
METHODOLOGY ARTICLE Open Access

Integrative multicellular biological modeling: a
case study of 3D epidermal development using
GPU algorithms
Scott Christley1,3,4*, Briana Lee2,4, Xing Dai2,4, Qing Nie1,3,4*

Abstract

Background: Simulation of sophisticated biological models requires considerable computational power. These
models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells,
cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of
programming for graphical processing units (GPU) opens up the possibility of developing more integrative,
detailed and predictive biological models while at the same time decreasing the computational cost to simulate
those models.

Results: We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes
significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the
subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our
epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling
together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors
such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently
implemented on the GPU including memory layout of data structures and functional decomposition. We discuss
various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to
avoid common pitfalls as well as to extract performance from the GPU architecture.

Conclusions: We demonstrate that GPU algorithms represent a significant technological advance for the
simulation of complex biological models. We further demonstrate with our epidermal model that the integration of
multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and
computationally tractable using this new technology. We hope that the provided algorithms and source code will
be a starting point for modelers to develop their own GPU implementations, and encourage others to implement
their modeling methods on the GPU and to make that code available to the wider community.

Background
The increasing desire for more integrative and predictive
computational models of biological phenomena is offset
by the increased computational cost to perform in silico
experiments with those models. A simulation that takes
many hours or even days to execute tends to inhibit the
exploratory nature of modeling just due to the limits of
available time. This is exacerbated by the fact that these
complex models can also have many additional para-
meters that must be analyzed to consider their role in

the behavior of the model. It is for these reasons that
considerable effort is put into technologies, methodolo-
gies and theoretical advances to speed up execution
without sacrificing model accuracy. Mathematical biolo-
gical models can be contrasted between continuum
models that consider populations of homogeneous
biological entities described by differential or integro-
differential equations versus discrete models with popu-
lations of individual and possibly heterogeneous entities.
While continuum models can be more computationally
efficient, the need for biological accuracy is encouraging
the use of cell-centered and agent-based models with
the realization that heterogeneous cell populations more

* Correspondence: scott.christley@uci.edu; qnie@math.uci.edu
1Department of Mathematics, University of California, Irvine, CA 92697, USA
Full list of author information is available at the end of the article

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

© 2010 Christley et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:scott.christley@uci.edu
mailto:qnie@math.uci.edu
http://creativecommons.org/licenses/by/2.0

accurately describe multicellular biological processes,
e.g. organ development. This heterogeneity is expressed
in many ways including cells with spatially explicit
shapes that can change over time, cell movement, cell
growth and division, cell adhesion, cell-cell interactions,
cell-environment interactions and intracellular gene net-
works coupled to cellular behavior.
Example theoretical and methodological advances

include coarse-graining, time-scale separation, and
dynamic agent compression. Coarse-graining derives
exact or approximate equations for population level
dynamics from individual agent interactions, however
this approach is often limited to simple forms of interac-
tions [1-3]. Time-scale separation decomposes the model
into subcomponents that operate on different time scales
thus allowing the slower time scale subcomponents to be
simulated less often. This separation might be performed
due to prior knowledge about multiple scales in the sys-
tem, but there are also attempts to determine this separa-
tion from the system dynamics [4,5]. Dynamic agent
compression aggregates sets of homogeneous agents into
a container object which then acts for the agents as a
whole [6,7]. Despite these advances, most integrative
multicellular biological models still require individual
cells and their interactions to be simulated for accurate
representation of the biological phenomena.
There is also work to take advantage of new computer

technologies. Parallel and distributed computing using pro-
gramming libraries such as OpenMP [8] and MPI [9] allow
for computation to be spread across multiple machines.
This architecture is loosely-coupled parallel processing as
the machines are connected through a high-speed network
where machine-to-machine communication across the net-
work has a high latency associated with it. For example, a
parallel implementation of the cellular Potts models uses
MPI and a spatial decomposition across multiple machines
[10]. Recently, two newer technologies are shifting the per-
formance curve back to tightly-coupled parallel processing
where computational units are co-located in hardware with
fast communication channels and shared memory. The
first technology is multi-core CPUs where manufacturers
place more computational units (cores) onto a single pro-
cessor chip; considerable effort has been put into program-
ming languages, environments and algorithms to allow for
a smooth transition from a single sequential processor to
multi-core CPUs [11].
The other technology is graphical processing units

(GPUs) which are the specialized processors that reside
on video display adaptors and drive the graphical user
interface of modern operating systems. Because these
GPUs do not have to perform many of the generalized
tasks that a CPU must perform, they have become highly
optimized to perform tightly-coupled data-parallel pro-
cessing with many, typically hundreds, of independent

processor units and specialized memory addressing. GPU
algorithms have been developed for many years for com-
putational geometry tasks as part of graphics rendering,
but it is only in the past few years where GPUs have been
used for other tasks such as sequence analysis [12-14],
machine learning [15] and molecular dynamics [16,17].
All of the early implementations had to contend with the
constraints and difficulties of the limited programming
environment available on the GPU, however this has
changed in just the past couple of years. New software
toolkits like CUDA and OpenCL have greatly eased the
complexity of GPU programming, but there can still be a
significant learning curve to achieve peak performance
and to scale to large problems.
A recent review describes research to implement a wide

spectrum of methods used in systems biology on the GPU,
and all of these methods have experienced some level of
speedup [18]. Ackermann et al. automatically transform
SBML models of biochemical systems into CUDA code to
solve the ordinary differentiation equations (ODE) for the
system, thus allowing many parameters for those models to
be explored in parallel [19]. GPU implementation of the sto-
chastic simulation algorithm can either allow many simula-
tions to be performed in parallel [20] or can parallelize very
large models [21], along with the ability to produce many
random numbers in parallel [22,23]. Agent-based modeling
is one of the more sophisticated methods and has numerous
implementation challenges on the GPU to handle dynamic
agents and their interactions [24-27]. Of particular interest,
the FLAME framework [28] for the GPU [25] allows agent-
based models to be declaratively specified using the formal
technique of X-machines, and then the corresponding GPU
simulation code is automatically generated. Much of this
research focuses purely on the implementation of a single
method without considering integration of multiple meth-
ods. All of the agent-based models implemented on the
GPU strictly adhere to the rule-based representation for
agent behaviors; though there has been recent work [29] to
integrate FLAME with the ODE solver COPASI [30] but it
is not implemented on the GPU.
In this article, we will show how to implement using

GPU algorithms a number of sophisticated modeling
techniques into an integrated biological model that exe-
cutes orders of magnitude times faster then conven-
tional CPU code. Specifically we provide a model of
mammalian epidermal development that incorporates
discrete spatially-explicit 3D biological cells that move,
change shape, grow and divide. Each cell has an internal
gene network that controls behaviors like cell growth
and division, and the gene network is coupled to neigh-
boring cell-cell interactions and cell-environment inter-
actions. Furthermore, we provide a set of generic
guidelines for GPU programming that when followed
will allow modelers to take advantage of GPUs while

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 2 of 23

avoiding many pitfalls associated with the architecture.
In the following subsections, we review a number of
methods used for modeling biological behaviors and
provide some background about the epidermis.

Modeling Methods for Biological Behaviors
Cell Shape and Movement
For cell-centered approaches [31,32], three fundamental
representations are being used in computational modeling
for cell shape: particle, discrete space and continuous
space. The particle representation actually does not expli-
citly represent any cell shape at all but considers each cell
to be a point particle. This is the typical assumption made
by partial differential equation (PDE) models of large col-
lections of cells where individual cell shapes do not play a
role in the behavior of the tissue. Numerical computation
of PDEs can achieve significant speedup on the GPU, but
they have been discussed elsewhere [33,34] so we will not
consider this representation any further. Discrete space or
lattice representations divide space into discrete units,
then cells occupy one or more spatial units thus defining
the spatial extent of the cell. This representation is used
by the cellular Potts model [35-37], cellular automata and
agent-based models [38-40]. Continuous space, lattice-free
or off-lattice representations keep spatial positions as con-
tinuous values and then include additional data structures
for each cell to describe its spatial extent. There are also
agent-based models that use continuous spatial positions
[41,42], as well as a few other representations including
the center-based method [43,44], the Delaunay-Object-
Dynamics method [45], and the subcellular element
method [46]. The center-based method represents cells
with a center position and a spherical or ellipsoidal shape
that may be a rigid body or visco-elastic. The Delaunay-
Object-Dynamics method uses a weighted Delaunay trian-
gulation to subdivide space into a set of disjoint Voronoi
cells, providing a polygon that defines the cell surface. The
subcellular element method uses a collection of discrete
particle elements in combination with intracellular spring
forces to define a cell.
None of the modeling representations for cell shape

completely account for all the complexities of true bio-
logical cells, so there are advantages and disadvantages
for each depending upon what cell behaviors and inter-
actions are to be modeled, as well as computational tra-
deoffs. The continuous space methods have a
disadvantage over the discrete methods because cell
neighborhoods are not defined at discrete lattice points,
so interactions involving neighboring cells require a
dynamic computation of the neighborhood that is com-
putationally more expensive than an index lookup in a
lattice. On the other hand, discrete space methods can
have considerable memory requirements as each spatial
unit uses up memory space even if a cell does not

occupy that space, while the continuous methods only
need to minimally store the positions of their discrete
elements. However both representations can achieve
speedup on a GPU if a significant portion of their calcu-
lations can be performed in parallel.
Cell movement and cell shape are generally modeled

together. For both discrete and continuous spatial repre-
sentations, the action of cell movement is similar with
either the updating of lattice index values or spatial
positions, respectively. Cell movement can be due to
internal cell actions, external forces acting on the cell,
or some combination of the two. Furthermore, cell
movement is realized in different ways depending upon
the modeling method being used. For example in the
cellular Potts model, cell movement is not explicitly
defined but occurs as an indirect result of the process of
energy minimization. In contrast, the subcellular ele-
ment method defines equations of motion, so forces act-
ing on the elements of a cell are directly incorporated
into those equations.
In this article, we are going to focus on continuous

space methods and specifically the subcellular element
method. The subcellular element method is one of the
most computationally demanding methods and therefore
serves as an excellent benchmark of what can be done
with the latest technology. Furthermore, we are going to
consider a full 3D spatial environment as this provides
the most realistic scenario for studying epidermal devel-
opment. To our knowledge, this is the first reported
attempt to parallelize the subcellular element method.

Cell Adhesion
Cell adhesion is the process by which adhesion mole-
cules, which are present on a cell’s membrane, bind to
another cell, the extracellular matrix or some surface.
Cell adhesion has many important functions such as
maintaining a cell’s spatial position, providing structural
integrity to a multicellular tissue, creating barriers or
tight junctions to prevent movement of fluid between
cells, and transmitting environmental signals into the
cell. The binding strength of adhesion molecules can
vary greatly depending upon the type of molecule and
its adhering partner. It is well-known that differential
adhesion, whereby two cell types having different adhe-
sive binding strengths between cells of the same type
versus cells of different type, can cause cells to physi-
cally sort themselves into two distinct populations [47].
When the cellular Potts model was introduced, it was
shown to reproduce this behavior [36].
Most modeling methods do not explicitly represent

individual adhesion molecules but instead use an aggre-
gate binding strength that is proportional to the cell sur-
face. For example with the cellular Potts model, the
number of lattice boundaries shared between two cells is

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 3 of 23

counted and included as a term in the model’s energy
function. The number of shared lattice boundaries can be
used as an absolute count, which can provide larger cells
with different adhesive characteristics versus smaller
cells, or the number can be normalized by the total cell
surface, which can represent a uniform partitioning of
some internal cellular resource across the complete cell
surface. For continuous space methods, there is no lattice
to be counted so a neighborhood calculation needs to be
performed. The subcellular element method does this by
calculating distances between elements of one cell and
another, then incorporating an adhesive force term into
the equations of motion for those cellular elements. Simi-
lar to the lattice methods, the adhesion strength can be
an absolute calculation or normalized by the total cell
surface or number of neighbors. A nice feature of the
subcellular element method is that elements can have a
type associated with them, thus allowing force terms to
apply to some element types of the cell but not to others.
A typical use of this feature might be to induce polarity
within a cell based upon an orientation produced by the
adhesion of a subset of elements, or to represent that
only a part of the cell’s surface area is adhesive.

