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We present a simple yet effective method, which is based on power series expansion, for computing
exact binomial moments that can be in turn used to compute steady-state probability distributions as
well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied
to representative reaction networks such as the ON-OFF models of gene expression, gene models
of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact for-
mulae for computing the intensities of noise in the species of interest or steady-state distributions
are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (re-
duce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF
(or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism
and can modulate the noise to the lowest level independently of the mRNA mean. Except for its
power in deriving analytical expressions for distributions and noise, our method is programmable
and has apparent advantages in reducing computational cost. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4792444]

I. INTRODUCTION

From the viewpoint of molecular interaction, a biologi-
cal system can be viewed as a biochemical reaction network.
The small number of species molecules participating in the
biochemical reactions inevitably gives rise to stochastic fluc-
tuations (or noise) in this species, which would play a signifi-
cant role in the functioning of this network. It has been shown
that the molecular noise might have not only a negative effect
on, e.g., the functioning of a synthetic genetic oscillator,1 but
also a beneficial effect on, e.g., stochastic focusing in a sig-
naling system.2 In particular, the molecular noise is essential
for many cellular functions, and has been identified as a key
factor underlying the observed phenotypic variability of ge-
netically identical cells in homogeneous environments.3–5 To
quantify contributions of the molecular noise in linear or non-
linear biochemical reaction modules is an important step to-
wards understanding fundamental cellular processes and vari-
ations in cell populations.6–24

In general, the molecular noise can be characterized or
coarsely by the standard difference that is defined as the root
mean square deviation of the number of molecules from the
mean or precisely by the noise intensity that is defined as the
ratio of the standard deviation over the mean, a commonly
used index. If the standard deviation is a significant fraction
of the mean or if the noise intensity is significantly large, then
the noise must be considered and cannot be neglected when
analyzing the dynamical behavior of a biochemical system.
This is typically associated with biochemical reaction net-
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works where the mean number of species molecules is rather
low. Such situations are remarkable characteristic of gene reg-
ulatory networks since the concentrations of regulatory pro-
teins are often so low that there are only a few molecules in
a given cellular culture. For example, for the lac operon in
E. coli, the lac repressor is active at concentrations of only
10–20 molecules per cell.

The linear noise approximation (LNA) has been verified
to be an effective method for analyzing stochastic fluctua-
tions (or noise) in species molecules of interest in some bio-
chemical reaction networks. Regarding this approach, there
are many studies and applications. The representative results
were given by Paulsson, who applied LNA to analyze sources
of noise in simple regulatory modules and derived analyt-
ical formulae.15, 16 More results were presented in Refs. 6
and 24–29. We point out that LNA is accurate and effective
only for linear biochemical networks. However, actual bio-
chemical systems are in general nonlinear, e.g., gene auto-
regulatory circuits. For a nonlinear reaction network, LNA
fails to capture the stochastic effect in general. Similarly, the
spectral analysis method (SAM) proposed by Warren et al.30

is effective for determining the exact noise spectra and re-
lated statistic properties for linear biochemical networks, but
also fail to capture the stochastic effect in nonlinear net-
works. This raises a question: how to capture the exact ef-
fect of noise in a species of interest in a general biochemical
system.

Except for LNA and SAM, the most general descrip-
tion for a biochemical network is based on the master equa-
tion that describes the time evolution of the joint probabil-
ity distribution over copy numbers of all species molecules in
this system. Analytically finding such a distribution is a great
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challenge but some progress has been made by applying ap-
proximations to the related master equation.31–33 For exam-
ple, a wide class of approximations focuses on limits of large
concentrations or small switches.15, 34, 35 More often, modelers
resort to stochastic simulation techniques, e.g., the varying-
step Monte Carlo method36 and the Gillespie algorithm.37 The
former requires a high computational cost (generating many
sample trajectories) followed by a difficult statistical task (pa-
rameterizing or estimating the relevant probability distribu-
tion from which the samples are drawn). The latter is very
time-consuming when the number of reactions is large. Re-
cently, there have been significant advances in simulation-
based methods to circumvent these shortages.38 Simulation
techniques are especially useful for more detailed studies of
experimentally well-characterized systems, including those
incorporating DNA looping, nonspecific binding39 and ex-
plicit spatial effects.40, 41 However, it is often beneficial to
gain the first intuition of mechanisms behind complicated bio-
chemical networks from simplified analytical models.

This paper aims to present exact results for computing the
noise in biochemical reaction networks governed by chemi-
cal master equations. We begin with a general theory, which
is based on the power series expansion that is effectively
used to solve linear or nonlinear differential equations, and
then apply this theory to several common biochemical reac-
tion modules including a two-species reaction network, the
common ON-OFF model, a gene model with multiple activ-
ity states, gene auto-regulatory modules and a signaling mo-
tif. For these modules, we derive exact analytical formulae
for computing the noise or steady-state probability distribu-
tions, some of which have not been given in the existing liter-
ature. In particular, when our method is applied to a stochastic
gene model with multiple activity states of the promoter (also
called the gene model of promoter progression42, 43), we find
that the multistep mechanisms always reduce transcriptional
noise and can regulate the noise to the lowest level indepen-
dently from the mean expression of mRNA. In addition, we
demonstrate that linear methods such as LNA and SAM over-
or under-estimate in general the noise in nonlinear biochem-
ical networks. We emphasize that our method is exact and is
more easily programmed in contrast to LNA or SAM since
our method can transform questions of quantifying noise into
those of solving linear algebraic equations where the com-
plexity of biochemical networks under investigation is re-
flected in the corresponding iterative matrix. In particular, it
is powerful in finding steady-state probability distributions in
some nonlinear biochemical reaction networks, which have
not been given in the literature yet.

II. GENERAL THEORY

Consider a homogeneous culture of N chemical species
{X1, X2, . . . , XN} that undergo M reactions {R1, R2, . . . , RM}
in a closed vessel with a fixed volume and a constant temper-
ature. Let the N-dimensional vector n denote the numbers of
species molecules. For each reaction, let ak(n) represent the
propensity function of Rk. More precisely, the probability that
the kth reaction will occur in the time interval dt is ak(n)dt

+ o(n), where o(n) satisfies the condition lim
dt→0

o(n)/dt = 0.

Let the N-dimensional vector sk be the stoichiometry asso-
ciated with Rk. The joint probability of n species at time t,
denoted by P(n; t), is given by a chemical master equation of
the form

∂P (n; t)

∂t
=

M∑
k=1

[ak(n − sk)P (n − sk; t) − ak(n)P (n; t)]

(1)
subjected to the initial condition P(n0; 0). Note that a com-
ponent of sk, denoted by skj with 1 ≤ j ≤ N, is actually the
changing number of Xj-type molecules participating in the kth
reaction.

To solve Eq. (1), the standard method is to introduce the
generating function G(z; t) for P(n; t), that is

G(z; t) =
∑

n=(n1,...,nN )

P (n; t)zn with zn ≡ z
n1
1 z

n2
2 · · · znN

N .

(2)
Then, Eq. (1) will become a partial differential equation for
G(z; t)

∂

∂t
G(z; t) = Lz[G(z; t)], (3)

where Lz is a linear differential operator determined by the
right side of Eq. (1). Solving Eq. (3) is in general difficult, but
we can give the formal expression of its solution

G(z; t) =
∑

n1≥0,...,nN ≥0

an(t)(z − 1)n

=
∑

n1≥0,...,nN ≥0

1

(n1)! · · · (nN )!

∂n1+···+nN G

∂z
n1
1 · · · ∂z

nN

N

∣∣∣∣
z=1

× (z1 − 1)n1 · · · (zN − 1)nN , (4)

if the corresponding series is convergent, or

G(z; t) =
∑

n1≥0,...,nN ≥0

bn(t)(z − z0)n

=
∑

n1≥0,...,nN ≥0

1

(n1)! · · · (nN )!

∂n1+···+nN G

∂z
n1
1 · · · ∂z

nN

N

∣∣∣∣
z=z0

× (z1 − z10)n1 · · · (zN − zN0)nN , (5)

if the corresponding series is convergent. The coefficients of
distinct derivatives of G(z; t) are polynomial in z, so we can
obtain a set of linear differential equations with respect to
an(t) or bn(t), which are solvable, by substituting Eq. (4) or
(5) into Eq. (3) and comparing coefficients of (z − 1)n of the
same powers. If bn(t) is analytically given, then an(t) can be
computed according to

an(t) =
∑
k≥n

k(k − 1) · · · (k − n + 1)bk(t)(1 − z0)k−n. (6)

Often, finding the steady-state generating function G(z)
or the steady-state probability distribution P(n) is the com-
mon interest. In this case, substituting the expression Eq. (4)
or (5) into Eq. (3) will lead to a set of linear algebraic equa-
tions of an (or bn) in an iterative manner (see the below exam-
ples). Such an iterative format can determine all coefficients
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an (or bn) due to the conservative condition of probability∑
n P (n) = G(z = 1) = 1 that implies a0 = 1. Moreover, by

the iterative format we can give the nice analytical expressions
of all an (or bn) for some common linear or nonlinear bio-
chemical network modules, which in turn give the analytical
expression of G(z) (also see the below examples). We point
out: (a) expansion (4) will be used if the corresponding coeffi-
cients are more easily computed in contrast to expansion (5),
and expansion (5) will be used otherwise. Which expansion
will be used and how to choose z0 depend on the coefficient
in the term with the highest-order derivative of function G
(refer to examples in Sec. III). (b) If the corresponding deter-
ministic system has more than one steady states, this implies
coefficients an (or bn) cannot be uniquely determined in spite
of the condition a0 = 1. In this case, we should first choose
expansion (5) with different z0, which determines different
sets of bn, and then compute an according to Eq. (6) for each
set of bn. As such, we can obtain more than one steady-state
distributions (the details will be discussed elsewhere). In this
paper, we only consider the case that an (or bn) has the unique
solution.

