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ABSTRACT Multisite phosphorylation is a common form of posttranslational protein regulation which has been used to increase
the switchlike behavior of the protein response to increasing kinase concentrations. In this letter, we show that the switchlike
response of multisite phosphoproteins is strongly enhanced by nonessential phosphorylation sites, a mechanism that is robust
to parameter changes and easily implemented in nature. We obtained analytic estimates for the Hill exponent (or coefficient) of
the switchlike response, and we observed that a tradeoff exists between the switch and the kinase threshold for activation. This
alsosuggestsapossible evolutionarymechanism for the relatively largenumbersofphosphorylation sites found in variousproteins.
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It has been argued that a large number of phosphorylation sites
could form the basis for a strong switchlike response (large
Hill exponent) to an increase in kinase concentration (1,2).
Such a property is desirable in situations where a highly ultra-
sensitive response is expected (such as cell division in
response to a growth factor), or in the design of multistable
systems (3). However, it was demonstrated in Gunawardena
(4) through a mathematical model that the dose-response
curve of the fully phosphorylatedprotein cannot be switchlike.
Several plausiblemechanismshavebeen suggested to enhance
the switchlike response, including cooperativity among
different sites (4), temporal cooperativity (5), or introducing
other players such as membrane (6) and scaffold proteins (7).

Here, we propose a simple mechanism that substantially
improves ultrasensitivity of a dose response. Instead of consid-
ering only the fully phosphorylated substrate as in Gunawar-
dena (4), Qian and Cooper (5), and Serber and Ferrell (6), we
include substrates with at least k phosphorylated sites, out of
a total of n sites, as active (Fig. 1). We call k the minimal acti-
vation number.Apossibleway to achieve this threshold protein
activation is through an entropic binding mechanism, as
described in Lenz and Swain (8). The potential improvement
of ultrasensitivity for such mechanism has been suggested in
a recent study on bistability by multisite phosphorylation (9).
The steady-state fraction of activated substrates is given by

rn;k ¼ sk þ / þ sn
1 þ / þ sk þ / þ sn

; (1)

where si denotes the steady-state concentration of the corre-
sponding protein. There is increasing evidence supporting
this assumption. A classical example is the yeast cell cycle
regulator, Sic1, which has nine phosphorylation sites, among
which any combination of six is sufficient to trigger the onset
of S phase (1,10,11). At first glance, the inclusion of partially
phosphorylated substrates as active seems futile, because
a system with minimal activation number k out of a total of
n sites seems similar to a system with a total of k sites where
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full phosphorylation is required for activation.Rather surpris-
ingly, we find that the remaining n – k sitesmarkedly improve
the ultrasensitivity of the dose-response curve (Fig. 2 A).

In general, phosphorylation and dephosphorylation can
follow either a sequential or a nonsequential mechanism. In
the sequential mechanism, (de)phosphorylation takes place
in a specific order (Fig. 1) (12). Denote by li the relative
efficiency of a substrate being phosphorylated versus being
dephosphorylated at the ith residue (detailed definitions given
in Text S1 A in the Supporting Material). When li z l, the
effective Hill exponent of the dose-response curve can be
estimated as (see Text S1 A in the Supporting Material)

Hsðn; kÞz2k

�
1� k

n þ 1

�
¼ 2að1� aÞðn þ 1Þ; (2)

where a ¼ k/(n þ 1). In particular, when n ¼ 2k – 1, i.e.,
approximately half of the phosphorylation sites are nones-
sential, and Eq. 1 can be rewritten as (see Text S1 A in the
Supporting Material)

r2k�1;kðuÞ ¼ ðluÞk
1 þ ðluÞk; (3)

where u (dose) is the ratio of the steady-state free kinase to
phosphatase.Clearly, Eq.3 is aHill functionwithHill exponent
k, consistent with the Hill exponent estimated by Eq. 2 when
n ¼ 2k – 1. In comparison, the effective Hill exponent of the
traditional k-site phosphorylation model in Gunawardena (4)
is 2k/(k þ 1), a number always smaller than k for k > 1.