Cell Division and Growth
Cell division or mitosis is a complicated biological pro-
cess involving the duplication of the genome and con-
cluding with the separation of the mother cell into two
daughter cells. For many models, the specifics of cell divi-
sion are not important to the study but the act of division
and the resulting growth of the cell population may be
very important, especially if the time scale of interest
extends across numerous cell divisions. For the subcellu-
lar element method, Newman [46] suggests that cell
growth can be implemented by adding new elements to
the cell over time. If more realistic physical dynamics are
desired for the mitotic process, physical constraints can
be imposed on some of the elements, for example by
defining the spindle axis in the cell and then using it to
construct a plane of separation for the two daughter
cells. The standard mode for the cellular Potts model is
to define a target cell volume as part of the energy func-
tion while division is a matter of subdividing the discrete
number of spatial units among the two daughter cells.

Intracellular Gene Network
When employing a cell-centered or agent-based model-
ing approach, many of the internal details of individual
cells can be abstracted away, and representation of a
cell’s state and associated behaviors is then implemented
with state automata [35,48] or axiomatic rules [49,50].
However as molecular biology provides increasing detail
about the genes and gene regulations involved in specific
cellular behavior, there have been attempts to

incorporate these gene networks within individual cells
to explicitly drive their behavior and implicitly define
their state [51-53]. These models inherently become mul-
tiscale as both the spatial and temporal interactions need
to be coupled between the cell and intracellular levels.
Computational techniques to simulate gene networks
include deterministic approaches as represented by a sys-
tem of coupled ordinary differential equations [54-56] or
stochastic approaches that utilize some form of the sto-
chastic simulation algorithm [57-59]. Stochastic algo-
rithms are used when the number of molecules of the
biochemical species is small enough such that the sto-
chastic effects play a role in the dynamics of the system;
otherwise the deterministic algorithms are preferred as
they are computationally more efficient. In this article,
we will implement our gene networks using ordinary dif-
ferential equations (ODEs); however there is research
that suggests that stochastic simulations can benefit
greatly from GPU implementations as well [20,21].
ODE representation of gene regulatory networks still

requires a specific functional form to be chosen for the
regulatory interaction. Linear ODEs are commonly used
when attempting to infer the network from expression
data [60-62]. While linear ODEs are simpler to analyze,
they lack the ability to express the more sophisticated
behaviors we desire such as cooperativity, thresholds
and saturation, so nonlinear ODEs are preferred. For
nonlinear ODEs, the two most common representations
are Hill-type functions [54,63] and thermodynamic
models [64,65]. Thermodynamic models are useful when
there is existing knowledge about the promoter struc-
ture for the gene allowing binding affinities of transcrip-
tion factors to DNA as well as combinatorial control to
be incorporated. Hill-type functions abstract away the
regulatory details and provide a general form for activa-
tion or inhibition. We will use Hill-type functions for
our gene regulatory networks, however the exact repre-
sentation used is more of a modeling question and has
little effect on the GPU implementation.

Biological Background
The mammalian epidermis is a tough, resilient protec-
tive tissue composed of multiple cell layers that is essen-
tial for keeping out harmful microorganisms while also
keeping essential fluids inside the organism. Epidermal
development proceeds from a single layer of multipotent
surface epithelial cells during mid-gestation, to a strati-
fied epidermis consisting of multiple cell types at birth,
and finally to a continually self-renewing homeostasis in
the mature adult epidermis [66-68]. Both the single
layer in the embryonic epidermis and the innermost
layer, namely the basal layer, of the stratified epidermis
are securely attached to a basement membrane, and are
treated as identical populations in this study for

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 4 of 23

simplicity. There are no blood vessels in the epidermis
so all nutrients must be transported through diffusion
or other mechanisms from the cells in the dermis resid-
ing on the other side of the basement membrane. Prolif-
erating cells in the single-layered embryonic epidermis
divide symmetrically in the plane parallel to the base-
ment membrane, producing additional cells that attach
to the basement membrane, continue to proliferate and
increase the overall surface area of the epidermis during
embryonic growth [69]. Later in development, basal cells
start dividing asymmetrically, in the plane perpendicular
to the basement membrane, with one resulting daughter
cell maintaining basement membrane contact while the
other daughter cell leaves the basement membrane to
differentiate and form the suprabasal layers of the epi-
dermis [69]. Finally, the adult stratified epidermis is
characterized by a homeostatic process where self-
renewing stem cells residing in the basal layer proliferate
to replace interior cells while exterior cells are continu-
ously lost to the outside environment.
The epidermis is an advantageous tissue for experi-

mental study due to its accessibility as well as its ubi-
quity throughout nature. It is also an important tissue
for studying how stem cells maintain proliferation and
self-renewal over the lifetime of the organism, and for
better understanding how errors in those processes can
lead to cancer and other diseases. However it is a com-
plicated tissue for computational modeling because it
entails a full spectrum of modeling methods to be inte-
grated together into a comprehensive system. The epi-
dermis is a 3D spatial tissue with multiple cell types of
differing shapes, behaviors and physical characteristics.
There are extensive cell-cell and cell-environment inter-
actions to maintain the structural and functional integ-
rity of the tissue but also to respond to environmental
hazards such as wounds and infections. Cells of different
types across multiple layers are undergoing various
behaviors of growth, division, differentiation and death
that must be maintained in proper balance for the
health of the epidermis as a whole. Due to the complex-
ity, many models of epidermal development have
focused on specific topics such as wound healing
[70,71], pathogenesis [72,73], proliferation [74,75], bar-
rier function [76,77] and homeostasis [42,78].
In this article, our goal is not to provide a complete

validated model of epidermal development. Instead we
use it as a case study for integrative multicellular biolo-
gical modeling and demonstrate that such models can
be efficiently computed using new technological
advances such as GPUs. We hope in the future to use
our model for the discovery and prediction of underly-
ing mechanisms of epidermal development but for now
we focus on the technical aspects of implementing such
models in GPU algorithms.

Results and Discussion
This section is divided into three parts. In the first, we
define an integrated model of epidermal development
that includes numerous methods, and this model will
serve as a case study demonstrating the use of parallel
technology for simulation. In the second part, we
describe a set of data-parallel algorithms to implement
the model of epidermal development on GPUs. We also
discuss issues of memory layout and utilization in con-
junction with the algorithms. We hope that these algo-
rithms can serve as code templates for modelers
implementing their own models, and we further provide
source code as Additional file 1 to this article. Lastly, we
demonstrate the speedup and scalability that can be
achieved using our GPU algorithms, and we show some
results from simulations of our epidermis model.

Model of Epidermal Development
Cell Shape and Movement
The subcellular element method divides an individual
cell into a set of discrete elements or subcellular ele-
ments. Biomechanical forces are then defined as interac-
tions for the subcellular elements consisting of
intracellular dynamics between elements of the same
cell and intercellular dynamics between elements of dif-
ferent cells. The method also includes a weak stochastic
component intended to mimic underlying fluctuations
in the cytoskeleton of the cell, but we exclude it for this
article. The stochastic component is not conceptually
difficult to incorporate but it requires consideration of
parallel pseudo-random number generation and drawing
samples from a multivariate normal distribution. The
equation of motion for the position vector X

i of ele-
ment i for cell ai with intracellular and intercellular
forces is:

dX i
dt

V X X

V X X

i i i

i i

i i j

jj i

= −∇ −()
−∇ −()

≠

≠

∑
∑∑

intra

inter

Part of the modeling process is to determine appropri-
ate potential functions for Vintra and Vinter. A convenient
generalized function is the Morse potential which
provides a short-range repulsive force and a longer-
range attractive force defined by four parameters (U0,
ξ1, W0, ξ2) and the distance r between elements:

V r U r W r() exp / exp /= −() − −()0 1 0 2

However, biological cells only have a finite range of
interactions with other cells, and the Morse potential is

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 5 of 23

typically representing two physical phenomena, spatial
exclusivity to prevent cells from overlapping and cell-
cell adhesion. The longer-range attractive force is not a
biologically realistic interaction across long distances, so
we define a positive Morse potential with only a repul-
sive force that is used to enforce the spatial exclusivity
of the cells, which we assume is always active. Cell
adhesion is implemented with additional force terms,
which allows for greater flexibility in adjusting cell adhe-
sion properties.

PV r
V r V r

otherwise
()

() ()
=

≥⎧
⎨
⎩

0

0

In our subsequent modeling, we will use the standard
Morse potential function for the intracellular force, Vin-

tra, between elements within a single cell. Based upon
the parameters, this will define a typical volume for
each cell. We will use the positive Morse potential func-
tion for the intercellular force, Vinter, between elements
of different cells. This will cause cells to repulse each
other if they get to close but does not prevent them
from drifting apart. Cell adhesion to the basement mem-
brane is incorporated as an additional force term in the
equation of motion:

dX i
dt

V X X

V X X

i i i

i i

i i j

jj i

= −∇ −()
−∇ −()

≠

≠

∑
∑∑

intra

inter

−−∇ ()
∈
∑ i i

V zbm

j C1

The basement membrane is a 2D plane located at Z =
0, and only a subset of a cell’s elements are assigned a
type, C1, such that they adhere while the other elements
have no adhesive force. As the adhesive force, Vbm, acts
straight down to the 2D plane, it is only necessary to
calculate distance use the z-coordinate of an element’s
spatial position. Table 1 shows the parameter values
used in our simulations for the subcellular element
method.

Intracellular Gene Network
Figure 1 is a depiction of the intracellular gene network,
cell-cell interactions and cell-environment interactions
for our model. Cell-environment interactions include
adhesion to the basement membrane and reception of
TGF-b in the extracellular environment, which is known
to trigger a signaling cascade that facilitates the growth
arrest and subsequent differentiation of proliferating

epidermal cells [79,80]. These two environmental inter-
actions act as control inducers for a bistable toggle
switch [81] in a dual inhibition circuit between Ovol1
and Ovol2, two transcription factors that are expressed
in basal and suprabasal epidermal cells, respectively, and
are known to be functionally important in these cells
[82-84]. Therefore, cells that adhere to the basement
membrane are in the state with low Ovol1 expression
and high Ovol2 expression, while cells in the suprabasal
layers that no longer adhere to the basement membrane
are induced by the environmental TGF-b to be in the
state with high Ovol1 expression and low Ovol2 expres-
sion. Also included in the gene network is c-Myc, a cri-
tical regulator of epidermal cell proliferation and
differentiation that is known to be repressed by Ovol2
[84]. Cell-cell interactions include Notch signaling with
neighboring cells and cell adhesion. We use a simple lat-
eral inhibition model for Notch signaling that consists of
Notch receptors, Delta ligands and bound Notch/Delta
complexes [85-87].
The set of equations for the intracellular gene network

are:

dN
dt

k N D k B d N

a
bBN

cBNB hBN

bON

cONO h

a d N

BN

= − + −

+ +
+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ +()1 1 2 OON

dD
dt

k D N k B d D a
bND

cNDN hND

dB

a d D ND

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= − + − + +
+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟1

ddt
k N D k B d B

dO
dt

d O a
bVO

cVOO hVO

bGO

a d B

O VO

= − −

= − + +
+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

1 1
2

11

1

1 2
1

+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= − +
+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

cGOG hGO

dO
dt

d O
bOV

cOVO hOV

bAV
V

11

1 2

+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= − + +
+()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c AV A hAV

dM
dx

d M a
bOM

cOMO hOM

A

M OM

==
∈
∑ z j

j C1

where the molecular species and interactions being
modeled are Notch (N), Delta (D), bound Notch

Table 1 Parameters for Subcellular Element Method in
Epidermal Model

Parameter Value Description

U0 0.3 Intracellular force Vintra and basement adhesion Vbm

ξ1 0.1 Intracellular force Vintra and basement adhesion Vbm

W0 0.12 Intracellular force Vintra and basement adhesion Vbm

ξ2 0.36 Intracellular force Vintra and basement adhesion Vbm

U0 0.3 Intercellular force Vinter

ξ1 0.05 Intercellular force Vinter

W0 0.12 Intercellular force Vinter

ξ2 0.24 Intercellular force Vinter

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 6 of 23

receptor (B), Ovol2 (O2), Ovol1 (O1), c-Myc (M), base-
ment membrane adhesion (A) and TGF-b (G). Para-
meters include the Hill function production rates for
the species, the decay rates for the species, and the asso-
ciation/dissociation rates of the Notch-Delta complex.
These parameters and the values used in simulations are
described in Table 2. The basement membrane adhesion
“molecule” is a conceptual construct representing a
cell’s adhesion to the basement membrane in order for
it to be used as input to the gene network, and simply
is the summation of the z-coordinate distance for each
subcellular element of the appropriate type C1. Average
Notch receptors and Delta ligands for neighboring cells
are represented by 〈N〉 and 〈D〉, respectively. For our
model, we assume each cell uniformly distributes its

Notch receptors and Delta ligands among its neighbors.
However it is perfectly reasonable to consider non-
uniform distribution, possibly based upon the distances
between subcellular elements or specialized types of
subcellular elements. Currently we do not implement
the diffusible molecule TGF-b in the extracellular space.
We assume that the TGF-b concentration is constant in
the environment, so all cells see the same value which
we define to be G = 0.4.

