9

) +02u, (26)

with the similar Dirichlet boundary conditions as that of system (19). The exact solution of (26) has a similar form as that of
(19). The solution is calculated up to ¢ = 2 and we choose h, = h, = h,, and At = 0.5h, for convenience of comparison. Similar to
the two-dimensional case in polar coordinate, the scheme (25) exhibits the second order accuracy and it is very efficient for
moderate size of N, as seen in Table 3.

4. Compact implicit integration factor methods with adaptive mesh refinement
4.1. Adaptive mesh refinement (AMR)

Here, we use a block-structured Cartesian mesh refinement technique developed for hyperbolic conservation laws
[10,15]. In this approach, finite difference Cartesian meshes are refined by adding overlapped finer meshes in desired spatial
locations where the solutions exhibit sharp gradients (see Fig. 1 for an illustration). The refinement grids are aligned with the
underlying base grid and are arranged in a hierarchy with the base grids belonging to level [ = 0, the next finer grids being
added to level I =1 and so on. Grids on level [ are refined by a refinement ratio n, from the grids on level I — 1. The grids are
properly nested so that a grid on level | is completely contained in the set of grids on the coarser level | — 1. This requirement
is relaxed at physical boundaries to allow refinement grids to align with the boundary.
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original grid 1st level refinement

2nd level refinement composite mesh

Fig. 1. An example of overlapping block-structured Cartesian mesh refinement. Two levels of refinement are applied to the local region.

In addition to re-gridding, the other two major steps in a AMR algorithm are the error estimation (or indicator) to deter-
mine where to refine the meshes and to interpolate solutions at the added grids. The error indicator is based on estimated
magnitudes of the first and second derivatives in the numerical solution using finite difference approximation [10], and the
region of refinement is determined by tagging cells where the error estimate exceeds a prescribed tolerance. In general, solu-
tion values on the new grid are interpolated from the solutions on the coarse grid. A basic AMR interpolation operation in-
volve interpolation of solution values at new grid from the finest level grid available on the old grid hierarchy, interpolation
at ghost points in the buffer zone of refinement grids, and interpolation of coarse grid points that are hidden by refinement
grids [15]. In addition, each boundary face of each component grid block treated as either a physical boundary (where
boundary condition is prescribed), a periodic boundary or an interpolation boundary. Typically, one or more lines of ghost
points are created for each component grid block to aid in the application of boundary conditions. We use periodic boundary
conditions in the buffer zones for the overlapping grid blocks.

The implementation of grid generation is handled by object-oriented programming using Ogen [15]. A programming flow
chart for solving a time-dependent PDE using AMR at every re-gridding steps, defined as nre_gig, along with a temporal
scheme, named as timeStep(), can be written as the following [10]:

PDEsolve(G, tgna)
{
t=0; n=0;
u! = applylnitialCondition(g)
while t < tgna
if(n mod nNyegria == 0)
e; = estimateError(g, u');
G" = regrid(g, e;);

u; = interpolateToNewGrid(u], G, G"); (27)
G=gul =uj;
end

u"! = timeStep(G, u?, At);
t=t+At; n=n+1;
interpolate(g, u?);
applyBoundaryConditions(g, u?', t);
end

}
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4.2. clIF incorporated with AMR

We use reaction-diffusion equations in two spatial dimensions with a Cartesian coordinate and cIIF2 of second order
accuracy as an example to illustrate integration of AMR and compact integration factor method [9]. As seen in (27), after
the solution values at the newly added grids are interpolated from the solutions at the coarse grids at the current time step,
the solutions at the next time step are updated from the solution at the current time step at each grid level independently.
The solutions at the intersection grids between the coarse and fine grids are always using the solutions at the fine grids after
updating. The operation “timeStep()” in (27) representing the step for temporal updating in AMR is where the cIIF2 is
incorporated.

Because clIF2 requires repeated use of exponentials of diffusion matrices, we calculate those matrices once for each grid
block with every grid level that are needed for the entire simulation, and store them. Specifically, at the ith composite grid
level and its kth grid block, we evaluate and store the exponential of the diffusion matrix e““% ™/ where N; and Ax;, is the
number of grid points and the grid size in x-direction of each grid block, respectively. We use a similar approach to handle
e“™icMi)A in the y direction, with M, representing the number of points in y direction and Ay, standing for the grid size in y
direction.

