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The presence of surface tension for interfacial flows usually leads to severe stabil-
ity constraints for explicit time integration methods. Moreover, the nonlocality and
nonlinearity of the high-order terms make the application of implicit methods diffi-
cult. In this paper, a computational strategy is presented for computing the motion of
fluid interfaces with surface tension in axisymmetric flows using boundary integral
techniques. This method is based on adaptive quadratures for the principal-value in-
tegrals and a small-scale decomposition for the treatment of surface tension through
a vector-potential formulation. A study of the method is conducted in the context
of vortex sheet evolution with surface tension in axisymmetric flows. The method is
found to be accurate, efficient, and robust. Numerical simulations indicate that the
dynamics of vortex sheets with surface tension frequently result in topological singu-
larities (i.e., self-intersection). Away from the axis of symmetry, these singularities
are similar to those found in the two-dimensional flows. Singularities occurring near
the axis of symmetry take a different form.  © 2001 Elsevier science

Key Words: free surfaces in axisymmetric flows; surface tension; vortex sheet.

1. INTRODUCTION

Interfaces between inviscid, immiscible liquids are typically unstable. In the absence of
stabilizing effects such as surface tension or viscosity, interfaces rapidly form curvature
singularities in finite time due to the Kelvin—-Helmholtz (shear) instability [1]. Surface
tension in principle acts as a regularization of this instability. This can be seen through
a linear analysis: the surface tension prevents the growth of small perturbations above
a critical wavenumber. However, in axisymmetric and three-dimensional geometries, the
inclusion of surface tension introduces another source of instability: the Rayleigh instability.
The case of a vortex sheet stands as an important fundamental example of fluid motion
involving interfaces. In the case that we focus on in this paper, the vortex sheet separates
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two immiscible and density-matched fluids, and there is competition only between the shear
instability and the surface tension.

Boundary integral techniques provide a popular approach to computing the evolution of
interfaces with surface tension. One of the major features of boundary integral techniques
is that the equations of motion may be reposed entirely along the interface, thus reducing
the complexity of the problem by one dimension. In addition, boundary integral techniques
are particularly convenient for the treatment of surface tension that requires the calculation
of curvature [2-4].

For two-dimensional flows, surface tension has now been included in numerical studies
of many free-surface problems. These include the study of the rising gas bubble [5], vortex
sheets with surface tension [6-11], the Rayleigh—Taylor instability [7, 8, 12, 13], and the
generation of capillary waves [14]. See the recent review article by Hou et al. [4].

Until recently, it has been problematic to obtain stable numerical methods, even in two
dimensions. In the context of the motion of vortex sheets with surface tension, Baker and
Nachbin [9] have demonstrated through linear analysis and nonlinear computations that the
main cause of instability (the growth of the sawtooth mode) is the failure of the mesh to
represent vorticity created by the surface tension. They then developed a stable numerical
method in which this instability is removed by using a midpoint rule to approximate the
boundary integrals. Independently, Beale et al. [15, 16], and subsequently Ceniceros and
Hou [13] analyzed this numerical instability using a slightly different formulation and
proposed alternative stable methods.

In addition, the presence of surface tension requires small time steps when an explicit
method is used, and results in a strong stability constraint, At < C(As)%?, where As is
the smallest arclength between two computational mesh points on the sheet. This is due to
the interface curvature that appears in the boundary condition for the vortex sheet strength.
As an example, an explicit method based on Lagrangian motion accumulates the markers
near a stagnation point on the interface (reducing As as a result) and forces the use of an
ever-decreasing time step [7-9, 16].