Cell Growth and Division
Cell growth and division are handled outside of the
GPU in the CPU code. Cells with a low Delta expres-
sion, implying that it is in a cellular state with low
Ovol1 expression and high Ovol2 expression, indicative

Figure 1 Diagram of cell-cell and cell-environment interactions coupled with an intracellular gene network within each cell in a model
of epidermal development. Not all interactions have experimental confirmation.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 7 of 23

of stem cells in the basal layer, undergo growth by add-
ing a new subcellular element every 2000 time steps of
the simulation. Adding the new element is a simple
matter of increasing the number of elements for that
cell then providing an initial spatial position for that
new element. We currently put that new element at the
cell center from which it can subsequently move to a
more appropriate place based upon the forces acting on
it.

Once a cell reaches forty subcellular elements then it
undergoes division. Cell division is implemented by
splitting the forty elements in half, leaving twenty with
one daughter cell and twenty in another daughter cell.
The spatial positions of the elements are not changed as
the subsequent motion will push the two cells apart and
adjust their shapes accordingly. One daughter cell is
attached to the basement membrane; the other daughter
cells is not given subcellular element types for basement
membrane adhesion so is free to move away from the
basement membrane to become a suprabasal cell and
form additional layers of the epidermis. The concentra-
tions of the intracellular gene network products are
divided in half between the two daughter cells during
division. The non-attaching daughter cell can come
under the effect of environmental TGF-b, thus switching
the cellular state to high Ovol1 expression and low
Ovol2 expression, and enabling Notch signaling to
occur between neighboring cells. Dependent upon
Notch signaling, some suprabasal cells may still grow
and divide.

GPU Implementation
The primary GPU toolkit currently in use is CUDA [88],
which is provided by Nvidia specifically for their gra-
phics cards. Recently, the open standard OpenCL toolkit
[89] is provided with Apple’s Mac OS X (10.6) Snow
Leopard operating system. OpenCL is a more general
toolkit for data-parallel programming versus CUDA
because it can be used to target both GPUs and multi-
core CPUs, and it can be used across a variety of video
cards from different vendors. The code we provide will
be based on CUDA but it should translate to OpenCL
fairly easily as the programming paradigm is very
similar.
GPUs are separate devices with their own processors

and memory, and do not have direct access to the CPU
or CPU’s memory. There is a specialized communica-
tion pathway for transferring data back and forth
between CPU memory and GPU memory. This pathway
has a relatively slow bandwidth capability compared to
direct access of memory, so it is important to minimize
that communication as much as possible when design-
ing GPU algorithms. The typical GPU program has a
similar structure to a CPU program and is composed of
three main parts as illustrated below:

• Initialization
1. Allocate and initialize model data structures in
CPU memory.
2. Initiate connection to GPU device.
3. Allocate GPU memory.
4. Copy data from CPU memory to GPU
memory.

Table 2 Parameters for Intracellular Gene Network of
Epidermal Model

Parameter Value Description

ka 0.0003 Notch (N)/Delta (D) binding rate

kd 0.12 Bound complex (B) unbinding rate

dB 0.19 Bound complex (B) decay rate

aBN 0.01 Bound complex (B) regulation of Notch (N)

bBN 1 Bound complex (B) regulation of Notch (N)

cBN 1 Bound complex (B) regulation of Notch (N)

hBN -2 Bound complex (B) regulation of Notch (N)

bON 1 Ovol2 (O2) regulation of Notch (N)

cON 0.5 Ovol2 (O2) regulation of Notch (N)

hON 2 Ovol2 (O2) regulation of Notch (N)

dN 0.03 Notch (N) decay rate

aND 0.01 Notch (N) regulation of Delta (D)

bND 1 Notch (N) regulation of Delta (D)

cND 10 Notch (N) regulation of Delta (D)

hND 2 Notch (N) regulation of Delta (D)

dD 0.006 Delta (D) decay rate

aVO 0.1 Ovol1 (O1) regulation of Ovol2 (O2)

bVO 2 Ovol1 (O1) regulation of Ovol2 (O2)

cVO 1 Ovol1 (O1) regulation of Ovol2 (O2)

hVO 2 Ovol1 (O1) regulation of Ovol2 (O2)

bGO 1 TGF-b (G) regulation of Ovol2 (O2)

cGO 1 TGF-b (G) regulation of Ovol2 (O2)

hGO 1 TGF-b (G) regulation of Ovol2 (O2)

dO 1 Ovol2 (O2) decay rate

bOV 2 Ovol2 (O2) regulation of Ovol1 (O1)

cOV 1 Ovol2 (O2) regulation of Ovol1 (O1)

hOV 2 Ovol2 (O2) regulation of Ovol1 (O1)

bAV 1 Basement adhesion (A) regulation of Ovol1 (O1)

cAV 1 Basement adhesion (A) regulation of Ovol1 (O1)

hAV 1 Basement adhesion (A) regulation of Ovol1 (O1)

dV 1 Ovol1 (O1) decay rate

aOM 0.1 Ovol2 (O2) regulation of c-Myc (M)

bOM 1 Ovol2 (O2) regulation of c-Myc (M)

cOM 1 Ovol2 (O2) regulation of c-Myc (M)

hOM 1 Ovol2 (O2) regulation of c-Myc (M)

dM 1 c-Myc (M) decay rate

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 8 of 23

• Execution
1. Call GPU kernel functions.
2. Occasionally copy data between CPU and
GPU memory.

• Cleanup
1. Free GPU memory.
2. Free CPU memory.
3. Shutdown connection to GPU device.

Because the GPU is a separate device, when the GPU
is executing, the CPU is free to perform other computa-
tion. More advanced programs can utilize the CPU to
concurrently perform tasks while the GPU is running
like reading/writing data to disk or pre- and post-
processing of data; however for simplicity of presenta-
tion in our algorithms we will simply have the CPU wait
for the GPU to finish its calculations.
Achieving maximum performance out of GPU algo-

rithms can require some subtle programming tricks and
investigating all of these issues is beyond the scope of
this article. However we will provide some standard
guidelines to follow in the context of the modeling
methods that will help obtain significant performance
improvements, without needing any sophisticated
programming.

Subcellular Element Method
We will gradually build up the model implementation in
parts, adding new features as we go along. The first
mechanism to be implemented is the subcellular ele-
ment method which defines the cells’ spatial positions,
shapes and movements. Simulating the equations
requires picking a numerical scheme to solve the equa-
tions over time. Newman [46] used Euler’s method but
we found we needed to decrease the δt in order to
maintain numerical stability for some potential func-
tions, therefore we have used the 2nd-order Runge-Kutta
scheme for all of our algorithms. 2nd-order Runge-Kutta
requires additional computation and memory because a
half time-step intermediate calculation is required, with
the previous time-step and the half time-step values
used to solve for the next δt.
Each subcellular element is independent of the other

elements, so a parallel algorithm can calculate the
motion equation for each element simultaneously then
update the position vectors with their next time step
value for all the elements in one step. Therefore we
need a data structure to hold the spatial positions for
each element and a kernel function that computes the
motion equation for a single element. The data structure
we will use is a 2D matrix for each spatial coordinate,
giving us three matrices for our 3D model, where one
dimension of the matrix is the number of cells and the
other dimension is the number of subcellular elements.

One limitation of GPU programming is that there is
no capability to dynamically allocate memory within the
kernel functions executing on the GPU, instead all GPU
memory must be allocated beforehand within CPU code
and pointers to the GPU memory passed to the kernel
functions. This leads to our first guideline for GPU pro-
gramming.

• Guideline 1: Avoid pointer-following data struc-
tures such as linked lists and adjacency lists com-
monly used in CPU code to manage data, e.g. list of
cells, which changes in size during the simulation.
Use fixed size data structures such as arrays and
matrices even if some of the entries would be empty
or unused. Such fixed size data structures make it
easier to ensure a consistent memory access pattern
for kernel functions allowing for greatest throughput.

On the other hand, some algorithms or data are more
properly expressed in structures such as trees or graphs.
This does not mean these algorithms cannot be used on
the GPU, but the traditional pointer-following data
structures need to be replaced with array-based repre-
sentations of those structures along with additional pro-
cessing such as parallel prefix-sum primitives provided
by the CUDPP library [90] to access the data as well as
to maintain the data structure.
Given this guideline, we allocate a 2D matrix with the

number of columns equal to the maximum number of
cells in our simulation and the number of rows equal to
the maximum number of elements that any single cell
will have. Because cells can have differing number of
elements, and there is no simple way to use the coordi-
nate value to indicate a valid element, we also allocate a
1D matrix of size equal to the maximum number of
cells that holds the number of elements for each cell.
Even though we specify a maximum number for cells
and elements, this does not mean that maximum must
be fixed. It is possible for the program to re-allocate
memory with a new maximum size then copy the old
data to the new memory, however it must do this in
CPU code and essentially re-initialize the GPU with the
new data structures.
Appendix Algorithm 1 shows an initial attempt for a

data-parallel implementation of the subcellular element
method. It is composed of three functions, SEM that
allocates memory and executes the kernel function and
two kernel functions for the two-step calculation of the
2nd-order Runge-Kutta, though we show just one of the
kernel functions for brevity as they are very similar to
each other. The initial lines of the SEM function allo-
cate GPU memory and copy the CPU data to the GPU.
We assume that the CPU memory was allocated else-
where and initialized with initial conditions for the

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 9 of 23

simulation, and the pointers are passed as function para-
meters. The kernel functions are executed within a loop
on the GPU for the two steps of the Runge-Kutta
scheme and an update of the position vectors for the
next time step. Lastly the GPU data is copied back into
CPU memory after the kernel functions have been exe-
cuted for the desired number of time steps.
The physical processing threads of the GPU can be

organized into 1D, 2D or 3D array blocks that are tiled
together into a processing grid, which can define a sig-
nificantly larger number of virtual parallel processors.
For example, the Nvidia GTX 285 video card supports
512 physical processing threads but they can tiled
together into a grid of over four billion total array
blocks thus providing one trillion virtual parallel proces-
sors. Typically the virtual processors are organized
according to the data structure being operated upon
because a unique identifier number is assigned to each
thread that can be used to determine a unique index
number into the data structure. Our spatial coordinates
are organized in 2D matrices, so we define a 2D block
of 16 × 16 threads tiled together into a grid with dimen-
sions based upon the maximum number of cells and
elements. Note that this construction of blocks tiled
into grids is specific to the CUDA toolkit. OpenCL is
more general in that it just requires the number of
desired virtual processors, specified as a 1D, 2D or 3D
array, and OpenCL maps them appropriately to the
underlying available hardware, which can vary in the
number of physical threads available and the maximum
number of virtual processors.
The first two lines of the kernel function in Appendix

Algorithm 1 (sem_kernel_F1) shows how the identifier
number for the processor thread is translated into a cell
number and an element number that will be used as
index values for the 2D matrices. The processing
threads are organized according to the maximum num-
ber of cells and elements, so the next two lines of the
kernel function checks that the numbers are within the
actual number of cells and elements for that cell, and if
not then the kernel function returns immediately. It is
important to have bound checks such as these in all ker-
nel functions, both to prevent useless computation but
more critically to prevent out-of-bounds memory writes.
The configuration bounds of the processing threads may
not align exactly with the data structure bounds, and
there is no memory bound protections on GPUs, so
such out-of-bounds memory writes can easily overwrite
other data. The remaining code iterates through the ele-
ments of the same cell and calculates the intracellular
force potentials, then it iterates through the elements of
other cells and calculates the intercellular force poten-
tials. Finally, it calculates the adhesion force and

combines them together to update the spatial position
of the element.
Appendix Algorithm 1 corresponds to the naïve O

(N2M2) algorithm where N is the number of cells and M
is the number of elements. This algorithm actually per-
forms well and provides a significant improvement over
Newman’s time (see the Testing section for complete
timing results), but the algorithm does not provide the
level of scalability that we desire. As the number of cells
increase, the quadratic nature of the algorithms starts to
dominate, much of the computation is wasted because
most elements are too far apart from each other to
exert any significant force; it is really only the nearby
elements that matter. Sophisticated methods and data
structures have been utilized in CPU code to identify
nearby elements. Newman uses a sector technique that
maintains a look-up table of the list of elements located
within a discrete partitioning of space, elements then
just need to perform calculations with elements in the
neighboring sectors.
One may think that implementing such sophisticated

data structures in the GPU is necessary to achieve
greater speedups, but in fact that ends up being coun-
ter-productive. We implemented Newman’s sector
method on the GPU and found it to actually go slower
than CPU code (data not shown). For one, it tends to
violate Guideline 1 that says to use simple fixed-sized
data structures, but it also greatly complicates the kernel
function, which leads to our second guideline.

