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Abstract. We study solid tumor (carcinoma) growth in the nonlinear regime using bound-
ary-integral simulations. The tumor core is nonnecrotic and no inhibitor chemical species
are present. A new formulation of the classical models [18,24,8,3] is developed and it is
demonstrated that tumor evolution is described by a reduced set of two dimensionless pa-
rameters and is qualitatively unaffected by the number of spatial dimensions. One parameter
describes the relative rate of mitosis to the relaxation mechanisms (cell mobility and cell-to-
cell adhesion). The other describes the balance between apoptosis (programmed cell-death)
and mitosis. Both parameters also include the effect of vascularization.

Our analysis and nonlinear simulations reveal that the two new dimensionless groups
uniquely subdivide tumor growth into three regimes associated with increasing degrees of
vascularization: low (diffusion dominated, e.g., in vitro), moderate and high vascularization,
that correspond to the regimes observed in vivo. We demonstrate that critical conditions
exist for which the tumor evolves to nontrivial dormant states or grows self-similarly (i.e.,
shape invariant) in the first two regimes. This leads to the possibility of shape control and
of controlling the release of tumor angiogenic factors by restricting the tumor volume-to-
surface-area ratio. Away from these critical conditions, evolution may be unstable leading
to invasive fingering into the external tissues and to topological transitions such as tumor
breakup and reconnection. Interestingly we find that for highly vascularized tumors, while
they grow unbounded, their shape always stays compact and invasive fingering does not
occur. This is in agreement with recent experimental observations [30] of in vivo tumor
growth, and suggests that the invasive growth of highly-vascularized tumors is associated to
vascular and elastic anisotropies, which are not included in the model studied here.

1. Introduction

Tumor growth is a fundamental scientific problem and has received considerable
attention by the mathematics community (see for example the recent review papers
[1,9,2]). Here we focus on a continuum-scale description and pose the problem in
terms of conservation laws for the nutrient and tumor-cell concentrations, using a
new formulation of an existing model [18,7,14]. This model describes evolution
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of avascular and vascularized tumors, but not the angiogenetic transition between
the two.

The tumor is treated as an incompressible fluid and tissue elasticity is neglected.
Cell-to-cell adhesive forces are modeled by a surface tension at the tumor-tissue
interface. The growth of tumor mass is governed by a balance between cell mitosis
and apoptosis (programmed cell-death). The rate of mitosis depends on the con-
centration of nutrient and inhibitor chemical species, that obey diffusion-reaction
equations in the tumor volume. The bulk source of chemical species is the blood.
The concentration of capillaries in the tumor is assumed to be uniform as are the
concentrations of chemical species in the external tissues. In this paper we focus on
the case of nonnecrotic tumors (i.e., Phase I tumors) [7] with no inhibitor chemical
species. These conditions apply to small-sized tumors, or when the nutrient con-
centrations in the blood and in the external tissues are high. We anticipate that such
a model should over-predict growth away from these conditions.

We present a new formulation of the mathematical model and we study tu-
mor growth using boundary-integral simulations in the nonlinear regime to explore
complex tumor morphologies. To our knowledge, these are the first fully nonlinear
simulations of a continuum model of tumor growth, and represent a step towards
the development of a computer simulator of cancer, as will be discussed in more
detail in the Conclusions. We note that there has been recent work on cellular auto-
mata-based simulations of tumor growth (e.g. see [19] and the references therein).
Our new formulation demonstrates that tumor evolution is described by a reduced
set of two parameters that characterize families of solutions. The parameter G de-
scribes the relative rate of mitosis to the relaxation mechanisms (cell mobility and
cell-to-cell adhesion). The parameter A describes the balance between apoptosis
and mitosis. Both parameters also include the effect of vascularization. Our analy-
sis reveals that tumor evolution is qualitatively unaffected by the number of spatial
dimensions. Thus, here we focus our nonlinear simulations on 2D tumor geome-
tries. Our study reveals that the two new dimensionless groups uniquely subdivide
tumor growth into three regimes associated with increasing degrees of vasculariza-
tion: low (diffusion dominated, e.g., in vitro), moderate and high vascularization,
that correspond to the regimes observed in in vivo experiments. We demonstrate that
critical conditions exist for which the tumor evolves to nontrivial dormant states
or grows self-similarly (i.e., shape-invariant) in the first two regimes in the full
nonlinear system. Explicit examples of these behaviors are given using nonlinear
simulations. The existence of non-trivial dormant states was recently proved [13],
but no examples of such states were given.

The self-similar behavior described here is analogous to that recently found in
diffusional crystal growth [12], and leads to the possibility of shape control and of
controlling the release of tumor angiogenic factors by restricting the tumor volume-
to-surface-area ratio. This could restrict angiogenesis during growth. Away from
these critical conditions, evolution may lead to invasive fingering into the external
tissues and to topological transitions such as tumor breakup and reconnection. In-
terestingly we find that, in the high-vascularization regime, while the tumor grows
unbounded the tumor shape always stays compact and invasive fingering does not
occur. This is in agreement with recent experimental observations [30] of in vivo
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tumor growth in a isotropic sponge-like matrix, and suggests that the invasive
growth of highly-vascularized tumors is associated to vascular and elastic aniso-
tropies, which are not included in the model investigated here.

In Sect. 2, our new formulation for nonnecrotic tumors is presented, analytic
results for radially symmetric tumors are revisited and the regimes of growth are
identified. Our linear analysis in two and three dimensions is presented in Sect.
2.3. In Sect. 2.3.1, self-similar tumor evolution is investigated. Nonlinear simula-
tions are presented in Sect. 4. Our conclusions and directions for future work are
in Sect. 5.

2. Problem formulation and linear analysis

2.1. New formulation

The classical mathematical model [18,24,8,3] describing the evolution of nonne-
crotic tumors in the absence of inhibitor chemical species is summarized in Appen-
dix A. It is shown that the model system considered has only one intrinsic length
scale: the diffusional length LD , and has three intrinsic time scales corresponding
to the relaxation rate λR (associated to LD , cell mobility and cell-to-cell adhesion),
the characteristic mitosis rate λM and the apoptosis rate λA. By using algebraic
manipulations, it can be shown that the dimensional problem stated in Appendix A
can be reformulated in terms of two nondimensional decoupled problems:

∇2� − � = 0,
(1)

(�)� = 1;
and

∇2p = 0,
(2)

(p)� = κ − A G
(x · x)�

2d
,

in a d–dimensional tumor. Here, space and time have been normalized with the
intrinsic scales LD and λ−1

R , the interface � separates the tumor volume from the
external tissue, and the variables � and p represent a modified nutrient concen-
tration and a modified pressure (see Appendix A for their definitions). The tumor
surface � (of local total curvature κ) is evolved using the normal velocity

V = −n · (∇p)� + G n · (∇�)� − A G
n · (x)�

d
, (3)

where n is the outward normal to � and x is position in space. The instantaneous
problem stated above has only two dimensionless parameters:

G = λM

λR

(1 − B) ,

(4)
A = λA/λM − B

1 − B
.
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The former describes the relative strength of cell mitosis to the relaxation mecha-
nisms, and the latter describes the relative strength of cell apoptosis and mitosis.
The effect of vascularization is in the parameter B defined in Appendix A. Note
that in the context of steady solutions, the parameter A is related to the parameter
� introduced in [7] by A = 3�.

