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Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC
population varies widely among cancerous tissues and cell lines, and is often associated with aggressive
breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not
well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC
population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that
there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance
between the population of CSCs and that of non-stem cancer cells. The model predictions can help us
explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to
predict the efficicacy of anti-cancer therapy.

B
reast cancer is a malignant disease with a heterogeneous distribution of cell types. Cancer stem cells (CSCs)
are defined as ‘a small subset of cancer cells’ within a cancer that can self-renew and replenish the
heterogeneous lineage of cancer cells that comprise the tumor1. CSCs are often resistant to chemother-

apeutic drugs, sharing similar gene expression profiles and properties with normal stem cells such as formation of
spheres in culture, and may be responsible for tumor relapse and metastasis2–4. A broad range of CSC frequency,
often spanning multiple orders of magnitude, has been observed in human solid tumors of various organ types5–9.
CSCs isolated from primary tumors have been observed to be able to regenerate the original phenotypically
heterogeneous tumors when injected into immunocompromised mice1,7,10. A relevant question is how the pro-
portion of CSC population can be maintained at a relatively constant level in tumors10,11. According to the CSC
hypothesis1,7, CSCs possess the ability to divide either symmetrically to yield two identically immortal cancer stem
cells; or asymmetrically, to simultaneously self-renew and yield one mortal non-stem cancer cell with finite
replicative potential6,12. The proportion of CSCs has been speculated to be maintained through alternative use
of symmetric and asymmetric division13. However, it is largely unknown how to control the switch between these
two dividing modes.

Mathematical modeling has been utilized to study underlying mechanistic principles and to help design
appropriate experiments for better understanding of complex dynamics and interactions of tumor cell popula-
tions14–19. Most existing models either neglect asymmetric division or progenitor cells17,19,20 or have made assump-
tions on constant division rates for CSCs with a fixed symmetric/asymmetric division probability14–16,21–23.
Emerging experimental data suggest that CSCs may remain quiescent or enter into an actively proliferating
state24. It has been reported that the relative frequency of symmetric division of CSCs changes during tumor
growth13. Recently, a new model with two negative feedback mechanisms on the symmetric division probability
and differentiation probability has been proposed19, and an excellent agreement with experimental data on the
growth curve has been observed. Despite of its success on describing the growth, the model was not benchmarked
against experimental dynamics on proportions of CSCs simultaneously.

In this study, we propose a mathematical model including progenitor cells (PCs) and a negative feedback
on the symmetric division probability to produce two daughter cells for the next lineage to describe new
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experimental observations performed both in vitro and in vivo. The
mathematical model proposed in this study can fit both the growth
kinetics and the proportion of CSCs in vitro and in vivo very well. In
addition, we investigate the robustness and sensitivity of the models
under the influence of various intrinsic and extrinsic factors and
simulate potential outcomes of different therapeutic strategies for
breast cancer.

Results
Cancer stem cell hypothesis as an explanation of the Gompertzian
growth curve both in vitro and in vivo. It has been well-documented
that the growth curve of breast cancer cells both in vitro and in vivo
shows a Gompertzian shape but the underlying mechanism for the
Gomperzian nature of tumor growth remains unknown25–27. Here,
we will explore the CSC hypothesis as an explanation for Gomertzian
growth of tumors. According to the CSC hypothesis1,10, breast cancer
cells can be artificially divided into three main types: cancer stem cells
(CSCs), progenitor cells (PCs), and terminally differentiated cells
(TDCs). Cancer stem cells can divide symmetrically to produce
two CSCs or two PCs, or asymmetrically to generate one CSC and

one PC. A similar mechanism applies to progenitor cells, which have
limited proliferation capacity. On the other hand, TDCs lose the
ability to divide further and die at predictable rate (Fig. 1a). The
population dynamics of the three cell types can be described by a
system of ordinary differential equations,

dx0 tð Þ
dt

~ p0{q0ð Þv0x0 tð Þ{d0x0 tð Þ,

dx1 tð Þ
dt

~ 1{p0zq0ð Þv0x0 tð Þz p1{q1ð Þv1x1 tð Þ{d1x1 tð Þ,

dx2 tð Þ
dt

~ 1{p1zq1ð Þv1x1 tð Þ{d2x2 tð Þ:

ð1Þ

Here we denote xi(t) the number of cells at time t for cell type i, i 5

0,1,2, p0(p1) the probability that a CSC (PC) is divided into a pair of
CSCs (PCs), and q0(q1) the probability that a CSC (PC) is divided into
a pair of PCs (TDCs). Thus, 1 2 p0 2 q0 (1 2 p1 2 q1) denotes the
probability that an asymmetric cell division takes place from CSCs
(PCs) to PCs (TDCs). Here n0 and n1 are the synthesis rates, which
quantify how rapidly cells divide at each lineage stage in unit time, di, i
5 0,1,2, is the degradation rate of CSCs, PCs or TDCs, respectively.
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Figure 1 | Feedback regulation of symmetric division probabilities and proliferation rates of CSCs and PCs by TDCs. (a) A simple model for the

proliferative kinetics of tumor cell populations. CSCs: cancer stem cells; PCs: progenitor cells; TDCs: terminally differentiated cells. The v-parameters

quantify how rapidly cells divide at each linear stage. The p and q parameters quantify the fraction of symmetric division to produce two daughter cells that

remain at the same stage and the next stage respectively (1-p-q is the fraction of asymmetric division). d is the degradation rate of TDCs. (b) Scheme of a

model with two negative feedback controls on the proliferation rates and symmetric division probabilities of CSCs and PCs by TDCs. (c) Typical

simulation data of the four models in comparison with experimental data on the cell proliferation kinetics in vitro. MCF7 cells (1.5 3 105) are seeded in a

10-cm cell culture dish, cultured in normal conditions and counted every two days for 14 days. (d) Typical simulation data with two feedbacks compared

with in vivo tumor growth rate. H605 mouse cells and MCF7/HER2 human breast cells (5 3 105) are injected into mammary gland of MMTV-Her2/neu

sygeneic and NOD/SCID mice respectively. The tumor growth is measured using caliper weekly. There is general agreement in the literature that 1 cm3

tumor mass contains ,109 cells. The tumor volume (cm3) is estimated using the formula: tumor volume 5 (long axis) 3 (short axis)2 3 p/6. There are

some variations in tumor initiation time points. But the tumor growth curves from all of mice show the typical Gompertzian growth pattern. Two mice

selected from each group are shown in the figure. The estimated parameter values for the simulations are given in Table S2.
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When this model is used to study the proliferation dynamics of
tumor cells in cell culture, we find that it is very sensitive to the model
parameters while the system reaches equilibrium. If d0 , (p0 2 q0) n0

or d1 , (p1 2 q1)n1, the number of cells will increase indefinitely,
whereas the cell numbers will diminish over time if d0 . (p0 2 q0)n0

and d1 . (p1 2 q1)n1. In reality, the growth of breast cancer MCF7
cells in vitro shows a typical Gomperzian curve: a slow initial growth
phase, followed by an exponential growth phase, and then a plateau
phase eventually (Fig. 1c). In order for the system to reach the steady-
state plateau phase, the conditions d0 5 (p0 2 q0)n0 and d1 , (p1 2

q1)n1 must be satisfied. With these stringent conditions, the simple
lineage model is unable to describe the dynamics of tumor cell
growth observed in vitro (Fig. 1c).