After having obtained G(z), we can give the analytical
expression of the steady-state joint probability according to
the formula

P (n) = 1

(n1)! · · · (nN )!

∂n1+···+nN G(z1, . . . , zN )

∂z
n1
1 · · · ∂z

nN

N

∣∣∣∣
(0,...,0)

. (7)

In particular, after having obtained the first-order deriva-
tive ∂zG(1, 1,. . . , 1) and the second-order derivative
1
2∂2

z G(1, 1, . . . , 1), we easily compute the mean and variance
of nj, denoted by 〈nj〉 and σ 2

nj
, respectively, according to

〈nj 〉 = ∂zj
G(1, 1, . . . , 1),

(8)
σ 2

nj
= ∂2

zj zj
G(1, 1, . . . , 1) + ∂zj

G(1, 1, . . . , 1)

−[∂zj
G(1, 1, . . . , 1)]2.

Correspondingly, we can compute the noise intensity for nj (a
common index describing noise), denoted by ηnj

, according
to the formula

η2
nj

≡
σ 2

nj

〈nj 〉2
=

∂2
zj zj

G(1, 1, . . . , 1)

[∂zj
G(1, 1, . . . , 1)]2

+ 1

∂zj
G(1, 1, . . . , 1)

− 1.

(9)
We emphasize that the formulae (8) and (9) are exact without
any approximation.

For clarity and to show advantages of our method,
consider the case of one variable. If we Taylor expand
the function G(z) at the point z = 1 and assume G(z)
= ∑∞

i=0 ai(z − 1)i , then formula (9) of computing the noise
intensity will become

η2
n = 2a2

a2
1

+ 1

a1
− 1. (10)

The key is how to determine a2 and a1. This can be done by
substituting Eq. (4) into the resulting partial differential equa-
tion of G(z) and comparing the corresponding coefficients of
various same powers (z − 1)j. Note that when solving a2 and
a1, we need the conservative condition

∑
n≥0 P (n) = 1 that

gives a0 ≡ 1. We point out that formula (10) is also exact if

both a2 and a1 are exactly given. For linear biochemical net-
works, e.g., for those without feedback, both a1 and a2 can be
exactly given (see examples in Sec. III), similar to the LNA
case. For nonlinear biochemical networks, e.g., for those with
feedback loops, formula (6) is in theory used to compute a1

and a2, which can be exactly given in some cases (also see
examples in Sec. III) but would not in other cases, e.g., a gene
regulatory network with multimer repression. In the case that
a1 and a2 cannot be analytically given, our method is still ef-
fective since a1 and a2 can be approximately given by trun-
cating initial finite terms in the related series and reach an
arbitrarily pre-given accuracy due to the fact that an → 0 as n
→ ∞ (see the next paragraph).

Furthermore, we point out that the above coefficient ak

(k = 0, 1, 2, . . . ) have apparent meaning. In fact, they repre-
sent binomial moments, thus capable of being directly used
to compute the probability distribution. To see this, we let X
be a discrete random variable that takes nonnegative integer
values, and set P{X = n} = P(n)(n = 0, 1, 2, . . . ). Assume
that all the binomial moments

Bn = E

{(
X

n

)}
=

∞∑
k=n

(
k

n

)
P (k), n = 0, 1, 2, . . . (11)

exist. Note that the series G(z) = ∑∞
n=0 P (n)zn is uniformly

convergent and hence regular in the circle |z| < 1 (where z
may be complex). Using the formula for high-order deriva-
tives, we have

G(n)(z) = n!
∞∑

k=n

(
k

n

)
zk−nP (k). (12)

Thus, we know

P (n) = 1

n!
G(n)(0), Bn = 1

n!
G(n)(1), n = 0, 1, 2, . . . (13)

implying that an = Bn for all n. On the other hand, if the func-
tion G(z) is expanded as the power series at z = 1, then we
have

G(n)(z) = n!
∞∑

k=n

(
k

n

)
ak(z − 1)k−n. (14)

In particular, putting z = 0 in Eq. (14) yields

P (n) =
∞∑

k=n

(−1)k−n

(
k

n

)
ak, n = 0, 1, 2, . . . . (15)

Since an tends to zero as n goes to the infinite, the formula
(15) can be used to compute approximate distributions reach-
ing any pre-given accuracy by truncating finite terms in the
right side of series (15). We point out that for linear biochemi-
cal networks, e.g., for those without feedback, P(n) can be ex-
actly given since an can be exactly given, whereas for nonlin-
ear biochemical networks, e.g., for those with feedback loops,
P(n) would not but can be approximately given since an → 0
as n → ∞. Note that the formula (15) can also be extended to
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the multivariate case, that is,

P (n) =
∞∑

k=n

(−1)k−n
(

k
n

)
ak

≡
∞∑

k1=n1

· · ·
∞∑

kN=nN

(−1)
∑N

i=1 (ki−ni )
N∏

i=1

(
ki

ni

)
a(k1,...,kN )

(16)

so the above discussion for the single-variable case is also
effective for this case.

Finally in this section, we emphasize features and appli-
cability of our power series expansion method. Unlike the
extensively used moment-closure method,44–46 which has
shortcomings, e.g., it is nonlinear and hence inconvenient to
computation; how to approximate high-order moments is un-
clear; the approximate moments cannot guarantee that a pre-
given accuracy is satisfied, our method is linear and hence
easier and more convenient to computation. Moreover, it can
compute approximate noise and distributions that reach any
pre-given accuracies, if an or bn cannot be analytically given.
In addition, we point out that for any biochemical reaction
network: (1) {an} can be always iteratively computed, so
computing the noise strength of any species of interest as
well as the joint probability distribution is programmable; (2)
our method can reduce computational cost since solving a set
of linear algebraic equations for an in general consumes less
time than solving a stochastic differential equation described
by the master equation.

III. APPLICATIONS

In this section, we present several representative exam-
ples to show the power of the above series expansion method.
These examples include common gene models (i.e., ON-OFF
models), multi-state gene models incorporating chromatin re-
modeling, gene auto-regulatory models, and some common
biochemical reaction network modules in signaling systems,
etc. Some of them are linear and the others are nonlinear. By
applying our method, we can give the exact analytical ex-
pressions for computing noise intensities and even probabil-
ity distributions. In addition, we adopt the famous Gillespie
algorithm37 simulation to verify our theoretical predictions.

A. A two-species reaction network

Consider a simple but generic toy model, which consist
of two chemical species X1 and X2, where X1 provides the
randomly fluctuating environment for X2, e.g., mRNA fluctu-
ations randomize protein synthesis. Let n1 and n2 be the num-
ber of molecules of species X1 and X2. The chemical reactions
read

n1
R+

1 (n1)−−−−→ n1 + 1, n1
R−

1 (n1)−−−−→ n1 − 1,

n2
R+

2 (n1,n2)−−−−−→ n2 + 1, n2
R−

2 (n1,n2)−−−−−→ n2 − 1.

(17)

Because n1 affects the rate of X2 but n2 does not affect the rate
of X1, this is an example of dynamic disorder.

The joint probability of having n1 and n2 molecules per
cell of species X1 and X2 (for instance messenger RNAs and
proteins, but interpretations vary with application) at time t is
described by a birth-and-death Markov process with events

∂P (n1, n2; t)

∂t

=R+
1 (n1 − 1)P (n1 − 1, n2; t)+R−

1 (n1 + 1)P (n1 + 1, n2; t)

+R+
2 (n1, n2 − 1)P (n1, n2 − 1; t) + R−

2 (n1, n2 + 1)

×P (n1, n2 + 1; t) − [R+
1 (n1) + R−

1 (n1) + R+
2 (n1, n2)

+R−
2 (n1, n2)]P (n1, n2; t). (18)

Now, we introduce the generating function G(z1, z2; t)
= ∑∞

n1,n2=0 z
n1
1 z

n2
2 P (n1, n2; t) for P(n1, n2; t) and consider the

static solution to Eq. (18). Then, Eq. (18) can be converted
into a partial differential equation for G(z1, z2).