We define the rescaled rate of change of tumor volume H = ∫
�

dxd as the mass
flux J = d

dt
H = ∫

�
V dxd−1. By using (1a)–(2a) we obtain from (3):

J = −G

∫

�

� dxd − A G H. (5)

2.2. Regimes of growth

In order to identify the regimes of growth, we consider evolution of a tumor that
remains radially symmetric. The interface � is an infinite cylinder for d = 2 or
a sphere for d = 3, with radius R(t). All the variables have only r–dependence,
where r is the polar coordinate. Equations (1)–(2) have the nonsingular solutions

�(r, t) =






I0(r)

I0(R)
, d = 2,

(
sinh(R)

R

)−1 sinh(r)

r
, d = 3,

(6)

and p(r, t) = (d − 1)R−1 − AGR2/(2d). Note that p(r, t) ≡ p(R, t), i.e., p is
uniform across the tumor volume.

From equation (3) the evolution equation for the tumor radius R is:

dR

dt
= V = −AG

R

d
+ G






I1(R)

I0(R)
, d = 2.

1

tanh(R)
− 1

R
, d = 3.

(7)

Note that for a radially symmetric tumor, |G| rescales time and it can be shown
that V = G − AGR for d = 1, where R is defined for d = 1 as the instantaneous
position of the interface, with R(0) = 0. In all dimensions, unbounded growth
(R → ∞) occurs if and only if AG ≤ 0. The growth velocity is plotted for d = 2
in figure 1. Note that, for d = 3, the results are qualitatively similar and were re-
ported in figure 9 in [7], although in the framework of the original formulation the
growth regimes had not been identified. The figure is included here to identify the
growth regimes. For given A, evolution from initial condition R(0) = R0 occurs
along the corresponding curve. Three regimes are identified, and the behavior is
qualitatively unaffected by the number of spatial dimensions d.

1. Low vascularization: G ≥ 0 and A > 0 (i.e., B < λA/λM ). Note that the
special case of avascular growth (B = 0) belongs to this regime. Evolution is
monotonic and always leads to a stationary state R∞, that corresponds to the
intersection of the curves in figure 1 with the dotted line V = 0. This behav-
ior is in agreement with the experimental observations of in vitro diffusional
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Fig. 1. Rescaled rate of growth G−1V from equation (7) as a function of rescaled tumor
radius R for radially symmetric tumor growth and d = 2; A labelled.

growth [17] of multicell avascular spheroids to a dormant steady state [26,35].
In the experiments, however, the tumors always develop a necrotic core which
further stabilizes their growth [6].

2. Moderate vascularization: G ≥ 0 and A ≤ 0 (i.e., 1 > B ≥ λA/λM ). Un-
bounded growth occurs from any initial radius R0 > 0. The growth tends to
exponential for A < 0 with velocity V → −AGR/d as R → ∞, and to linear
for A = 0 with velocity V → G as R → ∞.

3. High vascularization: G < 0 (i.e., B > 1). Growth (V > 0) may occur, de-
pending on the initial radius, for A > 0, and is always unbounded; for A < 0
(for which cell apoptosis is dominant: λA/λM > B), the evolution is always
to the only stationary solution R∞ = 0. This stationary solution may also be
achieved for A > 0.

The stationary radius R∞ is independent of G, and is solution of V = 0 with
V from equation (7). The stationary radius has limiting behaviors

R∞ → d A−1, A → 0,
(8)

R∞ → d
1
2 (d + 2)

1
2 (1 − A)

1
2 , A → 1,

where R∞ vanishes. Note that the limit A → 1 corresponds to λA → λM . For
d = 1 the stationary radius is R∞ = A−1 identically.
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The pressure PC (see Appendix A) at the center of the tumor (r ≡ 0) is obtained
from equation (54b):

PC

(γ /LD)
= (d − 1)/R + G − A G R2/(2d) − G

{
1/I0(R), d = 2,

R/ sinh(R), d = 3,
(9)

which has the asymptotic behavior PC (γ /LD)−1 → −AGR2/(2d) as R → ∞,
indicating that if the tumor grows unbounded (AG ≤ 0) the pressure at the center
also does (unless A = 0). This is a direct consequence of the absence of a necrotic
core in this model. In a real system, the increasing pressure may itself contribute to
necrosis [27–29]. It is known (see, for example, [9]) that tumor cells continuously
replace the loss of cell volume in a tumor’s core because of necrosis, thus main-
taining pressure finite. For d = 1 we define PC as the limit of P as R → −∞, and
it can be shown that PC (γ /LD)−1 = G.

2.3. Linear analysis

We consider a perturbation of the spherical tumor interface �:

R(t) + δ(t)

{
eilθ , d = 2,

Yl,m(θ, φ), d = 3,
(10)

where δ is the dimensionless perturbation size and Yl,m is a spherical harmonic,
where l and θ are polar wavenumber and angle, and m and φ azimuthal wavenumber
and angle.

By solving the system of equations (1)–(3) in the presence of a perturbed in-
terface we obtain the evolution equation (7) for the unperturbed radius R and the
evolution equation for the perturbation size δ:

δ−1 dδ

dt

=






l

(
J

2πR2 + A G

)

− A G

2

+G −
(

J

2πR
+ A G

R

2

)
Il−1(R)

Il(R)
− l

(
l2 − 1

)

R3 − G I1(R)

R I0(R)
, d = 2,

G − A G − (l + 2) J

4πR3 − l(l − 1)(l + 2)

R3 , d = 3, (11)

where the dimensionless flux

J = 2π (d − 1) Rd−1 V + O (δ/R)2 , (12)

with V given by (7). Note that the linear evolution of the perturbation is inde-
pendent of the azimuthal wavenumber m and there is a critical mode lc such that
perturbations grow for l < lc and decay for l > lc. The critical mode depends
on the parameters A, G and the evolving radius R. This agrees with the linear
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analyses presented in [18,7,5] for the special case where the unperturbed con-
figuration is stationary (i.e. R constant). Also, for d = 1 it can be shown that

δ−1 d
dt

δ = −l3 − G

(
(
l2 + 1

) 1
2 − 1

)

+ AG (lR − 1).

During unbounded growth, AG ≤ 0 and perturbations decay to zero for d =
1, 2 since δ−1 d

dt
δ → lAGR < 0 for d = 1 and δ−1 d

dt
δ → (l − 1)AG/2 < 0 for

d = 2, as R → ∞. For d = 3, δ−1 d
dt

δ → 0, as R → ∞, for A = −3(l − 1)−1,
and perturbations grow (decay) for A larger (smaller) than this value.