In 1994, Hou et al. (HLS94) [10] introduced a new formulation and methods based on
a small-scale decomposition of nonlinear equations. The main idea in this approach is to
separate the most singular part (e.g., the part with the highest derivative) of the equation
from the rest and treat the singular part implicitly through a change of variable. In particular,
the interface location is represented in terms of its local arclength s and its tangent angle
6. The most singular part of the normal velocity of the interface is found to be a Hilbert
transformation of the vortex sheet strength, which can be diagonalized in Fourier space.
As aresult, it can be treated implicitly and efficiently along with the curvature 65. The new
formulation has all the nice properties of time integration methods that are associated with
having a linear highest-order term. The resulting methods do not have the severe stability
constraints usually associated with surface tension. This method has been successfully used
to study the long-time evolution of vortex sheets with surface tension [11].

In three dimensions, the study of vortex sheet motion has been restricted to the cases with-
out surface tension. There is evidence for the formation of singularities in the axisymmetric
geometry [17-19] and for certain three-dimensional perturbations of a plane vortex sheet
[20, 21]. In addition, by form-fitting the Fourier coefficients of the numerical solutions, it is
found that there exists curvature singularity and that singularity formations in axisymmet-
ric and two-dimensional vortex sheets are very similar [18, 22, 23]. In this paper, we are
interested in simulations of vortex sheet motion with surfacetension in axisymmetric flows.
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Computing the motion of vortex sheets in axisymmetric flows using boundary integral
methods is more difficult than it is in two dimensions for several reasons. First, the principal-
value integrals involve complete elliptic integrals and contain logarithmic singularities.
Further, the integrand has large variation near the axis of symmetry [19, 24, 25] when
the vortex sheets cross or approach the axis of symmetry. Consequently the design of an
accurate quadrature is difficult for axisymmetric flows. For example, the high-order method
[26] designed for treating the logarithmic singularities in the integrand in 2-D loses its
accuracy near the axis of symmetry and becomes a first-order method [19]. In 1998, Nie
and Baker (NB98) [18] introduced a new quadrature technique for axisymmetric flows based
on a dipole representation of the vortex sheet through the vector-potential formulation. In
this approach, high-order adaptive numerical quadratures are incorporated to ensure the
accurate calculation of the principal-value integrals by inserting more quadrature points
where the integrand has large variation.

The second major numerical difficulty is the strong time-step stability constraint that
arises due to the presence of surface tension. This is similar to the two-dimensional case.
Until very recently, this stability constraint has been somewhat modified by regridding
the interface markers at every time step or after several time steps and imposing surface
smoothing in ad-hoc ways [27-29]. Experience shows that this does not entirely eliminate
the stability constraints and it only partially improves the computations.

In this study, we combine the small-scale decomposition technique presented for two-
dimensional flows in HLS94 and the strategy using adaptive quadratures for axisymmetric
flows in NB98 to develop accurate and efficient methods that can be used to study vortex
sheets with surface tension in axisymmetric flows. We note that very recently Ceniceros
and Si [30] developed a related algorithm that uses quadratures presented in [19] and the
small-scale decomposition technique to study axisymmetric porous media flows. In [30]
the effect of small surface tension on the dynamics of an axisymmetric flow is studied.

As shown in HLS94 the central reasons for using the small-scale decomposition technique
are that the most singular terms in the equations can be identified, treated implicitly in
temporal integration, and computed efficiently. Fortunately, we find this is achievable in the
axisymmetric case. In particular, the Lagrangian velocity of the vortex sheet is found to be
dominated by a Hilbert transform of vortex sheet strength at small scales, similar to the two-
dimensional case. For the surface tension term, the curvature in the axisymmetric geometry
is a sum of curvatures in the meridian direction and in the azimuthal direction. At small
scales, this sum is dominated by its two-dimensional counterpart, the one from meridian
direction, because it contains the highest number of derivatives. In order to treat the terms
implicitly in the temporal scheme, we represent the vortex sheet in the meridian plane using
the tangent angle 6 and equal arclength L similar to the two-dimensional case (HLS94).
The velocity for the vortex sheet is computed using a dipole representation through the
vector-potential formulation (NB98). Adaptive quadratures are implemented for the sake
of efficiency and of accuracy for the calculations of principal-value integrals.

