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In this paper we derive upper bounds for the second order structure function as well as for the
Littlewood–Paley energy spectrum — an average of the usual energy spectrum E(k). While the
upper bound results are consistent with a Kolmogorov type dependence on wave number k, the
bounds do not involve the usual dissipation rate e . Instead the bounds involve a dissipative quantity
ê similar to e but based on the L3 average of ¹u . Numerical computations for a highly symmetric
flows with Taylor microscale Reynolds numbers up to Rl5155 are found to be consistent with the
proposition that a relation in the inertial regime of the type E(k);Ĉ ê2/3k25/3 holds with constant Ĉ .
© 1999 American Institute of Physics. @S1070-6631~99!00308-6#

I. INTRODUCTION

Structure functions and the energy spectrum of turbulent
fluids have been studied for more than 5 decades since Kol-
mogorov’s seminal paper.1 A comprehensive account of the
earlier developments is given in Ref. 2. The classical theory
states that there exists a range of physical length scales that
extends from a small viscous dissipation scale h to a large
integral scale L. The energy cascades down in this inertial
range from the large scale L to h; the rate e of dissipation of
energy is constant, and this constant is the only parameter in
this range. For length scales smaller than h viscosity effects
are dominant. These two ideas and simple dimensional
analysis have been used by Kolmogorov to produce remark-
able predictions. First, because it is determined by e and the
kinematic viscosity n alone, the viscous dissipation scale is
given by h5n3/4e21/4. Second, because they can depend on
e alone, the structure functions Sm(r)5^uu(x1r ,t)
2u(x ,t)um& scale like

Sm~r !;~er !m/3

in the inertial range. Here ^•••& is the ensemble average and
u(x ,t) represents the velocity of the fluid recorded at the
point x in space and time t. In particular

S2~r !;~er !2/3.

If the statistics are homogeneous ~translation invariant! then
the energy spectrum obeys

E~k !;e2/3k2~5/3 !,

in the inertial range of wave numbers kP@1/L , 1/h# . The
Navier–Stokes equations that govern incompressible fluids
have not been invoked for these predictions. The
Kolmogorov–Obukhov spectrum has been reproduced syn-
thetically from certain vortical structures.3,4 The first connec-

tion to the Navier–Stokes equations appears when one com-
putes the average dissipation of energy in a homogeneous
ensemble of solutions:

e5n^u¹u~x ,t !u2&.

The Kolmogorov theory captures experimentally verified
truth, and perhaps this is more remarkable than the fact that
small corrections to the theory might be required. Landau
was the first to point out that the universal predictions based
on the statistics of nu¹uu2 do not take into account intermit-
tency — the highly irregular distribution of gradients. It has
been the belief of a large part of the turbulence community in
recent years that this intermittency has as its counterpart
anomalous scaling — the fact that the structure functions
obey scaling laws with exponents zmÞm/3 for mÞ3.
Whether the anomalous scaling exponents are universal,5

whether universality is hidden in the relationship between
different structure functions but is independent of
dissipation,6 or whether the dissipation contains essentially
different exponents7 are currently debated subjects. A com-
prehensive account of recent developments is given in
Ref. 8.

The mathematical theory of the Navier–Stokes equations
has produced few points of contact with the physical theories
regarding structure functions and spectrum. Invariant mea-
sures have been proved to exist9,10 but without enough con-
trol to establish the ‘‘exact’’ z351 relationship. Connections
between the dynamical systems interpretation of number of
degrees of freedom of turbulent flows and dissipation based
viscous length scales have been obtained.11 Under the as-
sumption of regularity it has been proven12 that e is bounded
above and consequently that z2>2/3 must hold if scaling
exists. Inequalities that limit the possible extent of anoma-
lous scaling and link the different spatial and temporal inter-
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mittency to anomalous scaling exponents have been
established.13 The Littlewood–Paley spectrum was intro-
duced in the context of two dimensional Navier–Stokes
turbulence14 and it was proved to be bounded above by the
Kraichnan spectrum. The derivation in that case was without
any assumptions. In the present paper we show that similar
steps result in upper bounds consistent with a Kolmogorov–
Obukhov type Littlewood–Paley energy spectrum. We also
prove bounds on second order structure functions that are
similar to the Kolmogorov–Obukhov type scaling. In both
cases, however, our bounds do not involve the usual dissipa-
tion e but a quantity ê , based on the L3 average of ¹u which
we assume to be finite. Numerical results lend support to the
proposition that the ratio ê/e is close to a nonzero constant
independent of the forcing.