2.3.1. Shape evolution and conditions for self-similarity
Here, we characterize the evolution of the perturbed shape using the shape factor
δ/R (following Ref. [12]), governed by

(δ/R)−1 d

dt
(δ/R) = δ−1 dδ

dt
− J

2π (d − 1) Rd
. (13)

Thus, when
d

dt
(δ/R) = 0

the tumor shape does not change in time and the evolution is linearly self-similar
(sometimes also referred to as neutral stability). This condition divides regimes of
stable (δ/R → 0) and unstable (|δ/R| → ∞) growth.

Let us investigate conditions for which the tumor grows unbounded but self-sim-
ilarly, thus maintaining its shape. This should have implications for angiogenesis, or
tumor vascularization. It is known that angiogenesis occurs as tumor angiogenetic
factors are released within the tumor, and migrate to nearby vessels triggering the
chemotaxis of endothelial cells and thus the formation of a network of blood vessels
that finally penetrate the tumor providing unlimited supply of nutrients and thus
typically resulting in malignancy. Assuming the flux of angiogenic factors to be
proportional to the tumor/tissue interface area, and the rate of production of angio-
genic factors to be proportional to the tumor volume, we conclude that self-similar
evolution divides tumor growth in two categories: one (stable growth) character-
ized by a decrease of the area-to-volume ratio during growth thus hampering or
preventing angiogenesis, the other (unstable growth) characterized by an increase
of the area-to-volume ratio and thus favoring angiogenesis.

In Sect. 4.3 the possibility of shape control, by “tuning” the parameter conditions
to impose self-similar growth, will be investigated in detail. Here we investigate
the possibility of self-similar evolution using constant parameters in the limit as
the effective tumor radius R → ∞.

The asymptotic behavior of the flux J as R → ∞ is, from (7) and (12), J →
−2π (d − 1) AGRd/d . Note that if the tumor grows unbounded then AG ≤ 0. For
d = 3, it is easily shown from (11) and (13) that (δ/R)−1 d

dt
(δ/R) → G (1 + Al/3)

as R → ∞ and thus there exists a critical

Al = −3l−1, (14)
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such that for A = Al we obtain

d

dt
(δ/R) → 0 as R → ∞,

and the growing tumor tends to self-similar (shape invariant) evolution. Under con-
stant parameter conditions, unbounded growth that tends to self-similar is possible
only in the moderate-vascularization regime characterized by G > 0 and A < 0.
For A > Al the perturbation grows unbounded with respect to the growing un-
perturbed radius; for A < Al it decays to zero. In the high-vascularization regime
(G < 0), unbounded growth (A > 0) is always stable.

For d = 2 the perturbation always decays to zero thus leading to stable un-
bounded growth, since (δ/R)−1 d

dt
(δ/R) → AGl/2 as R → ∞ for A �= 0. Thus

in particular self-similar long-time behavior during growth with constant parame-
ters is a peculiarity of three dimensions only. Moreover, in two dimensions unstable
(bounded) growth is possible only in the low-vascularization regime. In Sect. 4.3
and inAppendix B we demonstrate that unstable and self-similar unbounded growth
are possible, both for d = 2 and d = 3, by varying the dimensionless parameters
A and G in time. Interestingly, these results reveal that growth for d = 2 and 3 has
the same qualitative features.

3. Numerical method

3.1. Boundary integral formulation

In two dimensions, the interface � ≡ ∂�(t) is represented by a planar curve,
with arclength s. From potential theory, � can be expressed using a double-layer
potential ν:

� (x) = −(2π)−1
∫

�

ν′ n′ · ∇K0
(∣∣x′ − x

∣
∣) ds′, (15)

where n is the outward normal of �, the prime indicates quantities evaluated at
the position s′ on the interface, and the Green’s function is −(2π)−1K0, where
K0 is the modified Bessel function [10]. Let � be parameterized counterclock-
wise by x(α) ≡ (x(α), y(α)) with the arbitrary parameter α ∈ [0, 2π ] such that

ds = (
x2
α + y2

α

) 1
2 dα. Taking the limit of equation (15) for x → x (s) ∈ �, the

boundary condition (1b) becomes a second-kind Fredholm integral equation on the
boundary �:

ν(α)

2
+

∫ 2π

0
ν(α′) K (

α, α′) dα′ = 1 (16)

where

K (
α, α′) = (

(x(α′) − x(α)) yα′ − (y(α′) − y(α)) xα′
) K1(r)

2πr
(17)

with r = (
(x(α′) − x(α))2 + (y(α′) − y(α))2

) 1
2 , and a subscript indicates differ-

entiation. In deriving equation (16), we have used

d

dr
K0(r) = −K1(r). (18)
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The kernel K has a logarithmic singularity at α = α′:

K (
α, α′) = L1

(
α, α′) ln

(

4 sin2 α − α′

2

)

+ L2
(
α, α′) , (19)

where L1 and L2 are analytic and periodic [23,11]:

L1
(
α, α′) = ((

x(α′) − x(α)
)

yα′ − (
y(α′) − y(α)

)
xα′

) I1(r)

4πr
, (20)

L2
(
α, α′) = K (

α, α′) − L1
(
α, α′) ln

(

4 sin2 α − α′

2

)

, (21)

and I1(r) is the modified Bessel function. Note that

L2(α, α) = 1

4π

yααxα − xααyα

x2
α + y2

α

. (22)

For the computation of p, a dipole-layer representation [25] is used with the di-
pole-layer potential η. We recast equation (2b) in terms of a second-kind Fredholm
integral equation on the boundary � [15,21]:

− η(α)

2
+ 1

2π

∫ 2π

0
η(α′)

(x(α) − x(α′))yα′ − (y(α) − y(α′))xα′

(x(α) − x(α′))2 + (y(α) − y(α′))2 dα′

= κ − AG
x(α)2 + y(α)2

4
. (23)

The normal velocity V in equation (3) requires the evaluation of the normal
derivatives n · ∇� and n · ∇p. We first discuss the former. The normal derivative
of the double layer potential can be written in terms of a single layer potential S

[22,10]:

n · ∇� (s) = d

ds
S (νs) − n (s) · S (nν) , (24)

where

S (P) ≡ − (2π)−1
∫

�

P
(
s′) K0

(∣∣x (s) − x
(
s′)∣∣) ds′, (25)

for any vector (or scalar) P. In (25), the function K0 has a logarithmic singularity
at s = s′, and a decomposition similar to equation (19) can be performed.

The normal derivative of p is computed using the Dirichlet-Neumann map [25,
15,21]:

n · ∇p (α) = 1

2π

∫ 2π

0
ηα′

(x(α) − x(α′)) yα′ + (y(α) − y(α′)) xα′

(x(α) − x(α′))2 + (y(α) − y(α′))2 dα′, (26)

where the principal value of the integral is taken.
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3.2. Surface representation and quadrature

We discretize the planar curve describing the surface � using N marker points,
with parametrization αj = jh, h = 2π/N , N is a power of 2. For an analytic and
periodic function L1, the following quadrature formula is spectrally accurate [16]:

∫ 2π

0
L1

(
αi, α

′) ln

(

4 sin2 αi − α′

2

)

dα′ ≈
2n−1∑

j=0

w|j−i|L1(αi, αj ) (27)

for αi = πi/n, i = 0, ..., 2n − 1, n = N/2, where

wj = −2π

n

n−1∑

m=1

1

m
cos

mjπ

n
− (−1)jπ

n2 , j = 0, ..., 2n − 1. (28)

We use the standard composite trapezoidal rule for the integral involving the
kernel L2, yielding spectral accuracy.