First, consider the case studied in Ref. 15, that
is, R+

1 (n1) = λ1, R−
1 (n1) = n1/τ1, R+

2 (n1, n2) = λ2n1,
R−

2 (n1, n2) = n2/τ2. In this case, the static generating
function satisfies

λ1s1F +
[
− 1

τ1
s1 + λ2s2 + λ2s1s2

]
∂F

∂s1
− 1

τ2
s2

∂F

∂s2
= 0,

(19)
where s1 = z1 − 1, s2 = z2 − 1, F(s1, s2) ≡ G(z1, z2). Now,
we expand F(s1, s2) as F (s1, s2) = ∑∞

i,j=0 aij s
i
1s

j

2 . Note that
a00 = 1 from the conservative condition for P(n1, n2). Sub-
stituting such an expansion into Eq. (19) and comparing the
coefficients of the same powers of s1 or s2 will give

a10 = λ1τ1a00, a01 = λ2τ2a10, a20 = λ1τ1

2
a10,

a02 = λ2τ2

2

λ2 + λ1λ2(τ1 + τ2)

1/τ1 + 1/τ2
a10.

Note that the averages of n1 and n2 are 〈n1〉 = a10 = λ1τ 1

and 〈n2〉 = a01 = λ1λ2τ 1τ 2, respectively. According to for-
mula (10), we obtain the analytical expression for the n2 noise
intensities

η2
n2

= 1

〈n2〉 + τ1

τ1 + τ2

1

〈n1〉 , (20)

which is the same as the previous result obtained by LNA.15

Then, still consider the above example but set
R+

2 (n1, n2) = λ2n1(n1 − 1). In this case, we have the follow-
ing partial differential equation for F(s1, s2):

λ1s1F − 1

τ1
s1

∂F

∂s1
− 1

τ2
s2

∂F

∂s2

+ γ
(
s2 + 2s1s2 + s2

1s2
)∂2F

∂s2
1

= 0. (21)

Similar to the above case, we can derive the following ex-
act formula for computing the noise intensity of n2 (denoted
by η̃2

n2
):

η̃2
n2

= η2
n2

+ 2

(λ1τ1)2

1/τ2

2/τ1 + 1/τ2
, (22)

where η2
n2

is given by LNA, that is, η2
n2

= 1
(λ1τ1)2λ2τ2

+ 4
λ1τ1

1/τ2

1/τ1+1/τ2
. The inequality η2

n2
< η̃2

n2
shows that LNA



084106-5 Zhang et al. J. Chem. Phys. 138, 084106 (2013)

(a) (b)
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LNA
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Exact method
LNA
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Exact method

FIG. 1. Shown is that LNA gives approximate noise whereas our method
gives exact noise. (a) The noise strength in two-species system (17) with
R+

2 (n1, n2) = λ2n1(n1 − 1) is taken as a function of the parameter λ1. The
other parameters are λ2 = 10, τ 1 = 2, τ 2 = 1. (b) The noise strength in
the two-species system (17) with R+

2 (n1, n2) = λ2n1(n1 − 1) is taken as a
function of the parameter λ2. The other parameters are λ1 = 1, τ 1 = 2,
τ 2 = 1.

underestimates the noise. Refer to Fig. 1. This example in-
dicates that LNA is an approximate method.

Since all aij can be uniquely determined, deriving analyt-
ical expression for the steady-state joint probability distribu-
tion P(n1, n2) is possible according to formula (16) for this
system. The detail is here omitted due to complexity.

B. Common gene models

The above two-component generic model may be used
to describe gene expression with the promoter being always
in the active state, but we know that the promoter of a gene
may have both one active and one inactive state or several ac-
tive states or inactive states, depending on chromatin template
that accumulates over time until the promoter becomes active.
In this section, to show the effectiveness of our method, we
shall consider two common gene models and derive analyti-
cal expressions for the mRNA noise and even the analytical
distribution for the ON-OFF model. In Sec. III C, we shall
consider more general gene models, i.e., gene models of pro-
moter progression, and give analytical results.

Case 1: Two-stage gene model
Consider a stochastic model consisting of a gene that

transitions randomly between an active state A where tran-
scription of DNA into mRNA molecules (denoted M) is very
efficient, and an inactive state I where transcription is not pos-
sible. Refer to Fig. 2(a). Assume that the time during which
the gene is in the active state A is the “burst” of mRNA
synthesis.11, 12, 18, 47, 48 The reactions describing this process
read

I
λ−−−→ A,A

γ−−−→ I,

A
μ−−−→ A + M,M

δ−−−→ 	,

(23)

where λ is the rate of gene activation, γ the rate of gene in-
activation, μ the rate of transcription when the gene is in the
active state, and δ the rate of mRNA decay. We will hence-
forth use m to denote the number of mRNA molecules.

Let P0(m) and P1(m) represent the probability of having
m mRNA molecules at time t when the gene is at the ON
(active) and OFF (inactive) states, respectively. Then, the cor-

Inactive ActiveInactive Active

(a) (b)

FIG. 2. Schematic of gene expression models considering promoter activity
(active or inactive): (a) two-stage gene model and (b) three-stage gene model.

responding discrete master equation reads

dP0(m; t)

dt
= −γP0(m; t) + λP1(m; t) + δ(E − I)

× [mP0(m; t)] + μ(E−1 − I)[P0(m; t)],
(24)

dP1(m; t)

dt
=−λP1(m; t)+γP0(m; t)+δ(E − I)[mP1(m; t)],

where I is the identity operator, E and E−1 are shift opera-
tors, i.e., E[f (n)] = f (n + 1) and E−1[f (n)] = f (n − 1) for
any function f and any integer n. By introducing generating
functions Gi(z; t) = ∑∞

m=0 zmPi(m; t) with i = 0, 1 and con-
sidering the steady-state solution, we can transform Eq. (24)
into the following partial differential equations:

−γG0(z)+λG1(z)+(1−z)
∂G0(z)

∂z
+μ(z−1)G0(z)=0,

(25)

−λG1(z) + γG0(z) + (1 − z)
∂G1(z)

∂z
= 0,

where all the parameters are normalized by the parameter δ,
that is, λ/δ → λ, γ /δ → γ , and μ/δ → μ.

To solve Eq. (25), we Taylor expand two functions
G0(z) and G1(z) at the point z = 1, that is, Gi(z) ≡ Fi(s)
= ∑∞

n=0 a(i)
n sn (i = 0, 1) with s = z − 1. Let F = F0 + F1.

Then, we have F (s) = ∑∞
n=0 ans

n with an ≡ a(0)
n + a(1)

n . Note
that the conservative condition for probability gives a0(0)
= 1. Substituting these expansions into Eq. (25) will yield
the following set of algebraic equations:

(n + γ )a(0)
n = λa(1)

n + μa
(0)
n−1,

(n + λ)a(1)
n = γ a(0)

n ,

(26)

where n = 1, 2, . . . . It follows from Eq. (26) that

an = a(0)
n + a(1)

n = μn

n!
a

(0)
0

n∏
k=1

k + λ

k + λ + λ
= μn

n!

(λ)n
(λ + γ )n

,

(27)
where (c)n is the Pochhammer symbol, which is defined as
(c)n = 	(c + n)/	(c). In particular, we have

a1 = μλ

λ + γ
, a2 = μ2λ(λ + 1)

2(λ + γ )(λ + γ + 1)
. (28)

Therefore, according to Eq. (10) and by recovering the origi-
nal parameters, we obtain the explicit expression for the static
noise intensity

η2 = γ δ

λ(δ + λ + γ )
+ δ(λ + γ )

μλ
, (29)

which is the same as a previous result.18 Furthermore, accord-
ing to Eq. (15) and using Eq. (27) with recovered parameters,
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we obtain the analytical expression for the probability distri-
bution of mRNA

P (m) = μm

m!

(
λ
δ

)
m(

λ
δ

+ γ

δ

)
m

1F1

(
m + λ

δ
; m + λ

δ
+ γ

δ
; −μ

)
,

m = 0, 1, 2, . . . , (30)

where 1F1(α; β; x) is a confluent hypergeometric function.49

Such an expression was before derived under some assump-
tions of reaction rates47 but is here derived without any
assumption.

Case 2: Three-stage gene model
Consider the full model of a gene, which includes

three stages: transitions between active and inactive states,

transcription from DNA to mRNA, and translation from
mRNA to protein. Refer to Fig. 2(b). The corresponding bio-
chemical reactions read11, 48, 50–54

I
λ−−−→ A,A

γ−−−→ I,

A
μ0−−−→ A + M,M

δ0−−−→ 	,

M
μ1−−−→ M + P,P

δ1−−−→ 	.