II. EQUATIONS, ASSUMPTIONS, RESULTS

We start from the incompressible Navier–Stokes equa-
tions

~] t1u•¹2nD !u1¹p5 f ,
~1!

¹•u50

in three space dimensions, xPD,R3. Our numerical calcu-
lations are performed with periodic boundary conditions; the
theory works as well for the case of decay at infinity. In this
paper we will refer only to the periodic case. We assume the
period to be L and D to be cube of side L. We will assume
without loss of generality that the spatial average of the ve-
locity vanishes. The finite difference

~dyu !~x ,t !5u~x2y ,t !2u~x ,t ! ~2!

is the main fluctuating variable; we are interested in long
time averages of functionals of dyu . We will use the
Littlewood–Paley decomposition in this context. The func-
tion u can be represented by a Fourier series

u~x ,t !5(
jÞ0

u j~ t !e i~2p/L !~ j•x),

where jPZ3 is a vector of integer indices, u jPC3 is a time
dependent vector of complex components, j•u j50 repre-
sents incompressibility and (u j)*5u2 j reality. The
Littlewood–Paley decomposition is

u~x ,t !5u (2`)~x ,t !1 (
m50

`

u (m)~x ,t !,

where

u (2`)~x ,t !5L23E
R3

FS y

L D u~x2y ,t !dy , ~3!

u (m)~x ,t !5L23E
R3

C (m)S y

L D u~x2y ,t !dy , ~4!

and the functions F and C (m) are defined via their Fourier
transforms

f~j !5E
R3

e2i(j•z)F~z !dz ,

c (m)~j !5E
R3

e2i(j•z)C (m)~z !dz .

The function f(j) is taken to be non-negative, nonincreas-
ing, smooth, radially symmetric, identically equal to 1 for
uju< 5

8 and identically equal to zero for uju> 3
4. The function

c (0)(j) is defined by c (0)(j)5f(j/2)2f(j) and the func-
tions c (m)(j)5c (0)(22mj). Note that from the definitions it
follows that c (m) is non-negative, equals identically one in

an interval jP@ 3
42m, 5

42m# and vanishes identically outside

the interval jP@ 5
82m, 3

22m# . Clearly, also from the definitions
it follows that

u (2`)~x ,t !5(
jÞ0

f~ j !u j~ t !e i~2p/L !~ j•x), ~5!

and

u (m)~x ,t !5(
jÞ0

c (m)~ j !u j~ t !e i~2p/L !~ j•x). ~6!

Because the spatial average of C (m) vanishes it follows that

u (m)~x ,t !5E
R3

C (m)S y

L D dy~u !~x ,t !
dy

L3
~7!

holds for all m.
From the Navier–Stokes equation we deduce the equa-

tion obeyed by dyu:

~] t1u•¹2nD !dyu1¹dyp5dy f 1]y j
~dyu jdyu !, ~8!

where

dyp5p~x2y ,t !2p~x ,t !,
~9!

dy f 5 f ~x2y ,t !2 f ~x ,t !.

For any quantity Q5Q(x ,t) we will use ^Q& to denote the
space–time average

^Q&5lim sup
T→`

1

TE0

T

L23E
D

Q~x ,t !dx dt .

We will consider given body forces that are regular enough

^u f u2&1^u¹ f u2&,` . ~10!

The assumption of this paper is

^u¹uu3&,` . ~11!

This is a very strong assumption and is not known to be true
for arbitrary solutions of the Navier–Stokes equations. The
assumption implies regularity. The physical parameters asso-
ciated with the quantity above are

ê5n$^u¹uu3&%2/3, ~12!

the corresponding dissipative scale

ĥ5n3/4~ ê !21/4, ~13!

and the corresponding dissipative cutoff wave number

k̂d5n23/4~ ê !1/4.

The traditional e is
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e5n^u¹uu2&. ~14!

Our main results are

ELP~k !<Cc~ ê !2/3k2~5/3!S k

k̂d
D 210/3

~15!

@see ~17! for the definition of the spectrum# and

S2~r !<~er !2/3S r

h D 4/3F1

3
1

r

12l
G1

1

8
~ êr !2/3S r

ĥ
D 10/3

~16!

@see ~27! for the definition of S2(r) and ~38! the definition of
l].