To compute S (P) we employ the same computational strategy for (24) as used
for the kernel L1. The derivatives d/ds in (24) are approximated using Fast-Fou-
rier-Transform spectral derivatives. As a result, n · ∇� is discretized with spectral
accuracy.

In equations (23) and (26), the integrals are calculated using the alternating-
point trapezoidal quadrature also yielding spectral accuracy [34].

Using the collocation method with the quadrature rules described above, we re-
duce the boundary integral equations (16) and (23) to a dense linear system, which
is then solved using an iterative solver GMRES [31]. Following [32,21], a 15th
order Fourier filter is used to reduce aliasing errors. Moreover, during a simulation,
marker points are added by multiples of 2 (using trigonometric interpolation) when
the amplitude of the Nyquist frequency (N/2) exceeded the tolerance for solving
the integral equation.

3.3. Surface evolution

To evolve the tumor surface � (t), we follow [32,21] and use the tangent-angle/area
formulation in a scaled arclength frame defined by

ds = L

2π
dα, (29)

where L(t) is the length of the tumor surface. This implies that the collocation
points are equally spaced in arclength. Accordingly, we evolve the tumor surface
using the tangential velocity

T (α) = α

2π

∫ 2π

0
θα′V ′dα′ −

∫ α

0
θα′V ′dα′, (30)

where θ (α) is the angle between the tangent to the tumor surface and the x-axis:

xα = L

2π
cos θ yα = L

2π
sin θ, (31)
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and V is the normal velocity. The length L(t) and the area H(t) of the tumor are
related by

H(t) = L2

8π2

∫ 2π

0

∫ α

0
sin

(
θ − θ ′) dα′ dα. (32)

The evolution of the tumor surface is reposed in terms of θ(α, t), H(t), and the
centroid (xc, yc). The time-derivatives are

θ̇ (α, t) = 2π

L
(Vα + T θα) , Ḣ (t) =

∫

�

V ds, (33)

ẋc(t) = 1

H

(∫

�

x V ds − xcḢ

)

, ẏc(t) = 1

H

(∫

�

y V ds − ycḢ

)

. (34)

It can be shown that from equations (1–3), for our problem ẋc = ẏc = 0. After a
time step, the point positions on the surface are reconstructed using (31)–(32), with
integration constant determined from (34).

Following [32], we can show that, at small spatial scales,

V ∼
(

2π

L

)2

H (θαα) (35)

where H(ξ) = (4π)−1
∫ 2π

0 ξ ′ cot((α − α′)/2)dα′ is the Hilbert transformation for
any scalar ξ . This demonstrates that an explicit time-stepping scheme has the high-
order constraint �t ≤ (hL/2π)3, where �t and h are the temporal and spatial grid
sizes. In [32] and later in [21], time stepping methods based on an integration factor
and Crank-Nicholson discretizations have been developed to reduce the stability
constraint. In this paper, we use a Crank-Nicholson discretization and a O(�t)2

method based on an integration factor [32].

4. Results

4.1. Unstable growth

Here, we investigate unstable evolution in the low-vascularization (diffusion dom-
inated) regime, characterized by G, A > 0, for d = 2 using nonlinear boundary-
integral simulations. The linear analysis in Sect. 2.3.1 demonstrates that evolution
in the other regimes is stable for d = 2. In Figure 2, the evolution of the tumor sur-
face from a nonlinear boundary-integral simulation with N = 1024 and �t = 10−3

(solid curve) is compared to the result of the linear analysis (dotted). In this case
A = 0.5, G = 20, and the initial shape of the tumor is

(x(α), y(α)) = (2 + 0.1 cos 2α) (cos α, sin α) . (36)

According to linear theory (formula (7) and figure 1), the tumor grows. The radially
symmetric equilibrium radius R∞ ≈ 3.32. Mode l = 2 is linearly stable initially,
and becomes unstable at R ≈ 2.29. The linear and nonlinear results in figure 2 are
indistinguishable up to t = 1, and gradually deviate thereafter. Correspondingly, a
shape instability develops and forms a neck.At t ≈ 1.9, the linear solution collapses
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Fig. 2. Evolution of the tumor surface in the low-vascularization regime, for d = 2, A = 0.5,
G = 20, and initial tumor surface as in equation (36). Dotted lines: solution from linear anal-
ysis; solid: solution from a nonlinear calculation with time step �t = 10−3 and a number of
marker points N = 1024, reset, after time t = 2.51, to �t = 10−4 and N = 2048.

suggesting pinch-off; the nonlinear solution is stabilized by the cell-to-cell adhesive
forces (surface tension) that resist the development of high negative curvatures in
the neck. This is not captured by the linear analysis. Instead of pinching off, as
is predicted linear evolution, the nonlinear tumor continues to grow and develops
large bulbs that eventually reconnect thus trapping healthy tissue (shaded regions
in the last frame in Figure 2) within the tumor. The frame at t = 2.531 describes the
onset of reconnection of the bulbs. We expect that reconnection would be affect-
ed by diffusion of nutrient outside the tumor, which is not included in the model
used here. However, the predictions of the development of shape instabilities and
of the capture of healthy tissue during growth are in agreement with experimental
observations [33].

The accuracy of our nonlinear calculations is established by a resolution study
of the simulation shown in Figure 2. First, the spatial error is investigated by varying
the number N of collocation points representing the tumor surface. In Figure 3, the
maximal differences in the tumor surface between a simulation with N = 1024 and
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Fig. 3. Spatial resolution study for the case in figure 2: maximal differences between the
solution calculated using N = 1024 and other smaller N .

others with smaller N are plotted as functions of time. In all cases the time step is
�t = 10−3. The tolerance for solving the integral equations for � and p is 10−10.
At early times, the error is dominated by the tolerance in solving the equations;
thus, the error decreases only slightly, from 10−8 to 10−9, as N increases. This is
consistent with the high-order accuracy of our discretization. The calculations for
smaller N stop at much earlier times than those for larger N due to the failure in
solving the integral equations with the given tolerance. Clearly, the solution com-
puted using N = 512 is accurate to 10−9, close to the tolerance 10−10, until the
tumor surface is about to pinch (t ≈ 2.5).

The errors introduced by the temporal discretization are investigated in Figure 4.
As for the spatial resolution study, the maximal differences in the tumor surface
between the calculation using �t = 10−3 and others using larger �t are plotted as
functions of time. In all cases N = 256. Since the temporal scheme is second-order
accurate, an improvement in accuracy of a factor of 4 is obtained whenever �t is
halved demonstrating convergence.