Moreover, based on Eq. 2, we can conclude (see Text S1
A in the Supporting Material):

1. For fixed n, as k increases, the ultrasensitivity first
increases then decreases (Fig. 2 B).
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FIGURE 1 A schematic diagram of n-site phosphorylations and

dephosphorylations under the sequential and distributive

mechanism by kinase E and phosphatase F, respectively. Inside

the solid box is the generalized definition of active substrates;

inside the dashed box is the conventional definition.
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FIGURE 2 Ultrasensitivity and threshold under the sequential

mechanism. (A) Dose-response curve. (B) The Hill exponents’

estimation by Eq. 2 (curve) and computed by ln(81)/ ln(EC90/

EC10) (dots). (C) Random li (black) versus li z l (red). (D)

Threshold. (Green) n ¼ 10, li ¼ 1. (Red) n ¼ 20, li ¼ 1. (Black)

n ¼ 20; l randomly chosen between 0.1 and 10.
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2. When k is fixed, the ultrasensitivity is improved by
including more nonessential phosphorylation sites (black
versus red for the same k in Fig. 2 B).

3. For fixed a, the ultrasensitivity increases linearly in n
(points on the same ray in Fig. 2 B).

Similar trends are observed through numerical simula-
tions when the li values are chosen randomly for each site
(Fig. 2 C and Fig. S1 in the Supporting Material).

As an illustration of Eq. 2, consider the Wee1 protein in
the Xenopus egg cell cycle. It is known that the first three
sites (Ser38, Thr53, and Ser62) tend to be phosphorylated
before the other two (Thr104 and Thr150), although the other
two are essential to the activity of Wee1 (13). When the first
four sites are mutated, only Thr150 can be phosphorylated,
and this is equivalent to k¼ n¼ 1. The estimated Hill expo-
nent by Eq. 2 is 1, close to the observed experimental value
of 1.1 (14). When the Thr104 site is mutated alone
(Wee1-T104E), the Hill exponent increases in experiments
to 1.4 (14). Assuming for simplicity that the first three sites
are phosphorylated sequentially, which corresponds to k ¼
n ¼ 4 in our model, one obtains a comparable value of 1.6.

Next, we study the effect of nonessential phosphorylation
sites to the threshold of switches under the sequential mech-
anism. One possible definition of the threshold is EC10, i.e.,
the input value such that the output reaches 10% of its
maximum (6). Our analytical study (see Text S1 C in the
Supporting Material) for li z l reveals that the threshold
increases in k (Fig. 2 D) and decreases in n (green versus
red for the same k in Fig. 2 D). The threshold plot of
randomly chosen li shows the same trend (Fig. 2 D, black).

The above analysis focuses on the sequential mechanism.
In the nonsequential case, we assume that any subset of at
least k phosphorylated sites is sufficient to activate the protein,
regardless of the exact position of the sites. The unordered
mechanism seems to be especially applicable in the context
of bulk electrostatics: when a protein is sufficiently phosphor-
ylated, it may cease to bind to negatively charged or hydro-
phobic regions, such as the cell membrane, regardless of
exactly which sites are involved. This can alter the activity
of a protein, as illustrated by the Ste5 protein in yeast (15).
It has been shown that phosphorylation sites on the substrate
tend to be located in poorly conserved (16) andpredominantly
disordered (17) regions,which suggests that the exact location
Biophysical Journal 99(6) L01–L03
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of the sites can often be unessential for activation and may
support mechanisms such as bulk electrostatics.

In the li z l case, the Hill exponent of the steady-state
fraction of the active substrates is estimated by (Text S1 C
in the Supporting Material)

Hrðn; kÞz1:71
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
�
1� k

nþ 1

�q
¼ 1:71

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞðn þ 1Þp ; (4)

which is approximately the square-root ofH in the sequential
case (Fig. S3 A). Therefore, the conclusions of the sequential
case still hold (Fig. S3 B), but the ultrasensitivity increases inffiffiffiffiffiffiffiffiffiffiffiffiffi

n þ 1
p

instead of n (Text S1 D in the Supporting Material). Conclu-
sions on the threshold under the sequential mechanism also
carry over to the nonsequential case (Fig. S3 C), except that
for fixed a, the threshold increases in n, regardless of the
value of a (Text S1 E in the Supporting Material).