(31)

Let P0(m, n; t) be the probability of having m mRNAs and
n proteins when the gene is inactive at time t, and P1(m,
n; t) be the probability of having m mRNAs and n proteins
when the gene is active at time t. Then, we have two coupled
equations

∂P0(m, n; τ )

∂τ
= κ1P1(m, n; τ ) − κ0P0(m, n; τ ) + (n + 1)P0(m, n + 1; τ ) − nP0(m, n; τ )

+ω {(m + 1)P0(m + 1, n; τ ) − mP0(m, n; τ ) + bm[P0(m, n − 1; τ ) − P0(m, n; τ )]} ,

(32)
∂P1(m, n; τ )

∂τ
= −κ1P1(m, n; τ ) + κ0P0(m, n; τ ) + (n + 1)P1(m, n + 1; τ ) − nP1(m, n; τ )

+ω{(m + 1)P1(m + 1, n; τ ) − mP1(m, n; τ ) + bm[P1(m, n − 1; τ ) − P1(m, n; τ )]}
+ a[P1(m − 1, n; τ ) − P1(m, n; τ )],

where κ0 = γ /δ1, κ1 = λ/δ1, a = μ0/δ1, b = μ1/δ0, ω = δ0/δ1, τ = t/δ1. If we consider the steady-state case and introduce two
generating functions Gi(z1, z2) = ∑

m,n zm
1 zn

2Pi(m, n) (i = 1, 2), then Eq. (32) will become two coupled partial differential
equations

κ1F1 − κ0F0 − s2
∂F0

∂s2
+ ω [bs2(1 + s1) − s1]

∂F0

∂s1
= 0,

(33)

−κ1F1 + κ0F0 − s2
∂F1

∂s2
+ as1F1 + ω [bs2(1 + s1) − s1]

∂F1

∂s1
= 0,

where s1 = z1 − 1, s2 = z2 − 1 and Fk(s1, s2) ≡ Gk(z1, z2). Denote F ≡ F0 + F1. Now, Taylor expand Fk(s1, s2) and F(s1, s2) at
the origin and write Fk(s1, s2) = ∑∞

i,j=0 a
(k)
ij si

1s
j

2 and F (s1, s2) = ∑∞
i,j=0 aij s

i
1s

j

2 . Substituting the expansions of Fk(s1, s2) into
Eq. (33), and comparing coefficients of variables of the same powers, we obtain

κ1a
(1)
ij − κ0a

(0)
ij − (ωi + j )a(0)

ij + bωi
[
a

(0)
(i+1)(j−1) + a

(0)
i(j−1)

] = 0,

(34)
−κ1a

(1)
ij + κ0a

(0)
ij − (ωi + j )a(1)

ij + bωi
[
a

(1)
(i+1)(j−1) + a

(1)
i(j−1)

] + aa
(0)
(i−1)j = 0,

where i, j = 0, 1, 2, . . . . The iteration (34) combined with the conservative condition a00 = 1 can uniquely determine all a
(0)
ij and

a
(1)
ij . In particular, we have

a10 = aκ0

ω(κ0 + κ1)
a00, a01 = bωa10, a20 = a(ω + κ0)

2ω(κ0 + κ1 + 1)
a10

and

a02 =
b2ω2

[(
a
ω

+ a + 1
)
κ0 + κ1 + 2ω + a − 1 + a(κ0+ω)(2−ω)

ω(κ0+κ1+1)

]
2 [(ω + 1)(κ0 + κ1) + 1 − 2ω]

a10.

To that end, according to Eq. (10), we obtain the analytical expressions for the mRNA and protein noise intensities

η2
m = (ω − 1)κ0 + ωκ1

κ0(κ0 + κ1 + 1)
+ ω(κ0 + κ1)

aκ0
(35)

and
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η2
n =

[a + ω(a + 1)]κ0 + ω(κ1 + 2ω + a − 1) + a(κ0+ω)(2−ω)
κ0+κ1+1

aκ0

(
ω + 1 + 1−2ω

κ0+κ1

) + (1 − ab)κ0 + κ1

abκ0
, (36)

respectively. These formulae for computing noise intensities
are not approximate but exact.

We point out that we have not found the nice expres-
sion for the joint distribution in the three-stage model as in
the two-stage gene model, but our series method can give
an approximate distribution up to any pre-given accuracy by
truncating initial finite terms of the expansion F (s1, s2) =∑∞

i,j=0 aij s
i
1s

j

2 . In particular, our method is convenient to nu-
merically computing the distribution.

C. Gene models of promoter progression

Except for transcription and translation, gene expression
also involves the recruitment of transcription factors and poly-
merases, transitioning between active and inactive states of
promoter, and chromatin remodeling (CR). In particular, it has
been verified that CR is an important factor that influences
gene expression. In fact, several recent experimental stud-
ies have implicated fluctuations in chromatin state between
transcriptionally active and inactive conformations as a ma-
jor source of cell-to-cell variability in gene expression.55–59

Here, we introduce multi-state stochastic models of gene ex-
pression, which extend the previous gene models by incor-
porating slow dynamics of inactivation or activation. These
models assume that the gene activity proceeds sequentially
through “ON” states (only here can mature mRNAs be pro-
duced) and/or OFF states (here no transcription occurs). Re-
fer to Figs. 3(a) and 3(b), where Fig. 3(a) considers the
case that the promoter has one active state and several in-
active states (hence the corresponding model is called the
multi-OFF model or the multi-OFF mechanism), whereas Fig.
3(b) considers the case that the promoter has one inactive
state and several active states (hence the corresponding model
is called the multi-ON model or multi-ON mechanism). In
these models, the activity states of the promoter form a loop
and the transitions between two states may be reversible or
irreversible.

Case 1: The multi-OFF mechanism
Assume that the gene activity proceeds sequentially

through the ON state, several reversible and irreversible OFF
states, and returns to the ON state, forming a loop. Our model
considers two main processes: dynamic transitions between
active (ON) and inactive (OFF) states of the promoter, de-
noted by A and I, respectively, and transcription of the DNA
sequence into an mRNA molecule (denoted by M). Here, tran-
scription is very efficient in the active state, and is not possi-
ble in the inactive state. Moreover, the time spent in the active
state is the “burst” of mRNA synthesis.

The corresponding biochemical reactions read

IL
λL−−−→ A,A

λ0−−−→ I1, Ik

λk

⇀↽
λ′

k

Ik+1(k = 1, 2, . . . , L − 1),

(37)
A

μ−−−→ A + M,M
δ−−−→ 	,

where λ0 ≡ γ is the rate of gene inactivation, λL is the rate
of gene activation, λk is the transition rate from the kth OFF
state to the (k + 1)th OFF state with k = 1, 2, . . . , L − 1, λ′

k

is the transition rate from the (k + 1)th OFF state to the kth
OFF state with k = 1, 2, . . . , L − 1, μ is the synthesis rate
of mRNA, and δ is the degradation rate of mRNA. Note that
if L = 1, the corresponding model will become our familiar
two-state gene model or the telegraph model. In addition, for
convenience, we call the multi-OFF process irreversible if all
λ′

k = 0; reversible if all λ′
k �= 0; and partially reversible in

other cases. Now, we introduce the chemical master equation
for mRNA, and henceforth use m to denote the number of
mRNAs. The mRNA master equation reads

dP0(m, t)

dt
= −λ0P0(m, t) + λLPL(m, t) + μ(E−1 − I)

×P0(m, t) + δ(E − I)[mPk(m, t)],

dPk(m, t)

dt
= −(λk + λ′

k−1)Pk(m, t) + λk−1Pk−1(m, t)

+ λ′
kPk+1(m, t) + δ(E − I)[mPk(m, t)]

(1 ≤ k ≤ L − 1), (38)

dPL(m, t)

dt
= −(λL + λ′

L−1)PL(m, t) + λL−1PL−1(m, t)

+ δ(E − I)[mPL(m, t)],

where we define λ′
0 ≡ 0. In Eq. (36), P0 represents the prob-

ability of having m mRNA in the ON state at time t, and Pk

represent the probability of having m mRNAs in the kth OFF
state at time t (1 ≤ k ≤ L). The first equation describes how
the mRNA is generated in the active state, the subsequent L
− 1 equations describe the transitions between inactive state
of the promoter, and the final equation describes the transi-
tions between the Lth and (L − 1)th inactive states as well as
between the Lth inactive and active states.

For analysis convenience, we consider static solutions
only. Introduce generating functions Gk(z) for Pk(m) and
G(z) = ∑L

k=0 Gk(z) for P (m) = ∑L
k=0 Pk(m). This will lead

to the following differential equations:

−λ0F0(s) + λLFL(s) + sF0(s) − sF ′
0(s) = 0,

− (λk + λ′
k−1)Fk(s) + λkFk−1(s) + λ′

k+1Fk+1(s) − sF ′
k(s)

= 0(k = 1, 2, . . . , L − 1), (39)

− (λL + λ′
L−1)FL(s) + λL−1FL−1(s) − sF ′

L(s) = 0,

where Fj(s) ≡ Gj(z) with s = μ(z − 1) and 0 ≤ j ≤ L. Now, we
Taylor expand every function Fj(s) by Fj (s) = ∑∞

n=0 b
(j )
n sn.