We use this method to calculate the evolution of an initially spherical vortex sheet and
study the evolution of the vortex sheet for different values of surface tension and for different
choices of the initial vortex sheet strength. The method is found to be robust and accurate.
The computations show that the evolution of the vortex sheet sensitively depends on the
surface tension. In particular, for small surface tensions, the sheet develops a rolled-up
structure and the interface self-intersects (pinches off) away from the axis of symmetry.
This type of pinch-off is found to be similar to the analogous pinch-off that occurs in
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two-dimensional flows. For large surface tensions, the sheet necks down and the pinch-off
occurs at the axis of symmetry (r = 0). For this case we notice an overturning of the interface,
which is not observed for the two-dimensional flows. For moderately sized surface tensions,
the sheet evolves via a combination of spirals, necks, and pinch-offs.

The organization of the paper is as follows. In Section 2, we derive a formulation based
on the small-scale decomposition for axisymmetric flows. In Section 3, we describe the
numerical techniques and discuss the details of the implementation. In Section 4, we study
the accuracy of the numerical method and present the results. In Section 5, we present the
conclusions and discussions.

2. FORMULATIONS

For an axisymmetric vortex sheet, we may represent the sheet position, denoted by T, as

X=r(a,)g + z(a, t)e,, @

using the cylindrical coordinates (r, z). The motion of I" is given by

(r, z2)=Van+Ts, )

where n is the inward normal of the sheet with V,, as the inward normal velocity and sis the
tangential direction of the sheet with T as a specified tangential velocity. We remark that
the choice of T does not affect the motion of the sheet I', and it only affects the definition
of .

In the Lagrangian frame, the velocity of the sheet is given by the Biot—-Savart integral
[31]

Ur = —P ¥'(Z = 2Bo(e, &) (F(K) + Bu(er, ) E(K)) der’, (3)
_ 1
wzafy%mﬂwﬁm+&@wmwmw, )

where F(k) and E(k) are the complete elliptic integrals of the first and second kind, re-
spectively, with

2 A4rr’ By ) = 2 (5)
Tt YT G— 2
, Z/—ZZ—I-I’/Z—}—I'Z , r/Z_rZ_Z/_ZZ
By, o) = — L 2 By(, o) = (z -2 ®)

(z—2)2+(r —r)% (z—2)2+ (@ —r)?’
where r’ =r («’, t), etc. The vortex sheet strength y (a, t) = (o, t) can be determined
through the dipole sheet strength . (NB98), which evolves via

o _
EZ(T_S'U)MS_GKHEBJ"I? (7)
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where s, = /r2 + 22 and kmean = k + koo IS twice the mean curvature. Here « and « are
the curvatures in the meridian and azimuthal directions, respectively:

loZoo —TNaaZa Zy
K:T KOOIE. (8)

o
The normal velocity then is obtained from
Vhp=u-n. 9)

The choice T =s- u corresponds to the Lagrangian frame.
The motion of I" can be reposed in terms of its local arclength derivatives s, and its
tangent angle 6 defined implicitly from the definition of the tangent vector,

S(a, 1) = (ry, ) /S = (c0s O (e, t), Sin6(a, 1)). (10)

Then 6 and s, satisfy

St = Ta - 9aVn (11)
Vhe + T6,
6, = Voa + 104 (12)
Sy

with T as yet unspecified.
Because « contains higher derivative of r and zthan «, in kmean, We obtain, after taking
a derivative of Eq. (7) with respect to «,

Y~ —Okq, (13)

where f ~ g means that the difference between f and g is smoother than f and g. This
can be seen by an argument similar to that used for the small-scale decomposition in the
two-dimensional case (HLS94).

