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Abstract

Numerical methods for partial differential equations in high-dimensional spaces are often limited 

by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional 

hierarchical basis through tensor products, is popular for handling challenges such as those 

associated with spatial discretization, the stability conditions on time step size due to temporal 

discretization, such as those associated with high-order derivatives in space and stiff reactions, 

remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that 

is advantageous in terms of stability conditions for systems containing stiff reactions and 

diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated 

explicitly and exactly, with various sparse grid techniques based on the finite element and finite 

difference methods and a multi-level combination approach. The overall method is found to be 

efficient in terms of both storage and computational time for solving a wide range of PDEs in high 

dimensions. In particular, the IIF with the sparse grid combination technique is flexible and 

effective in solving systems that may include cross-derivatives and non-constant diffusion 

coefficients. Extensive numerical simulations in both linear and nonlinear systems in high 

dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, 

demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential 

broad applications of the sparse grid-based integration factor method.
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1. Introduction

Consider the following partial differential equation:
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(1)

where P is an elliptic differential operator with respect to the spatial variable x. This 

equation has been extensively studied because of its wide application in certain fields. For 

instance, the formation of the morphogen gradient during the development of the embryo is 

modeled using reaction-diffusion systems [1], where P denotes the Laplacian operator with 

respect to x. The stochastic behavior of a gene network can be described using the Fokker-

Planck equation [2], also known as the backward Kolmogorov equation, where P is a 

second-order differential operator containing cross-derivatives. In finance, the Black-

Scholes equation adopts a similar form when used to estimate the price of options under 

several risk factors [3]. In population genetics, the site-frequency spectrum can be modeled 

using such equations as well [4].

From the numerical perspective, solving Eq. (1) in high dimensions can be extremely 

challenging. Due to the “curse of dimensionality”, achieving good accuracy of  (for 

example, α = 2 by a second-order central difference formula) usually requires an 

number of points in uniform grids. The storage and operations on this large number of grid 

points can be prohibitively expensive when d is large. In addition, spatial discretization due 

to high-order spatial derivatives and stiff reactions leads to severe stability constraints on the 

time step for temporal integration. For the explicit methods, such as Runge-Kutta or Euler 

methods, a severe constraint is placed on the time step, whereas for implicit methods, such 

as the Crank-Nicolson method, large nonlinear systems are solved at each time step, leading 

to excessive computational costs.

The sparse grid technique has been shown to be an efficient approach for dealing with high-

order spatial dimensions [5]. The discretization for this approach involves an O(N · (log 

N)d−1) number of points along with an accuracy of O((log N)d−1/N2) when the one-

dimensional piecewise linear hierarchical basis is applied. Such an approach may be 

extended to the general piecewise d-linear hierarchal basis by a tensor product construction 

in d-dimensional spaces [6, 5]. Other hierarchical bases, e.g., high-order polynomials, 

interpolets, wavelets, have also been developed for a higher order of accuracy [7, 8, 9]. 

Moreover, sparse grids have been recently applied to stochastic simulations and parameter 

estimations [10, 11, 12].

A popular approach for addressing the problem associated with dimensionality is the sparse 

grid finite element method using the Galerkin technique [13, 14] constructed on piecewise 

linear element using weak formulas. Another approach is the sparse grid finite difference 

method [15], which employs the regular second-order central difference approximation on 

the diffusion terms. The finite volume method [16] and the spectral method [17, 18] can also 

be integrated with the sparse grid technique. Another interesting approach is the so-called 

sparse grid combination technique [19] that uses multi-level regular uniform grids such that 

the final solution is constructed using a linear combination of the intermediate solutions at 

the uniform grids, leading to a straightforward implementation, similar to the standard 

uniform grid approach.
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For temporal integration, the integration factor (IF) and exponential time differencing (ETD) 

methods are effective ways to deal with the temporal stability constraints arising from high-

order spatial derivatives on uniform meshes [20, 21, 22]. The IF and ETD methods usually 

treat linear operators of the highest-order derivatives exactly, and hence, they provide good 

temporal stability by allowing larger sizes of time step in temporal updates [23, 24, 20]. For 

addressing the stiffness in reactions, a class of semi-implicit integration factor (IIF) 

methods, which integrate the differential operators exactly like the IF schemes while treating 