Negative feedback has been shown to regulate self-renewal and
proliferation of normal stem cells during organogenesis20,28,29. A sim-
ilar mechanism can exist for cancer cells in tumors19. To test this
hypothesis, we first add feedback loops from TDCs to the division
rate of CSCs and PCs in our model, denoted as Type I feedback.
Specifically, we replace n0 and n1 by a nonlinear decreasing Hill
function of the TDC population with a time delay t and feedback
strength parameters b0 and b1, respectively, (also see Eq. (S2) in
Supplement),

v0?
v0

1zb0 x2 t{tð Þð Þ2
, v1?

v1

1zb1 x2 t{tð Þð Þ2
: ð2Þ

The hill function is generally one of the first choices for modeling
feedback when there is a lack of experimental observation in
responding curve19,20,28. With the negative feedback, the simulated
growth curve is found to describe the observed experimental data
better (Fig. 1c). When we use an appropriate exponential function to
model the feedback, the simulated curve also matches well with the
experimental observations, but two functional forms behave differ-
ently when fitted to our observed data (Fig. S1 c–f).

Although adding Type I feedback can simulate the growth
dynamics of tumor cells in culture, we wonder whether other feed-
back mechanisms could achieve the similar effect. Experimental data
suggests that the cell population heterogeneity may also play a role in
determining the growth rate of tumors both in vitro and in vivo2,3. We
then add a feedback from TDCs to the symmetric division probabil-
ities of CSCs and PCs, denoted as Type II feedback. In this case, the
division probabilities p0, q0, p1 and q1 are modeled by a nonlinear
decreasing Hill function controlled by the TDC level with a time
delay t and feedback strength parameters c (also see Eq. (S3) in
Supplement),

p0?
p0

1zc0
1 x2 t{tð Þð Þ2

, q0?
q0

1zc0
2 x2 t{tð Þð Þ2

,

p1?
p1

1zc1
1 x2 t{tð Þð Þ2

, q1?
q1

1zc1
2 x2 t{tð Þð Þ2

:

ð3Þ

Similar to Type I feedback, this model can also describe the experi-
mental tumor growth data better than the one without feedback
(Fig. 1c). From our observed data, we observe that very few CSC or
PC cells die, suggesting a very small death rate for CSCs and PCs
compared to that of TDCs. We also observe that adding the depend-
ence of CSC or PC death rate on the fraction of TDCs does not
change any of the main results (Fig. S1 a and b).

In order to test whether our model can also predict the tumor
growth curve in vivo, we monitor the tumor growth in the trans-
planted animals. The growth of these tumors demonstrates that the
variability is typical of malignant proliferation. For each tumor, we
search for the best fitting to the observed experimental data using the
least square method in L2 norm. Examples of curves fitted to the data
for two types of tumor cells are illustrated in Fig. 1d. A good agree-
ment has been achieved for the model with two feedbacks. All the
parameters are the same as in Fig. 1c except for the ones controling

the feedback strength. Here, we find that the feedback strengths (b
and c) for both type I and II feedbacks are much weaker than the case
of in vitro data (see Table S2). This result is consistent with previous
studies showing that in vitro culture of primary tumor cells induces
differentiation10,30.

Negative feedback loops are required to control the CSC popu-
lation. We next test whether the models can be applied to address
another interesting phenomenon in cancer stem biology: the
equilibrium between CSCs and non-cancer stem cells seems to be
very robust and can be readily established after a perturbation10,11,15.
To test our models, we conducted two sets of experiments: 1) we
culture breast cancer MCF7 cells starting at a very low density and
monitor the proliferation kinetics of CSCs during the course of
culture until they reach confluence; 2) we sort out the putative
CSC population from MCF7/HER2 cells which contains a
relatively high percentage of CSCs and monitor the differentiation
process of CSCs. To test the hypothesis of the feedback on the
proliferation of CSC from the differentiated cancer cells, we expect
to observe different proliferation kinetics of CSCs generated from
either the heterogeneous cell population or the relatively pure CSC
population. The relative proportion of CSCs is measured using
fluorescence-activated cell sorting (FACS) with the putative CSC
makers CD441CD24210.