• Guideline 2: Simpler kernels execute faster. Break
apart complicated kernel functions into simpler ker-
nels using memory to hold intermediate values.
Avoid nested loops, especially when the loop bounds
are variable. Compilers can do a better job of opti-
mizing simpler kernels, and simple loops can be
unrolled and/or instructions re-ordered to maximize
coalesced memory access.

On the other hand, too many overly simple kernels
can actually perform worse than a single complicated
kernel because of the additional overhead imposed by
launching more kernels, so the opposite extreme should
be avoided as well. It is a good idea to modularize your
code into functions when it is feasible; the accompany-
ing source code has examples for how some operations
like distance and boundary condition calculations are
put into functions. Functions on the GPU are inlined
into kernels during compilation, so they do not incur
the stack and execution time as in CPU code. The resul-
tant benefit is kernels can be constructed by combining
function calls together, and kernels can be more easily
adjusted by adding or removing functions.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 10 of 23

Appendix Algorithm 2 is the result when we split up
the intercellular potential calculation into two simpler
calculations. First we calculate a center point for a cell
from the positions of all the cell’s elements. Second
when calculating the intercellular potential, we use a
cell’s center point to determine if the cell is too far
away (as defined by some cutoff value) then skip that
cell completely. While in the worst-case scenario this
can be as expensive as Appendix Algorithm 1, typically
a cell only has a few nearby neighbors making its com-
plexity O(N2 + N2M). With N parallel threads for the
cell center calculation and NM parallel threads for SEM,
this new algorithm is essentially linear with O(N) com-
plexity. The Testing section shows the algorithm per-
forms very well with simulations of 5000 cells each with
20 elements executing on the order of minutes, instead
of hours as Newman predicts with his CPU code [46].

Boundary Conditions
Biological modeling papers typically mention the bound-
ary conditions they assume while describing the model,
but less frequently is there discussion about the implica-
tions those boundary conditions have on the computa-
tional implementation of the model. Boundary conditions
can be either periodic, no-flux, or no-boundary. Periodic
boundary conditions are used when the model represents
just a portion of a larger tissue, and mirroring of the
model allows objects near the boundary to perceive that
the system continues beyond the boundary and thus is
larger then it really is. No-flux boundary conditions act
as a barrier that prevents the passage of any objects past
the boundary, and this might reflect a physically imposed
boundary such as the edge of a petri dish or a biological
boundary such as the edge of the tissue. Sometimes no-
flux boundaries might be considered leaky in that they
allow one-way passage of objects across the boundary,
essentially acting as a sink or source. No-boundary con-
ditions imply that there is no boundary allowing the
domain to increase in size, or there may truly be a
boundary but the objects in the model never reach it so it
seems non-existent.
There is an interesting dichotomy in that periodic

boundary conditions have a simple implementation for
lattice models while no-boundary conditions have a
more complicated implementation. In contrast, lattice-
free models have a simple implementation for no-
boundary conditions and a more complicated imple-
mentation for periodic boundary conditions. For no-flux
boundary conditions, there is a simple implementation
for both lattice and lattice-free models. The contrast
between the two models is due to the spatial representa-
tion. For lattice models, the spatial domain is defined by
the extent of the underlying lattice that typically has an
underlying memory data structure of the same size, so

expanding the spatial domain as with no-boundary con-
ditions requires that memory data structure to be
increased, which is an expensive operation. On the
other hand, a periodic boundary requires just a simple
calculation of an index value based upon the current
size of the lattice. For lattice-free models, there is no
explicit representation of the spatial domain encoded in
the position vectors of objects, so they are free to
change values without constraint under no-boundary
conditions. However, periodic boundary conditions
requires a mirror of the model to be presented on the
other side of boundary with those mirror objects being
included in all spatially-based calculations.
The algorithms we presented for the subcellular ele-

ment method in the previous section are for no-boundary
conditions, however we want periodic boundary condi-
tions for our model of epidermal development because it
is just a small part of the larger epidermis. Specifically,
only the two horizontal planes have periodic boundaries
while the vertical plane has a no-flux condition for the
bottom with the basement membrane and no-boundary
for the top. This means we require eight mirrors of the
model, the four sides and the four corners, so we have
eight additional calculations required for each subcellular
element. We do not show the algorithm for implement-
ing periodic boundary conditions, as the tedious calcula-
tions are lengthy but straightforward, but the
accompanying source code can be consulted for details.
In the Testing section we provide timing information for
both no-boundary and periodic boundary conditions.
Periodic boundary conditions are slower as expected, but
not nearly as slow as the theoretical 9 × based on the
number of additional calculations, in large part because
many unnecessary calculations are avoided due to the
distance cutoff.

Intracellular Gene Network
Because each cell has its own intracellular gene network
with the corresponding set of concentration values for
the various molecular species and interactions, the ODE
calculations for each cell can be performed in parallel.
However in our epidermal model, cells are coupled with
their neighbors through Notch signaling so the calcula-
tions across cells need to be synchronized in time for
correctness. We reuse the cell center calculation from
Appendix Algorithm 2 for determining a cell’s neigh-
bors, and according to Guideline 2 we use a separate
kernel function to accumulate neighbor values for each
cell and save them in memory. We allocate a set of 1D
arrays of size equal to the maximum number of cells to
hold the accumulated neighbor values. Furthermore, we
allocate a 2D array with column size equal to the maxi-
mum number of cells and row size equal to the number
of species (seven for our model) to hold the

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 11 of 23

concentration values for the ODEs. Because the para-
meters are the same for all cells and do not change, a
1D constant array is allocated for them. Access to read-
only constant memory is nearly as fast as register access,
so it is much better for holding parameters values than
global read/write GPU memory, but it is limited in size.
For example, the GTX 285 has 64 k bytes of constant
memory capable of holding 16 k floating point values,
which is more than sufficient for parameters shared
among all cells. However if heterogeneous cells are
desired, each with a different set of parameter values,
then the constant memory may not be big enough for
large simulations.
Appendix Algorithm 3 shows how the ODEs are cal-

culated for each cell, again using the 2nd-order Runge-
Kutta numerical scheme, thus giving us four functions.
The SEM function, as before, allocates GPU memory,
copies CPU data to the GPU then calls the kernel func-
tions for the ODEs. One kernel function accumulates
the neighbor values, while the other two kernel func-
tions perform the two steps of the 2nd-order Runge-
Kutta though we show just one of these functions for
space considerations.
While Appendix Algorithm 3 works well for the small

intracellular gene network in our epidermal model, it
will not scale up to ODEs containing hundreds or thou-
sands of equations. The reason for this is not immedi-
ately obvious. Looking at Appendix Algorithm 3, it
seems perfectly reasonable to keep adding a few addi-
tional lines of code for each ODE equation; even though
the kernel function may get long, the calculations are
simple and straightforward. Eventually though, the GPU
will run out of registers.
The underlying reason is that the compilers for GPU

code, nvcc in CUDA for example, optimizes code for
doing memory writes and aggressively uses registers to
hold intermediate values. Specifically memory writes
such as saving the final calculation for an ODE equation
might be deferred until later so that writes can be per-
formed which best utilizes the memory bandwidth. This
is all legal so long as this reordering of instructions
doesn’t change the program semantics, and such techni-
ques are used heavily by CPUs to keep their pipelines
full and their cache hit rates high. The difficulty is that
there is no stack on GPUs, so these pending memory
write values are stored in registers, adding more ODE
equations increases register usage until eventually regis-
ter overflow occurs. Overflowed registers trigger fail-safe
operation on the GPU by putting the data into global
GPU memory, which greatly disrupts the intended opti-
mizations and causes the GPU code to run extremely
slow. Furthermore, the compiler cannot account for the
register overflow situation during compilation of the
source code because it does not know how many

processing threads will be running concurrently. If regis-
ter overflow occurs, one can decrease the number of
concurrent processing threads, but this reduces paralle-
lism which eventually defeats the speedup advantage of
the GPU. This leads to our next guideline.

• Guideline 3: Local variables and registers are a
limited and precious resource shared among all con-
current threads. Organize your code to use few local
variables and reuse those variables when possible.
Achieve greatest GPU occupancy by maximizing the
number of concurrent threads while minimizing
the register usage of each thread without exceeding
the total available registers.

This guideline is an extension of Guideline 2 which
suggests simpler kernels, as a more complex kernel
will tend to use more registers. For the calculation of a
large set of ODEs, the single kernel function that cal-
culates all equations would be split into multiple ker-
nel functions where each calculates only a small
number of ODE equations. Unfortunately achieving
optimal GPU performance is not such a straightfor-
ward affair as just writing simple kernels. A better per-
formance metric is to consider GPU occupancy. GPU
occupancy is defined by the combination of the num-
ber of threads, the number of registers used by each
thread and the amount of shared memory used by
each thread. Maximizing occupancy entails writing ker-
nel code and executing the kernel in a configuration
that maximizes the number of threads while minimiz-
ing the number of registers and amount of shared
memory used by each thread. CUDA comes with a
profiler application that can provide various perfor-
mance statistics helpful in optimizing GPU code, and
we present some results from the CUDA profiler for
Appendix Algorithm 3 in the Testing section.
Modern programming languages have encouraged the

design where data is encapsulated together into classes
or structures. This design has a direct impact on how
data is organized in memory as illustrated in Figure 2.
This memory organization while acceptable for CPU
programs will lead to poor performance for GPU pro-
grams. In the algorithms presented, we have followed a
strict guideline for our data structures:

• Guideline 4: Organize data structures in global
memory such that concurrent threads access contig-
uous sequential memory locations. This access pat-
tern to global memory will help maximize
coalescence. Consider using the other memory types
available such as shared, texture or constant mem-
ory, as they can be significantly faster than global
memory.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 12 of 23

Memory coalescence is when simultaneous accesses to
global memory by threads can be combined together
into fewer memory transactions. By maximizing memory
coalescence, global memory bandwidth is used most
efficiently. However GPUs have multiple types of mem-
ory, while in our code we only use constant and global
memory. These other memory types such as shared, tex-
ture and constant memory are limited in size and func-
tionality, but they are faster than global memory for
read operations and thus can provide additional speed
improvements. Use of different GPU memory types may
require optimizing for different access patterns, e.g.
shared memory needs to minimize bank conflicts.
The 2D array in Appendix Algorithm 3, which holds

the concentration values for the ODEs, is specifically
designed so that the columns are the cells while the

rows are the different species. This is because each
thread performs the ODE calculations for each cell in
parallel, so the concurrent kernel functions will access
sequential memory locations. If the 2D array was trans-
posed such that the columns are the different species
while the rows are the cells, then concurrent threads no
longer access sequential memory locations and memory
coalescence is compromised. We have performed
experiments (data not shown) that indicate a 2-3 ×
speed difference can be incurred just due to this array
orientation.