Note that if we Taylor expand F (s) = ∑∞
n=0 cns

n, then cn

= ∑L
j=0 b

(j )
n with n ≥ 0. Substituting the expansion of Fj(s)
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FIG. 3. Multi-state gene expression models and chromatin template-controlled noise in mRNA: (a) Schematic of a multi-inactive-state model of gene expres-
sion; (b) schematic of a multi-active-state model of gene expression; (c) the mean noise strength ratio η2

multi−on/η
2
multi−off as a function of two experimentally-

measureable indices τ on and τ off, where both η2
multi−on and η2

multi−off are obtained from one of 1000 sets of randomly sampling τ 1, . . . , τK with the fixed τ on

and τ off for the fixed K ≡ L = R = 10 (where L and R represent the number of OFF states and ON states, respectively). The other parameters are μ = 20, δ = 1,
K = 10; (d), (e), and (f) shown is the histogram of η2

multi−on (red) and η2
multi−off (green), where (d), (e) and (f) correspond to points D, E and F labeled in (c),

respectively.

into Eq. (39) yields

(nI − A)bn = (
b

(0)
n−1, 0, . . . , 0

)T
, (40)

where the matrix A =

⎛
⎜⎜⎜⎝

−λ0 λL

λ0 −λ1 λ′
1

λ1 −(λ2 + λ′
1)

. . .

. . .
. . . λ′

L−1
λL−1 −(λL + λ′

L−1)

⎞
⎟⎟⎟⎠

describes the pattern of transitions between activity states of
the promoter, and bn = (b(0)

n , b(1)
n , . . . , b(L)

n )T , n = 0, 1, 2, . . . .
Equation (40) is a set of algebraic equations for b(k)

n , which
can be iteratively solved. In fact, note that Ais an M-matrix, so
we can express the determinant det(nI − A) and the adjacency
matrix (nI − A)* as det(nI − A) = n(n + α1) · · · (n + αL)
and (nI − A)∗ = ( M1(n) ∗

∗ ∗ ), respectively, where M1(n) is the
polynomial of order L with M1(n) = (n + β1). . . (n + βL),
and all αk ≥ 0, βk ≥ 0 are constants depending on the reaction

rates. Thus, it follows from Eq. (40) that

b(0)
n = 1

n

(n + β1) · · · (n + βL)

(n + α1) · · · (n + αL)
b

(0)
n−1

= 1

n!

[
n∏

k=1

(k + β1) · · · (k + βL)

(k + α1) · · · (k + αL)

]
b

(0)
0 . (41)

In addition, it follows from Eq. (39) that F(s) = F′
0(s), im-

plying that cn = 1
n
b

(0)
n−1 for any n. In other word, we can give

the expressions of all cn. Also, we can show b
(0)
0 = α1···αL

β1···βL
ac-

cording to the conservative condition F(0) = 1 that implies c0

= 1. To that end, according to Eq. (15), we obtain the ana-
lytical expression of the steady-state probability distribution

P (m) = μm

m!

(β1)m · · · (βL)m
(α1)m · · · (αL)m

LFL(m + β1, . . . , m + βL; m

+α1, . . . , m + αL; −μ). (42)

In particular, we can give the explicit expression of c1 and c2.
For example, in the irreversible case, i.e., all λ′

k = 0, we have
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c1 =
∑L

j=0
b

(j )
1 =

∏L
k=1 λk∏L

k=1 λk + γ
∑L−1

k=1

[∏L−k−1
i=1 λi · ∏k

j=1 λL−j+1

]
+ γ

(∏L−1
k=1 λk

) ,

(43)

c2 =
∑L

j=0
b

(j )
2 = 1

2

∑L−1
k=1

[∏L−k−1
i=1 λi · ∏k

j=1 (1 + λL−j−1)
]

+ ∏L−1
k=1 λk + ∏L

k=1 λk∏L
k=1 (1 + λk) + γ

∑L−1
k=1

[∏L−k−1
i=1 λi · ∏k

j=1 (1 + λL−j+1)
]

+ γ (
∏L−1

k=1 λk)
,

where if k = L − 1, then we define
∑L−k−1

i=1 λi = 1.
According to G′(z)|z = 1 = μF′(s)|s = 0 = μc1, G′′(z)|z = 1

= μ2F′′(s)|s = 0 = 2μ2c2 and formula (10), we obtain the an-
alytical expression for the square of the noise intensity in the
irreversible case

η2
m = 1

〈m〉 + 1 + (τoff − 1)
∏L

k=1 (1 + τk)

(1 + τon)
∏L

k=1 (1 + τk) − 1
, (44)

where 〈m〉 = b
τon+τoff

= μτon

τon+τoff
, τ on = 1/γ , τoff

= ∑L
k=1 (1/λk), b = μ/γ , and τ k = 1/λk. Recall that τ on

and τ off represent the total ON and OFF time, respectively,
and b represents the mean burst size that characterizes the
burst statistics. Note that L = 1 corresponds to the common
ON-OFF model of gene expression. Also note that for fixed
τ on and τ off, the noise intensity ηm monotonically decreases
with regard to the number of OFF states (L), implying that an
important fact that the multi-OFF mechanism plays a role of
attenuating the noise. Such a qualitative conclusion still holds
in a general case including reversible and mixing cases.

Except that ηm is monotonic with regard to L, we numer-
ically find that if τ on is dominant, then the noise level in the
case of the multi-OFF mechanism is always lower than that
in the case of the multi-ON mechanism, and in particular, if
τ on is equal to τ off, then the former is equal to the latter. Re-
fer to Fig. 3(c). For clarity, we also demonstrate probabilities
of the mRNA number corresponding to three representative
points labeled in Fig. 3(c), referring to Figs. 3(d)–3(f). These
numerical results indicate that the ratio of τ off over τ on has
important influences on the mRNA noise in the case of the
multi-OFF mechanism.

Case 2: The multi-ON mechanism
Assume that the gene activity proceeds sequentially

through the OFF state, several irreversible ON states (below,
only the irreversible case is considered for simplicity but other
cases such as partially irreversible or reversible may be simi-
larly treated), and returns to the OFF state, forming a loop. In
this case, the corresponding biochemical reactions read

Ak

γk−−→ Ak+1 (k = 1, 2, . . . , R − 1), AR

γR−−→ I, I
λ−−→ A1,

(45)
Ak

μ−−→ Ak + M (k = 1, 2, . . . , R),M
δ−−→ ∅,

where the meaning of all the symbols is the same as in Case
1. The chemical master equation corresponding to this set of

reactions can be expressed as

dP0(m, t)

dt
=−γ0P0(m, t) + γRPR(m, t)

+ δ(E − I)[mP0(m, t)],
(46)

dPk(m, t)

dt
=−γkPk(m, t) + γk−1Pk−1(m, t)

+ δ(E− I)[mPk(m, t)]+μ(E−1− I)[Pk(m, t)]

(k = 1, 2, . . . , R)

with γ 0 ≡ λ. Introduce generating functions Gi(z, t)
= ∑∞

m=0 zmPi(m, t) (i = 0, 1, . . . , R) and new variable s
≡ μ(z − 1), and consider the static solution. Then,

−γ0G0(s) + γRGR(s) − sG′
0(s) = 0,

−γ1G1(s) + γ0G0(s) − sG′
1(s) + sG1(s) = 0, (47)

−γkGk(s) + γk−1Gk−1(s) − sG′
k(s) + sGk(s)

= 0(k = 2, . . . , R),

where all the parameters including μ are rescaled by δ. Fur-
thermore, to solve Eq. (47), we introduce the transformation
Fi(s) = e−sGi(s). Then, Eq. (47) becomes

−γ0F0(s) + γRFR(s) − s
d

ds
F0(s) − sF0(s) = 0,

−γ1F1(s) + γ0F0(s) − s
d

ds
F1(s) = 0, (48)

−γkFk(s) + γk−1Fk−1(s) − s
d

ds
Fk(s) = 0(k = 2, . . . , R).