During the time course of culturing MCF7 cells, we observe that
the proportion of CSCs continues to increase, reaches the peak
around 5 days and then slowly goes back to the original level (Fig.
S2). When we use our models to simulate the fluctuation of CSC
contents during the culture course, none of the simple models
including the linear model without feedback, nor the models with
either Type I or Type II feedback is able to match the observed data
(Fig. 2a). With a combination of both Type I and Type II feedback,
however, the simulated dynamics of the CSC population agrees well
with the experiments (Fig. 2a and Fig. S2a). Therefore, both Type I
and Type II feedback should be included in the population dynamic
model.

To further demonstrate that differentiated cells have a negative
feedback on the proliferation of CSCs, we monitor the proliferation
kinetics of CSCs generated from the FACS-sorted relatively pure
CSC population (Fig. S2b). Without feedback, we expect that the
percentage of CSC gradually deceases until that the new equilibrium
is reached between CSCs and non-stem cancer cells. Surprisingly, we
find that the percentage of CSCs sharply drops from 80% to 16% after
two days, then slowly increases to reach the peak of 30–40% at day 8
and gradually decreases to the pre-sorting level within the following
one week (Fig. 2b). Our model indicates that the parameter (t) for the
time delay should be two days, and the first phase decrease in the
proportion of CSC is due to the delayed negative feedback exposed
before cell sorting. This delayed negative feedback effect is released
after first found of division, and the new feedback is added back to the
system which contributes to the increase in the proportion of CSCs
like the case of culturing MCF7 in Fig. 2a.

Overexpression of HER2 promotes either symmetric division or
increases proliferation rates of CSCs, leading to expansion of the
CSC population. A well-regulated biological system should be
robust to genetic and environmental variations. To study sensi-
tivity of the models to their parameters, we systematically vary the
symmetric division probabilities and proliferation rates (p0, q0, n0, p1,
q1 and n1) to exam how these changes can affect two main outputs of
the system: the overall tumor cell growth and the proportion of CSCs.
We find that the qualitative feature of tumor cell growth is very
robust to variations of p0, n0 as the growth curves agree with each
other within 5% of error tolerance even when the values of p0, n0 are
increased by 50%. On the other hand, the tumor growth rate is very
sensitive to changes of p1, n1, and the effect of p1 on the tumor size is
more prominent than that of n1 (Fig. 3a). We next investigate the
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effects of p0, n0, p1 and n1 on the relative proportion of CSCs over time
(Fig. 3b). An increase in p0, n0 can dramatically change the pro-
portion of CSCs, while an increase in p1, n1 reduces the proportion
of CSCs. Moreover, the change in p0 has a more dramatic effect than
that in n0.

To test negative feedback mechanisms predicted by the model
experimentally, we investigate how the genetic perturbation can
affect the dynamic change in cancer cell subpopulations. Onco-
gene HER2 is a well-studied oncogene known for its role in promot-
ing cancer cell survival and proliferation, and recently implicated in
generation and maintenance of CSCs31,32. We examine the con-
sequence of HER2 overexpression in breast cancer cell line MCF7.
Western blot analysis results show that HER2 signaling is activated in
MCF7-HER2 cells (Fig. S3). Intriguingly, we observe that overex-
pression of HER2 in MCF7 cells has no effect on the growth kinetics
of the total cell population (Fig. 3c), but can result in an almost 13-
fold increase in the CD441CD242 cell population (11.4 6 1.5% vs.
0.9 6 0.3%) (Fig. 3d), which is the putative CSC population10.
Apparently, overexpression of HER2 doesn’t generate the feedback
aimed at p1 and/or n1 because changes in p1 and/or n1 can, in theory,
produce more visible effect on the growth kinetics of tumor cells.
Given that negative feedback aimed at either n0 (division rate) or p0

(self-renewal probability) can lead to dramatic changes in the pro-
portion of CSCs, it is likely that overexpression of HER2 increases n0

and/or p0. This possibility is supported by a recent finding that HER2
overexpression in mammary CSCs increases the frequency of self-
renewal division13.