the reaction terms implicitly, have been developed [25]. In IIF, the calculation of the 

diffusion and implicit treatment of the reaction is decoupled such that the size of the 

nonlinear system that needs to be solved at each time step is the same as that of the original 

continuous PDEs. This property results in good efficiency, in addition to excellent stability 

conditions (e.g., the second-order IIF is linearly unconditionally stable). Moreover, the IIF 

method can handle reaction-convection-diffusion equations through an operator splitting 

technique [26] and can be incorporated with the adaptive meshes and general curvilinear 

coordinates [27]. Because the exact treatment of the diffusion terms requires computing 

exponentials of matrices resulting from the discretization of the linear differential operators, 

a compact representation of IIF (cIIF) [28, 27] and an array representation of IIF (AcIIF) 

[29] for systems with high spatial dimensions have been introduced. In the compact or array 

representations, the discretized functions in high spatial dimensions can be represented using 

multi-dimensional arrays rather than vectors or matrices so that the cost and storage 

associated with the calculation of the exponentials are significantly reduced.

In this paper, we integrate the sparse grids with the IIF methods to take the advantages 

provided by both methods to solve temporal PDEs (e.g., Eq. (1)) in high spatial dimensions. 

In particular, we combine the two temporal schemes, the IIF and AcIIF methods, with the 

three different sparse grid discretization techniques: finite element, finite difference, and 

sparse grid combination technique. The combination technique is found to be especially 

effective in terms of incorporating various implicit integration factor methods, particularly 

when dealing with systems that include cross-derivatives and non-constant diffusion 

coefficients.

The paper is organized as follows. In Section 2, we construct the IIF method on sparse grids 

based on the finite element and Galerkin technique. In Section 3, we construct the AcIIF 

method on sparse grids using the finite difference approximation. In Section 4, we apply the 

AcIIF method to the sparse grid combination technique. In Section 5, we describe numerical 

tests to demonstrate the accuracy, efficiency, and applications of these methods.

2. Semi-implicit integration factor method with finite element method on 

sparse grids

In this section, we consider the following reaction-diffusion equation:

(2)
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where x = (x1, x2, …, xd) and Δx is the Laplacian operator with respect to x. For simplicity of 

presentation, we assume the spatial domain to be (0, 1)d and zero Dirichlet boundary 

conditions at the boundaries for u. We only focus on the piecewise d-linear hierarchical 

basis on the sparse grids.

2.1. Weak formula under sparse grid finite element method

Let Nx = 2K,  = {(k1, …, kd) : k1 + … + kd ≤ K, ki ≥ 0 for i = 1, …, d},  = {(j1, …, jd) : 1 

≤ ji ≤ 2ki for i = 1, …, d} for k ∈ . The unknown u can be approximated using sparse grid, 

by

(3)

where k = (k1, …, kd) and j = (j1, …, jd). Define the inner product of two functions ψ1(x) 

and ψ2(x):

(4)

Substitute u in Eq. (2) by Eq. (3), and apply the inner product on both sides using ϕk̄,j̄(x), for 

all possible k̄ and j̄. This leads to the following weak formula on the sparse grids:

(5)

where fk,j(t) is the hierarchical value of function f(u(x, t)):

(6)

Note that both < ϕk,j, ϕk̄,j̄ > and < Δxϕk,j, ϕk̄,j̄ > can be exactly calculated in advance 

because the piecewise d-linear functions are used. We define the following two matrices:

(7)

and let the vectors V(t) = (vk,j(t)) and F(t) = (fk,j(t)) denote the hierarchical values of the 

unknown function and the reaction, respectively. Then, Eq. (5) becomes the following time-

dependent problem:

(8)
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Instead of solving u, we only need to update the coefficient vector V at each time step 

according to Eq. (8). By directly applying the IIF method to Eq. (8), we obtain the following 

second-order (in time) IIF method based on the sparse grid finite element scheme (IIF2-SG-
FEM):

(9)

Note that because the nodal value is usually not equal to the hierarchical value, the above 

nonlinear system arising from the implicit treatment of the reaction term on the right-hand 

side cannot be solved locally at each grid point. However, sparse grid discretization allows 

us to re-order the grid points such that only a localized nonlinear system at each point needs 

to be solved. The procedure is introduced below.