In summary, under both sequential and nonsequential
mechanisms, the introduction of nonessential sites appears
to have opposite effects on ultrasensitivity and threshold
(Table S1). Because a good switch is expected to have both
high ultrasensitivity and large threshold, there seems to be
an optimal range for the number of nonessential sites when
the total number of sites is fixed. Thus, one possible explana-
tion of the requirement of six phosphorylated sites in Sic1 is
through the optimization of ultrasensitivity and threshold.
If the phosphorylation ofSic1 follows a sequentialmechanism
and li z l, then the largest Hill exponent is achieved when
k ¼ 5 (Fig. S4 A). If the phosphorylation of Sic1 is random,
k could be further increased to achieve a better threshold
without much sacrifice in the ultrasensitivity (Fig. S4 B).

In this new model, by decoupling the total number of sites
from the number of phosphorylations needed for activation,



0 5 10 15 20
0

2

4

6

8

10

12

Minimal activation number

H
ill

 e
xp

o
n

en
t

a

b

c
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we may look at the evolution of multisite phosphorylation,
because a given mutation can easily change one without
altering the other. For instance, a series of mutations (or
a single insertion event), that lead to doubled number of sites
while leaving k unchanged, may increase the ultrasensitivity
dramatically (a versus b in Fig. 3) while slightly decreasing
the threshold (green versus red at k ¼ 5 in Fig. 2 D).
Moreover, the evolutionary pressure may drive k to increase
(bversus c in Fig. 3). This process can continue to repeat itself
over time, and one can speculate that this could sometimes
lead to a runaway increase in the number of sites.

Intuitively, why will the addition of the nonessential sites
increase the switchlike behavior of a system?

Imagine the phosphorylation of an individual protein as
a biased random walk between 0 and n phosphorylations.
The propensities for phosphorylation and dephosphorylation
are given by the constants E and F, respectively. When E is
larger thanF, the biased randomwalk gravitates toward states
with large phosphorylated residues, and the probability of it
falling in Sk,.,Sn is higher than that in Sn. Conversely, even if
E is slightly smaller than F, the biased random walk now
favors states with few phosphorylated residues, and this
accounts for the ultrasensitive behavior of the switch (Text
S1 B in the Supporting Material).

In conclusion, we have proposed a mechanism through
the use of nonessential sites that could account for the
high ultrasensitivity observed in many multisite phosphory-
lation systems. For given values of the total number of sites
and the minimal number of phosphorylations for activation,
we have obtained estimates of the effective Hill exponent
under both sequential and nonsequential mechanisms. The
effect of nonessential sites on both the effective Hill expo-
nent and the threshold of a dose-response curve are
analyzed. Our results suggest that inclusion of nonessential
phosphorylation sites improves ultrasensitivity, but
decreases the threshold (Table S1 in the Supporting Mate-
rial). Thus, to achieve a good activation switch, there is
a balance between the number of nonessential sites and
the total number of sites. This new mechanism could be
extended to other contexts such as methylation, acetylation,
BPJ 19
or even the binding of multiple transcription factors on
a promoter region.
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A Computing the Hill exponent (or coefficient) under sequen-
tial phosphorylation

In the sequential case, each phosphorylation and dephosphorylation consist of the following
elementary chemical reactions respectively,

Si + E
koni−→
←−
koffi

ESi
kcati→ Si+1 + E,

Si+1 + F
loni−→
←−
loffi

FSi+1

lcati→ Si + F.

Here, koni and koffi are the binding and unbinding rates of kinse E and substrate Si, respec-
tively; kcati is the catalytic rate for the complex ESi to produce Si+1. Simliarly, loni and loffi
are the binding and unbinding rates of the phosphatase F and the substrate Si+1, respectively;
lcati is the catalytic rate for the complex FSi+1 to produce Si.
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Our goal is to compute the steady state proportion of the substrates with at least k phospho-
rylated sites,

sk + · · ·+ sn
s0 + · · ·+ sk + · · ·+ sn

.

Here, small letters denote the steady state concentrations of their corresponding proteins; the
number k is referred as the minimal activation number. The steady state concentrations of
different phosphoforms turn out to satisfy the following relations [2, 3, 4]:

si+1 = λiusi, (1)

where λi and u are defined as

u :=
e

f
, λi :=

kcatiLMi

KMi lcati
, KMi :=

kcati + koffi
koni

, LMi :=
lcati + loffi

loni
.