Majority of tumorspheres are generated from PCs instead of
CSCs. The equilibrium between CSCs and non-stem CSCs may be

disturbed by extrinsic factors such as culture conditions.
Tumorsphere culture has been widely used to enrich and culture
CSCs from a variety of cancers including the breast cancer33,34.
Since tumorspheres are cultured in a suspension medium without
serum, the majority of non-stem cancer cells die within the first 24–
48 hours. Presumably, all CSCs and partial PCs can survive these
harsh conditions and then proliferate to form tumorspheres after a
certain period of culture. Our previous data show that primary tumor
cells derived from MMTV-Her2 transgenic mice can be cultured as
tumorspheres for more than twenty passages35. We observe that
tumorsphere-forming efficiency gradually increases over the early
passages, reaching a plateau after passage 11 (Fig. 4b)35. Similar
phenomena have been reported for other cell lines in the litera-
ture36,37. It is widely speculated that the increase in tumorsphere-
forming efficiency is positively correlated to the proportion of
CSCs. Here we use the model with a combination of Type I and II
feedback (Eq. (S4) in Supplement) to quantitatively show how the
subpopulation of cells evolves over the passages of tumorsphere in
culture.

Our model uncovers several unanticipated results in such tem-
poral courses. First, even though the proportion of CSCs shows a
sharp increase in the first generation of tumorspheres, it cannot
continue to increase over the tumorsphere passages. To the contrary,
the proportion of CSCs dramatically decreases after 8 , 10 passages
of tumorsphere culture (Fig. 4c). We test this prediction by evalu-
ating the tumorigenicity of tumorspheric cells at different passages in
syngeneic animals. We observe that the proportion of CSCs in the
first generation of tumorspheres is enriched by about 30-fold; in the
meantime, the tumorigenicity of tumorspheres decreases gradually
with continuous tumorsphere culture (Table 1).
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The data are shown as the means of triplicate experiments. The estimated parameter values for the simulations are given in Table S2.
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The apparent paradox between increased tumorsphere-forming
efficiency and decreased tumorigenicity of high-passages tumor-
spheres can be explained effectively by the model: both CSCs and
some PCs can form tumorspheres, and moreover, the majority of
tumorspheres, at least in our experimental model system, are derived
from PCs. The proportion of PC-derived tumorspheres gradually
increases upon continuous passages while the proportion of CSC-
derived tumorspheres progressively decreases (Table S1). The
dynamic changes in the proportion of both CSCs and PCs are largely
due to the depletion of differentiated tumor cells and readjustment of
the equilibrium between CSCs and non-stem cancer cells.

CSC-targeted drug is a better choice for long-term maintenance
therapy. The CSC hypothesis may be of particular importance
because of the observed resistance of CSCs to chemo- and
radiation therapies38,39. The mathematical model with both Type I
and II feedback can be used to study correlations among tumor size,
proportion of CSCs and tumor relapse after cancer treatment. Our
model studies suggest that CSC-targeted therapy is less effective in
shrinkage of tumor size but more effective in long-time suppression
of tumor growth and prevention of tumor relapse (Fig. 5a and 5b). In
contrast, conventional chemotherapies may cause dramatic tumor
shrinkage but a sharp increase in the CSC population (Fig. 5b),
presumably due to the killing of TDCs and the relief of negative
feedback. To validate this prediction, we assume that the death

rates of PCs and TDCs will be tripled for the case of standard
chemotherapy (e.g. doxorubicin) compared to the system without
drug treatment, and the feedback strengths for two feedbacks are
maintained the same as the case shown in Fig. 1d (see Table S2).
Our computation shows that conventional chemotherapies result in
a sharp increase in the CSC percentage, which is in agreement with
the clinical data reported by Li et al (Fig. 5c)40. Since HER2 signaling
is critical for self-renewal of CSCs13,32, HER2-targeted therapy (e.g.
lapatinib treatment) may preferentially target CSCs. So we vary the
parameter that decides division pattern of CSCs when the lapatinib
treatment is imposed. As a first approximation, we simply reduce the
value of p0 from 0.5 to 0.3. The simulated results are shown in Fig. 5d,
where the blue solid line represents the percentage of CSCs during
the course of treatment. Consistent with the observed clinical data,
lapatinib treatment leads to a decrease in the percentage of CSCs
(Fig. 5d). We don’t observe the sharp decrease in the percentage of
CSC partially because lapatinib can inhibit the growth of PCs and
TDCs as well.