2.2. Solving the nonlinear system Eq. (9)

To solve Eq. (9), we first calculate the hierarchical value of k = (0, …, 0) and j = (1, …, 1). 

Note that at this point, the nodal value equals the hierarchical value, i.e.,

(10)

so that we can directly solve the following equation:

(11)

where Lk,j is the computed value of  at the corresponding grid 

point. Then, we solve the hierarchical values for k such that k1 + k2 + … + kd = 1. Notice 

that there are two ways to compute the nodal value of f at these points: (i) from the 

hierarchical value of f (left side of Eq. (12)) and (ii) from the nodal value of u (right side of 

Eq. (12)).

(12)

Because v(0,…,0),(1,…,1)(tn+1) and f(0,…,0),(1,…,1)(tn+1) are known, substituting (12) into Eq. 

(9) for F(tn+1), we obtain

(13)

As a result, we can solve the localized nonlinear system (Eq. (13)) to obtain all hierarchical 

values vk,j(tn+1) such that k1 + … + kd = 1.

Wang et al. Page 5

J Comput Phys. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In general, with all vk,j (and the corresponding fk,j) for which k1 + … + kd < K obtained, the 

equality Eq. (14) follows and can be used to compute the nodal value of f at point xk̄,j̄ for k̄ 

satisfying ,

(14)

where

(15)

Putting Eq. (14) into Eq. (9), we derive the local nonlinear system for vk̄,j̄ with k̄ satisfying 

. Recursively, we solve all unknowns in Eq. (9).

2.3. Error estimation, computational cost and stability

The error of the IIF2-SG-FEM method mainly comes from two sources: (i) spatial 

discretization by the sparse grids and (ii) the second-order IIF method for the temporal 

integration. Therefore, the estimated overall error is

(16)

The major cost of the IIF2-SG-FEM method associated with the temporal integration arises 

from calculating the exponential of M−1DΔt. Although this calculation only needs to be 

performed once before the temporal update, it can be very expensive for high dimensions (d) 

and fine spatial resolution (Nx) because of the large size of the matrix of order O(Nx (log 

Nx)d−1). In addition, at each time step, one must solve the local nonlinear system obtained 

by substituting Eq. (14) into Eq. (9), leading to higher costs. Later, we discuss other methods 

that can reduce the size of the exponential matrix to reduce the computational costs.

Because M is the mass matrix and D is associated with the Laplacian operator, M−1DΔt only 

contains non-negative eigenvalues, and the stability of IIF2-SG-FEM can be studied using a 

scalar case [25]. When the reaction term is linear, showing that IIF2-SG-FEM is A-stable is 

straightforward.

3. Array-representation semi-implicit integration factor method (AcIIF) with 

the sparse grids finite difference method

In this section, to reduce the size of the required exponential matrix and associated 

computational time, we construct the AcIIF method with the sparse grid finite difference 

scheme to solve Eq. (2), which has the same spatial domain and boundary conditions as that 

described in Section 2.
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3.1. An introduction to the finite difference scheme on sparse grids

Following the methods previously studied in [15], let V(t) = (vk,j(t)) be the hierarchical value 

of the unknown u and U(t) = (u(xk,j, t)) be the nodal value. The nodal-hierarchical 

transformations, denoted by H̄ and M̄, are obtained using a dimensional splitting scheme 

[15]. Let H̄
i be the (nodal to) hierarchical basis transformation along direction xi. It is 

equivalent to the one-dimensional (nodal to) hierarchical basis transformation acting on 

Ukiji(t) for all possible ki and ji, where

(17)

and Ukiji(t) is a sub-vector of U(t) obtained by fixing ks, js, s ≠ i and only varying ki and ji. 