Note that in general the steady states are not unique for arbitrary given total concentrations of
the kinase and the phosphatase [2, 3, 4], however, it is unique when considering the free kinase
to phosphatase ratio as an input. Based on (1), the steady state fraction of substrates with at
least k phosphorylated sites equals

λ1λ2 · · ·λkuk + · · ·+ λ1λ2 · · ·λnun

1 + λ1u+ λ1λ2u2 + · · ·+ λ1λ2 · · ·λkuk + · · ·+ λ1λ2 · · ·λnun
. (2)

When the relative kinase to phosphatase efficiencies are similar for each site, i.e., λi ≈ λ, the
above formula can be simplified to

rn,k(x) :=
xk + · · ·+ xn

1 + x+ · · ·+ xk + · · ·+ xn
=
xn+1 − xk

xn+1 − 1
, (3)

where x := λu. This function rn,k(x) defines the input-output (also called the dose-response)
curve with λe/f as the input and the proportion of active substrates as the output. When
n = 2k − 1, equation (3) simplifies to

r2k−1,k(x) =
xk

1 + xk
,

which is a Hill function with Hill exponent k. The effective Hill exponent of the function rn,k(x),
0 < k < n, can be estimated by the Goldbeter-Koshland Formula [1],

Hs(n, k) =
ln 81

ln(vn,k/un,k)
, (4)

where
un,k = r−1

n,k(0.1), vn,k = r−1
n,k(0.9). (5)

If the dose-response curve is a Hill function xm

Km+xm , formula (4) recovers the Hill exponent m.
For the convenience of notation, when there is no confusion, we omit the subscripts of r, u, and
so on. Since r(x) is an increasing function in x, both u and v in (5) are well-defined. When
k = 0 and n+ 1, naturally, we define

Hs(n, 0) = Hs(n, n+ 1) = 0.

2



Let α be the ratio of k and n+1, termed as the site activation ratio. We next calculate Hs(n, k)
for arbitrary n and k. Define an auxiliary function

r̄α(x) =
x− xα

x− 1
.

Let us denote the Hill exponent of r̄α by H̄. Naturally, H̄ equals zero when α = 0 and α = 1.
For 0 < α < 1, we perform a change of variable with x̄ = xn+1, then

rn,k(x) =
x̄− x̄α

x̄− 1
= r̄α(x̄).

If we let ū = un+1
n,k and v̄ = vn+1

n,k , then r̄α(ū) = 0.1, r̄α(v̄) = 0.9, and

H̄(α) =
ln 81

ln(v̄/ū)
=

ln 81
(n+ 1) ln(vn,k/un,k)

=
1

n+ 1
Hs(n, k).

Multiplying both sides by n+ 1, we obtain

Hs(n, k) = H̄(α) (n+ 1). (6)

Next, we show that H̄(α) is symmetric with respect to α = 1/2. Let ū be such that r̄α(ū) = 0.1,
then it is equivalent to show that r̄1−α(ū−1) = 0.9, which indeed holds from a straightforward
computation,

ū−1 − ū−(1−α)

ū−1 − 1
= 0.9.

Similiarly, let v̄ be such that r̄α(v̄) = 0.9, then r̄1−α(v̄−1) = 0.1, and thus the Hill exponent of
r̄1−α is

H̄(1− α) =
ln 81

ln(ū−1/v̄−1)
=

ln 81
ln(v̄/ū)

= H̄(α).

Our numerical simulations in Figure 2B further reveal that H̄(α) is well approximated by the
quadratic function 2α(1− α), that is,

Hs(n, k) ≈ 2α(1− α)(n+ 1) = 2k
(

1− k

n+ 1

)
. (7)

B Intuition using biased random walks

It helps to have an intuition for why simply reducing the minimal activation number (or adding
additional sites without increasing this number) increases the switch-like behavior of the system.
Imagine the phosphorylation of an individual protein as a discrete stochastic event. At any given
time t the protein is in a state between 0 and n phosphorylations, and it follows a random walk
between these states. The propensities for phosphorylation and dephosphorylation are given
by the constants e and f respectively. The probabilities P0(t), . . . , Pn(t) for being in a specific
state at time t satisfy the system of differential equations

P ′0 = −eP0 + fP1

P ′1 = eP0 − fP1 − eP2 + fP0

...
P ′n = ePn−1 − fPn,

3



and the steady state probabilities Pi are given by the same formula (3) as the steady state
concentrations for the original continuous system, in the perfect balanced case.