Note that Eq. (48) has the form of Eq. (39). Therefore, we can
give the expression of the sum function F ≡ F0 + F1 + . . . +
FR. Furthermore, we can obtain the analytical expression for
the steady-state probability distribution of mRNA. That is,

P (m) = μme−μ

m!

m∑
k=0

(
m

k

)
(−1)k

(β1)k · · · (βR)k
(α1)k · · · (αR)k

R

×FR(k + β1, . . . , k + βR; k + α1, . . . , k + αR; μ),

(49)

where all αi and β i are constants depending only on the reac-
tion rates.
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In particular, we can obtain the analytical mean and vari-
ance of mRNA in the irreversible

〈m̃〉 = μτ̃on

τ̃on + τ̃off

, σ 2
m̃ = 〈m̃〉 + 〈m̃〉2

(
τ̃off

τ̃on

)2

× 1 + (τ̃on − 1)
∏R

k=1 (1 + τ̃k)

(τ̃off + 1)
∏R

k=1 (1 + τ̃k) − 1
, (50)

where τ̃off = 1/λ, τ̃on = ∑L
k=1 (1/γk), and τ̃k = 1/γk . Fur-

thermore, according to formula (10), we obtain the analytical
expression for the square of the noise intensity in the irre-
versible case

η2
m̃ = 1

〈m̃〉 +
(

τ̃off

τ̃on

)2 τ̃on − 1 + ∏R
k=1

1
1+τ̃k

τ̃off + 1 − ∏R
k=1

1
1+τ̃k

, (51)

which is a monotonically decreasing function of R if τ̃on,
τ̃off , and 〈m̃〉 are fixed. This implies that the multi-ON mech-
anism also always reduces noise like the multi-OFF mech-
anism. In particular, when R = 1 that corresponds to the
common ON-OFF model (denote by ηon − off the noise inten-
sity), η2

m̃ reaches the maximum. Moreover, η2
on−off = 1/〈m〉

+ τ 2
off /[(τoff + 1)(τon + 1) − 1]. In addition, when τ̃1 = τ̃2

= · · · = τ̃R = τ̃on/R, η2
m̃ reaches its minimum. Moreover,

we have

η2
m̃ ≥ 1

〈m̃〉 +
(

τ̃off

τ̃on

)2 τ̃on − 1 + (
1 + τ̃on

R

)−R

τ̃off + 1 − (
1 + τ̃on

R

)−R
>

1

〈m̃〉

+
(

τ̃off

τ̃on

)2
τ̃on − 1 + e−τ̃on

τ̃off + 1 − e−τ̃on
. (52)

Some numerical results are shown in Figs. 3(c)–3(f). We
observe that if τ on is dominant over τ off, then the noise level
in the case of the multi-ON mechanism is always higher than
that in the case of the multi-OFF mechanism, and in particu-
lar, if τ on = τ off, then the mean noise level is the same in two
cases, independently from the detailed transitions between ac-
tivity states of the promoter. Refer to Fig. 3(c). For clarity, we
also demonstrate the histograms of the mRNA number cor-
responding to three representative points labeled in Fig. 3(c),
referring to Figs. 3(d)–3(f). These numerical results indicate
that the ratio of τ on over τ off has also important influences on
the mRNA noise in the case of the multi-ON mechanism as
the case of the multi-OFF mechanism.

In addition, combining analysis of the above two cases,
we obtain low boundaries of the mRNA noise intensity in the
common ON-OFF model as

η2
on−off ≥ max

{
1

〈m〉 +
τoff − 1 + ∏L

k=1
1

1+τk

τon + 1 − ∏L
k=1

1
1+τk

,
1

〈m̃〉 +
(

τ̃off

τ̃on

)2 τ̃on − 1 + ∏R
k=1

1
1+τ̃k

τ̃off + 1 − ∏R
k=1

1
1+τ̃k

}

> min

{
1

〈m〉 + τoff − 1 + e−τoff

τon + 1 − e−τoff
,

1

〈m̃〉 +
(

τ̃off

τ̃on

)2
τ̃on − 1 + e−τ̃on

τ̃off + 1 − e−τ̃on

}
. (53)

Case 3: Other mechanisms
In general, the pattern of transitions between active and

inactive states of the promoter is complex, in particular in eu-
karyotic cells. Here, we analyze an example only, which con-

sider one inactive state and three active states of the gene pro-
moter but there exist transitions between inactive and active
states or between active states, referring to Fig. 4. The corre-
sponding master equations are described as follows:

∂P0

∂t
= λ1P1 + λ2P2 + λ3P3 − (γ1 + γ2 + γ3)P0 + δ(E − I) [mP0(m, t)] ,

∂P1

∂t
= γ1P0 + λ′

4P2 + λ′
5P3 − (λ1 + λ4 + λ5)P1 + δ(E − I) [mP1(m, t)] + μ(E−1 − I) [P1(m, t)] ,

(54)
∂P2

∂t
= γ2P0 + λ4P1 + λ′

6P3 − (λ2 + λ′
4 + λ6)P2 + δ(E − I) [mP2(m, t)] + μ(E−1 − I) [P2(m, t)] ,

∂P3

∂t
= γ3P0 + λ5P1 + λ6P2 − (λ3 + λ′

5 + λ′
6)P2 + δ(E − I) [mP3(m, t)] + μ(E−1 − I) [P3(m, t)] .
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Active

Active
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Exact method

Simulation
Exact method

Simulation
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FIG. 4. The effect of multi-state mechanism on the noise in gene expres-
sion. (a) Schematic of multi-inactive-active-state model of gene expression.
(b)–(d) The noise strength as a function of the parameter k ≡ λ4 = λ′

4
= λ5 = λ′

5 = λ6 = λ′
6. The other parameter values used in computation are

λ1 = 2, λ2 = 1, λ3 = 1, γ 2 = 1, γ 3 = 1, μ = 5 and (b) γ 1 = 1, (c) γ 1 = 2,
(d) γ 1 = 1.7.

To solve Eq. (54), we introduce generating functions
Gi(z, t) = ∑∞

m=0 zmPi(m, t) (i = 0, 1, 2, 3) and new variable
s ≡ μ(z − 1), and consider the steady-state case. This will lead
to a following set of coupled ordinary differential equations:

λ1G1 + λ2G2 + λ3G3 − (γ1 + γ2 + γ3)G0 − s
dG0

ds
= 0,

γ1G0 + λ′
4G2 + λ′

5G3 − (λ1 + λ4 + λ5)G1

− s
dG1

ds
+ sG1 = 0,

(55)

γ2G0 + λ4G1 + λ′
6G3 − (λ2 + λ′

4 + λ6)G2 − s
dG2

ds

+ sG2(s) = 0,

γ3G0 + λ5G1 + λ6G2 − (λ3 + λ′
5 + λ′

6)G3 − s
dG3

ds

+ sG3(s) = 0,

where all the parameters including μ are rescaled by δ.
Furthermore, for Eq. (55), we introduce the transforma-
tion Fi(s) = e−sGi(s), which transform Eq. (55) into the
following:

λ1F1 + λ2F2 + λ3F3 − (γ1 + γ2 + γ3)F0 − s
dF0

ds

−sF0 = 0,

γ1F0 + λ′
4F2 + λ′

5F3 − (λ1 + λ4 + λ5)F1 − s
dF1

ds
= 0,

(56)

γ2F0 + λ4F1 + λ′
6F3 − (λ2 + λ′

4 + λ6)F2 − s
dF2

ds
= 0,

γ3F0 + λ5F1 + λ6F2 − (λ3 + λ′
5 + λ′

6)F3 − s
dF3

ds
= 0.

Summing the above four equations gives F0(s) = −F′(s),
where F ≡ F0 + F1 + F2 + F3. Now, we Taylor expand every
function Fj(s) by Fj (s) = ∑∞

n=0 b
(j )
n sn. Note that if we Taylor

expand F (s) = ∑∞
n=0 cns

n, then cn = ∑3
j=0 b

(j )
n with n ≥ 0.

Substituting such expansions into Eq. (56) yields

λ1b
(1)
n + λ2b

(2)
n + λ3b

(3)
n − (n + γ1 + γ2 + γ3)b(0)

n = b
(0)
n−1,

γ1b
(0)
n + λ′

4b
(2)
n + λ′

5b
(3)
n − (n + λ1 + λ4 + λ5)b(1)

n = 0,

(57)
γ2b

(0)
n + λ4b

(1)
n + λ′

6b
(3)
n − (n + λ2 + λ′

4 + λ6)b(2)
n = 0,

γ3b
(0)
n + λ5b

(1)
n + λ6b

(2)
n − (n + λ3 + λ′

5 + λ′
6)b(3)

n = 0,

where b
(0)
−1 = 0, n = 0, 1, 2, and c0 = b

(0)
0 + b

(1)
0 + b

(2)
0

+ b
(3)
0 = 1 due to F(0) = 1. For convenience, introduce the

following matrixes:

A =

⎛
⎜⎜⎝

1 1 1 1
γ1 −(λ1 + λ4 + λ5) λ′

4 λ′
5

γ2 λ4 −(λ2 + λ′
4 + λ6) λ′

6
γ3 λ5 λ6 −(λ3 + λ′

5 + λ′
6)

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝

−(γ1 + γ2 + γ3 + 1) λ1 λ2 λ3

γ1 −(λ1 + λ4 + λ5 + 1) λ′
4 λ′

5
γ2 λ4 −(λ2 + λ′

4 + λ6 + 1) λ′
6

γ3 λ5 λ6 −(λ3 + λ′
5 + λ′

6 + 1)

⎞
⎟⎟⎠ .

Then, according to F0(s) = −F′(s), we know

c1 = −b
(0)
0 = −det(A [2, 3, 4; 2, 3, 4])

det(A)
. (58)

Using Eq. (57) in the case of n = 1 and again according to
F0(s) = −F′(s), we obtain

c2 = −1

2
b

(0)
1 = −b

(0)
0

2

det(B [2, 3, 4; 2, 3, 4])

det(B)
. (59)
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Note that

G′(z)
∣∣
z=1 = μG′(s)

∣∣
s=0 = μ(c0 + c1) = μ(1 + c1),

(60)
G′′(z)

∣∣
z=1 = μ2G′′(s)

∣∣
s=0 = μ2(c0 + 2c1 + 2c2)

= μ2(1 + 2c1 + 2c2).