III. BOUNDS ON THE SPECTRUM

Consider the mth Littlewood–Paley component of the
velocity, We define the Littlewood–Paley spectrum14 to be

ELP~k !5km
21^uu (m)u

2& ~17!

for km21<k,km , m>1 with km52mL21. Note that, in
view of the Plancherel theorem this is just

ELP~k !5km
21(

jÞ0
uc (m)~ j !u2^uu j~ t !u2&. ~18!

From the Navier–Stokes equation we obtain the evolu-
tion equation of the Littlewood–Paley components ~see Ref.
14 for the two dimensional analogue!

~] t1u•¹2nD !u (m)1¹p (m)5W (m)1 f (m) , ~19!

where p (m) , f (m) are the Littlewood–Paley components of
the pressure and force and

W (m)~x ,t !5E
R3

C (m)S y

L D ]y j
@dy~u j!~x ,t !dy~u !~x ,t !#

dy

L3
.

~20!

We multiply ~19! by u (m) , integrate dx and take a long time
average. We obtain

n^u¹u (m)u
2&5^~W (m)1 f (m)!u (m)&. ~21!

We will take m so that 2m21>C for some C>1 and assume
for simplicity that f (m)50. This amounts to the condition
that the force has Fourier transform supported in a ball, cor-
responding to the physical condition of large scale forcing.
The effects of small scale forcing can be easily investigated
also. The left hand side of ~21! obeys quite obviously

n^u¹u (m)u
2&>nkm

2 ^uu (m)u
2&5nkm

3 ELP~km!. ~22!

We estimate now the right hand side of ~21!. First we note
that

E
D

W (m)~x ,t !u (m)~x ,t !dx

5E G (m), j

dy

L3

dz

L3
dy~u j!~x ,t !dy~u !~x ,t !dz~u !~x ,t !dx

with

G (m), j~y ,z !52]y jFC (m)S y

L D GC (m)S z

L D
follows directly from the definitions, the expression ~20! and
one integration by parts in the y integral. Using straightfor-
ward calculus inequalities we note that

E
D

udy~u !~x ,t !u2udz~u !~x ,t !udx<uy u2uzuE
D

u¹u~x ,t !u3 dx

and therefore it follows that

UE
D

W (m)~x ,t !u (m)~x ,t !dxU<Cckm
22E

D
u¹u~x ,t !u3 dx

~23!

where

Cc5E E u¹C (0)~a !uuau2uC (0)~b !uubuda db . ~24!

We deduce from ~21!, ~22! and ~23! that

ELP~k !<Cck25n21^u¹uu3&. ~25!

Using the definitions of ê and k̂d and the bound ~25! we
have proven thus:

Theorem 1: Consider three-dimensional body forces
that satisfy

f̂ ~k !50

for all uku>C/L and some C.0. Consider solutions of the
three dimensional Navier–Stokes equation that satisfy ê
,` . Then

ELP~k !<Cc~ ê !2/3k2~5/3!S k

k̂d
D 2~10/3!

holds for uku>C/L .

IV. STRUCTURE FUNCTION

Consider the spatial average

s2~y ,t !5

1

L3ED
udyu~x ,t !u2 dx . ~26!

The long time average of this quantity is the traditional sec-
ond structure function. We perform a solid angle average and
define, as in Ref. 15

S2~r !5lim sup
T→`

1

TE0

T 1

4p
E

u ŷ u51
s2~rŷ ,t !dS~ ŷ !dt . ~27!

From ~8! it follows after multiplication and integration that

~] t22nD !s214e~ t !5]y j
s3,j~y ,t !12F~y ,t !, ~28!

where

F~y ,t !5

1

L3ED
dy f ~x ,t !•dyu~x ,t !dx , ~29!

s3,j~y ,t !5

1

L3ED
dyu j~x ,t !udyu~x ,t !u2dx , ~30!
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e~ t !5n
1

L3ED
u¹u~x ,t !u2dx . ~31!

This is the analogue of the familiar2 anisotropic generaliza-
tion of the von Karman–Howarth equation. The spherical
average of s2(y ,t) is S (2)(r ,t):

S (2)~r ,t !5

1

4p
E

u ŷ u51
s2~rŷ ,t !dS~ ŷ !. ~32!

A volume integral of ~28! on uy u<r results in

]

]r
S (2)~r ,t !52

re~ t !

3n
2

1

2n
S̃3~r ,t !2

1

n4pr2

3E
uy u<r

S F~y ,t !2

1

2
] ts2~y ,t ! D dy , ~33!

where

S̃3~r ,t !5

1

4p
E

u ŷ u51
ŷ js3,j~rŷ ,t !dS~ ŷ !. ~34!