It is generally believed that combined treatment targeting both
CSCs and non-stem cancer cells will be the best choice for cancer
patient. Interestingly, our simulation results reveal that CSC-targeted
therapy can achieve better long-term clinical outcomes compared to
combined treatment targeting at both CSCs and non-CSCs (Fig. 5a
and 5b). Especially after the long-time maintenance treatment, the
tumor volume decreases for a certain period of time (Fig. 5a).
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However, when the treatment stops, tumors treated with combined
therapies will relapse faster than the tumors treated with CSC-tar-
geted therapy. The explanation for this prediction is that reduction in
the numbers of PCs and TDCs with conventional therapy leads to a
shift from asymmetric to symmetric division or increase the prolif-
eration rate of the remaining CSCs.

We also test the situation in which CSCs could be selectively
targeted for destruction by increasing the destruction rate for CSC
targeted therapy, and find the overall response pattern is similar to
the early drug response (Fig. S4). However, the increased tumor cell-
killing activity may be associated with increased toxicity in clinical
situations, and it remains to be validated on whether complete
remission as a result of CSC-targeted therapy alone is achievable
in practice.

Discussion
In this paper, we develop a set of mathematical models for studying
the dynamic interaction between CSCs and non-stem cancer cells.
After benchmarking against direct tissue culture experiments and
xenograft transplantation assays, we conclude that the appropriate
model needs negative feedbacks on both division rates (Type I) and
self-renewal probabilities (Type II) in order to obtain the experi-
mentally observed balance between CSCs and non-stem cancer cells.
This study suggests that CSCs alone are more likely to undergo
symmetric division (self-renewal) at a higher proliferation rate;
whereas CSCs directly or directly interacted with differentiated can-
cer cells are likely to undergo asymmetric division at a lower prolif-
eration rate. This dynamic interaction between CSCs and non-stem
cancer cells eventually determine the proportion of CSCs within a
tumor.

Our mathematical model provides an explanation for the question
why in xenograft transplantation assays the CSC content of the min-
imum cell dose for tumor growth is usually 10 times higher than that
is required when sorted CSCs are used10,30,41. According to our mod-
els, TDCs impose a negative feedback on the self-renewal probability
and/or proliferation rate of CSCs, therefore inhibit tumor initiation
when unsorted bulky cells are used for injection. Since only live
TDCs are capable of executing these negative feedback effects, our
models do not apply to many other studies of tumor transplantation
in syngeneic animal models, in which adding lethally irradiated
tumor cells to the injected cell population reduces the number of
cells required to cause tumor growth42,43. In this case, the dead cells
cannot maintain the functional interaction with CSCs but instead
may release cellular components that stimulate an inflammatory
response, which is well known to promote tumor growth36,44.

Another interesting phenomenon is that CSCs isolated from either
primary tissues or cell lines can rapidly regenerate the original
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formation matches the observed data. The observed and predicted frequencies of CSC are listed in Table S1. The estimated parameter values for the

simulations are given in Table S2.