Testing
We conducted timing experiments for three progressive
model implementations starting with the subcellular ele-
ment method, then adding the intracellular gene

Figure 2 Data structure memory layout. (A) An example data structure containing three variables to hold 3D spatial coordinates. (B) Memory
layout of the variables when N data structures are allocated together in a CPU program. The variables for each data structure are grouped
together in sequential memory locations. (C) Preferable memory layout of N data structures for a GPU program. Each variable in the data
structure are grouped together in sequential memory locations, and each variable group is padded to value A to insure alignment requirements.
Alignment can be handled automatically, such as with CUDA’s cudaMallocPitch function, and the alignment value must be used when
calculating array indexes.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 13 of 23

network and finally including cell growth and division.
For our discussion, these models are named the move-
ment model, the gene network model and the full
model. Table 3 shows the execution time for each
model for a different starting cell population. Simula-
tions were run on a dual processor 2.8 Ghz quad-core
Intel Mac Pro with an Nvidia GTX 285 graphics card;
the GPU did not have a monitor attached so it could be
completely dedicated to computation. Execution times
are reported for both periodic and no-boundary condi-
tions as well as using the naïve and the center point
implementations for the subcellular element method
corresponding to Appendix Algorithm 1 and 2 respec-
tively. The execution times are the average of three
simulations except for the full model where just a single
simulation was run. For the movement and gene net-
work models, the timing is for 3000 iterations for com-
parison against Newman’s CPU algorithm, and each cell
has 20 subcellular elements. For the full model, 3000
iterations is not sufficient time for the cells to grow and
divide, so we report 130000 iterations which allows for
multiple cell division cycles and increases the cell popu-
lation size approximately five fold. The simulations of
the full model correspond to the epidermis growing
from a single layer to multiple layers.
For the movement model using the center point

implementation, Table 3 shows that our GPU algorithm
for 128 cells is 18 × faster than Newman’s CPU algo-
rithm which he ran on a 2 Ghz PC [46]. The speedup
could be considered even greater as Newman used a

single step Euler scheme while we used a two-step
Runge-Kutta scheme. As the number of cells is
increased, especially starting at 500 cells, the naïve
implementation starts to perform poorly until it exceeds
the kernel runtime limit at 5000 cells while the center
point implementation scales well allowing 5000 cells to
be simulated in under 10 minutes for no-boundary con-
ditions. Inclusion of the intracellular gene network adds
a small amount to the total execution time indicating
that the subcellular element method dominates the
computation.
The execution time for the full model takes longer as

we run for over 40 × more iterations, but the results
indicate even scaling across the initial cell population
sizes as well as the increase of the cell population during
the simulation. We did not run simulations for the
initial cell population size of 5000 as this would entail
final cell counts of almost 30000. While simulations for
large cell populations do take a long time to run, they
actually become feasible using the GPU algorithms;
sequential CPU code could take numerous days to run
the same simulation. Even more significant is that the
simulations for smaller initial cell populations, values
that are reasonable for studying epidermal development,
can be executed in a couple hours or less. Periodic
boundary conditions add a significant amount of time to
these longer running simulations, so additional optimi-
zation is worth investigating.
We used the CUDA profiler tool to gather statistics

for the kernel functions for the gene network model

Table 3 Execution Time of Algorithms by Cell Population Sizes

Method 128 cells 250 cells 500 cells 1000 cells 5000 cells

Movement

Newman 180s

No boundary 16s 33s 80s 218s Kernel limit

Periodic boundary 43s 85s 263s 793s Kernel limit

Center, No boundary 10s 20s 33s 50s 550s

Center, Periodic boundary 26s 48s 79s 125s 944s

Movement, Gene Network

No boundary 18s 38s 86s 241s Kernel limit

Periodic boundary 46s 87s 286s 811s Kernel limit

Center, No boundary 13s 24s 42s 72s 630s

Center, Periodic boundary 29s 51s 88s 146s 1038s

Full Model

Center, No boundary 18m19s 41m59s 93m38s 239m34s

Final cell count 623 1159 2377 4735

Center, Periodic boundary 61m14s 151m25s 286m15s 573m55s

Final cell count 582 1059 2286 4585

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 14 of 23

with the center point implementation, periodic bound-
ary conditions, and 128 cells. Table 4 shows the profiler
results of percentage of GPU time, number of registers,
occupancy, and percentage of divergent branches for
each kernel function. The kernels for the subcellular ele-
ment method clearly are dominant using almost 90% of
the GPU time. Occupancy analysis indicates that the
number of registers limits the subcellular element
method kernels while the other kernels are limited by
the block size. The occupancy for those other kernels is
low, so performance can be improved by increasing the
number of threads per block. The subcellular element
kernels could be improved if the number of registers
could be reduced, thus allowing more threads to be con-
currently executed. A divergent branch occurs when the
threads take different code paths out of a branching
instruction, e.g. if-then-else, thus forcing a sequential
instruction flow and reducing concurrency. The percen-
tage of branches that diverge is under 1% for all the ker-
nels indicating that the algorithms maintain good
concurrency. Overall the profiler results suggest that
implementing additional optimizations might improve
performance even further.
Figures 3 and 4 show 3D visualization results from

running simulations of the full model with initial cell
population of 100 cells and periodic boundary condi-
tions. Figure 3 is a starting condition where the cells
form a single layer adhering to the basement membrane.
Figure 4 is at the end of the simulation where the cells
have gone through a few rounds of division forming
multiple layers of the epidermis. Subcellular elements
are colored red if they are of the type for basement
membrane adhesion. Otherwise, elements are colored
blue if they are in the basal cellular state or colored yel-
low if they are in the suprabasal cellular state.

Conclusions
The purpose of this article has been to explore the feasi-
bility of using the technology capabilities of GPUs to
model complex, integrative multicellular biological phe-
nomena. As a case study, we constructed a 3D model of
epidermal development incorporating cell shape,

movement and adhesion using the subcellular element
method, cell growth and division, and an intracellular
gene network within each cell coupled to cell-cell and
cell-environment interactions. We implemented the epi-
dermal model in GPU algorithms, and in the process we
discussed various programmatic issues and provided a
set of design guidelines that we hope will be instructive
to other modelers, both to avoid common pitfalls as
well as to exploit the GPU for performance gain.
What we have not explored are the issues of multi-

scale modeling. For our epidermal model, we have simu-
lated the cell shape and movement actions on the same
time scale as the intracellular gene network. In reality, it
is more likely to assume that the cell shape and move-
ment actions operate on a much longer time scale than
the gene network, thus allowing a time scale separation.
This might be implemented, as is commonly done in
agent-based models [38], through nested loops where
the gene network operates in the innermost fast loop
while the cell actions operate in the outermost slow
loop. This should result in some significant savings in
execution time as the subcellular element method domi-
nates the computation in our epidermal model.
While we have focused on the subcellular element

method for the representation of cells, the Delaunay-
Object-Dynamics method [45] can also potentially take
great advantage of GPUs due to its use of Voronoi cells.
Voronoi tessellation is a well-studied topic in computa-
tional geometry with many GPU algorithms [91,92], so
use of these algorithms might allow an even greater
number of cells to be modeled. What needs more inves-
tigation is how well stochastic modeling methods can
utilize GPU hardware. Markov chain based methods
such as the cellular Potts model alter the probability dis-
tribution of the whole system when a state change
occur, so individual cells cannot act in parallel without
taking the statistical correlations into account.
Despite the obvious speed advantages of GPUs for

data-parallel programming, they have some definite lim-
itations compared to other parallel architectures. Most
notably is that GPUs have essentially no synchronization
or communication capability between concurrent
threads. Algorithms where threads communicate inter-
mediate results to other threads cannot be directly used.
Though some GPUs do offer a simplistic block-level
synchronization, it is restricted to a subset of threads
(based upon grid/block decomposition) so algorithms
have to be specially designed with that constraint, and
even then it is a code barrier synchronization and has
no communication capabilities. Another limitation is the
lack of semaphore or locking primitives for shared wri-
table memory, so threads have no mechanism to coordi-
nate memory writes and prevent one thread from
overwriting another. More recent GPUs provide atomic

Table 4 CUDA Profiler Results for Kernels in Movement/
Gene Network Model

Kernel %GPU
time

Registers Occupancy %Divergent
Branches

skin_moveKernel_F1 44.85% 35 0.25 0.85%

skin_moveKernel_F2 44.83% 32 0.5 0.85%

skin_neighbor_kernel 8.76% 20 0.125 0%

skin_center_kernel 0.42% 19 0.125 0.56%

skin_kernel_F1 0.34% 28 0.125 0.64%

skin_kernel_F2 0.34% 28 0.125 0.64%

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 15 of 23

Figure 3 Single layer of epidermal cells. 3D visualization of 100 cells each with 20 subcellular elements and periodic boundary conditions
forming a single layer of the epidermis. The greenish-yellow plane under the cells represents the basement membrane. Red subcellular
elements have an adhesive force term with the basement membrane, and blue subcellular elements indicate the basal cellular state.

Figure 4 Multiple layers of epidermal cells. 3D visualization of full model after running for 130000 iterations showing 535 cells forming
multiple layers of the epidermis. The model started with 100 cells in a single layer as shown in Figure 3 and proceeded through about three
cell divisions. The greenish-yellow plane under the cells represents the basement membrane. Red subcellular elements have an adhesive force
term with the basement membrane, while blue subcellular elements indicate the basal cellular state and yellow subcellular elements indicate the
suprabasal cellular state.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 16 of 23

write functions, while this does not provide the full cap-
ability of locking, it does allow lock-free data structures
to be considered. GPUs also have strict memory limita-
tions. The amount of memory available on GPUs is
much less than for CPUs; the Nvidia GTX 285 has 1
GB which is plenty sufficient for our model, but GPUs
lack virtual memory capability so the available memory
is a hard upper limit and has to be used wisely.
We have demonstrated that GPU algorithms can be

used to great advantage to speedup the execution time
of integrative multicellular biological models. There are
further improvements that can be made to our GPU
code. For example, we only use constant and global
memory, so using shared memory can greatly speedup
memory access. This would have the most benefit in the
kernels for the subcellular element method as they are
the most computationally expensive, however the code
can become more complicated and requires careful
design to use effectively. Also some of our kernels do
not maximize GPU occupancy as well as they could, so
we can further fine-tune these kernels to either use
more concurrent threads or reduce the number of regis-
ters being used. We hope in the future to continue
developing our epidermal model and use it to investi-
gate putative underlying mechanisms responsible for the
processes of stratification and homeostasis as well as the
role that environmental and cellular interactions play in
stem cell maintenance and proliferation.

Additional material

Additional file 1: Source code for 3D epidermal model using GPU
algorithms. CUDA source code is provided in three separate directories
for the three different models (movement, network, full) presented in the
paper. The Readme.txt file provides additional information.

Authors’ contributions
SC conceived the study, participated in its design, performed the
experiments and helped draft the manuscript. BL and XD participated in the
design of the study. QN participated in the design of the study and helped
draft the manuscript. All authors read and approved the final manuscript.

Appendix
The following algorithms are provided in sufficient detail so the various
parameters and GPU-related functions calls can be examined, however many
details such as variable declarations, parameter definitions, error checking,
utility functions, etc. have been eliminated for brevity. The full source code
is provided as Additional file 1. Also as we go from one algorithm to the
next, adding new functionality along the way, we only show the new code
while leaving just comments for the previous code.
Algorithm 1
void SEM(int numOfCells, int maxCells, int *elements,
int maxElements,

float *hostX, float *hostY, float *hostZ, float
*hostType,

float *hostParameters, float dt, float timeSteps)
{

//Allocate device memory

//cells and elements
cudaMalloc(&numOfElements, maxCells * sizeof(int));
cudaMallocPitch(&elementType, &pitch, maxCells *

sizeof(int), maxElements);
cudaMallocPitch(&X, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&X_F1, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&X_F2, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Y, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Y_F1, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Y_F2, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Z, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Z_F1, &pitch, maxCells * sizeof

(float), maxElements);
cudaMallocPitch(&Z_F2, &pitch, maxCells * sizeof

(float), maxElements);
//Copy host memory to device memory
//spatial positions
cudaMemcpy(numOfElements, elements, maxCells *

sizeof(int),
cudaMemcpyHostToDevice);

cudaMemcpy2D(elementType, pitch, hostType, maxCells
* sizeof(int),

maxCells * sizeof(int), maxElements,
cudaMemcpyHostToDevice);

cudaMemcpy2D(X, pitch, hostX, maxCells * sizeof
(float),

maxCells * sizeof(float), maxElements,
cudaMemcpyHostToDevice);

cudaMemcpy2D(Y, pitch, hostY, maxCells * sizeof
(float),

maxCells * sizeof(float), maxElements,
cudaMemcpyHostToDevice);

cudaMemcpy2D(Z, pitch, hostZ, maxCells * sizeof
(float),

maxCells * sizeof(float), maxElements,
cudaMemcpyHostToDevice);

//parameters
cudaMemcpyToSymbol(skin_parameters, hostParameters,

100 * sizeof(float), 0,
cudaMemcpyHostToDevice);

//execute kernel
for (t = 0; t < timeSteps; ++t) {

//movement kernels
sem_kernel_F1 < < < blocksPerGrid, threadsPerBlock >

> > (numOfElements, X, X_F1,
X_F2, Y, Y_F1, Y_F2, Z, Z_F1, Z_F2, elementType,
pitch/sizeof(float), numOfCells, maxCells,

maxElements, dt);
sem_kernel_F2 < < < blocksPerGrid, threadsPerBlock >

> > (numOfElements, X, X_F1,
X_F2, Y, Y_F1, Y_F2, Z, Z_F1, Z_F2, elementType,
pitch/sizeof(float), numOfCells, maxCells,

maxElements, dt);
cudaMemcpy2D(X, pitch, X_F2, pitch, maxCells *

sizeof(float),
maxElements, cudaMemcpyDeviceToDevice);

cudaMemcpy2D(Y, pitch, Y_F2, pitch, maxCells *
sizeof(float),

maxElements, cudaMemcpyDeviceToDevice);
cudaMemcpy2D(Z, pitch, Z_F2, pitch, maxCells *

sizeof(float),
maxElements, cudaMemcpyDeviceToDevice);