Next, we demonstrate that the capture of healthy tissue due to nonlinear tumor
reconnection is robust. Consider the evolution of an asymmetric, multimodal initial
tumor surface:

(x(α), y(α)) = (2 + 0.24 cos 2α + 0.2 sin 2α

+0.12 cos 3α + 0.1 sin 3α + 0.08 cos 5α + 0.14 sin 6α) (cos α, sin α) , (37)

for the same values of G = 20 and A = 0.5 used in figure 2. At t = 0 all modes
are linearly stable, as can be demonstrated from formula (11). At early times of the
evolution depicted in figure 5, modes l = 2 to 6 are first damped, but then become
successively unstable as the tumor grows. As in Figure 2, a neck develops on the
tumor surface followed by the formation and asymmetric reconnection of bulbs
(t = 1.85). An extension of our algorithm to describe evolution though topological
transitions, such as reconnection, is in progress.
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Fig. 4. Temporal resolution study: maximal differences between the solution calculated
using �t = 10−3 and other larger �t .

To conclude, we have found that during unstable evolution the linear and nonlin-
ear solutions deviate from one another with the nonlinear solution being stabilized
against pinchoff and leading instead to tumor reconnection and encapsulation of
healthy tissue at later times as observed experimentally [33]. Finally, we find that
reconnection occurs even when the amount of apoptosis is increased as is demon-
strated in figure 6 where A = 0.6 and G = 20. The initial data for this simulation
is asymmetric which thus leads to asymmetric reconnection. As before, the dashed
curve is the solution from the linear analysis which now is a superposition of modes.

4.2. Nontrivial stationary states

In this section we present examples of nontrivial nonlinear stationary states in the
low-vascularization regime. That such states exist was recently proved [13], and
is predicted by linear theory. To see this, let us consider the linear evolution of a
perturbation of a stationary radius R∞. The stationary radius is solution of (7) with
V = 0 (see also the related text), and is a function of 0 < A < 1. Thus, the flux
J = 0 and equation (11) gives that there exists a critical

Gl =






R−3
∞

2l
(
l2 − 1

)

2 + A (2(l − 1) − R∞ Il−1(R∞)/Il(R∞))
, d = 2

R−3
∞

l (l − 1) (l + 2)

1 − A
, d = 3

(38)

such that for G = Gl the perturbation also remains stationary. It can be shown that,
for both d = 2 and 3, Gl > 0 and a perturbed stationary shape always exists. The
perturbation δ/R∞ grows unbounded for G > Gl and decays to zero for G < Gl .
At large radii R∞, Gl → 0, thus in this limit perturbations of stationary states

always grow unbounded. For d = 1, we obtain Gl = l3(1 − A + l − (1 + l2)
1
2 )−1,
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Fig. 5. Evolution in the low-vascularization regime from a boundary-integral simulation
with d = 2, G = 20 and A = 0.5, and initial condition as in formula (37). The time step
for the calculation is �t = 2 × 10−4. The number of marker points N = 512 initially, and
is gradually increased to 2048 by the end of the simulation (t = 1.85) as required by the
highly deformed tumor surface.

which indicates that a nontrivial stationary solution may not exist, since Gl can be
negative.

Let us next consider the nonlinear evolution for d = 2 of a mode l perturbation
predicted by the linear theory to be stationary. The value of G is equal to Gl , with
R = R∞, given in Eq. (38).Although the perturbations are linearly stationary, there
is evolution due to nonlinearity. In figure 7 (top), the nonlinear evolution of several
linearly stationary shapes in the low-vascularization regime is shown through their
nonlinear perturbation size

δ/R0 = maxj

(
|xj/R0|2 − 1

)1/2
j = 1, N,

where the maximum is taken over all the computational nodes of the interface. The
corresponding evolution of the tumor cross-sectional area in the x-y plane is shown
in figure 7 (bottom). The linear steady shape corresponds to l = 4, A = 0.304,
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t = 0 1

2.28 3

4
5.2

Fig. 6. Solid: nonlinear boundary-integral simulation of unstable growth of perturbation in
the low-vascularization regime; d = 2, G = 20, A = 0.6, initial and stationary radii R0 = 2
and R∞ = 2.5771. Time is labeled. Dashed: linear result for same conditions.

G = G4 = 1.073. Initially, R0 = 6, and several initial perturbations are consid-
ered: δ0/R0 = 0.01, 0.05, 0.1, 0.2. In addition, for each δ0/R0, several values of
G are considered. In figure 7, the solid curves correspond to the choice G = G4,
the dotted curves to a value of G 
 G4 and the dashed curves to a value of
G ≈ GNL

4 < G4, where GNL
4 represents a nonlinear critical value, that depends

on the size of the perturbation, for which the numerical results predict evolution to
a nontrivial nonlinear stationary state: δ/R becomes constant and non-zero. Here,
we find only a numerical approximation to GNL

4 . For G > GNL
4 perturbations are

nonlinearly unstable; for G < GNL
4 they are stable and decay to zero (and the

undeformed configuration is steady).

The deviation G4 −GNL
4 , for our numerical approximation to GNL

4 , is reported
in figure 8 (top) as a function of the limiting perturbation (δ/R)2∞ and demon-
strates the effect of nonlinearity on the critical value of G. The corresponding area
deviation from the linear solution is shown in figure 8 (bottom).

Our results strongly suggest that for given l there exists a critical GNL
l < Gl

such that for G = GNL
l a nonlinear, nontrivial steady shape exists. Thus, nonlin-

earity is destabilizing for the stationary shapes. This is in contrast with the results
obtained in section 4.1 where nonlinearity stabilizes the pinchoff predicted by lin-
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Fig. 7. Top: time evolution of the perturbation size relative to a spherical tumor for d = 2,
different initial l = 4 perturbations and A = 0.304. Solid: G = G4, Dotted: G 
 G4,
Dashed: G ≈ GNL

4 . Bottom: the corresponding evolution of the tumor area.

ear theory during unstable evolution. Finally, as expected, figure 8 indicates that the
deviation of GNL

l from the linear Gl is to the second order. For several perturbations
examined, the initial (dashed curves) and steady nonlinear shapes (solid curves) are
depicted in figure 9.



208 V. Cristini et al.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(δ/R)2∞ 

G
4
−GNL

4
 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(δ/R)2∞ 

Area−Area
0
 

Fig. 8. Top: The difference G4 −GNL
4 versus the limiting steady nonlinear perturbation size

(δ/R)∞. Bottom: The corresponding area difference.