Table 1 | Tumor formation capability of adherent cells and continu-
ously passaged tumorspheres

No. of
injected cells

Adherent
culture

Serial passages of tumorspheres

P1 P2 P8 P14

50 NA 3/8 NA NA NA
100 0/4 4/4 3/4 3/4 NA
500 0/4 8/8 NA NA 0/4
1,000 0/4 N/A 4/4 4/4 0/4
5,000 4/4 4/4 4/4 3/4 0/4
10,000 2/2 NA 2/2 NA 1/2

After injection into the mammary fat pads of syngeneic mice at different concentrations, mice were
examined weekly for tumors by observation and palpation. The number of tumors formed and the
number of injections performed are indicated for each population at 12 weeks. NA: not available.
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heterogeneity and maintain it at a relatively constant level10,11.
Recently, several studies suggested that CSCs may arise from non-
cancer stem cells randomly or induced by microenvironmental fac-
tors via an EMT process11,45. To maintain a stable equilibrium, the
rate of CSC differentiation must be balanced by the rate of CSC
formation through constant self-renewal of CSCs and conversion
from non-stem cancer cells11,15. Interestingly, simulations of our
mathematical models show that a very strict condition on model
parameters (Eq. (S6)) must be imposed in order for the cell popu-
lation to reach an equilibrium state (also see Fig. S7).

Sphere culture, which was introduced to isolate and expand neural
stem cells, has been adopted to enrich and quantify the frequency of
CSCs in a variety of primary tumor cells or cancer cell lines34. The
premise for this assay is that most if not all tumorspheres are derived
from CSCs. It is often observed that the differences between the
frequency of tumorsphere formation and the frequency of tumor-
initiation in a xenograft assay range from a few percent to several
orders of magnitude38,41,45. These differences are explained based on
the belief that not every single CSC can survive and grow into a tumor
in the transplanted animals. If the in-vivo transplantation assay
accurately reflects the frequency of CSCs, another alternative
explanation is that not all tumorspheres are derived from CSCs.
Actually it has been shown that the majority (.90%) of neural
spheres are not stem-cell derived21. If the majority of tumorspheres
are derived from PCs, our model provides a clear explanation for the
apparently paradoxical observation that, in the continuously

passaged tumorspheres, the frequency of tumorsphere formation
increases but the frequency of CSCs decreases (Table S1).
Similarly, we can also explain why tumorsphere culture cannot
always be used to enrich CSCs from all tumor cell lines46.
According to our model studies, the proportion of CSCs during
tumorsphere culture is determined by two critical factors: the self-
renewal frequency of CSCs during each tumorsphere formation and
the ratio of tumorspheres derived from CSCs or PCs.

Finally, our models may have some clinical applications such as
predicting the efficicacy of anti-cancer therapy. The CSC hypothesis
suggests that a cure for cancer should include the complete loss of
cancer stem cell function47,48. Current therapeutic strategies pref-
erentially target at non-stem cancer cells, underscoring the need
for developing CSC-specific therapies. It is generally believed that
the optimal therapeutic regimen is needed to target at both CSCs and
non-CSCs. The relevant question is whether combinations of mul-
tiple drugs always achieve better results than a single drug treatment.
If non-CSCs can indeed negatively affect the self-renewal of CSCs as
our model suggests, removal of non-CSCs by non-CSC targeting
conventional therapy can relieve the negative feedback regulation,
leading to enhancement of self-renewal of CSCs. Consistent with our
modeling results, the dramatic increase in the proportion of CSCs
after conventional chemotherapies has been reported38. Another sur-
prising result of our model studies is that CSC-targeted drugs can
eventually do a better job to inhibit tumor growth and to prevent
tumor relapse than a combination of drugs that target at both CSCs
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Figure 5 | Simulated tumor responses to different anti-cancer drug treatments and with a comparison to clinical data. (a) Simulated tumor size changes

with three different treatment strategies: CSC-targeted therapy, conventional chemotherapy and combination of these two. (b) The dynamics of the

proportion of CSCs with three different treatment strategies. (c–d) Simulated percentage of CSCs compared to clinical data with two drug treatment

strategies. The simulated curves agree well with the mean curves of clinical data. The percentages of CD441CD242 cells represent the CSCs in primary

tumors under the treatment of conventional chemotherapy and dual EGFR/HER2 inhibitor lapatinib. The clinical data on chemotherapy and lapatinib

treatment is derived from40. The estimated parameter values for the simulations are given in Table S2.
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and non-CSCs if no drug-resistant mutations occur. This prediction,
if justified in vivo, will have a significant implication to the develop-
ment of anti-cancer therapies.