}
//Copy result to host memory

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 17 of 23

http://www.biomedcentral.com/content/supplementary/1752-0509-4-107-S1.TGZ

cudaMemcpy2D(hostX, maxCells * sizeof(float), X,
pitch,

maxCells * sizeof(float), maxElements,
cudaMemcpyDeviceToHost);

cudaMemcpy2D(hostY, maxCells * sizeof(float), Y,
pitch,

maxCells * sizeof(float), maxElements,
cudaMemcpyDeviceToHost);

cudaMemcpy2D(hostZ, maxCells * sizeof(float), Z,
pitch,

maxCells * sizeof(float), maxElements,
cudaMemcpyDeviceToHost);
}

__global__ void
sem_kernel_F1(int *numOfElements, float *X, float

*X_F1, float *X_F2, float *Y,
float *Y_F1, float *Y_F2, float *Z, float *Z_F1,

float *Z_F2,
int *elementType, size_t pitch, int numOfCells,

int maxCells,
int maxElements, float dt)

{
int cellNum = blockIdx.x * blockDim.x + threadIdx.x;
int elemNum = blockIdx.y * blockDim.y + threadIdx.y;
if (cellNum > = numOfCells) return;
if (elemNum > = numOfElements[cellNum]) return;
//intracellular
float intraX = 0.0;
float intraY = 0.0;
float intraZ = 0.0;
for (k = 0; k < numOfElements[cellNum]; ++k) {

if (k == elemNum) continue;
r = dist(X[elemNum*pitch+cellNum], Y[elemNum*pitch

+cellNum],
Z[elemNum*pitch+cellNum], X[k*pitch+cellNum],
Y[k*pitch+cellNum], Z[k*pitch+cellNum]);

V = MORSE(r, INTRA_U0, INTRA_ETA0, INTRA_U1,
INTRA_ETA1);

intraX += V * (X[elemNum*pitch+cellNum] - X[k*pitch
+cellNum]);

intraY += V * (Y[elemNum*pitch+cellNum] - Y[k*pitch
+cellNum]);

intraZ += V * (Z[elemNum*pitch+cellNum] - Z[k*pitch
+cellNum]);

#if PERIODIC_BOUNDARY
intracellular_mirror(elemNum, cellNum, pitch, k,

&intraX, &intraY,
&intraZ, X, Y, Z);

#endif
}
//intercellular
float interX = 0.0;
float interY = 0.0;
float interZ = 0.0;
for (j = 0; j < numOfCells; ++j) {

if (j == cellNum) continue;
for (k = 0; k < numOfElements[j]; ++k) {
r = dist(X[elemNum*pitch+cellNum], Y[elemNum*pitch

+cellNum],
Z[elemNum*pitch+cellNum],
X[k*pitch+j], Y[k*pitch+j], Z[k*pitch+j]);

if (r <= INTER_DIST) {
V = P_MORSE(r, INTER_U0, INTER_ETA0, INTER_U1,

INTER_ETA1);
interX += V * (X[elemNum*pitch+cellNum] - X[k*pitch

+j]);
interY += V * (Y[elemNum*pitch+cellNum] - Y[k*pitch

+j]);
interZ += V * (Z[elemNum*pitch+cellNum] - Z[k*pitch

+j]);
}

#if PERIODIC_BOUNDARY
intercellular_mirror(elemNum, cellNum, pitch, k, j,

&interX, &interY, &interZ, X, Y, Z);
#endif

}
}
//basement membrane
if (elementType[elemNum*pitch+cellNum] == 1) {

r = dist(X[elemNum*pitch+cellNum], Y[elemNum*pitch
+cellNum],

Z[elemNum*pitch+cellNum], X[elemNum*pitch
+cellNum],

Y[elemNum*pitch+cellNum], 0);
V = MORSE(r, INTRA_U0, INTRA_ETA0, INTRA_U1,

INTRA_ETA1);
interZ += V * (Z[elemNum*pitch+cellNum] - 0);

}
//update
X_F1[elemNum*pitch+cellNum] = X[elemNum*pitch

+cellNum]
+ 0.5 * dt * (intraX + interX);

Y_F1[elemNum*pitch+cellNum] = Y[elemNum*pitch
+cellNum]

+ 0.5 * dt * (intraY + interY);
Z_F1[elemNum*pitch+cellNum] = Z[elemNum*pitch

+cellNum]
+ 0.5 * dt * (intraZ + interZ);

}
Algorithm 2
void SEM(int numOfCells, int maxCells, int *elements,
int maxElements,

float *hostX, float *hostY, float *hostZ, float
*hostType,

float *hostParameters, float dt, float timeSteps)
{

//Allocate device memory
//cells and elements ..
//cell centers
cudaMalloc(&cellCenterX, maxCells * sizeof(float));
cudaMalloc(&cellCenterY, maxCells * sizeof(float));
cudaMalloc(&cellCenterZ, maxCells * sizeof(float));
//Copy host memory to device memory
//spatial positions ..
//parameters ..
//execute kernel
for (t = 0; t < timeSteps; ++t) {
//movement kernels
skin_center_kernel < < < blocksPerGrid1 D,

threadsPerBlock1D > > > (numOfElements,
X, Y, Z, elementType, cellCenterX, cellCenterY,
cellCenterZ, pitch/sizeof(float), numOfCells,
maxCells, maxElements);

sem_kernel_F1 < < < blocksPerGrid, threadsPerBlock >
> > (numOfElements, X, X_F1,

X_F2, Y, Y_F1, Y_F2, Z, Z_F1, Z_F2, elementType,
pitch/sizeof(float), numOfCells, maxCells,

maxElements, dt);
sem_kernel_F2 < < < blocksPerGrid, threadsPerBlock >

> > (numOfElements, X, X_F1,
X_F2, Y, Y_F1, Y_F2, Z, Z_F1, Z_F2, elementType,
pitch/sizeof(float), numOfCells, maxCells,

maxElements, dt);
}
//Copy result to host memory ..

}
__global__ void
skin_center_kernel(int *numOfElements, float *X,

float *Y, float *Z,
int *elementType, float *cellCenterX, float

*cellCenterY,
float *cellCenterZ, size_t pitch,

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 18 of 23

int numOfCells, int maxCells, int maxElements,
float dt)
{

int cellNum = blockIdx.x * blockDim.x + threadIdx.x;
int elemNum;
if (cellNum > = numOfCells) return;
float cX = 0.0;
float cY = 0.0;
float cZ = 0.0;
float minX, maxX;
float minY, maxY;
minX = X[cellNum];
maxX = X[cellNum];
minY = Y[cellNum];
maxY = Y[cellNum];
for (elemNum = 0; elemNum < numOfElements[cellNum]; +

+elemNum) {
cX += X[elemNum*pitch+cellNum];
cY += Y[elemNum*pitch+cellNum];
cZ += Z[elemNum*pitch+cellNum];
if (X[elemNum*pitch+cellNum] < minX) minX = X

[elemNum*pitch+cellNum];
if (X[elemNum*pitch+cellNum] > maxX) maxX = X

[elemNum*pitch+cellNum];
if (Y[elemNum*pitch+cellNum] < minY) minY = Y

[elemNum*pitch+cellNum];
if (Y[elemNum*pitch+cellNum] > maxY) maxY = Y

[elemNum*pitch+cellNum];
}

cX = cX/(float)numOfElements[cellNum];
cY = cY/(float)numOfElements[cellNum];
cZ = cZ/(float)numOfElements[cellNum];
//handle special case when cell is split across

periodic boundary
if ((maxX - minX) > (BOUNDARY_X/2)) {

cX = 0;
for (elemNum = 0; elemNum < numOfElements[cellNum];

++elemNum) {
if (X[elemNum*pitch+cellNum] > (BOUNDARY_X/2))
cX += X[elemNum*pitch+cellNum] - BOUNDARY_X;

else
cX += X[elemNum*pitch+cellNum];

}
cX = cX/(float)numOfElements[cellNum];
if (cX < 0) cX += BOUNDARY_X;

}
if ((maxY - minY) > (BOUNDARY_Y/2)) {

cY = 0;
for (elemNum = 0; elemNum < numOfElements[cellNum];

++elemNum) {
if (Y[elemNum*pitch+cellNum] > (BOUNDARY_Y/2))
cY += Y[elemNum*pitch+cellNum] - BOUNDARY_Y;

else
cY += Y[elemNum*pitch+cellNum];

}
cY = cY/(float)numOfElements[cellNum];
if (cY < 0) cY += BOUNDARY_Y;

}
cellCenterX[cellNum] = cX;
cellCenterY[cellNum] = cY;
cellCenterZ[cellNum] = cZ;

}
__global__ void
sem_kernel_F1(int *numOfElements, float *X, float

*X_F1, float *X_F2, float *Y,
float *Y_F1, float *Y_F2, float *Z, float *Z_F1,

float *Z_F2,
float *cX, float *cY, float *cZ,
int *elementType, size_t pitch, int numOfCells,

int maxCells,
int maxElements, float dt)

{
int cellNum = blockIdx.x * blockDim.x + threadIdx.x;
int elemNum = blockIdx.y * blockDim.y + threadIdx.y;
if (cellNum > = numOfCells) return;
if (elemNum > = numOfElements[cellNum]) return;
//intracellular ..
//intercellular
float interX = 0.0;
float interY = 0.0;
float interZ = 0.0;
for (j = 0; j < numOfCells; ++j) {

if (j == cellNum) continue;
//check if cell centers are close enough
r = dist(cX[cellNum], cY[cellNum], cZ[cellNum], cX

[j], cY[j], cZ[j]);
if (r > INTER_DIST) continue;
for (k = 0; k < numOfElements[j]; ++k) {
r = dist(X[elemNum*pitch+cellNum], Y[elemNum*pitch

+cellNum],
Z[elemNum*pitch+cellNum],
X[k*pitch+j], Y[k*pitch+j], Z[k*pitch+j]);

if (r <= INTER_DIST) {
V = P_MORSE(r, INTER_U0, INTER_ETA0, INTER_U1,

INTER_ETA1);
interX += V * (X[elemNum*pitch+cellNum] - X

[k*pitch+j]);
interY += V * (Y[elemNum*pitch+cellNum] - Y

[k*pitch+j]);
interZ += V * (Z[elemNum*pitch+cellNum] - Z

[k*pitch+j]);
}

#if PERIODIC_BOUNDARY
intercellular_mirror(elemNum, cellNum, pitch, k, j,

&interX, &interY, &interZ, X, Y, Z);
#endif
}

}
//basement membrane ..
//update ..

}
Algorithm 3
void SEM(int numOfCells, int maxCells, int *elements,
int maxElements,

float *hostX, float *hostY, float *hostZ, float
*hostType,

float *hostParameters, int numOfSpecies, float
*speciesData,

float dt, float timeSteps)
{

//Allocate device memory
//cells and elements ..
//cell centers ..
//intracellular gene network
cudaMalloc(&neighborNum, maxCells * sizeof(float));
cudaMallocPitch(&sData, &pitch, maxCells * sizeof

(float), numOfSpecies);
cudaMallocPitch(&sData_F1, &pitch, maxCells * sizeof

(float), numOfSpecies);
cudaMallocPitch(&sData_F2, &pitch, maxCells * sizeof

(float), numOfSpecies);
cudaMallocPitch(&neighborData, &pitch, maxCells *

sizeof(float),
numOfSpecies);

//Copy host memory to device memory ..
//spatial positions ..
//parameters ..
//intracellular gene network
cudaMemcpy2D(sData, pitch, speciesData, maxCells *

sizeof(float),
maxCells * sizeof(float), numOfSpecies,

cudaMemcpyHostToDevice);

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 19 of 23

//execute kernel
for (t = 0; t < timeSteps; ++t) {

//movement kernels ..
//gene network kernels
skin_neighbor_kernel < < < blocksPerGrid1 D,

threadsPerBlock1D > > > (numOfElements,
cellCenterX, cellCenterY, cellCenterZ,

elementType,
neighborNum, pitch/sizeof(float),
sData, sData_F1, sData_F2, neighborData,

numOfCells,
maxCells, maxElements);

skin_kernel_F1 < < < blocksPerGrid1 D,
threadsPerBlock1D > > > (numOfElements,

X, Y, Z, elementType, neighborNum, pitch/sizeof
(float),

sData, sData_F1, sData_F2, neighborData,
numOfCells, maxCells, maxElements, dt);

skin_kernel_F2 < < < blocksPerGrid1 D,
threadsPerBlock1D > > > (numOfElements,

X, Y, Z, elementType, neighborNum, pitch/sizeof
(float),

sData, sData_F1, sData_F2, neighborData,
numOfCells, maxCells, maxElements, dt);

}
//Copy result to host memory ..