Now, if e is even slightly larger than f , then the bias in the random walk will intuitively make
the protein spend most of its time in the top half of the states, since any biased random walk
eventually moves with high probability in the direction of the bias. Similarly it will spend little
time in this region if e is slightly smaller than f . This accounts for the ultrasensitive behavior.
Moreover, if e is slightly larger than f , then the ball will spend slightly more time at the most
phosphorylated state than if e = f , but not much more, since the random process itself will
constantly kick it out of this location. This means that Pn as a function of e/f is much less
ultrasensitive than Pk + · · ·+ Pn.

C Unordered phosphorylation

In the unordered case, the sites are phosphorylated and dephosphorylated in a random order.
Once a substrate-enzyme complex is formed, different products can be made based on their
catalytic rates. The number of phosphoforms grows exponentially with n in the unordered
mechanism in contrast to linearly in the sequential mechanism, and we thus expect to see
pronounced difference between sequential and unordered cases as n increases.

Introduce an index vector ~a, consisting of only zeros and ones, to represent substrates in different
phosphoforms. For example, S001 denote the substrate with three phosphorylation sites, of
which the first two sites are empty, and the last one is occupied. A general phosphorylation
and dephosphorylation reaction can be decomposed into elementary reactions as

S~a + E

k~aon−→
←−
k~aoff

ES~a
k~a,

~b

cat→ S~b + E,

S~b + F

l
~b
on−→
←−

l
~b
off
FS~b

l
~b,~a

cat→ S~a + F.

Here, the index vector ~b could be any vector obtained by replacing a zero in vector ~a by a
one. For example, when ~a = (0, 0, 1), ~b could be (0, 1, 1) or (1, 0, 1), but not (1, 1, 1). We
assume that the kinase-substrate complex is determined by the reacting substrate and kinase,
but not by the releasing product. That is, when ~a is given, different choices of ~b share the same
kinase-substrate complex, ES~a. This is especially suitable for the situation when the kinase
has a docking site. Once the substrate binds to the docking site, any unphosphorylated residue
on the substrate is a candidate to be phosphorylated.

Similarly as the sequential case, the steady state concentrations of different phosphoforms sat-
isfy [3],

s~b = λ
~a,~b
u s~a, (8)

where

λ
~a,~b

:=
k~a,

~b

cat L
~b,~a
M

K~a,~b
M l

~b,~a

cat
, K~a,~b

M :=

k~a,
~b

off +
∑
~a
E→~b

k~a,
~b

cat

k~a,
~b

on
, L

~b,~a
M :=

l
~b,~a

off +
∑
~b
F→~a

l
~b,~a

cat

l
~b,~a
on

.

4



Let us denote by si the total concentration of different phosphoform substrates with i sites
being phosphorylated. For example, s1 represents the sum of s100, s010, and s001. Under the
perfect balanced condition (λ

~a,~b
= λ), we have

si =
(
n
i

)
xi,

since there are n choose k different phosphoforms with exactly k phosphorylated sites. Thus,
the steady state proportion of the active substrates is,

gn,k(x) =

(
n
k

)
xk + · · ·+

(
n
n

)
xn

1 +
(
n
1

)
x+ · · ·+

(
n
k

)
xk + · · ·+

(
n
n

)
xn

=

∑n
i=k

(
n
i

)
xi

(1 + x)n
, (9)

where x = λu. Next, we prove that there exists a function σr that only depends on α such that
Hr(n, k) can be written as

Hr(n, k) ≈ σr(α)
√
n+ 1. (10)

To show this, we first interpret the function gn,k(x) in terms of the random process of tossing
coins. Define i.i.d. random variabled Yi ∈ {0, 1}, i = 1, . . . , n, with

Prob(Yi = 1) = p, Prob(Yi = 0) = q,

where p+ q = 1 and p, q > 0. Let Yi = 1 denote the ith toss being head, and Yi = 0 denote the
ith toss being tail. The expectation and the variance of Yi are

E(Yi) = p, V ar(Yi) = E(Y 2
i )− (EYi)2 = p− p2.