Methods
Cell culture and proliferation analysis. MCF7/neo and MCF/HER2-18 cell lines
(kindly provided by Dr. Rachel Schiff at the Baylor College of Medicine) were grown
in DMEM/F12 medium supplemented with 10% FBS and 5 mg/ml insulin49. Cells
were cultured at 37uC in a humidified atmosphere containing 5% CO2.

Isolation and culture of cancer cells from MMTV-Neu transgenic mouse
mammary tumors. Isolation and culture of cancer epithelial cells from mammary
tumors of MMTV-Her2/neu-transgenic mice were described previously50. In short
spontaneous mammary tumors that developed from MMTV-Neu transgenic mice
were harvested, and digested in DMEM/F12 medium with 1.5 mg/ml collagenase
(Worthington) and 20 mg/ml hyaluronidase (MP Biomedicals) for 2 hours at 37uC.
The pellet was resuspended in DMEM/F12 medium and passed through a 40 mm
strainer (PALL Corporation) to collect single cells. The Lin2 epithelial cells were
enriched by removing CD451/Ter1191, CD311 and CD140a1 cells using
antibodies against those respective surface antigens and the EasySep magnet
(StemCell Technologies, Vancouver, BC, Canada) according to the manufacturer’s
instructions. The isolated cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco) with 10% fetal-bovine serum (FBS, SAFC Biosciences) and
10 mg/ml insulin (Sigma) as differentiated cancer cells.

In vitro propagation of tumorspheres. Cells harvested from spontaneous tumors
were cultured in ultra-low attachment 6-well plates (Corning, Acton, MA, USA) at a
density of 5000 cells/ml in serum-free DMEM/F12 medium (Invitrogen)
supplemented with 20 ng/ml epidermal growth factor (EGF, Sigma, St. Louis, MO,
USA), 10 ng/ml basic fibroblast growth factor (bFGF, Sigma), 5 mg/ml insulin
(Sigma), 1 3 B27 supplement (Invitrogen) and 0.4% bovine serum albumin (BSA,
Sigma).

Flow cytometry analysis. Fluorescence-activated cell sorting (FACS) analysis was
performed using an FC500 CXP flow cytometer (Beckman Coulter, Fullerton, CA,
USA). Cells were stained with the following antibodies: PE-conjugated anti-CD24
and FITC-conjugated anti-CD44 (BioLegend, San Diego, CA, USA). Cell sorting was
carried out on a FACSAria II cell sorter (Becton Dickinson).

In vivo tumorigenesis assays. Cells were resuspended in 20 ml DMEM/F12 medium
and mixed with 20 ml Matrigel (Becton Dickinson) at a 151 ratio and held on ice. The
entire 40 ml sample was injected into either no.4 mammary glands of MMTV-Her2/
neu-transgenic and NOD/SCID mice anesthetized with isoflurane according to the
animal protocol approved by the USC committee for research in vertebrate animals.
Tumor sizes were measured weekly. Incidence of xenograft tumor formation was
scored 12–13 weeks after injection.

Statistical analysis. Data were expressed as the mean (standard deviation (SD)).
Differences between any two groups were determined by ANOVA. P , 0.05 was
considered statistically significant.

Parameter fitting procedure. A range of parameters in the model is first chosen.
Many values of each parameter are then uniformly and randomly sampled within the
range to compute the numbers of CSCs, PCs, and TDCs in the model. The case that
has the minimal least square error with L2 norm between the simulation and the
observed data is considered as the best fit. For example, for the model with two
feedbacks in Fig. 1C, the range of p0 is between 0 and 1, q0 is between 0 and 1 2 p0 after
p0 is chosen, the feedback strength c is between 10213 and 10216, b is between 10213 and
10211, and five values of each parameter are uniformly selected in the given range to
perform the simulations.
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