The inequality

uS̃3~r ,t !u<
r3

L3ED
u¹u~x ,t !u3 dx

is straightforward from definitions. Similarly simple is the
inequality

uF~y ,t !u<uy ui¹ f ~• ,t !iAs2~y ,t !,

where i¹ f (• ,t)i5AL23*Du¹ f (x ,t)u2 dx is the L2 norm. In-
tegrating dr and time averaging we obtain

S2~r !<
r2

3n
e1

r4

8
n2~5/2!~ ê !3/2

1

r3

12n
UG , ~35!

where

G5Alim sup
T→`

1

TE0

T

L23E
D

u¹ f ~x ,t !u2 dx dt ~36!

and

U5 sup
0<r<L

AS2~r !. ~37!

The quantity U can be proved to be finite as a consequence
of the assumption ê,` . The inequality ~35! is the main
result of this section. Let us define the length l by

l5

e

UG
. ~38!

We have proved therefore:
Theorem 2: Consider solutions of the Navier–Stokes

equations that satisfy the assumption ê,` . Then

S2~r !<~er !2/3S r

h D 4/3F1

3
1

r

12l
G1

1

8
~ êr !2/3S r

ĥ
D 10/3

holds for all r.

V. NUMERICAL CALCULATIONS

The rigorous results derived above are all in the form of
inequalities. We resort to direct numerical simulations to de-
termine whether these rigorous inequalities suggestive of a
Kolmogorov type energy spectrum are consistent with a
large Reynolds number direct numerical simulation. We
would like to determine the ratio ê/e for different forcings
and Reynolds numbers and whether the power law ~15! de-
scribes accurately the transition to dissipative scales in the
spectrum. Unfortunately, some of these questions cannot be
answered in a definitive manner now because of limitations
of computational power. The results given in this section,
therefore, have to be taken as indicative only of trends.

As the Littlewood–Paley energy spectrum averages on
progressively larger intervals in k for large m, while com-
puter calculations are not feasible for a very large range of k,
we confined ourself to the calculation of the averaged energy
spectrum, defined by

Ē~k !5

1

2
lim

T→`
E

0

Tdt

T (
k2

1
2<uku,k1

1
2

uû~k!u2, ~39!

where û(k) is the coefficient of a Fourier series of u.
As before15 in a different context, we solve the Navier–

Stokes equation by forcing f (x ,t) in a 2p-periodic cube
(L52p) with an initial condition of a ‘‘high symmetry’’ as
discussed in Ref. 16. This was also used in a prior
calculation.15 In particular, the flow at all times admits the
following Fourier expansion for x1 component of the veloc-
ity:

u1~x1 ,x2 ,x3 ,t !5S (
even l ,m ,n50

`

1 (
odd l ,m ,n51

` D û1$l ,m ,n%

3~ t !sin lx1 cos mx2 cos nx3 . ~40!

The other velocity components are determined by a
permutation symmetry u1(x1 ,x2 ,x3)5u2(x2 ,x3 ,x1)
5u3(x3 ,x1 ,x2). The special structure of the Fourier compo-
nents in ~40! and the permutation relationship above saves
computational time and memory.16,17 In our study, the initial
condition is chosen to be the same as that in Ref. 18. Spe-
cifically,

u1~x1 ,x2 ,x3 ,t50 !

5sin x1~cos 3x2 cos x32cos x2 cos 3x3!. ~41!

The numerical method for solving the incompressible
Navier–Stokes equation is based on a Fourier pseudospectral
technique. The details can be found in Refs. 17 and 21. To
numerically calculate e , ê , we use a second order Adams–
Bashforth method. The spatial integrations in x are evaluated
through summation over N evenly spaced grid points in the
2p-periodic box, where N is the number of grid points in
each direction of the 2p periodic domain. This quadrature is
spectrally accurate.

We present results for three different forcing functions
and two different values of viscosity n:
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~1! f (x ,t) is chosen such that the Fourier mode û1$1,3,1%

52 û1$1,1,3%51 all the time in order to imitate a constant
energy supply at lower wave numbers;18

~2! f 1(x ,t)50.23u1(x1 ,x2 ,x3 ,t50);
~3! f 1(x ,t)50.23sin x1(cos 7x2 cos x32cos x3 cos 7x2).