Thus, we obtain the analytical expression of noise intensity

η2
m = σ 2

m

〈m〉2
= G′′(z)

∣∣
z=1 + G′(z)

∣∣
z=1 − [

G′(z)
∣∣
z=1

]2

[
G′(z)|z=1

]2

= 1

〈m〉 + 2c2 − c2
1

(1 + c1)2
, (61)

where c1 and c2 are given by Eqs. (58) and (59), respec-
tively. We point out that Eq. (61) can reproduce the result
obtained in the above multi-on mechanism with R = 3 if
some rate constants related to transitions between active and
inactive states are set as zero. Especially, we find that if
λ1 = λ2 = λ3 ≡ λ, then 〈m〉 = μ(γ1+γ2+γ3)

(γ1+γ2+γ3+λ) add η2
m = 1

〈m〉
+ λ

(γ1+γ2+γ3)(γ1+γ2+γ3+λ) . This indicates that the mean and the
noise level are independent of the reversible transitions be-
tween active states, i.e., they do not rely on parameters λ′

4,
λ′

5, λ′
6. In addition, the analytical distribution can be also

given using Eq. (15) and computing Eq. (57), and can be ex-
pressed by a confluent hypergeometric function. The detail is
omitted here.

Now, we perform numerical simulations. For clarity,

we consider a particular case: k
�= λ4 = λ′

4 = λ5 = λ′
5 = λ6

= λ′
6. In this case, Figs. 4(c)–4(e) show three representa-

tive patterns of the noise intensity square (η2
m) vs k, where

Fig. 4(c) shows that η2
m monotonically increases with regard

to k with fixed γ 1 = 1, Fig. 4(d) shows that η2
m monotonically

decreases with regard to k with fixed γ 1 = 2, and Fig. 4(e)
shows that η2

m has one maximum with regard to k with fixed
γ 1 = 1.7.

This example indicates that transition patterns between
activity states of the promoter are a factor that can influence
the noise level.

D. Gene auto-regulatory models

In this subsection, we consider two common gene auto-
regulatory models: the auto-activation model and the auto-
repression model, which are nonlinear biochemical networks,
and derive analytical expressions for gene expression noise.
Regarding self-regulatory systems, there have been some an-
alytical results, e.g., seeing Refs. 60 and 61.

Case 1: Auto-activation
This model is described by the following biochemical re-

actions with the protein switching the gene from the OFF-
state to the ON-state or vice versa

I
λ−−−→ A,A

γ−−−→ I, I + P
a−−−→ A + P,

A
μ−−−→ A + P,P

δ−−−→ 	,
(62)

Denote the protein probability distributions in the I and A
states as P0(m; t) and P1(m; t), respectively. Then, the cor-

responding master equations read62

dP0(m; t)

dt
= −λP0(m; t) + γP1(m; t) − amP0(m; t)

+ δ [(m + 1)P0(m + 1; t) − mP0(m; t)] ,

(63)
dP1(m; t)

dt
= λP0(m; t) − γP1(m; t) + amP0(m; t)

+ δ [(m + 1)P1(m + 1; t) − mP1(m; t)]

+μ [P1(m − 1; t) − P1(m; t)] .

Define generating functions Gk = ∑∞
m=0 zmPk and consider

static solutions. Then, it follows from Eq. (63) that

−λG0 + γG1 − az
dG0

dz
− δ(z − 1)

dG0

dz
= 0,

(64)

λG0 − γG1 + az
dG0

dz
− δ(z − 1)

dG1

dz
+ μ(z − 1)G1 = 0.

Let G = G0 + G1. Then, we have

δ(a + δ)

μ

[
z − δ

a + δ

]
G′′

−
[

(a + δ)

(
z − δ

a + δ

)
− (λ + γ )δ

μ

]
G′ − λG = 0,

(65)

where G satisfies the normalization condition G(1) = 1 due to
the conservative condition

∑∞
m=0 P (m) = 1.

If we Taylor expand G(z) at THE POINT
z = 1, then the coefficients in the corresponding series
cannot be analytically given. However, if we Taylor expand
G(z) at THE POINT z = δ/(a + δ) due to the characteristic of
the coefficient in the second order derivative of G(z) in Eq.
(65), then the corresponding coefficients can be explicitly
given. In fact, substituting the expansion

G(z) =
∞∑

n=0

bn

(
z − δ

a + δ

)n

=
∞∑

n=0

1

n!
G(n)(z)

∣∣
z=δ/(a+δ)

(
z − δ

a + δ

)n

(66)

into Eq. (65) and comparing the coefficients of various same
powers of z − δ/(a + δ) will yield

bn = a0

n!

(μ

δ

)n (λ/(a + δ))n
((λ + γ )/(a + δ))n

, n = 1, 2, 3, . . . . (67)

Thus, we obtain the analytical expression for generating func-
tion G(z)

G(z) =
∞∑

n=0

b0

n!

(
μ

δ

)n (λ/(a + δ))n
((λ + γ )/(a + δ))n

(
z − δ

a + δ

)n

= b01F1

(
λ

a + δ
;
λ + γ

a + δ
;
μ

δ
z − μ

a + δ

)
, (68)

where the condition G(1) = 1 gives b0

= 1/1F1

(
λ

a+δ
; λ+γ

a+δ
; aμ

δ(a+δ)

)
. Furthermore, we obtain the
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FIG. 5. The effect of feedback mechanisms on the noise in gene expression.
(a) Schematic of auto-activation model of gene expression. (b) Schematic of
auto-repression model of gene expression. (c) The noise strength as a function
of the positive feedback strength (a) for system (62), where the parameters
are λ = γ = 1, μ = 5, δ = 0.1. (d) The noise strength as a function of
the negative feedback strength (r) for system (71), where the parameters are
λ = γ = 1, μ = 5, δ = 0.1.

analytical expression for the steady-state distribution

P (m) = 1

m!

(μ

δ

)m
(

λ
a+δ

)
m(

λ+γ

a+δ

)
m

1F1
(
m + λ

a+δ
; m + λ+γ

a+δ
; − μ

a+δ

)
1F1

(
λ

a+δ
; λ+γ

a+δ
; aμ

δ(a+δ)

) .

(69)
In addition, we can give the analytical formula for mean
and variance according to 〈m〉 = G′(1) and σ 2

m = G′′(1)
+ G′(1) − [G′(1)]2. Moreover, the formula can show that
when a → 0, the analytical expression for the noise intensity
without feedback is

lim
a→0

η2(a) = γ δ

λ(δ + λ + γ )
+ δ(λ + γ )

μλ
, (70)

which is the same as the known results.18 In addition, by com-
putation we know

lim
a→∞ η2(a) = γ + λeμ/δ

(λ + γ )eμ/δ

(μ + δ)(λ + γ )

μλ

−1 <

[
μ(λ+δ)

(λ+γ+δ) + δ
]
(λ + γ )

μλ
− 1 = lim

a→0
η2(a).

Using the property on derivatives of confluent hypergeomet-
ric functions, we can show that the noise intensity computed
by ηm = σ m/〈m〉 is not a monotonically increasing but mono-
tonically decreasing function in a (referring to Fig. 5(c)). This
indicates that the traditional conclusion that positive feedback
enlarges noise15 is not correct for the circuit described by bio-
chemical reactions (60).

Case 2: Auto-repression
Consider the following biochemical reactions, which de-

scribe the auto-repression model of gene expression:

I
λ−−−→ A,A

γ−−−→ I, A + P
r−−−→ I + P,

(71)

A
μ−−−→ A + P,P

δ−−−→ 	 .

Let P0(m; t) and P1(m; t) be the probability density function
of having m proteins at the t time in the I and A states, respec-

Inactive Active

Activating
enzyme

Deactivating
enzyme

Substrate Product

η

(a) (b)

T

FIG. 6. (a) Schematic of the enzymatic futile cycle reaction mechanism. (b)
The noise strength as a function of the total number NT, showing that there is
an extreme, where the parameters are k1 = 1, k−1 = 1, k2 = 10, k−2 = 0.01.

tively. Then, the corresponding master equations read

dP0(m; t)

dt
= −λP0(m; t) + γP1(m; t) + rmP1(m; t)

+ δ [(m + 1)P0(m + 1; t) − mP0(m; t)] ,

(72)
dP1(m; t)

dt
= λP0(m; t) − γP1(m; t) − rmP1(m; t)

+ δ [(m + 1)P1(m + 1; t) − mP1(m; t)]

+μ [P1(m − 1; t) − P1(m; t)] ,

Introduce two generating functions Gk = ∑∞
m=0 zmPk and the

total generating function G = G0 + G1, and consider the static
solutions to Eq. (72). Similar to the case of auto activation, we
can obtain the analytical expression for G(z), that is

G(z) =
1F1

(
λ
δ
; λ+γ

r+δ
+ rμ

(r+δ)2 ; μ

r+δ
z − μδ

(r+δ)2

)
1F1

(
λ
δ
; λ+γ

r+δ
+ rμ

(r+δ)2 ; μr

(r+δ)2

) . (73)

Furthermore, we can obtain the analytical expression for the
steady-state probability distribution

P (m) = 1

m!