Next we examine the leading-order behavior for V,,. From the Biot-Savart integrals for
(Ur, Uy), with n = (—2zs, rs), we obtain

_ 1 y'
Vh=(Ur, Uyp) - (—Zs,Ts) "’_R o —o

do’ asa — o' (14)

Here, we have used the fact that forr = r («) # 0 the leading order terms of the integrands
in (3) and (4) are

2ry'z, 2y'ry
_ _V e 15
S2(a’ — a) S2(a) — ) (15)
respectively.
Consequently, we regroup V, as
1 .
Vh = —>—"H(y) + remainder, (16)

28y
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where H is the Hilbert transform and the remaining term is smoother than the Hilbert
transform.

Using the fact that 6s =«, we obtain the small-scale decomposition equation for the
axisymmetric vortex sheet,

O = —%é (%H(y))a—k P (17)
n=-o(2) +o (18)
S/
where
o 1L (L) 4 Yot T ”
Q= (T —s Wus — 0keo)a- (20)

The form of the equations is exactly the same as in the two-dimensional case except that
P and Q are different. In the two-dimensional case, P and Q involve only Birkhoff-Rott
integrals while for the axisymmetric case «, is present in Q. Moreover, V,, and u are more
difficult to compute.

3. NUMERICAL METHODS

Following HLS94, we use a semiimplicit temporal scheme for Eq. (17) and (18). To avoid
solving alinear system during the time integration, we require s, to be a function of time only,

Lt
@(a,t):an) = 1/M). @1)

This can be achieved by choosing the special tangential velocity
o 2 o
T, t)=— / Oy Vi do' — / 0, Vi do'. (22)
21 Jo Jo

Consequently, Eq. (11) for s, becomes
2
Ly =/ O Vi do’. (23)
0

Denote f (k) to be the Fourier coefficient of f. By applying the Crank-Nicholson dis-
cretization to the leading-order term in the Fourier space in Eq. (17) and (18), we obtain
the following diagonalized system in Fourier space:

J(ky+1 _ g (kyn-1 =
6(k) o Ikl((Mn+1)zJ;(k)n+1+(M“*l)zfx(k)”*l)+P”(k) (24)

2At T4
g n+1 _ 5 n—1 2 " . "
y(k) ZAty (k) — Uk?(MI'H-le(k)I’H-l + Mn—le(k)n—l) + Qn(k) (25)

The quantities 6™+ (k) and "1 (k) can be calculated explicitly by inverting a 2 x 2 matrix.
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L should be updated by an explicit method such as the second-order Adams—Bashforth
discretization of Eq. (23). The computations of 6 and y will require this updated L. Once
L and 6 are known, we can numerically integrate Eq. (10) to obtain (r, 2). Similarly, we can
calculate x through the numerical integration of y .

The above formulation is the same as in HLS94 except that V,,, P, and Q are different.
For P and Q, the essential parts involve V, and u. As studied in NB98, one of the major
challenges of using the boundary integral technique to compute free surfaces in an axisym-
metric flow is the accurate evaluations of the velocity integrals. This is particularly true for
the motion of vortex sheets with small surface tensions o because for o =0 the govern-
ing equation is ill-posed. In NB98, we developed a very efficient and accurate strategy to
compute V, and u based on a vector-potential formulation with an adaptive quadrature. We
implement the same method for o # 0 in this paper. Below, we present a brief sketch of
this technique.

The normal velocity is computed through a vector potential by

Vh = % (26)
and (3) and (4) can be rewritten as
_ Yy 1
U = <¢ara - Tzot> S_g’ (27)
_ Ve 1
Uz = <¢zxza + r_ra> S_é’ (28)

where the potential function ¢ and the vector potential function i have the following
integral representations,

1 1
¢(a) = E]((M’ — W Bo(at, a)(z, F(K) + Ca(at, ) E(K)) do’ + SH (29)