}
__global__ void
skin_neighbor_kernel(int *numOfElements, float

*cellCenterX,
float *cellCenterY, float *cellCenterZ, int

*elementType,
int *neighborNum, size_t pitch,
float *speciesData, float *speciesData_F1,
float *speciesData_F2, float *neighborData,
int numOfCells, int maxCells, int maxElements)

{
int cellNum = blockIdx.x * blockDim.x + threadIdx.x;
int j;
if (cellNum > = numOfCells) return;
//totals from neighbors
float neighbor_NOTCH = 0.0;
float neighbor_DELTA = 0.0;
float neighbor_BOUND = 0.0;
int numOfNeighbors = 0;
for (j = 0; j < numOfCells; ++j) {

if (j == cellNum) continue;
if (distance_check(cellCenterX[cellNum],

cellCenterY[cellNum],
cellCenterZ[cellNum], cellCenterX[j],
cellCenterY[j], cellCenterZ[j],
S_XY_TOT, NEIGHBOR_DIST) != S_NONE) {

++numOfNeighbors;
neighbor_NOTCH += speciesData

[NOTCH_species*pitch+j];
neighbor_DELTA += speciesData

[DELTA_species*pitch+j];
neighbor_BOUND += speciesData

[BOUND_species*pitch+j];
}

}
neighborNum[cellNum] = numOfNeighbors;
neighborData[NOTCH_species*pitch+cellNum] =

neighbor_NOTCH;
neighborData[DELTA_species*pitch+cellNum] =

neighbor_DELTA;
neighborData[BOUND_species*pitch+cellNum] =

neighbor_BOUND;
}

__global__ void

skin_kernel_F1(int *numOfElements, float *X, float
*Y, float *Z,

int *elementType, int *neighborNum, size_t
pitch,

float *speciesData, float *speciesData_F1,
float *speciesData_F2, float *neighborData,
int numOfCells, int maxCells, int maxElements,

float dt)
{

int cellNum = blockIdx.x * blockDim.x + threadIdx.x;
if (cellNum > = numOfCells) return;
float interactionValue, F1_val;
//calculate F1
float NOTCH_val = speciesData[NOTCH_species*pitch

+cellNum];
float DELTA_val = speciesData[DELTA_species*pitch

+cellNum];
float BOUND_val = speciesData[BOUND_species*pitch

+cellNum];
float BMA_val = speciesData[BMA_species*pitch

+cellNum];
float OVOL1_val = speciesData[OVOL1_species*pitch

+cellNum];
float OVOL2_val = speciesData[OVOL2_species*pitch

+cellNum];
float CMYC_val = speciesData[CMYC_species*pitch

+cellNum];
//averages from neighbors
float neighbor_NOTCH = 0.0;
float neighbor_DELTA = 0.0;
float neighbor_BOUND = 0.0;
int numOfNeighbors = 0;
neighbor_NOTCH = neighborData[NOTCH_species*pitch

+cellNum];
neighbor_DELTA = neighborData[DELTA_species*pitch

+cellNum];
neighbor_BOUND = neighborData[BOUND_species*pitch

+cellNum];
numOfNeighbors = neighborNum[cellNum];
if (numOfNeighbors != 0) {

neighbor_NOTCH = neighbor_NOTCH/(float)
numOfNeighbors;

neighbor_DELTA = neighbor_DELTA/(float)
numOfNeighbors;

neighbor_BOUND = neighbor_BOUND/(float)
numOfNeighbors;
}

//NOTCH
interactionValue = HILL(BOUND_val, NOTCH_pmin_BOUND,

NOTCH_pmax_BOUND,
NOTCH_c_BOUND, NOTCH_h_BOUND);

interactionValue *= HILL(OVOL2_val,
NOTCH_pmin_OVOL2, NOTCH_pmax_OVOL2,

NOTCH_c_OVOL2, NOTCH_h_OVOL2);
F1_val = NOTCH_val + 0.5 * dt * ((-KA) * NOTCH_val *

neighbor_DELTA
+ KD * BOUND_val - DF * NOTCH_val
+ interactionValue);

if (F1_val < 0.0) F1_val = 0;
speciesData_F1[NOTCH_species*pitch+cellNum] =

F1_val;
//DELTA
interactionValue = HILL(NOTCH_val, DELTA_pmin_BOUND,

DELTA_pmax_BOUND,
DELTA_c_BOUND, DELTA_h_BOUND);

F1_val = DELTA_val + 0.5 * dt * ((-KA) * DELTA_val *
neighbor_NOTCH

+ KD * neighbor_BOUND - DA * DELTA_val
+ interactionValue);

if (F1_val < 0.0) F1_val = 0;

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 20 of 23

speciesData_F1[DELTA_species*pitch+cellNum] =
F1_val;

//BOUND RECEPTOR
F1_val = BOUND_val + 0.5 * dt * (KA * NOTCH_val *

neighbor_DELTA
- KD * BOUND_val - KI * BOUND_val);

if (F1_val < 0.0) F1_val = 0;
speciesData_F1[BOUND_species*pitch+cellNum] =

F1_val;
//Basement Membrane Adhesion
speciesData_F1[BMA_species*pitch+cellNum] =

speciesData[BMA_species*pitch+cellNum];
//OVOL1
interactionValue = HILL(OVOL2_val, OVOL1_pmin_OVOL2,

OVOL1_pmax_OVOL2,
OVOL1_c_OVOL2, OVOL1_h_OVOL2);

interactionValue *= HILL(BMA_val, OVOL1_pmin_BMA,
OVOL1_pmax_BMA,

OVOL1_c_BMA, OVOL1_h_BMA);
F1_val = OVOL1_val + 0.5 * dt * (interactionValue -

OVOL1_decay * OVOL1_val);
if (F1_val < 0.0) F1_val = 0;
speciesData_F1[OVOL1_species*pitch+cellNum] =

F1_val;
//OVOL2
interactionValue = HILL(OVOL1_val, OVOL2_pmin_OVOL1,

OVOL2_pmax_OVOL1,
OVOL2_c_OVOL1, OVOL2_h_OVOL1);

interactionValue *= HILL(0.4, 0.0, 1.0, 1.0, 1.0);//
TGF-beta

F1_val = OVOL2_val + 0.5 * dt * (interactionValue -
OVOL2_decay * OVOL2_val);

if (F1_val < 0.0) F1_val = 0;
speciesData_F1[OVOL2_species*pitch+cellNum] =

F1_val;
//CMYC
interactionValue = HILL(OVOL2_val, CMYC_pmin_OVOL2,

CMYC_pmax_OVOL2,
CMYC_c_OVOL2, CMYC_h_OVOL2);

F1_val = CMYC_val + 0.5 * dt * (interactionValue -
CMYC_decay * CMYC_val);

if (F1_val < 0.0) F1_val = 0;
speciesData_F1[CMYC_species*pitch+cellNum] =

F1_val;
}

Acknowledgements
This work is partially supported by NIH grants R01GM75309, R01GM67247,
R01AR47320, K02AR51482, P50GM76516 and NSF grant DMS-0917492.

Author details
1Department of Mathematics, University of California, Irvine, CA 92697, USA.
2Department of Biological Chemistry, University of California, Irvine, CA
92697, USA. 3Center for Mathematical and Computational Biology, University
of California, Irvine, CA 92697, USA. 4Center for Complex Biological Systems,
University of California, Irvine, CA 92697, USA.

Received: 28 January 2010 Accepted: 9 August 2010
Published: 9 August 2010

References
1. Alber M, Chen N, Glimm T, Lushnikov PM: Multiscale dynamics of

biological cells with chemotactic interactions: from a discrete stochastic
model to a continuous description. Physical review E, Statistical, nonlinear,
and soft matter physics 2006, 73:051901.

2. Drasdo D: Coarse graining in simulated cell populations. Adv Complex Syst
2005, 8:319-363.

3. Erban R, Othmer H: From signal transduction to spatial pattern formation
in E-coli: A paradigm for multiscale modeling in biology. Multiscale Model
Sim 2005, 3:362-394.

4. Salis H, Kaznessis YN: An equation-free probabilistic steady-state
approximation: dynamic application to the stochastic simulation of
biochemical reaction networks. The Journal of chemical physics 2005,
123:214106.

5. Qiao L, Erban R, Kelley CT, Kevrekidis IG: Spatially distributed stochastic
systems: Equation-free and equation-assisted preconditioned
computations. The Journal of chemical physics 2006, 125:204108.

6. Wendel S, Dibble C: Dynamic Agent Compression. Journal of Artificial
Societies and Social Simulation 2007, 10:9.

7. Stage A, Crookston N, Monserud R: An aggregation algorithm for
increasing the efficiency of population-models. Ecol Model 1993,
68:257-271.

8. OpenMP. [http://www.openmp.org].
9. Gropp W, Lusk E, Doss N, Skjellum A: A high-performance, portable

implementation of the MPI message passing interface standard. Parallel
Comput 1996, 22:789-828.

10. Chen N, Glazier JA, Izaguirre JA, Alber MS: A parallel implementation of
the Cellular Potts Model for simulation of cell-based morphogenesis.
Comput Phys Commun 2007, 176:670-681.

11. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K,
Patterson DA, Plishker WL, Shalf J, Williams SW, Yelick KA: The Landscape
of Parallel Computing Research: A View from Berkeley. EECS Department,
University of California, Berkeley 2006.

12. Manavski SA, Valle G: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
2008, 9(Suppl 2):S10.

13. Schatz MC, Trapnell C, Delcher AL, Varshney A: High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinformatics 2007,
8:474.

14. Chen C, Schmidt B, Weiguo L, Müller-Wittig W: GPU-MEME: Using Graphics
Hardware to Accelerate Motif Finding in DNA Sequences. Proceedings of
the Third IAPR International Conference on Pattern Recognition in
Bioinformatics 2008, 448-459.

15. Raina R, Madhavan A, Ng A: Large-scale deep unsupervised learning
using graphics processors. ICML ‘09: Proceedings of the 26th Annual
International Conference on Machine Learning 2009.

16. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K:
Accelerating molecular modeling applications with graphics processors.
J Comput Chem 2007, 28:2618-2640.

17. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S,
Beberg AL, Ensign DL, Bruns CM, Pande VS: Accelerating molecular
dynamic simulation on graphics processing units. J Comput Chem 2009,
30:864-872.

18. Dematté L, Prandi D: GPU computing for systems biology. Briefings in
Bioinformatics 2010, 11:323-333.

19. Ackermann J, Baecher P, Franzel T, Goesele M, Hamacher K: Massively-
Parallel Simulation of Biochemical Systems. Proceedings of Massively
Parallel Computational Biology on GPUs Lübeck, Germany 2009.

20. Li H, Petzold L: Efficient parallelization of stochastic simulation algorithm
for chemically reacting systems on the graphics processing unit.
International Journal of High Performance Computing Applications 2009, 1-27.

21. Tapia-Valenzuela J-J, D’Souza RM: Scaling the Gillespie stochastic
simulation algorithm using data-parallel architectures. SwarmFest. Santa
Fe, NM 2009.

22. Langdon WB: A fast high quality pseudo random number generator for
nVidia CUDA. Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers
Montreal, Québec, Canada: ACM 2009.

23. Mersenne Twister for Graphic Processors (MGMT). [http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/MTGP/].

24. D’Souza RM, Lysenko M, Marino S, Kirschner D: Data-parallel algorithms for
agent-based model simulation of tuberculosis on graphics processing
units. SpringSim ‘09: Proceedings of the 2009 Sprint Simulation
Multiconference San Diego, CA: Society for Computer Simulation
International 2009, 1-12.

25. Richmond P, Walker D, Coakley S, Romano D: High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in
Bioinformatics 2010, 11:334-347.

26. Lysenko M, D’Souza RM: A Framework for Megascale Agent Based Model
Simulations on Graphics Processing Units. Journal of Artificial Societies and
Social Simulation 2008, 11:10.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 21 of 23

http://www.ncbi.nlm.nih.gov/pubmed/16802961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16802961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16802961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17144691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17144691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17144691?dopt=Abstract
http://www.openmp.org
http://www.ncbi.nlm.nih.gov/pubmed/18084624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18084624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18387198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18387198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18070356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18070356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17894371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19191337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19191337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211843?dopt=Abstract
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/
http://www.ncbi.nlm.nih.gov/pubmed/20123941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20123941?dopt=Abstract

27. D’Souza RM, Lysenko M, Rahmani K: Sugarscape on Steroids: Simulating
Over a Million Agents at Interactive Rates. Proceedings of the Agent 2007
Conference. Chicago, IL 2007.

28. FLAME. [http://www.flame.ac.uk/].
29. Adra S, Sun T, MacNeil S, Holcombe M, Smallwood R: Development of a

three dimensional multiscale computational model of the human
epidermis. PLoS ONE 2010, 5:e8511.