4.3. Self-similar evolution

Here we study self-similar evolution using linear analysis and nonlinear simula-
tions, and we explore the possibility of controlling the shape of a tumor during
growth to take advantage of self-similar conditions and prevent growth of shape in-
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Fig. 9. The initial (dashed) and steady (solid) nonlinear tumor configurations for different
initial perturbation amplitudes δ0/R0 = 0.01, 0.05, 0.2 corresponding to the data in figure
7 with G ≈ GNL

4 .

stabilities. In figure 10 the evolution of a perturbation, predicted by linear analysis,
during unbounded tumor growth (R → ∞) is examined in the moderate-vascular-
ization regime characterized by G > 0 and A ≤ 0. As demonstrated from linear
analysis in Sect. 2.3.1, corresponding to d = 3 (solid lines) and A = Al the shape
tends to become self-similar. For A > Al the perturbation grows unbounded with
respect to the unperturbed radius; for A < Al it decays to zero. For d = 2 (dashed
lines) the perturbation always decays to zero. The behaviors as R → ∞ are

δ/R ∼
{

R−l , d = 2,

R−(
3A−1+l

)
, d = 3,

(39)

for A �= 0, and

δ/R ∼
{

R−1, d = 2,

eR, d = 3,
(40)

independently of l, for A = 0. Note that in this case V → G for both d = 2 and 3.
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unbounded growth in the moderate-vascularization regime for d = 2 (dashed) and d = 3
(solid); G = 1, l = 4, and A as labeled. The initial radius R0 = 10, except for the curve
d = 3, A = 0, for which R0 = 7. Asymptotic behaviors (dotted) from equations (39)–(40).

An analysis of the limit (δ/R)∞ of the shape factor δ/R as t → ∞ for d = 3
and A = Al = −3/l corresponding to self-similar evolution as R → ∞ reveals
that the nontrivial limiting shape factor (δ/R)∞ → (δ/R)0 as R0 → ∞.

In the low-vascularization regime (G, A > 0) and in the high-vascularization
regime (G < 0) with A < 0, no unbounded growth occurs. In these regimes the
perturbation may either grow or decay, and thus complicated tumor morphologies
can develop, as was illustrated by full nonlinear simulations in Sect. 4.1 in the
low-vascularization regime.

4.3.1. Time-dependent parameters

In experiments of in vitro [35] and in vivo [33] growth, the time scales that char-
acterize prevascular or moderately vascular growth are relatively short (e.g., one
month) and apoptosis can be neglected [33], i.e. λA = 0. Thus the dimensionless
parameter A becomes A = −B/ (1 − B). Therefore, it is possible to design an
experiment where the parameter A may be varied by changing B (through nutrient
concentrations in the blood, for example) while keeping the parameter G constant
by adjusting the mitosis rate λM , for example through therapy. Analogously, it is
also possible to vary G while maintaining A constant. On longer time scales, apop-
tosis is nonzero, and can be also controlled through therapy (e.g., radiation). These
considerations and the following analysis reveal that, by varying the parameters ap-
propriately, it should be possible to control the shapes of growing tumors thereby
preventing the occurence of instabilities and invasive fingering.



Nonlinear simulation of tumor growth 211

One example of shape control is to maintain self-similar evolution during
growth by setting d

dt
(δ/R) = 0 identically in equation (13). This can be achieved

by keeping G constant and varying A as a function of the unperturbed radius R by

A =






2
(
l2 − 1

)

G R3 + 2l−1
(

I1 (R) Il−1 (R)

I0 (R) Il (R)
− 1

)

− 2
(

1 − 2l−1
)

R−1 I1 (R) /I0 (R), d = 2,

3 (l + 2) (l − 1)

G R3 − 3l−1

+ 3
(

1 + 3l−1
)

R−2 (R/ tanh (R) − 1), d = 3.

(41)

In figure 11 (top) the apoptosis parameter A(R) from Eq. (41) is shown for
d = 2 (dashed lines) and d = 3 (solid). The growth velocity corresponding to self-
similar evolution, obtained from (7) with A given by (41), is plotted in figure 11
(bottom). The curves of A divide the plot into regions of stable growth and regions
of unstable growth of a given mode l. Figures 11 top and bottom indicate that in
the low-vascularization (diffusion-dominated) regime (G > 0, A > 0) self-similar
evolution towards a stationary state is not possible for G constant (the stationary
states R∞ correspond to the intersection of curves (41) in figure 11 (top) with the
curves describing stationary radii). For instance, the growth velocity V < 0 for ini-
tial radius R0 < R∞, and thus self-similar shrinkage of the tumor to zero occurs.
On the other hand, for R0 > R∞, V > 0, and thus self-similar growth away from
the stationary radius occurs. In the high-vascularization regime (G < 0), during
self-similar evolution the velocity V < 0. Thus self-similar shrinkage of a tumor
from arbitrary initial condition to a point occurs, and self-similar unbounded growth
is not possible.

Let us now focus on unbounded growth conditions: AG < 0. The limiting
behaviors as R → ∞ are A ≈ 2l−1R−1 > 0 for d = 2, and A ≈ −3l−1 +
3

(
1 + 3l−1

)
R−1 < 0 for d = 3, and are independent of G. For G > 0 and A < 0

(moderate-vascularization regime), growth is stable for A < A(R) and unstable
otherwise (note that A < A(R) always for d = 2); for G < 0 and A > 0 (high
vascularization), growth is always stable since the stability condition is in this case
A > A(R) and A(R) < 0 as R → ∞. For d = 2, self-similar evolution remains
in the low-vascularization regime (A > 0), and does not occur in the moderate-
vascularization regime; in contrast, for d = 3, a transition takes place into the
moderate-vascularization regime (A becomes negative), and leads to unbounded
self-similar growth. One can imagine an experiment in which an initially avascular
tumor grows in the diffusion-dominated regime with G > 0 and A = 0. This corre-
sponds to moving along the zero axis to the right, in figure 11, as illustrated by the
open circles. As the tumor grows by diffusion, angiogenesis occurs, and A becomes
negative. By adjusting A through the concentration of nutrient in the blood stream,
while keeping G constant by adjusting the mitosis rate λM at the same time, one



212 V. Cristini et al.

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

l=

l= 100

l= 100

4

=1

G=−1

G=−1

=1

l= 4

2d= d=3
A

G

G

R

1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

V

G

R

G=1

G=−1

Fig. 11. Top: apoptosis parameter A as a function of unperturbed radius R from condition
(41) for self-similar evolution; d = 2 (dashed) and d = 3 (solid); G and l labelled. Asymp-
totic behaviors (42) (dotted). The two solid curves labelled with values of d correspond to
stationary radii. Bottom: corresponding growth velocity G−1V for l = 4.
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can evolve the vascularized tumor along the curve A(R) that corresponds to self-
similar growth in the moderate-vascularization regime, thus controlling the shape
and preventing invasive fingering. Correspondingly, the proliferation rate should
be varied as: (λM − λA)/λR = G (1 − A(R)). As l → ∞,

A →
{

2
(
l2 − 1

)
G−1R−3, d = 2,

3 (l + 2) (l − 1) G−1R−3, d = 3,
(42)

and thus A > 0 and self-similar evolution in the low-vascularization regime be-
comes possible at all radii (and it becomes forbidden in the moderate-vasculariza-
tion regime) also for d = 3.

The apoptosis parameter for self-similar evolution with d = 1 is A =(

G−1l3 − 1 + (
l2 + 1

) 1
2

)

(lR − 1)−1; note as a special case that, for G =

l−3
(

(
1 + l2

) 1
2 − 1

)

, A = 0 and unbounded self-similar growth occurs with con-

stant parameters. The behaviors described remain qualitatively unchanged for dif-
ferent values of l.