The sum of Yi’s, Wn :=
∑n

i=1 Yi, counts the total number of heads. That is, Prob(Wn =
k) represents the probability of seeing k heads in n independent experiments, which can be
computed as

Prob(Wn ≥ k) =
n∑
i=k

(
n
i

)
piqn−i.

If we let x = p
q , then

Prob(Wn ≥ k) =
n∑
i=k

(
n
i

)(
x

1 + x

)i( 1
1 + x

)n−i
= gn,k(x). (11)

On the other hand, the central limit theorem says

Zn :=
Wn − np√
p− p2

√
n
∼ N(0, 1).

Therefore,

gn,k(x) = Prob(Wn ≥ k)

= Prob

(
Zn ≥

k − np√
p− p2

√
n

)
(12)

≈ 1− Φ

(
k − np√
p− p2

√
n

)

= 1− Φ
(
k(1 + x)− nx√

xn

)
,

5



where function Φ is the cumulative distribution function of N(0, 1). The definition of v says

0.9 ≈ 1− Φ
(
k(1 + v)− nv√

vn

)
. (13)

For the simplicity of notations, we use equal sign from now on. Rearranging (13), we have

k(v + 1)− nv = −ξ
√
nv,

where ξ = −Φ−1(0.1). In the above equation, define γ :=
√
v and replace k by α(n+ 1),

(α− n

n+ 1
)γ2 + ξ

√
n

(n+ 1)2
γ + α = 0.

For large n, the above equation is approximately

(α− 1)γ2 +
ξ√
n+ 1

γ + α = 0.

The roots are

γ1,2 =
− ξ√

n+1
±
√

ξ2

n+1 − 4(α− 1)α

2(α− 1)
.

Because α < 1 and γ > 0, we have

√
v = γ =

− ξ√
n+1
−
√

ξ2

n+1 − 4(α− 1)α

2(α− 1)
.

Similarly, the equation of u, where g(u) = 0.1, is

k(u+ 1)− nu = ξ
√
nu, (14)

and the solution is

√
u =

ξ√
n+1
−
√

ξ2

n+1 − 4(α− 1)α

2(α− 1)
. (15)

Therefore

√
v√
u

=
ξ√
n+1

+
√

ξ2

n+1 − 4(α− 1)α

− ξ√
n+1

+
√

ξ2

n+1 − 4(α− 1)α

=
ξ2

n+1 + 2α(1− α) + ξ√
n+1

√
ξ2

n+1 − 4(α− 1)α

2α(1− α)
(16)

= 1 +
ξ√
n+1

√
ξ2

n+1 − 4(α− 1)α

2α(1− α)
+

ξ2

n+1

2α(1− α)
.

Define a shorthand
A =

ξ√
α(1− α)

1√
n+ 1

.
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The third term in (16) becomes A2/2, and the second term in (16) becomes

A

√
1 +

ξ2

4α(1− α)(n+ 1)
≈ A,

for fixed α and large n. Thus, √
v√
u
≈ e

ξ√
α(1−α)

1√
n+1 , (17)

and
ln
v

u
=

2ξ√
α(1− α)

1√
n+ 1

.

By the Goldbeter-Koshland Formula, we have

Hr(n, k) ≈ ln 81
2ξ

√
α(1− α)

√
n+ 1 ≈ 1.71

√
α(1− α)

√
n+ 1 = 1.71

√
k

(
1− k

n+ 1

)
, (18)

which is (10) with
σr(α) = 1.71

√
α(1− α).

Please see Figure S3A for comparisons of Hill exponents computed directly from the Goldbeter-
Koshland Formula and those estimated by equation (18).

D Changes of ultrasensitivity with respect to k, n, and α

D.1 Fix n, vary k

The sequential case
∂Hs

∂k
= 2

(
1− 2k

n+ 1

)
.

Thus, when n is fixed, as k increases, the Hill exponent first increases, then decreases, and the
maximum is achieved at 2k = n+ 1.