The (hierarchical to) nodal basis transformation along direction xi, M̄
i, is defined similarly, 

except it acts on the hierarchical value V(t) by a one-dimensional (hierarchical to) nodal 

transformation. The nodal-hierarchical transformation is the composition of H̄
i or M̄

i:

(18)

Define H̄
I/{i} := H̄

1…H̄
i−1H̄

i+1…H̄
d as the (nodal to) hierarchical basis transformation along 

all directions except for the direction xi. We also define the finite difference operator D̄
i 

acting on any vector U(t) for all possible ki and ji to be the regular one-dimensional central 

difference on Uki,ji(t). Then, the finite difference scheme on sparse grids for  is 

, with an estimated error [15] as follows:

(19)

With this approximation, Eq. (2) can be written into the following ODE system:

(20)

By applying the second-order IIF method, we obtain the following second-order (in time) 

IIF with sparse grid finite difference method (IIF2-SG-FD):

(21)

where . In the IIF2-SG-FD scheme, we need to compute and 

store the exponential of an O(Nx (log Nx)d−1 × Nx (log Nx)d−1) matrix. When Nx and d are 

large, the computation is intractable.
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3.2. AcIIF method with the sparse grid finite difference method

Here, we apply the array representation to U(t) and V(t) to decompose them into smaller 

vectors [29]. Starting from the hierarchical value V(t), for a fixed direction xi and ki, ji, 

varying ki and ji gives a vector of T(ki, ji) elements. Denote it by Vki,ji(t), where

(22)

Let ki and ji go through all possible values; the resulting smaller vectors form the original 

vector V(t). We denote {(ki, ji) : Σr≠i kr ≤ K, jr = 1, 2, …, 2kr, r ≠ i} by  and use the 

notation ⊗ for such a representation:

(23)

Note that this representation is slightly different from the original array representation, 

where all of the subarrays have the same length [29]. In this case, the different subvectors 

Vki,ji(t) have different sizes T(ki, ji), and the sizes are smaller than 2Nx − 1. With the array 

representation, we can use smaller matrices to represent the (hierarchical to) nodal 

transformation along direction xi:

(24)

and the central difference scheme D̄
i:

(25)

Here, Mki,ji denotes the one-dimensional (hierarchical to) nodal transformation acting on 

Vki,ji(t), and Dki,ji is the tridiagonal matrix:

(26)

Both matrices have a size of T(ki, ji) × T(ki, ji), which are at most (2Nx − 1) × (2Nx − 1). 

Define , and apply the fact that 

; under the array 

representation, the exponential of  acting on U(t) becomes equivalent to
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(27)

which is then multiplied by H̄−1 to obtain the nodal value. Compared with the IIF method in 

which the exponential matrix is O(Nx (log Nx)d−1 × Nx (log Nx)d−1), the matrices required in 

the array representation, Bki,ji, are at most (2Nx − 1) × (2Nx − 1).

Through the array representation, i.e., utilizing multiple matrices of much smaller sizes 

instead of a single large exponential matrix, we obtain the array-representation semi-implicit 

integration factor method (AcIIF2-SG-FD), which can be summarized in the following 

steps:

i. Transform the nodal value of  to the hierarchical value W1(t),

(28)

ii. Adopt array representation to compute the exponential matrices and vector 

multiplication dimension by dimension:

(29)

iii. Update the nodal value by solving the nonlinear system:

(30)

3.3. Error estimation, computational cost, stability and high-order (in time) method

Naturally, the errors for the IIF2-SG-FD and AcIIF2-SG-FD methods take forms similar to 

that described in Eq. (16) because the sources of the discretization errors are similar.

Computing large matrix exponentials are required in IIF2-SG-FD and IIF2-SG-FEM. In 

contrast, in the AcIIF2-SG-FD method, the computational cost of the matrix exponential is 

significantly reduced, by a factor of at least (logNx)d−1/2. Even though some additional 

hierarchical-nodal transformations are introduced at each time step in AcIIF2-SG-FD, the 

cost is negligible relative to the cost of calculating the matrix exponentials because the fast 

computation of these transformations is straightforward [18]. Similar to IIF2-SG-FEM, the 

stability of both the IIF2-SG-FD and AcIIF2-SG-FD methods can be analyzed through the 

scalar case, and the methods are linearly A-stable [25].

To improve the order of accuracy for temporal integration, one can apply the third-order IIF 

(IIF3) to Eq. (20) in a straightforward way, leading to the IIF3-SG-FD method:
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(31)

with error:

(32)

4. AcIIF with sparse grids combination technique

In the previous sections, we incorporated the IIF and AcIIF methods with sparse grids in the 

finite element or finite difference methods. In both approaches, the formulations are most 

effective in dealing with the Laplacian differential operators in Eq. (1). Here, we incorporate 

a sparse grid combination technique with the AcIIF approach for more general cases for 

solving Eq. (1), where the spatial partial differential operator P may contain cross-

derivatives or non-constant diffusion coefficients.