To summarize, we found self-similar evolution, with the possiblity of shape
control, in all regimes with varying A and constant G. However, we discovered
that in the low-vascularization regime, self-similar evolution to a steady state does
not occur under these conditions. Similarly, self-similar unbounded growth in the
high-vascularization regime does not occur. In Appendix B we examine the possi-
bility of self-similar evolution to a steady-state in the low-vascularization regime
and of unbounded self-similar growth in the high vascularization regime by varying
G in addition to A.

4.3.2. Effect of nonlinearity
We now investigate the effect of nonlinearity on the self-similar evolution for d = 2
predicted by the linear analysis.As discussed in section 4.3.1, self-similar evolution
requires the time-dependent apoptosis parameter A = A(l, G, R) given in Eq. (41)
and plotted in figure 11 (top). The radius R, used in the nonlinear simulation, is
determined by the area of an equivalent circle: R = √

H/π . Examples of nonlinear
self-similar evolution in the low-vascularization regime with l = 4 and G = 1 are
shown in figure 12. In the top graph, the initial radius and perturbation are R0 = 7
and δ0 = 0.3. Since the velocity V > 0, from figure 11 (bottom), the tumor grows
and correspondingly A decreases. In the bottom graph, R0 = 4 and δ0 = 0.2; the
corresponding V < 0 indicating that the tumor shrinks (A increases). The solid
curves correspond to the nonlinear solution, at time t = 0 and at a later time, and
the dashed curves to the linear. The two are nearly indistinguishable revealing that
self-similar evolution is robust to nonlinearity for small perturbations.

In figure 13, the linear and nonlinear solutions are compared in the low-vascu-
larization regime for l = 5, G = 1, A = A(l, G, R) and R0 = 4. Since V < 0,
the tumors shrink and A increases. In the top figure, δ0 = 0.2 and in the bottom
δ0 = 0.4. The results reveal that large perburbations are nonlinearly unstable and
grow, leading to a topological transition. In the last frame in figure 13 (bottom), the
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Fig. 12. Top: self-similar nonlinear growth for R0 = 7 and δ0 = 0.3 (times t = 0 and
t = 20 shown). Bottom: self-similar nonlinear shrinkage for R0 = 4 and δ0 = 0.2 (t = 0
and t = 1.6 shown). The solid curves correspond to the nonlinear solution and the dashed
curves to the linear. In both cases, the evolution is in the low-vascularization regime with
d = 2, l = 4 and G = 1, and the time-dependent A = A(l, G, R) given in Eq. (41) and
plotted in figure 11 (top).
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Fig. 13. Top: self-similar shrinkage for R0 = 4 and δ0 = 0.2 (t = 0 to 0.96 shown). Bottom:
Unstable shrinkage for R0 = 4 and δ0 = 0.4 (t = 0 to 0.99). The solid curves correspond
to the nonlinear solution and the dashed curves to the linear. In both cases, d = 2, G = 1,
l = 5 and the evolution is in the low-vascularization regime. A = A(l, G, R) given in Eq.
(41) and plotted in figure 11 (top).
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Fig. 14. Nonlinear stable evolution in the high vascularization regime. Top: shrinkage with
A = 0.2 and G = −5 (t = 0, 0.4, 0.8, 1.2 and 2.0 shown). Bottom: growth with A = 0.8
and G = −5 (t = 0, 0.2, 0.5, 1.0, 1.5 and 2.3 shown). In both, the initial data is as in Eq.
(36).
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Fig. 15. HDMEC tumors seeded in biodegradable sponges and implanted in SCID mice
from [30]. The larger tumors overexpress the angiogenic factor Bcl-2 and are thus more
highly vascularized.

onset of pinch-off is evident. This can have important implications for therapy. For
example, one can imagine an experiment in which a tumor is made to shrink by
therapy such that A is increased by increasing the apoptosis rate λA. Our example
shows that a rapid decrease in size can result in shape instability leading to tumor
break-up and the formation of microscopic tumor fragments that can enter the blood
stream through leaky blood vessels thus leading to metastases.

4.4. Evolution in the high vascularization regime

In the high-vascularization regime (G < 0), both shrinkage and growth of tumors
occur. Shrinkage (A < 0) may be stable, self-similar and unstable. In contrast,
unbounded growth (A > 0) is always characterized by a decay of the perturbation
to zero with respect to the unperturbed radius and is thus stable for both d = 2
and 3. In the nonlinear regime, we find that self-similar and unstable shrinkage are
qualitatively very similar to that presented in figure 13 and therefore we do not
present these results here. Instead, we present stable, nonlinear evolution from the
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multimodal initial data given in Eq. (36) with G = −5. In figure 14 (top), the sta-
ble shrinkage of a tumor is shown with A = 0.2. In the bottom graph, there is less
apoptosis, A = 0.8, and unbounded, stable growth occurs. In fact, all the nonlinear
simulations of growth we have performed in the high vascularization regime lead
to stable evolution, in agreement with the linear analysis.

In contrast, it is known experimentally that highly vascularized carcinoma
evolve invasively by extending branches into regions of the external tissue where
the mechanical resistance is lowest (e.g. [9]). Thus our results suggest that the
formation of invasive tumors should be due to anisotropies rather than to vascular-
ization alone. Anisotropies (e.g., in the distribution of the resistance of the external
tissue to tumor growth, or in the distribution of blood vessels) have been neglected
in the model studied here. This conclusion has not been recognized before and is
supported by recent experiments [30] of in vivo angiogenesis and tumor growth,
in which stable growth is observed of highly vascularized tumors that have been
embedded in an isotropic, biodegradable sponge-like material and then implanted
in mice. Examples of four such tumors are shown in figure 15 (from Ref. [30]).
Because of the isotropy of the sponge, the tumor/tissue blood-vessel distribution
is isotropic as is assumed in the model studied here, and during growth the tumors
maintain a compact, roughly spheroidal shape.

5. Conclusions

We have studied solid tumor growth in the nonlinear regime using boundary-inte-
gral simulations. In the model investigated [18,24,8,3], the tumor core is assumed
to be nonnecrotic and no inhibitor chemical species to be present. We have de-
veloped a new formulation of this classical model and we have demonstrated that
tumor evolution is described by a reduced set of two dimensionless parameters and
is qualitatively unaffected by the number of spatial dimensions. The parameter G

describes the relative rate of mitosis to the relaxation mechanisms. The parameter A

describes the balance between apoptosis and mitosis. Both parameters also include
the effect of vascularization.