The unordered case
∂Hr

∂k
= 1.7145

1− 2k
n+1√

k
n+1

(
1− k

n+1

) .
Similarly, when n is fixed, as k increases, the Hill exponent first increases, then decreases, and
the maximum is achieved at 2k = n+ 1.

D.2 Fix k, vary n

Notice that Hs in (7) and Hr in (18) can be written either in terms of α and n or in terms of
k and n. In the following computations, we use the expressions of Hs and Hr involving only k
and n.

The sequential case
∂Hs

∂n
=

2k2

(n+ 1)2
> 0.

7



Thus, when k is fixed, as n increases, the Hill exponent always increases.

The unordered case
∂Hr

∂n
=

1.7145

2
√
k
(

1− k
n+1

) k2

(n+ 1)2
> 0.

So, when k is fixed, as n increases, the Hill exponent always increases.

D.3 Fix α, vary n

In the following computations, we use the expressions of Hs and Hr in (7) and (18) invloving
only α and n.

The sequential case
∂Hs

∂n
= 2α(1− α) > 0.

Thus, when α is fixed, as n increases, the Hill exponent always increases.

The unordered case
∂Hr

∂n
=

1.7145α(1− α)
2
√
n+ 1

> 0.

Therefore, when α is fixed, as n increases, the Hill exponent always increases.

E Changes of threshold with respect to k, n, and α

First, let us first prove a fact that will be repeatedly used in our analysis. Define a function

y(x) =
akx

k + · · ·+ anx
n

1 + a1x+ · · ·+ ak−1xk−1 + akxk + · · ·+ anxn
,

which is the general form of the dose-response curves used in equation (2) (the sequential case)
and equation (2) (the unordered case). Here, ais are positive real numbers. k and n are integers,
and k ≤ n. Claim that y(x) is an increasing function of x, x > 0, i.e.,

dy

dx
> 0 for x > 0. (19)

This is equivalent to proving that the function 1
y(x) is decreasing in x. The derivative of 1

y(x)
with respect to x is,

k−1∑
i=1

n∑
j=k

(i− j)aiajxi+j−1 −
n∑
j=k

ajx
j−1

(akxk + · · ·+ anxn)2
. (20)

Notice that in the first term of the numerator, i− j is always negative, and ai and aj are both
positive, so overall (20) is negative. Therefore, 1

y(x) is decreasing in x, and y(x) is increasing
in x.

In the following subsections, we focus on the perfect balanced case, which corresponds to ai = 1

in y(x) under the sequential mechanism (the function rn,k(x)) and ai =
(
n
k

)
in y(x) under

the unordered mechanism (the function gn,k(x)).
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We define the threshold of the does-response curve y(x) as the value of x when y(x) reaches
ten percent of its maximal, i.e., y−1(0.1). The changes of threshold with respect to k, n, and α
are analyzed in the following subsections.

E.1 Fix n, vary k

The sequential case

For fixed n, rewrite the function rn,k(x) as l(k, x). Thus, the threshold is the solution of

0.1 = l(k, x). (21)

Taking derivative of both sides of equation (21) with respect to k, we obtain

dx

dk
= −∂l/∂k

∂l/∂x
.

Based on (19), ∂l/∂x is positive. On the other hand,

∂l

∂k
(k, x) = − xk lnx

xn+1 − 1
< 0

on both intervals x > 1 and 0 < x < 1. Also, it is easy to see that ∂l/∂k is continuous at x = 1
with

∂l

∂k
(k, 1) = − 1

n+ 1
.

Thus, dx/dk is always positive, i.e., for fixed n, the threshold is increasing in k.

The unordered case

The threshold in the unordered case is solved from equation (14). For fixed n, taking derivatives
with respect to k on both sides of equation (14), we obtain

du

dk
=

u+ 1

n− k + ξ
√
n

2
√
u

> 0.

Thus, for fixed n, the threshold increases in k.

E.2 Fix k, vary n

The sequential case

For fixed k, rewrite the function rn,k(x) as h(n, x). Thus, the threshold is the solution of

0.1 = h(n, x). (22)

Taking derivative of both sides of equation (22) with respect to n, we obtain

dx

dn
= −∂h/∂n

∂h/∂x
.