In the sparse grid combination technique [19], instead of using non-uniform grids in a 

typical sparse grid discretization, the combination technique solves the PDEs on different 

levels of uniform grids and then combines the solutions for the final solution [19, 30]. The 

sparse grid combination technique typically consists of two major steps:

Step 1: Choose the spatial resolution Nx = 2K, and solve Eq. (1) on different uniform 

grids defined as below:

(33)

where 2ki is the grid number along direction xi. The result on each grid is denoted by 

wk1,…,kd(x, t).

Step 2: Combine all the solutions at different uniform grid levels as follows:

(34)

If each individual solution wk1,…,kd(x, t) to the exact solution u(x, t) satisfies

(35)

then the overall error of wK(x, t) is [19]
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(36)

In the sparse grid combination technique, each subproblem contains 2m grid points for K ≤ m 

≤ K + d − 1, and the overall approximated solution has an error similar to the error of a 

typical sparse grid method. Each subproblem is independent of the other; thus, the 

implementation is much simpler than that for the finite difference or element approaches, 

and distributed (or parallel) calculations of each subproblem become straightforward.

If the explicit methods (e.g., RK2) are used to solve each subproblem, due to the stability 

constraints, the time step must be . Using IIF or AcIIF, the stability constraint for 

each subproblem is relaxed; in particular, the second-order IIF or AcIIF leads to no 

constraint on the temporal stability. If we set the uniform time step for each subproblem, 

e.g., Δt ~ 1/Nx in AcIIF, the overall error in both space and time for each subproblem takes 

the form of Eq. (35).

In particular, on a uniform grid, after spatial discretization, the solution of Eq. (1), U, can be 

expressed as a d-dimensional array. The array representation for , the partial differential 

operator along the xi and xj directions, is denoted by . Thus, we obtain

(37)

where Nr is the number of grid points in the xr direction. The exponential of  is computed 

by the array representation:

(38)

Applying the implicit integration factor method yields the following second-order AcIIF 

method for Eq. (1)

(39)

where V(tn) = U(tn) + Δt/2F(U(tn)). The derivation of Eq. (39) is based on direct application 

of compact implicit integration factor method if ’s are commutative. Otherwise, a 

splitting similar to Strang splitting method [31] needs to be used as shown in our previous 

work [29] to decompose the exponential matrices of Eq. (38) to obtain Eq. (39) for a second 

order method. The method is linearly absolute stable regardless of the commutative property 
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[29]. Overall, the total computational cost for AcIIF along with the sparse grid combination 

technique is significantly reduced upon utilizing both advantages.

5. Numerical simulations

In this section, we investigate the three different sparse grid methods, all of which are based 

on the IIF or AcIIF temporal integration approach by applying them to five different PDE 

systems, where some have exact solutions. In particular, we examine the convergence and 

computational efficiency of the new methods and compare them with other existing methods 

for several cases.

5.1. A nonlinear reaction-diffusion system

We first implement the IIF2-SG-FEM method on the following nonlinear reaction-diffusion 

equation:

(40)

with zero Dirichlet boundary conditions and the initial condition:

(41)

The exact solution for this system is

(42)

Direct implementation of the weak formula Eq. (5) using the implicit methods (e.g., Crank-

Nicolson) requires solving large nonlinear systems at each time step because of the presence 

of the nonlinear reaction u(x, y, t)2. Instead, we only make a comparison between the IIF2-

SG-FEM method and RK2 for this case. In the RK2 method, if one chooses the time step 

, it is convergent, whereas a larger time step Δt = 1/Nx leads to instability. In 

contrast, numerical results show that the IIF2-SG-FEM, in which the time step is chosen to 

be Δt = 1/Nx, is convergent with the expected order of accuracy. The error of the IIF2-SG-

FEM method is plotted in Figure 1. Because the discretization error is 

analytically, the errors measured under the log-log scale on different spatial resolutions 

should follow a straight line with a slope of one. This is shown in Figure 1, where the line of 

errors is almost parallel to the red line when the spatial resolution increases. In general, IIF2 

can use a much larger time step in O(1/Nx) instead of  for the RK2; thus, the 

efficiency of IIF2 is better than that of RK2.