So at each time step, the storage cost for clIF2 is of order }~,>":M; N; , which is of the same order of the number of grid
points in the entire domain. The operation count is of order Zkz,-(Mfk N;, + Ml-kak) because the dominant cost of clIF2 meth-
od is the vector-matrix multiplication associated with exponential of matrices. The overall computational complexity is in
the same order of cIIF for uniform meshes [9]. In contrast to a typical explicit temporal scheme integrated with AMR for
which the time step must be constrained by the finest spatial grid size, the time step for cIIF2 with AMR is not restricted
by the size of spatial grid at all in terms of stability because clIF2 is linearly unconditionally stable.

The same approach in combining AMR with cIIF2 can be directly applied to systems in polar coordinate as well as three-
dimensional systems in spherical, cylindrical or Cartesian coordinate.

4.3. Numerical tests

A linear reaction-diffusion equations with an exact solution is tested:

ou __ _ 2
M = aAu — 2a x (tanh(x))’u, (x,y,2) € Q, (28)
n-Vu=0, (x,y,2) € 092,
where Q={-10<x<10, 0<y<m, 0<z<m}. The analytically approximated solution of (28) takes a form
u(x,y,z,t) = e tanh(x) cos(y) cos(z). (29)

This solution satisfies Eq. (28) and boundary conditions in y and z directions exactly, and it approximates the boundary con-
dition in x direction with g—i ~ 107 at x= —10, 10, which is much smaller than the error in simulations. We also study a cor-
responding two-dimensional case of (28) by omitting the z variable.

In all simulations, the diffusion coefficient is a = 0.1 and the solutions are studied at final time t = 1. The differences be-
tween the numerical solution and the analytical solution are measured by both maximum error at all grid points, denoted by

L™ error, and an average error, denoted by L?, for the case of a polar coordinate system, [? error = \/ (U™ - Ufj-“’“fr,—hrho.
For other curvilinear coordinate systems, such as spherical coordinates, the L? error is defined similarly. The solution has a
sharp gradient around x = 0 where the mesh is refined using AMR based on the error indicator given in [10]. The ratio of each
refinement level is chosen to be two for all testing cases.

First, we compare clIF2 with a uniform grid at four different spatial resolutions with the cIIF2 with AMR using four levels
of local refinement (see Tables 4 and 5). For both two and three-dimensional cases, the coarsest grid size and the finest grid
size are chosen to be the same for either the uniform grid or AMR. As expected, the errors using AMR are comparable with
the errors using uniform grid when the uniform mesh size is the same as the local refinement mesh size, because the sharp
gradient in the solution is localized around x = 0. However, the CPU cost for the AMR is much cheaper than the uniform grid
with the finest grids. For the two dimensional case, AMR is cheaper than the uniform grid in the second finest mesh size

Table 4
cIIF2 with uniform grids and cIIF2 with AMR in two dimensions. In AMR, the coarsest grid is 20 x 20. At =0.005 for all cases.
Method N x N L> error L? error CPU (s)
20 x 20 5.6 x 1072 48 x 1072 45
clIF2 (uniform) 40 x 40 14 x 1072 12 x 1072 12.3
80 x 80 34x1073 29 x 1073 67.8
160 x 160 8.4 x10~* 7.4 x 107 357.9

clIF2 (AMR) 4-levels 8.4 x10~* 7.4 x 107 40.3
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Table 5
clIF2 with uniform grids and cIIF2 with AMR in three dimensions. In AMR, the coarsest grid is 10 x 10 x 10. At =0.01 for all cases.
Method NxNxN fis= 1? CPU (s)
10 x 10 x 10 3.6 x 107! 29 x 107! 5.2
clIF2 (uniform) 20 x 20 x 20 9.2 x 1072 7 x 1072 452
40 x 40 x 40 24 x 1072 1.4 x 1072 350.1
80 x 80 x 80 56 x 1073 33x10°3 2798.7
clIF2 (AMR) 4-levels 5.6 x 1072 33 x 1073 3782

while for the three-dimensional case, AMR is only slightly more expensive than the uniform grid in the second finest mesh
size.