1
V() = E]((M/ — 1) Bo(a, &) ([r, 1" — 2,(z— 2)]F (K) + Ca(r, ) E(K)) da’,  (30)

with
, z-D)[Z,(z—2Z)=2rt/]+ (% =177
— o o o l
Ci(a, @) CEE NI, (31)
and
NI (7 — N — ' 17 — 7 /(2 2 2y 2N\p! !
Coler. o) = Zz-2Y([z2,(z—2Z)—rr'1(z—2)+ Z, 4+ 1)+ (= —r)rlr (32
(Z—2)24(r —r')?
The integrands in (29) and (30) exhibit the following asymptotic behavior,
—@(a/ —a)Inja —a| and —2u,r, (33)

respectively, compared with the pole singularities 1/(a’ — «) for the integrands in (3) and
(4). This property of the integrands allows one to use more sophisticated quadratures to
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compute the integrals and improve the accuracy. In particular, the difficulty arising from
large variations of the integrand near the axis, r =0, which in turn causes large loss of
resolution, can be overcome by inserting more quadrature points around r = 0.

One special class of quadratures we employed in NB98 was the Gauss—Kronrod quadra-
ture [32, 33]. The major difference between this quadrature and standard ones is its progres-
sive nature for the construction of the quadrature; i.e., one rule can be generated by adding
new points to another Gaussian rule. This progressive property is crucial for any adaptive
strategies. In this study, we use a 7- to 15-point, Gauss—Kronrod quadrature. We bisect the
integration intervals and estimate the error of the numerical integration over each interval
by measuring the difference between the 7-point Gauss quadrature and 15-point Kronrod
rule. A globally adaptive strategy is to bisect the interval with the largest error estimate until
the error is less than a prescribed tolerance. We used the freely available software package
Quadpack [34] to implement this strategy. The recursive formulae [35, p. 297] are used for
the evaluation of both F (k) and E (k).

Another strategy, which exploits the logarithmic behavior of the integrands in (29) and
(30), is also implemented using Clenshaw—Curtis quadrature [36, 37]. This method is based
on an expansion of the integrand in a series of Chebyshev polynomials. The method varies
the number of terms in the series to reach a specified level of accuracy, and thus is naturally

adaptive.
We approximate the closed surface by a set of boundary nodes along the contour in the
(r, 2) meridional plane, (ri, z) = (r (&), z(j)) fori =1, ..., N, where oj =inw /(N — 1).

We calculate ¢ and v at those points, denoted by ¢; and ;. Although the integrands in
(29) and (30) are continuous when « = «’, their derivatives are not. So we split the integrals
(29) and (30) into two parts: one integrated from 0 to «;, another one from ¢; to 7, with the
following form:

/ f(a, o/)do/—i—/ gi(a, &) In(a — ') do/—l—/ Q(a,a)In(e’ —a)da’. (34)
0 0 o

Next, we employ the Gauss—Kronrod rule on the first integral in (34), and modified
Clenshaw—Curtis rule on the second and third integrals in (34). For (r, z) that are not at
the collocation point «; during the integral evaluations, we approximate them through
interpolation using a quintic spline [38]. Consequently, the order of the accuracy for this
method is O(N—6).

Once ¢; and v are evaluated, their derivatives are obtained using fast Fourier transfor-
mation (FFT). Derivatives such as z,, r,, are also calculated using FFT. The evaluation of
Yo /r atr =0 is treated separately by computing ¥4y /f«.

It has been found that for two-dimensional free-surface flows with surface tension [9, 16],
using splines for numerical derivatives introduces numerical instability. However, this nume-
rical instability can be suppressed by filtering [16]. In all computations presented, we employ
a similar spectral Fourier filter,

e Co(kl/N)P fA(k), (35)

with a cutoff filter [39] which sets all Fourier coefficients below a filter level ¢+ to zero.
We typically chose cg =10, p=15, and €; = 10~*? unless otherwise specified. This filter
is implemented at every time step for z,r, and y; i.e., each Fourier coefficient of z,r, and
y is replaced by Eq. (35) and furthermore, all coefficients below €+ are set to zero.
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4. NUMERICAL RESULTS