5.2. A linear d-dimensional reaction-diffusion equation

We implement the AcIIF2-SG-FD method on the equation
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(43)

with the initial condition

(44)

and zero Dirichlet boundary condition for d = 2, 3, 4, 6 respectively. The exact solution for 

the equation is:

(45)

The L∞ error versus  for different spatial mesh sizes is plotted in Figure 2 to 

show the order of accuracy. The time step is set as Δt = 1/Nx, and all simulations are 

terminated at t = 0.5 except that  for d = 6. Compared with the red reference line with a 

slope of 1, in different dimensions, the numerical errors always fall on a straight line that is 

almost parallel to the red line as the spatial resolution increases, showing the expected order 

of accuracy.

One major advantage of the AcIIF method is the storage. For higher dimensions, such as d = 

6, 8, 10, both IIF and RK2 methods rehire much more storage space. For example, when d = 

8 and K = 6, IIF2-SG-FD and RK2 methods run out of memory for a computer of 16 GB 

memory whereas the AcIIF2-SG-FD method only requires matrix exponentials with a size 

no larger than 128 × 128. Nevertheless, when d = 8, 10, the CPU time taking for the 

standard sparse grid (mostly due to the transformations on different grid levels) is still very 

costly, in particular, for large K.

Another advantage of AcIIF is the efficiency. To demonstrate it, we compare it with IIF2 

and RK2 based on the sparse grid finite difference method. Constrained by the stability 

condition, the time step for RK2 must be . For the other two methods, the time 

step is 1/Nx. The CPU times consumed by different methods are listed in Table 1 for d = 2, 

3, 4. As shown in the table, although RK2 requires less computational time on a coarse 

mesh, the IIF2 method is more efficient when the mesh is refined in a low-dimensional 

space. Overall, AcIIF2 performs most efficiently on the fine mesh across different 

dimensions. A detailed analysis shows that for the IIF2-SG-FD method, the most time-

consuming part is calculating the matrix exponential, consuming around 90 percent of the 

overall CPU time. In the AcIIF2-SG-FD method, the corresponding time spent on this 

calculation is significantly decreased. We also compare the CPU time by these methods 

when the error is comparable on different dimensions. For example, the error at N = 32 (or N 

= 64) for d = 3 is comparable to the error level at N = 64 (or N = 128) for the case of d = 4 in 

Tables 1 whereas the ratio between the computational time of AcIIF2 and RK2 changes 
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significantly less than the ratio between d = 3 and d = 4 at the resolution N = 64 (or N = 

128).

5.3. A diffusive logistic equation

The diffusive logistic equation in the following form:

(46)

describes the population density evolution, in which the unknown u denotes the population 

density of a species at time t and at location x [32]. The smooth function g defines the birth 

rate of the species, which may be positive or negative. Various numerical methods have 

been developed to solve this type of equation [33, 34]. We use the AcIIF2-SG-FD method to 

solve the diffusive logistic equation in different dimensions. To study the accuracy of the 

method, we set up the equation for which an exact solution can be constructed. Let Ωd = [0, 

1]d,

(47)

and the zero Dirichlet boundary condition is imposed. The exact solution for this equation is

(48)

The implementation is the same as that for Section 5.2, except that the Newton method with 

a tolerance of 10−6 is adopted to solve the small nonlinear system at each grid point, similar 

to the standard IIF method [25]. The log-log error plot for d = 2, 3, 4, 6 is displayed in 

Figure 3. From these plots, we can see that in different dimensions, the errors always follow 

a line with a slope close to 1 as the spatial resolution increases, consistent with the expected 

order of accuracy.

We next compare the CPU time used for AcIIF2-SG-FD and the RK2 method coupled with 

sparse grid finite difference for d = 2, 3, 4. The time step for RK2 is  to guarantee that 

the stability condition will be satisfied. The CPU times for both methods are provided in 

Table 2. It is clear that regardless of dimensions of the system, AcIIF2 reduces the 

computational time significantly, particularly with fine meshes.