Our analysis and nonlinear simulations have revealed that the two new di-
mensionless groups uniquely subdivide tumor growth into three regimes associ-
ated with increasing degrees of vascularization: low (diffusion dominated, e.g.,
in vitro), moderate and high vascularization, that correspond to the regimes ob-
served in in vivo experiments. We have demonstrated, by constructing explicit
examples using nonlinear simulations, that critical conditions exist for which the
tumor evolves to nontrivial dormant states or grows self-similarly in the first two
regimes. Self-similar growth separates stable tumors, that grow maintaining a com-
pact shape, from unstable tumors, for which vascularization is favored and growth
leads to invasive fingering into the healthy tissues. We have illustrated the possi-
bility of tumor shape control during growth by simulating a physical experiment in
which the dimensionless parameters A and G are varied in time (for example by
changing the physical parameters through therapy) to maintain stable or self-similar
growth conditions thus preventing invasive growth and hampering angiogenesis.
We have also shown that nonlinear unstable growth may lead to topological transi-
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tions such as tumor breakup and reconnection with encapsulation of healthy tissue.
Interestingly we have found that for highly vascularized tumors, while they grow
unbounded, their shape always stays compact and invasive fingering does not occur.
This is in agreement with recent experimental observations [30] of in vivo tumor
growth, and suggests that the invasive growth of highly-vascularized tumors is as-
sociated to vascular and elastic anisotropies, which are not included in the model
we have studied.

The work presented here demonstrates that nonlinear simulations are a pow-
erful tool for understanding the phenomena that lead to growth of tumors. We are
working at the development of a three-dimensional computer simulator of a more
sophisticated model of tumor growth, that includes the direct description of angio-
genesis, and the effects of vascular and elastic (e.g., [20]) anisotropies that may
set preferred directions of growth and thus should be responsible for the invasive
growth of maligant tumors. Angiogenesis is described by following the diffusion
of tumor angiogenic factors through the tissues, and the chemotaxis of endothelial
cells in response, leading to a nonuniform density of blood vessels. Such a sophis-
ticated computer simulator should be useful for the scientific understanding of the
conditions under which complex tumor morphologies develop during growth (such
as networks of blood vessels and shape instabilities), and also to help the design
of targeted physical experiments in vitro or in vivo. Finally, this cancer simulator
should find applications in a clinic environment, for example for testing different
candidate therapies. As was only qualitatively illustrated in this paper, therapy will
be simulated by rigorously describing its effect on the physical parameters (such as
mitosis and death rates) that characterize a tumor’s microenvironment. Simulations
of a specific patient’s reaction to each therapy can thus lead to the selection of the
most promising therapies to be applied in vivo.

Appendix A

Governing equations

We consider a nonnecrotic tumor occupying a volume �(t). In the absence of in-
hibitor chemical species, following [18,7,14], the quasi-steady diffusion equation
for the concentration σ(x, t) of nutrient is

0 = D∇2σ + �, (43)

where D is the diffusion constant, and � is the rate at which nutrient is added to �.
The assumption of quasi-steady diffusion [7] is well supported by the consideration
that the tumor volume doubling time scale (e.g., one day) is typically much larger
that the diffusion time scale (≈ one minute).

The rate � incorporates all sources and sinks of nutrient in the tumor volume.
Nutrient is supplied by the vasculature at a rate �B(σ, σB), where σB is the (uni-
form) concentration in the blood. The rate of consumption of nutrient by the tumor
cells is λ σ , with λ uniform. The blood-tissue transfer rate is assumed to be linear:

�B = −λB (σ − σB) , (44)
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where λB is uniform. Thus, the rate � is given by

� = −λB (σ − σB) − λ σ. (45)

Modeling the tumor as an incompressible fluid, it follows that the velocity field
u in � satisfies the continuity equation

∇ · u = λP , (46)

where λP is the cell-proliferation rate. We choose here the model

λP = bσ − λA, (47)

which is linear with respect to the nutrient concentration [7]: λA is the rate of
apoptosis and b and λA are assumed to be uniform.

The velocity is assumed to obey Darcy’s law [17]:

u = −µ∇P, (48)

where µ is the (constant) cell mobility and P(x, t) is the pressure inside �.
The boundary condition for concentration at � ≡ ∂� is

(σ )� = σ∞, (49)

where σ∞ is the nutrient concentration outside the tumor volume, assumed to be
uniform. This sets the characteristic mitosis rate to be

λM = bσ∞.

Pressure is assumed to satisfy the Laplace-Young boundary condition

(P )� = γ κ, (50)

where γ is the surface tension related to cell-to-cell adhesive forces, and κ is local
total curvature. Finally, the normal velocity V = n · (u)� at the tumor boundary
(with outward normal n) is

V = −µ n · (∇P)� . (51)

Dimensionless formulation

Equations (43) and (45) reveal that there is an intrinsic length scale

LD = D
1
2 (λB + λ)−

1
2 , (52)

which for λB = 0 roughly estimates the stable size of an avascular tumor when
diffusion of nutrient and consumption balance. By nondimensionalizing lengths
with LD we obtain, from equations (48) and (50), an intrinsic relaxation time scale
λ−1

R corresponding to the rate

λR = µγL−3
D (53)



Nonlinear simulation of tumor growth 221

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

G

R

V < 0

V > 0

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

R

A

V

Fig. 16. Top: growth parameter G from condition (41) for shape invariance, with V = 0
and A(R) from Eq. (7) as a function of radius R; d = 2 (dashed) and d = 3 (solid); l = 4.
Experiment of self-similar evolution between stationary states (dotted), with G imposed as
a linear function of R. Bottom: apoptosis parameter A from (41), and growth velocity V , as
a function of radius R during such experiment.
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associated to the relaxation mechanisms cell mobility and surface tension. The
above rate is used to nondimensionalize time.

Let us introduce the dimensionless parameters A and G defined in (4) and the
modified concentration and pressure �̄ and p̄ so that

σ = σ∞ (
1 − (1 − B)

(
1 − �̄

))
,

P = γ

LD

(
p̄ + (

1 − �̄
)

G + A G
x · x
2d

)
. (54)

The parameter

B = σB

σ∞
λB

λB + λ
(55)

represents the extent of vascularization.
By algebraic manipulations it can be shown that equations (1) is obtained from

equations (43), (45) and (49). Equations (2) are obtained from (46)–(48) and (50).
Finally, equation (3) is obtained from (51). In the main text of the paper, the bars
have been dropped for simplicity.

Appendix B

Here we examine the possibility of self-similar evolution to a steady-state in the
low-vascularization regime and of unbounded self-similar growth in the high vas-
cularization regime by varying G in addition to A. In figure 16 (top) the values of
growth parameter G as a function of radius R are plotted corresponding to nontrivial
stationary states with a fixed tumor shape: d

dR
(δ/R) = 0. In the high-vasculariza-

tion regime (G < 0), self-similar evolution occurs below the curves V = 0 in
figure 16 (top), and thus V < 0 and self-similar unbounded growth remains for-
bidden. Thus, unbounded growth in the high-vascularization is always stable even
for variable A and G which is in agreement with recent experiments [30].

We consider then self-similar evolution between nontrivial stationary states in
the low-vascularization regime (G > 0). The dotted lines in figure 16 (top) repre-
sent an experiment in which G is varied linearly between a stationary state R∞,1
and a stationary state R∞,2 > R∞,1. In figure 16 (bottom), the corresponding
growth velocities and time-dependent apoptosis parameters are shown. The figure
reveals that during this experiment the growth velocity V > 0 and thus self-similar
evolution is possible between the two stationary states. Other experimental paths
are possible, that lead to either growth or shrinkage of tumors to stationary states.
The qualitative behaviors described are not affected by l.
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