30. Copasi. [http://www.copasi.org].
31. Merks RMH, Glazier JA: A cell-centered approach to developmental

biology. Physica A 2005, 352:113-130.
32. Walker DC, Southgate J: The virtual cell–a candidate co-ordinator for

‘middle-out’ modelling of biological systems. Briefings in Bioinformatics
2009, 10:450-461.

33. Sanderson A, Meyer M, Kirby R, Johnson C: A framework for exploring
numerical solutions of advection-reaction-diffusion equations using a
GPU-based approach. Comput Visual Sci 2009, 12:155-170.

34. Scarle S: Implications of the Turing completeness of reaction-diffusion
models, informed by GPGPU simulations on an XBox 360: cardiac
arrhythmias, re-entry and the Halting problem. Computational biology
and chemistry 2009, 33:253-260.

35. Cickovski T, Huang C, Chaturvedi R, Glimm T, Hentschel H, Alber M,
Glazier J, Newman S, Izaguirre J: A framework for three-dimensional
simulation of morphogenesis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2005, 2:273-288.

36. Glazier JA, Graner F: Simulation of the differential adhesion driven
rearrangement of biological cells. Physical review E, Statistical physics,
plasmas, fluids, and related interdisciplinary topics 1993, 47:2128-2154.

37. Graner F, Glazier J: Simulation of biological cell sorting using a two-
dimensional extended Potts model. Physical Review Letters 1992,
69:2013-2016.

38. Christley S, Zhu X, Newman SA, Alber MS: Multiscale agent-based
simulation for chondrogenic pattern formation in vitro. Cybernet Syst
2007, 38:707-727.

39. Christley S, Alber MS, Newman SA: Patterns of mesenchymal
condensation in a multiscale, discrete stochastic model. PLoS Comput Biol
2007, 3:e76.

40. An G: In silico experiments of existing and hypothetical cytokine-
diyected clinical trials using agent-based modeling. Crit Care Med 2004,
32:2050-2060.

41. Walker DC, Southgate J, Hill G, Holcombe M, Hose DR, Wood SM, Mac
Neil S, Smallwood RH: The epitheliome: agent-based modelling of the
social behaviour of cells. BioSystems 2004, 76:89-100.

42. Schaller G, Meyer-Hermann M: A modelling approach towards epidermal
homoeostasis control. J Theor Biol 2007, 247:554-573.

43. Drasdo D, Kree R, McCaskill J: Monte Carlo approach to tissue-cell
populations. Physical review E, Statistical physics, plasmas, fluids, and related
interdisciplinary topics 1995, 52:6635-6657.

44. Palsson E: A three-dimensional model of cell movement in multicellular
systems. Future Gener Comp Sy 2001, 17:835-852.

45. Meyer-Hermann M: Delaunay-Object-Dynamics: cell mechanics with a 3D
kinetic and dynamic weighted Delaunay-triangulation. Curr Top Dev Biol
2008, 81:373-399.

46. Newman T: Modeling multicellular systems using subcellular elements.
Math Biosci Eng 2005, 2:613-624.

47. Armstrong PB: Cell sorting out: the self-assembly of tissues in vitro. Crit
Rev Biochem Mol Biol 1989, 24:119-149.

48. Casal A, Sumen C, Reddy TE, Alber MS, Lee PP: Agent-based modeling of
the context dependency in T cell recognition. J Theor Biol 2005,
236:376-391.

49. Kim SHJ, Park S, Mostov K, Debnath J, Hunt CA: Computational
investigation of epithelial cell dynamic phenotype in vitro. Theoretical
biology & medical modelling 2009, 6:8.

50. Engelberg JA, Ropella GEP, Hunt CA: Essential operating principles for
tumor spheroid growth. BMC systems biology 2008, 2:110.

51. Peirce S, Skalak T, Papin J: Multiscale biosystems integration: Coupling
intracellular network analysis with tissue-patterning simulations. IBM
Journal of Research and Development 2006, 50:601-615.

52. Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M: A multiscale model of
thrombus development. Journal of the Royal Society, Interface/the Royal
Society 2008, 5:705-722.

53. Santoni D, Pedicini M, Castiglione F: Implementation of a regulatory gene
network to simulate the TH1/2 differentiation in an agent-based model
of hypersensitivity reactions. Bioinformatics 2008, 24:1374-1380.

54. de Jong H: Modeling and simulation of genetic regulatory systems: a
literature review. J Comput Biol 2002, 9:67-103.

55. Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ,
Downes CS, Dubitzky W: Computational methodologies for modelling,
analysis and simulation of signalling networks. Brief Bioinformatics 2006,
7:339-353.

56. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK: Physicochemical
modelling of cell signalling pathways. Nat Cell Biol 2006, 8:1195-1203.

57. Gillespie D: Exact stochastic simulation of coupled chemical reactions. J
Phys Chem-Us 1977, 81:2340-2361.

58. Gillespie DT: Stochastic simulation of chemical kinetics. Annual review of
physical chemistry 2007, 58:35-55.

59. Pahle J: Biochemical simulations: stochastic, approximate stochastic and
hybrid approaches. Briefings in Bioinformatics 2009, 10:53-64.

60. Bansal M, Gatta GD, di Bernardo D: Inference of gene regulatory networks
and compound mode of action from time course gene expression
profiles. Bioinformatics 2006, 22:815-822.

61. Gustafsson M, Hornquist M, Lombardi A: Constructing and analyzing a
large-scale gene-to-gene regulatory network Lasso-constrained inference
and biological validation. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 2005, 2:254-261.

62. Christley S, Nie Q, Xie X: Incorporating existing network information into
gene network inference. PLoS ONE 2009, 4:e6799.

63. Mendes P, Sha W, Ye K: Artificial gene networks for objective comparison
of analysis algorithms. Bioinformatics 2003, 19(Suppl 2):ii122-129.

64. Buchler NE, Gerland U, Hwa T: On schemes of combinatorial transcription
logic. Proc Natl Acad Sci USA 2003, 100:5136-5141.

65. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R:
Transcriptional regulation by the numbers: models. Curr Opin Genet Dev
2005, 15:116-124.

66. Fuchs E, Raghavan S: Getting under the skin of epidermal
morphogenesis. Nat Rev Genet 2002, 3:199-209.

67. Fuchs E: Scratching the surface of skin development. Nature 2007,
445:834-842.

68. Candi E, Schmidt R, Melino G: The cornified envelope: a model of cell
death in the skin. Nat Rev Mol Cell Biol 2005, 6:328-340.

69. Lechler T, Fuchs E: Asymmetric cell divisions promote stratification and
differentiation of mammalian skin. Nature 2005, 437:275-280.

70. Wearing HJ, Sherratt JA: Keratinocyte growth factor signalling: a
mathematical model of dermal-epidermal interaction in epidermal
wound healing. Mathematical biosciences 2000, 165:41-62.

71. Cai AQ, Landman KA, Hughes BD: Multi-scale modeling of a wound-
healing cell migration assay. J Theor Biol 2007, 245:576-594.

72. Grabe N, Neuber K: Simulating psoriasis by altering transit amplifying
cells. Bioinformatics 2007, 23:1309-1312.

73. Laptev MV, Nikulin NK: Synchronization of oscillations of proliferation of
keratinocytes in psoriatic skin by external periodic force: a mathematical
model. J Theor Biol 2005, 235:485-494.

74. Patel AB, Gibson WT, Gibson MC, Nagpal R: Modeling and inferring
cleavage patterns in proliferating epithelia. PLoS Comput Biol 2009, 5:
e1000412.

75. Savill NJ, Sherratt JA: Control of epidermal stem cell clusters by Notch-
mediated lateral induction. Dev Biol 2003, 258:141-153.

76. Naegel A, Heisig M, Wittum G: A comparison of two- and three-
dimensional models for the simulation of the permeability of human
stratum corneum. Eur J Pharm Biopharm 2009, 72:332-338.

77. Das C, Noro MG, Olmsted PD: Simulation studies of stratum corneum
lipid mixtures. Biophys J 2009, 97:1941-1951.

78. Grabe N, Neuber K: A multicellular systems biology model predicts
epidermal morphology, kinetics and Ca2+ flow. Bioinformatics 2005,
21:3541-3547.

79. Parkinson EK: Defective responses of transformed keratinocytes to
terminal differentiation stimuli. Their role in epidermal tumour
promotion by phorbol esters and by deep skin wounding. Br J Cancer
1985, 52:479-493.

80. Li AG, Koster MI, Wang XJ: Roles of TGFbeta signaling in epidermal/
appendage development. Cytokine Growth Factor Rev 2003, 14:99-111.

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 22 of 23

http://www.flame.ac.uk/
http://www.ncbi.nlm.nih.gov/pubmed/20076760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20076760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20076760?dopt=Abstract
http://www.copasi.org
http://www.ncbi.nlm.nih.gov/pubmed/19293250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19293250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19577519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19577519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19577519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9960234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9960234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10046374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10046374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17465675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17465675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15351133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15351133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9964180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9964180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18023735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18023735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2651008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15899504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15899504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19105850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19105850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17925274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17925274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17116646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17116646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17037977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16418235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16418235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16418235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19710931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19710931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12702751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12702751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11972157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11972157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17314969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15803139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15803139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16094321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16094321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10804259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10804259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10804259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17188306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17188306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15935167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15935167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15935167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19521504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19521504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12781689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12781689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19101628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19101628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19101628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19804725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19804725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16030073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16030073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2415144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2415144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2415144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12651222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12651222?dopt=Abstract

81. Gardner TS, Cantor CR, Collins JJ: Construction of a genetic toggle switch
in Escherichia coli. Nature 2000, 403:339-342.

82. Nair M, Teng A, Bilanchone V, Agrawal A, Li B, Dai X: Ovol1 regulates the
growth arrest of embryonic epidermal progenitor cells and represses c-
myc transcription. J Cell Biol 2006, 173:253-264.

83. Teng A, Nair M, Wells J, Segre JA, Dai X: Strain-dependent perinatal
lethality of Ovol1-deficient mice and identification of Ovol2 as a
downstream target of Ovol1 in skin epidermis. Biochim Biophys Acta 2007,
1772:89-95.

84. Wells J, Lee B, Cai A, Karapetyan A, Lee W, Rugg E, Sinha S, Nie Q, Dai X:
Ovol2 suppresses cell cycling and terminal differentiation of
keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009,
284:29125-29135.

85. Meir E, von Dassow G, Munro E, Odell GM: Robustness, flexibility, and the
role of lateral inhibition in the neurogenic network. Curr Biol 2002,
12:778-786.

86. Wearing HJ, Owen MR, Sherratt JA: Mathematical modelling of juxtacrine
patterning. Bull Math Biol 2000, 62:293-320.

87. Owen MR, Sherratt JA: Mathematical modelling of juxtacrine cell
signalling. Mathematical biosciences 1998, 153:125-150.

88. Nvidia CUDA. [http://www.nvidia.com/object/cuda_home.html].
89. OpenCL. [http://www.khronos.org/opencl/].
90. CUDPP. [http://gpgpu.org/developer/cudpp].
91. Hoff K III, Keyser J, Lin M, Manocha D, Culver T: Fast computation of

generalized Voronoi diagrams using graphics hardware. SIGGRAPH ‘99:
Proceedings of the 26th annual conference on Computer graphics and
interactive techniques 1999.

92. Vasconcelos CN, Sa A, Carvalho PC, Gattass M: Lloyd’s Algorithm on GPU.
LNCS 5358 2008, 953-964.

doi:10.1186/1752-0509-4-107
Cite this article as: Christley et al.: Integrative multicellular biological
modeling: a case study of 3D epidermal development using GPU
algorithms. BMC Systems Biology 2010 4:107.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Christley et al. BMC Systems Biology 2010, 4:107
http://www.biomedcentral.com/1752-0509/4/107

Page 23 of 23

http://www.ncbi.nlm.nih.gov/pubmed/10659857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10659857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17049212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17049212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17049212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19700410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19700410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12015114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12015114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10824431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10824431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9825636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9825636?dopt=Abstract
http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/
http://gpgpu.org/developer/cudpp

	Abstract
	Background
	Results
	Conclusions

	Background
	Modeling Methods for Biological Behaviors
	Cell Shape and Movement
	Cell Adhesion
	Cell Division and Growth
	Intracellular Gene Network

	Biological Background
	Results and Discussion
	Model of Epidermal Development
	Cell Shape and Movement
	Intracellular Gene Network
	Cell Growth and Division

	GPU Implementation
	Subcellular Element Method
	Boundary Conditions
	Intracellular Gene Network

	Testing
	Conclusions
	Authors’ contributions
	Appendix
	Acknowledgements
	Author details
	References