5.4. A three-dimensional reaction-diffusion system with cross-derivatives

To deal with cross-derivatives in the differential operators, we implement the AcIIF2 

method with the sparse grid combination technique on this three-dimensional PDE:

(49)
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where x, y, z ∈ (0, 2π), with a periodic boundary condition and the initial condition:

(50)

The exact solution for the system is

(51)

The L∞ error is plotted in Figure 4, which exhibits the correct and expected order of 

accuracy, i.e., parallel to the line of reference when the spatial resolution becomes large 

enough. Compared with the IIF method, AcIIF is clearly more effective in dealing with the 

matrix exponentials, as seen in Table 3, in which the CPU times for calculating the matrix 

exponentials, recognized to be the dominant cost for both methods, are listed.

5.5. A four-dimensional Fokker-Planck equation

In biology, the Fokker-Planck equation (FPE) is often used to describe and analyze the 

temporal evolution of the probability density functions for species in biochemical networks 

[2]. The generalized FPE takes the form:

(52)

In the FPE, R denotes the total number of chemical reactions taking place in the biochemical 

network, and d denotes the number of different species participating in the reactions. x = (x1, 

…, xd) denotes a particular biochemical state, where each component xi denotes the copy 

number of the i-th reactant. The unknown function, p(x, t), is the probability density 

function for each state x at time t. nri represents the change in the copy number of reactant i 

when the r-th reaction occurs once. In addition, one can define

(53)

where wr(x, t) is the reaction propensity function for the r-th reaction at state x.

FPE is a d-dimensional differential equation with non-constant diffusion coefficients and 

second-order cross-derivatives. Previously, the AcIIF scheme coupled with the finite 

difference method has been applied to the FPE on uniform grids, for which the AcIIF 

method has good efficiency[29]. Here, we implement the AcIIF method with a sparse grid 

combination technique to study the following biochemical reaction system [35, 36, 29]. In 

the metabolite-enzyme system, there are two metabolites A, B and two enzymes EA, EB:
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(54)

where we set kA = kB = 0.3s−1, k2 = 0.001s−1, KI = 60, μ = 0.002s−1, kEA = kEB = 0.02s−1 and 

KR = 30.

To solve this FPE, we choose the domain of the state variables to be [0, 100] × [0, 100] × [0, 

50] × [0, 50]. The size of the domain is large enough such that the probability outside of the 

domain is sufficiently small and can be neglected. No boundary condition is needed for xi = 

0 due to the degradation of Eq. (52). Otherwise, the zero Dirichlet boundary condition is 

imposed.

We start with a Gaussian distribution centered at (30, 40, 15, 12) with a standard deviation 

of  as the initial condition for p. There are nine reactions in the system, and for the 

AcIIF method, we group these reactions if their associated cross-derivative term is present. 

In this case, the first to fifth reactions are grouped in a one array-representation operator, the 

sixth and seventh are grouped into one, and the eighth and ninth are grouped into another. In 

Figure 5, we plot the density distribution at t = 45 solved using the sparse grid method. We 

also plot the trace of the ODE system, which is consistent with the FPE solution, suggesting 

the correctness of our approach.

To use the sparse grid combination technique, we first set up a spatial resolution Nx = 2K 

and then solve the FPE for each of its subproblems. To meet the accuracy requirement, we 

choose Δt = 1/maxi Nxi for the AcIIF approach. We use multiple cores to run the simulation 

and then combine all the results. We also implement RK2 to solve each problem, and we 

observe that, to maintain convergence, for a certain subproblem, e.g., Nx1 = Nx2 = …. = 

Nxd−1 = 2 and Nxd = 2K+1−d, a very small time step must be used. As a result, RK2 requires 

significantly more time for these problems than the AcIIF approach, suggesting that AcIIF is 

a better approach.

6. Conclusions and Discussions

The sparse grid method is one of the major approaches used to reduce the computational 

cost associated with spatial discretization in solving PDEs of high dimensions. For a time-

dependent problem, the size of the time step, dictated by the choice of temporal integrator, 

becomes critical, particularly for systems with strong stiffness in reactions or large diffusion 

coefficients. The implicit Integration Factor (IIF), which treats the reaction implicitly and 

handles diffusion by exact integration, is clearly a natural choice for solving stiff PDEs in 

high dimensions.
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In this paper, we have combined the sparse grid approach with IIF methods for a new class 

of methods to solve reaction-diffusion equations. We have integrated IIF methods with three 

different sparse grid approaches: finite element, finite difference, and a multi-level 

combination technique. In addition, we have employed an array compact representation of 

IIF (AcIIF) previously developed for uniform and regular grids to reduce the cost associated 

with storage and computing the exponentials of matrices in sparse grids. After studying 

various combinations of different sparse grid techniques and IIF methods, we have found 

that the approach based on AcIIF and the sparse grid combination technique is most 

effective for solving reaction-diffusion equations, especially for the system containing cross-

derivatives and non-constant coefficients.