With forcing ~1!, we use ~a! n50.000 667 and ~b! n
50.001. However, we only use n50.001 for forcing ~2! and
n50.000 667 by forcing ~3!. It should be noted that in Ref.
15, we had reported the Navier–Stokes computation for
cases ~1! and ~2!. As before, we choose N5256 for all cases
with time step nt50.001 for n50.001 and nt50.0005 for
n50.000 667.18,17 For f (x ,t)50, we have tested our compu-
tational results against those presented in Ref. 17. For forc-
ing ~1!, we have compared our results with those studied in
Refs. 18 and 20. All computations are performed by using 64
bit arithmetic. Further, the long time average is replaced by a
finite T in the expression (1/T)*0

Tdt( . . . ) for T chosen large
enough so that further variation with T is small.

We define a Taylor microscale Reynolds number Rl as

Rl5A20

3

Ē

Ane
, ~42!

where Ē is the time-averaged energy for a large enough
value of T ~so that it has equilibrated!. In Fig. 1, we plot the
ratio ê/e as a function of averaging time T for four different
cases where Rl ranges from 83 to 155. In all the four cases,
the ratios start to settle down around T510. Here, the unit of
time is implicit by the choice of L52p and taking f, which
has units of acceleration, to be given by one of the expres-
sions ~1!–~3! above. This value of T for which ê/e settles
down is found to be about the same as that for the averaged
dissipation rate e and energy Ē ~as given in Ref. 15!.

In Fig. 2, we plot the following quantity:

Ē~k !

ê2/3k25/3
~43!

in log as functions of log(K1) where normalized wave num-
ber K1 is defined as:

K15kĥ . ~44!

We notice that there is a range of K1 where the curves are
relatively flat, suggestive of a Kolmogorov type spectrum in
an inertial regime; however, for larger K1 , there is appar-
ently a drop-off characteristic of dissipation scale. In the ob-
served range of K1 , where the curves are flat ~suggestive of
an inertial regime!, we used a least square fit procedure to
determine the values of the constants A and A1 in assumed
relations of the form:

Ē~k !;Ae2/3k25/3 Ē~k !;A1ê2/3k25/3. ~45!

In Table I, we present the computed values from the fitting.
In order to compare cases for different forcing and viscosity,
we introduce the normalized wave number based on h , i.e.,
K5kh . We noted that a 5% changes of the fitting range of K
indicated in Table I does not alter A and A1 within 0.1.

FIG. 1. ê/e vs time: ~x! forcing ~1! with n50.000 667, Rl5155; ~o! forcing
~1! with n50.001, Rl5134; ~*!: forcing ~2! with n50.001, Rl5132; ~1!

forcing ~3! with n50.000 667, Rl583.

FIG. 2. log ~energy spectrum/ ê2/3k25/3) as a function of log(K1). The
straight line has slope 210/3. ~a! forcing ~1! with n50.000 667 at t
510, . . . ,14 for every t50.5; ~b! forcing ~1! with n50.001 at t
510, . . . ,19 for every t50.5; ~c! forcing ~2! with n50.001 at t
510, . . . ,19 for every t50.5.

TABLE I. Least-square fits of the energy spectrum.

Rl A A1 Range for K Range for T

1a 155 1.9 1.7 ~0.07,0.16! ~10, 14!

1b 134 2.1 1.8 ~0.2,0.37! ~10, 19!

2 132 2.1 1.8 ~0.2,0.36! ~10, 19!

3 83 2.3 1.9 ~0.2,0.35! ~12, 19!
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A rough estimate of the extent of the inertial subrange
based upon experimental data suggests that Rl should be at
least 100 to exhibit the power law over 1 or 2 decades of
wave number.20,21 Therefore, the values of A and A1 for the
last case (Rl583) should perhaps be discounted. By aver-
aging the first three cases and keeping two significant digits,
we obtain that A52.0 and A151.8. The corresponding val-
ues of h/L for the three cases ~1a!, ~1b! and ~2! are
0.001 06,0.001 49 and 0.001 52, respectively.

For values of K1 in Fig. 2, where there is an observed
drop-off in the curve ~indicative of the transition to the dis-
sipative range!, we tried to determine if a power law scaling
in the form of the right hand side of ~15! is appropriate in the
dissipation range. The straight lines in Fig. 2, next to the
curve, would be the exact fit corresponding to the power law
210/3. It seems that the fitting is consistent in a short range
but it is difficult to tell whether a transition to exponential
decay is developing.
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