Next, we compare clIF2 and Runge-Kutta both in second order using AMR by varying the level of refinement. We study
three, four, and five levels of local mesh refinement in a two-dimensional system using both cIIF and Runge-Kutta method.
As seen in Tables 6-8, Runge-Kutta method converges only when the time-step size is sufficiently small to satisfy stability
constraint due to the smallest spatial grid size. In Runge-Kutta method, more levels of refinement, leading to smaller size in
the finest grid, requires smaller time-step size for convergence. However, clIF2 converges at all levels of refinement for large

Table 6
Comparison between clIF2(AMR) and RK2(AMR) for three-level of local mesh refinement.
At clIF2(20(40(80)) RK2(20(40(80))
L= L? CPU (s) L™ error L? error CPU (s)
1072 1.2 x 1072 8x1073 13.2 - - -
5x 1073 34x 1073 2.1x1073 28.5 - - -
2.5 %1073 89 x 107* 5x 107 67.6 8.8 x 107* 49 x 107 62.9
Table 7
Comparison between cll[F2(AMR) and RK2(AMR) for four-level of local mesh refinement.
At clIF2(20(40(80(160))) RK2(20(40(80(160)))
L fi2 CPU (s) L™ error L? error CPU (s)
1072 3.1x1073 2.8 x1073 19.2 - - -
5x 1073 8.5x 107 7.2 x 107 40.3 - - -
25x1073 22x107* 1.8 x 1074 89.5 - - -
125 x 1073 5.3 x107° 4.4 x107° 192.1 - - =
6.25 x 107* 1.5x 1073 1.1 x 1073 405.2 1.5 x 107° 1.1 x 107° 369.2
Table 8
Comparison between cll[F2(AMR) and RK2(AMR) for five-level of local mesh refinement.
At clIF2(20(40(80(160(320)))) RK2(20(40(80(160(320))))
L= 1? CPU (s) L™ error L? error CPU (s)
1072 1.1x 1073 8 x107* 22.3 = - =
5x 1073 2.7 x 1074 2x 1074 50.2 = = =
25x 1073 5.7 x 107 5x107° 110.5 - - -
1.25 x 1073 1.6 x 107 1.2 x 107 2124 - - -
6.25 x 107* 3.1x10°° 2.8 x10°° 445.8 - - -
3.125 x 10~* 7.2 x 1077 6.7 x 1077 921.7 - - -
1.5625 x 107 2.0 x 1077 1.5 x 1077 1932.8 1.9 x 1077 1.5 x 1077 1625.7
Table 9
Comparison between clIF2(AMR) and RK2(AMR) for three-level of local mesh refinement in a three-dimensional case.
At clIF2(10(20(40)) RK2(10(20(40))
= 12 CPU (s) L> error L? error CPU (s)
102 2.6 x 1072 22 x 1072 241.5 = = =
5x1073 52x1073 51x1073 483.9 = = =

2.5x 1073 1.4 x 1073 13 x1073 970.5 14 x 1073 13 x1073 921.3
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time steps with good accuracy. For the time-step size in which both cIIF2 and Runge-Kutta converge, both methods achieve
similar accuracy and use similar amount of CPU time. Similar results are also obtained when cIIF2 and Runge-Kutta method
using AMR are tested on the three-dimensional system (see Table 9).

5. An example in cell biology

In this section, we integrate clIF2 in polar (2D) and spherical (3D) coordinates with AMR for two-dimensional and three-
dimensional models describing intracellular dynamics of chemical reactions of several diffusive species within a cell [37].

When a hormone or growth factor binds to a cell-surface receptor, a cascade of proteins inside the cell relays the signal to
specific intracellular targets. A class of proteins referred as scaffolds are thought to play important roles during this process
[38-40]. Scaffold usually dynamically binds to two or more consecutively-acting components of a signaling cascade. Exper-
imental work suggests that scaffolds may promote signal transmission by tethering consecutively-acting kinases near each
other [41,42]. However, it has also been experimentally observed that some scaffold inhibit signaling when overexpressed
[43-45]. Supporting these observations, computations of non-spatial models have demonstrated that scaffold proteins may
either enhance or suppress signaling, depending on the concentration of scaffold. In [37], a model of generic, spatially local-
ized scaffold protein was developed for one spatial dimension and the simulations suggested that a scaffold protein could
boost signaling locally (in and near the region where it was localized) while simultaneously suppressing signaling at a
distance.