Based on (19), ∂h/∂x is positive. On the other hand,

∂h

∂n
(n, x) =

xk − 1
(xn+1 − 1)2

xn+1 lnx > 0

9



on both intervals x > 1 and 0 < x < 1. Also, it is easy to see that ∂h/∂n is continuous at x = 1
with

∂h

∂n
(n, 1) =

k

(n+ 1)2
.

Thus, dx/dn is always negative, i.e., for fixed k, the threshold is decreasing in n.

The unordered case

The threshold in the unordered case is solved from equation (14). For fixed k, taking derivatives
with respect to n on both sides of equation (14), we obtain

du

dn
= −

(
ξ

2
√
nu

+ 1
)
u

n− k + ξ
√
n

2
√
u

< 0.

Thus, for fixed k, the threshold decreases in n.

E.3 Fix α, vary n

The sequential case

For fixed α, ū = r̄−1
α (0.1) is fixed, and the threshold u = ū1/(n+1). So, the monotonicity of u

with respect to n depends on whether ū is greater than one. On the other hand, ū > 1 if and
only if α > 0.9. To see this, notice that the function rn,k(x) is increasing in x (the claim proved
at the beginning of Section E). When x = 1, r̄α(1) = rn,k(1) = 1− α. Thus, ū = r̄−1

α (0.1) > 1
if α > 0.9; ū = r̄−1

α (0.1) < 1 if α < 0.9. Therefore, the threshold increases in n when α < 0.9
and decreases when α > 0.9.

The unordered case

In the unordered case, the threshold is given in (15). Rewrite
√
u as

√
u =

2α
ξ√
n+1

+
√

ξ2

n+1 − 4(α− 1)α
.

It is easy to see that for fixed α, u is increasing n, i.e., the threshold is increasing in n.
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Figure S1
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Figure S1: Plot of the Hill exponents for random λs. Each black curve corresponds to one

set of λis. In total, 100 sets of λis are generated, where each log
10

λi follows a uniform distribution on

[−1, 1]. The red curve represents the perfect balanced case when λi = 1.
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Figure S2
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Figure S2: Plot of the thresholds for random λs. Each black curve corresponds to one set of

λis. In total, 100 sets of λis are generated, where each log
10

λi follows a uniform distribution on [−1, 1].

The red curve represents the perfect balanced case when λi = 1.
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Figure S3
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Figure S3: Comparison between the sequential and the non-sequential mechanisms. (A)

The Hill exponent under the sequential (black) and non-sequential (red) mechanisms. Here, the dots are

computed directly from the Goldbeter-Koshland formula, and the curves are estimations from Eq. 2 and

Eq. 4 in the main text. In both plots, n = 11 and λi = 1. (B) Plot of the dose-response curves for the

sequential case k = 10 (red dashed), non-sequential case k = 10 (red solid), non-sequential case k = 9

(orange solid), 8 (purple solid), 7 (blue solid), 6 (black solid). In all plots, n is fixed at 10. (C) The

threshold under the sequential (black) and non-sequential (red) mechanisms. Here, n = 11 and λi = 1.
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Figure S4
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Figure S4: Ultrasensitivity and threshold under the unordered mechanism. (A) Comparing

the Hill exponents computed directly from the Goldbeter-Koshland formula (dots) and from Eq. 4

(curves) for different k-values when n = 20 (red) and n = 40 (black). (B) The threshold against different

k-values. Red: n = 20; black: n = 40. In both curves, λi = 1.
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Figure S5
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Figure S5: The combination of cooperativity and non-essential sites. The original system

(red) shows high ultrasensitivity due to cooperativity with λ1, . . . , λ4 = 0.5, λ5 = 16, n = k = 5. The

blue curve corresponds to n = 6, k = 5 with λ6 = 0.5, and the black curve represents n = 5, k = 4.
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Table S1

Hill exponent Threshold
Sequential Non-sequential Sequential Non-sequential

Fix n, increase k ↑, if k < n+1
2 ↑, if k < n+1

2 ↑ ↑
↓, if k > n+1

2 ↓, if k > n+1
2

Fix k, increase n ↑ ↑ ↓ ↓
Fix α, increase n ↑ ↑ ↑, if α < 0.9 ↑

↓, if α > 0.9

Table S1: Dependence of the Hill exponent and the threshold on k, n, and α in

sequential and non-sequential mechanisms.
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