Because the sparse grid combination technique has intrinsic distributed structures, parallel 

implementation becomes straightforward, in comparison with the finite difference or the 

finite element methods in combination with IIF. Therefore, a GPU implementation can be 

adopted to significantly improve the efficiency of the sparse grid combination technique 

integrated with IIF. So far, most of the systems we deal with have a Dirichlet boundary 

condition on a rectangular domain. It is possible to extend the sparse grid-based IIF method 

to problems with complicated boundary conditions as discussed in [37] or irregular domains. 

The order of accuracy in space can be improved by introducing higher-order polynomials as 

the hierarchical bases, particularly for problems with high-order or mixed derivatives. The 

integration factor methods on sparse grids can likely be used in broad applications involving 

PDEs in high dimensions such as Fokker-Planck equations in biology and Black-Scholes 

equations in finance.
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Figure 1. 

The log-log plot of L∞ error versus the quantity  of IIF2-SG-FEM in Eq. (40). 

The spatial resolutions are Nx = 8, 16, 32, 64, 128, the time step is Δt = 1/Nx, and all 

simulations end at t = 1. The blue markers denote numerical errors, whereas the red line is a 

straight line with a slope of 1.
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Figure 2. 

The log-log plot of L∞ error versus  for the AcIIF2-SG-FD method for Eq. 

(43) for d = 2, 3, 4, 6. The spatial resolutions are Nx = 8, 16, 32, 64, 128 for d = 2, 3, 4 and 

Nx = 16, 32, 64, 128 for d = 6, and the time step is Δt = 1/Nx. The green line with blue 

markers denotes the solution error at final time, and the red one is a reference line with a 

slope of 1.
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Figure 3. 

The log-log plot of L∞ error versus  for the AcIIF2-SG-FD method for Eq. 

(46) for d = 2, 3, 4, 6. The spatial resolutions are Nx = 8, 16, 32, 64, 128 for d = 2, 3, 4 and 

Nx = 16, 32, 64, 128 for d = 6, and the time step is Δt = 1/Nx. The green lines with blue 

markers denote the solution errors at final time, and the red one is a reference line with a 

slope of 1.
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Figure 4. 

The log-log plot of L∞ error versus the quantity  for the AcIIF2 method with the 

sparse grid combination technique for Eq. (49), which contains cross derivatives. The spatial 

resolutions are Nx = 8, 16, 32, 64, 128, the time step is Δt = 1/Nx, and all simulations end at t 

= 0.5. The blue markers denote numerical errors, and the red line is a straight line with a 

slope of 1.
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Figure 5. 
Numerical solution of the biochemical system (54) using AcIIF2 with a sparse grid 

combination technique. The final time is t = 45s, and the spatial resolution is Nx = 215. (a) 

The distribution of metabolite A and related enzyme EA at t = 45. (b) The contour plot of the 

initial distribution and final distribution of A and EA. The black dotted line is the trace of the 

center by solving the corresponding ODE system. (c) The distribution of metabolite B and 

related enzyme EB at t = 45. (d) The contour plot of the initial distribution and final 

distribution of B and EB. The black dotted line is the trace of the center by solving the 

corresponding ODE system.
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Table 3

The CPU time for computing all matrix exponentials for both the AcIIF and IIF methods. The time step is Δt = 

1/maxi Nxi to meet the error requirement described by Eq. (35) for the sparse grid combination technique.

(d, K) (Nx1, …, Nxd) CPU time for AcIIF on matrix exponentials CPU time for IIF on matrix exponential

(3, 11) (22, 22, 27) 0.3s 3.5s

(3, 11) (23, 24, 24) 0.2s 5.4s

(3, 12) (22, 22, 28) 4.3s 51s

(3, 12) (24, 24, 24) 0.4s 24s

(4, 11) (22, 22, 22, 25) 0.05s 5.6s

(4, 12) (22, 22, 22, 26) 0.12s 68s
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