Here we present simulations for the corresponding two and three dimensional models [37]. The system contains a scaf-
fold protein (S), which can bind to two other proteins (A and B). In the absence of scaffold protein, A and B can bind directly to
each other. In the presence of the scaffold protein S, A first binds to S, forming AS; B binds to AS, forming ASB. In addition, A
and B bind to each other on the scaffold and an AB complex can be released from the scaffold; and a symmetrical path, where
B binds to the scaffold before A, is also available. Denote [ ] as the concentration of the proteins, the mass reaction equations
with diffusion take the form,

% = ~jon([AI[S] + BIIS)) + jorr([AS] + [BS)) + joon[ABS],

5] _ (A1)~ 1AS)[B) o (1AS) — 1ABS]),

@ — Jon([BIS] — [BSJIA]) — jore([BS] — [ABS]),

@ = jon([AS][B] + [BSJ[A]) — (Zjofr + Jeon)[ABS], 30)
% = DAJA] — Kon[Al[B] + Korr |AB] — jon (A][S] + [BS]A]) + jogr (AS] + [ABS]),

% = DA[B] — Kon[A][B] + kot [AB] — jon ([B][S] + [AS][B]) + jiosr ([BS] + [ABS]),

@ = DA[AB] + kon[A][B] — ket [AB] + jcon [ABS).

In the system (30), D is the diffusion constant for A, B and AB; ko, ko are the on and off rates for the off-scaffold reactions, jop,
Jof, jeon are the rate constants for the on-scaffold reactions.

First, we consider a two-dimensional model assuming that the cell is a two-dimensional disk: Q= {0 < x*> +y? < 100 pm]},
with no-flux boundary conditions for A, B, AB. In this simulation, the initial concentrations for A and B are 1 uM and uni-
formly distributed throughout the cell. And the scaffolds initially are localized in part of the cell: {9 <r<10; 27/
5 < 6 < 37n/5} where r, 0 are polar coordinates. The total S is set initially at 50 uM and uniformly distributed in this region.
The values for all other parameters can be found in the caption of Fig. 2, which shows contour plots of the biological desirable

t=5s
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Fig. 2. Contour plots for concentration of AB in the system (30) calculated using clIF2 with AMR. The parameters for the simulation are D=1 um?s~!,
kon=0.1 (H-M 5)7]. kotr = 0.3 Silvjon =1 (“-M S)ilvjoff= 0.005 Si]’jcon =0.1 (HM 5)71~
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Table 10
Spatial resolution study for the system (30) in polar coordinate using cIIF2 in uniform grids and cIIF2 in AMR. All solutions are evaluated at T=10s and
At =102 is used for all cases.

Method N x N L> error L? error CPU (s)
20 x 20 8.7 x 107! 6.8 x 107! 5.4
clIF2 40 x 40 2.2 x 107! 1.8 x 107! 16.8
80 x 80 5.5 x 1072 4.5 x 1072 72.1
160 x 160 1.4 x 1072 1.1 x 102 324.1
clIF2 (AMR) 4-levels 1.4 x 1072 1.2 x 1072 422
Table 11

Spatial resolution study for the system (30) using cIIF2 in uniform grids and cIIF2 in AMR for a three-dimensional case. All solutions are evaluated at T=1 s and
At=10"2is used for all cases.

Method NxNxN L™ error 2 error CPU (s)
10 x 10 x 10 99 x 107! 7.7 x 107! 11.2
clIF2 20 x 20 x 20 2.5x 107! 1.9 x 107! 89.9
40 x 40 x 40 5.1 x 1072 49 x 1072 723.3
80 x 80 x 80 13 x 1072 1.2 x 1072 5867.4
clIF2 (AMR) 4-levels 1.4 x 1072 13 x 1072 482.3

product protein AB at three different times. The simulations suggest that a localized scaffold could boost signaling (product
formation) near the region where the scaffold is localized while simultaneously suppressing signaling at a distance in a two-
dimensional cell, which is consistent with the one dimensional findings [37].

Next, we check accuracy of our implementation by a numerical resolution study. The simulation with a global uniform
fine grids: 640 x 640 along with a relatively small time step At= 107>, is considered as an “exact” solution. All errors are
calculated based on difference between the numerical solutio