(
μ

r + δ

)m
(

λ
δ

)
m(

λ+γ

r+δ
+ rμ

(r+δ)2

)
m

×
1F1

(
m + λ

δ
; m + λ+γ

r+δ
+ rμ

(r+δ)2 ; − μδ

(r+δ)2

)
1F1

(
λ
δ
; λ+γ

r+δ
+ rμ

(r+δ)2 ; μr

(r+δ)2

) . (74)

In addition, according to the formulae 〈m〉 = G′(1) and
σ 2

m = G′′(1) + G′(1) − [G′(1)]2, we can compute the mean
and variance and further the noise intensity by ηm = σ m/〈m〉.
Note that if r → 0, then we obtain the same analytical ex-
pression for the noise intensity as Eq. (70) in the case of no
feedback.

Again using the property on derivatives of hypergeomet-
ric functions, we can show that the noise intensity computed
by ηm = σ m/〈m〉 is not a monotonically decreasing but mono-
tonically increasing function in r (referring to Fig. 5(d)). This
indicates that the traditional conclusion that negative feedback
reduces noise15 is not correct for the circuit described by bio-
chemical reactions (71).

Our numerical results show that feedback has a counter-
intuitive effect (referring to Figs. 5(c) and 5(d)). The similar
conclusion was also obtained in Ref. 6, wherein more numer-
ical results were demonstrated.
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E. A signaling system with autocatalytic kinase

Here we consider a simple enzymatic futile cycle, which
is schematically shown in Fig. 6(a). This mechanism is
ubiquitous throughout biological systems and is encoun-
tered as a recurrent control motif in such diverse regulatory
processes as metabolism, GTPase cycles, mitogen-activated
protein kinase (MAPK) cascades, glucose mobilization,
cell division/apoptosis, checkpoint control, actin tread-
milling, and membrane transport as well as two-component
systems and phosphorelays in microbial stress-response
signaling pathways (refer to Refs. 63 and 64 and references
therein). All the above enzymatic futile cycle examples can
be summarized into the following simple biochemical kinetic
system

E + E∗ + AT P
k′

1
⇀↽
k′
−1

2E∗ + ADP,

E∗ k2
⇀↽
k′
−2

E + Pi,

(75)

where the reaction scheme for PdPC with autocatalytic ki-
nase depicts the molecular elements E, E*, and ATP com-
bining in the forward reaction at a rate of k′

1 to produce
2E* and ADP. The backward reaction occurs at a rate of
k′−1 and is autocatalytic because E* serves as a catalyst for
itself. The second reaction can be interpreted in a similar
manner.

To avoid cluttering, we let ATP, ADP, and Pi be ab-
sorbed into the rate constants. Thus, the above reactions can
be rewritten as

E + E∗ k1
⇀↽
k−1

2E∗,

E∗ k2
⇀↽
k−2

E,

(76)

which satisfy the conservative condition [E] + [E*] = ET (the
total concentration, which is assumed as a constant). Let n
represent the number of E* molecules, NT represent the total
number of kinase molecules (a constant), and P(n; t) repre-
sent the probability of having n molecules at time t. Then, the
corresponding master equation reads

∂P (n, t)

∂t
= −[k1n(NT − n) + k−1n(n − 1) + k2n

+ k−2(NT −n)]P (n, t)+(NT −n+1)[k1(n−1)

+ k−2]P (n − 1, t) + (n + 1)[k−1n + k2]

×P (n + 1, t). (77)

By introducing the generating function G(z; t)
= ∑NT

n=0 znP (n; t) for P(n; t), we have a partial differ-
ential equation for G(z; t)

∂G

∂t
= NT (−k1 + k−2z)G + {k2 + [k1(NT − 1) + k2 − k−2]z

+ [k1(NT − 1) − k−2]z2}∂G

∂z

+ [k−1z + (k−1 − k1)z2 + k1z
3]

∂2G

∂z2
. (78)

Consider the static solution to Eq. (78). Now, we Taylor ex-
pand G(z) as G(z) = ∑NT

n=0 an(z − 1)n. Substituting this ex-
pansion into the above equation and comparing the coeffi-
cients of (z − 1) of the zero-order and the first-order powers
lead to

a1 = C

NT∑
n=1

1

(n − 1)!

n−1∏
j=0

(k1j + k−2)(NT − j )

(k−1j + k2)
,

a2 = C

2

NT∑
n=2

1

(n − 2)!

n−1∏
j=0

(k1j + k−2)(NT − j )

(k−1j + k2)
,

where C is a normalized constant, satisfying
C

∑NT

n=1

∏n−1
j=0

(k1j+k−2)(NT −j )
(k−1j+k2)(j+1) = 1. According to the for-

mula (10), we obtain the analytical expression for the noise
intensity

η2
n = 2a2 + a1

a2
1

− 1

= C

a2
1

NT∑
n=1

n(2n − 1)
n−1∏
j=0

(k1j + k−2)(NT − j )

(k−1j + k2)(j + 1)
− 1.

(79)

In addition, we can obtain the following analytical steady-
state distribution

pss(n) = C

n−1∏
j=0

(k1j + k−2)(NT − j )

(k−1j + k2)(j + 1)
. (80)

The similar expression was also derived in Ref. 64.
Interestingly, we numerically find that there exists an op-

timal total number of kinase molecules, NT, such that the
noise reaches the highest level, referring to Fig. 6(b). In ad-
dition, we find that the total number of kinase molecules has
important influences on the generation of bistabiliy. More re-
sults for this system will be published elsewhere.

IV. CONCLUSION AND DISCUSSION

Molecular noise in biochemical systems or networks is
inevitable due to the low copy numbers of species molecules
participating in the reactions. Here, we have proposed a gen-
eral yet exact method for computing the noise and probability
function, which can be applied to arbitrarily linear or non-
linear biochemical reaction networks. By examples, we have
shown the strong power of such a power series expansion
method, which is particularly effective for linear biochemical
systems since an in the related series expansion of the generat-
ing function G(z) is iteratively computed and hence can be an-
alytically given. As such, the noise strength for any species of
interest and the joint probability can be explicitly given. For
nonlinear biochemical networks, an is also iteratively com-
puted in all cases, and can be analytically given in some cases
and cannot in other cases, but can be approximately given
and the approximate results can reach any pre-given accuracy.
In addition, we have given exact analytical formulae for the
noise intensities in several common biochemical networks by
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applying this method. We have shown that LNA is effective
only in linear network cases but would overestimate or un-
derestimate the noise in nonlinear network cases. Moreover,
positive (negative) feedback does not always enlarge (reduce)
noise but has a counter effect, implying that the previous con-
clusion on the effect of feedback on noise needs to be mod-
ified. In addition, interesting analytical distributions for two
common nonlinear biochemical modules have also been given
for the first time.

We point out that our method is linear, and hence has
many advantages in contrast to the following several existing
methods: (1) The moment-closure method44–46, 62 is in general
nonlinear since low-order moments depend often on higher-
order moments, implying that nonlinear approximations are
required. Moreover, how to set an approximate scheme does
not have a general rule but depends on specific biochemical
networks, and the common setting of approximate schemes
do not guarantee that a pre-given accuracy is satisfied since
high-order moments do not tend to zero as its order goes to
the infinity. Our method can overcome these shortcomings
mainly because our method is linear and the related series is
convergent but how to choose points at which power series
are expanded is worth being further studied. (2) LNA6, 24–29

can only be used to obtain low-order approximation to noise,
while our method can be used to numerically compute ar-
bitrarily high-order approximations for noise and probability
distributions and the resulting approximations can reach arbi-
trary accuracies. (3) Although linear, the variational method
proposed in Ref. 32 would meet difficulties in handling high-
dimensional systems and only give approximate results. In
contrast, our method, which is also linear, can be applied to
an arbitrarily dimensional linear or nonlinear biochemical net-
work for which we need only to solve a set of linear algebraic
equations.

Our method can also be used to study noise propagation
in signaling systems where analytical solutions to the corre-
sponding master equations may not exist, and can give exact
rather than approximate results for the propagating noise in
the signaling systems. Moreover, the corresponding method
is programmable since our analytical formulae for comput-
ing noise strengths depend only on the first and second or-
der derivatives of generating functions at a certain point on
the argument. Our method can even be used to study noise
propagation in signaling networks in terms of probability
distributions.

Owing to the exact formulae available to computing
noise, our next task is to elucidate roles and functions of noise
in controlling stochastic fluctuations of biochemical network
modules, e.g., gene auto-regulatory motifs, feedback forward
loops, cis-regulatory modules, etc. As such, we can reckon
that some previous results on noise obtained by LNA would
require to be modified. In addition, by applying the power se-
ries expansion method proposed here, it is possible to derive
analytical probability distributions described by biochemical
master equations in more general biochemical reaction net-
works. This is significant since a distribution in general con-
tains more accurate random information than noise intensity,
a commonly used index.
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