We follow previous work [17, 40] using a sphere as the initial shape of vortex sheet
throughout this paper. The parameterization of the sphere surface is

r (e, 0)=sin(e) 2z(x,0)=-—cos(e) « € [0, n]. (36)
We first consider
u(a,0) = —cos(x) o € [0, 7] (37)

as the initial condition for the dipole strength, whose derivative is the vortex sheet strength
and y > 0 for r > 0. This initial condition corresponds to a uniform potential flow past a
solid sphere that is instantaneously dissolved at t = 0. The vortex sheet at the boundary of
the sphere is then allowed to evolve freely. For o =0 this initial condition was studied in
NB98, where it was shown that the vortex sheet develops curvature singularities around
time t = 1.09.

In Fig. 1, the profiles of the axisymmetric vortex sheet are shown at four different times for
o =0.04. The results are obtained using ¢, = 1072, N =513, and the time step At =1073.
€, denotes the tolerance requirement for the evaluation of various integrals, and N is the
total number of points representing the whole surface including the image forr < 0.

t=1.0 =
05 t=2.5
N
-3.5
£=4.0 t=4.85
2.5
N
-3.5
-2 2 -2 2
r r

FIG. 1. Evolution of an axisymmetric sheet for o = 0.04.
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FIG.2. Log-log plot of the maximum errors as functions of N for the spatial resolution study.

In the presence of surface tension, the evolution of the vortex sheet passes t =1.09 (the
singularity time for o = 0) and the top part of the sheet moves toward the lower part of the
sheet (see Fig. 1). Meanwhile the sheet develops two fingers (only those for r > 0) with one
moving toward r = 0 and the other toward the outer part of the sheet. The code stops when
two parts of the sheet collide around t = 4.85, and a singularity forms. In a subsequent work
[41], we will analyze the singularity behavior in detail.

We establish the accuracy in our computations through a resolution study. First, we
consider the influence of the number of collocation points N that represent the interface.
We use the maximal difference between the solution calculated using N = 1025 and the
solution calculated using smaller N as an estimate for the error. We plot the error for
N =65, 129, 257, 513 in Fig. 2. Here, the time step is At =1073. Since quintic interpo-
lation is used for the adaptive quadratures, the dominant error should be O(N~°) if the
errors in evaluating the integrals are small compared with all other errors (associated with
approximations of the interfaces, interpolations, and derivatives). In Fig. 2, we see almost
a straight line for the logarithm of the error at t = 2 as a function of N, which is consistent
with O(N~®) behavior. At the later time t =3, the log of the errors is no longer a straight
line. However, the error for larger N still shows O(N~) accuracy.

Next we consider the errors caused by the temporal discretization. Similar to the spa-
tial resolution study, we calculate the maximal difference between the solution computed
using At =0.001 and those using larger At. Here, we pick N =513. Since our time inte-
grator has an error of O(At?), we should obtain an improvement of accuracy of a factor
of 4 whenever At is halved. In Fig. 3, the errors are plotted as functions of time for
At =0.01, 0.005, 0.0025. Except at very early times, the errors uniformly decrease with a
factor of about 4 as At decreases to 0.0025. We note that the errors increase only slowly as
the shape of the sheet evolves significantly, which is in contrast to the behavior of the spatial
resolution. This indicates that at later times when the sheet deforms the overall resolution
of the method is dominated by the spatial resolution.

In Figs. 4 and 5, the mean curvature and vortex sheet strength y are plotted against « at
different times. The physical and computational parameters in these two figures are the same
as those in Fig. 1. In both figures, a = 0 corresponds to the bottom of the interface atr = 0.
In Fig. 4, at earlier times there are two positive peaks of the curvature, which correspond to
the tips of the two fingers moving toward r = 0. The two negative peaks correspond to the
fingers moving outward. At t =4.85, another two negative peaks in the curvature develop
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FIG.3. The maximum errors as functions of time for the temporal resolution study.

near the locations of the pinching on the outer sheet. For the vortex sheet strength att = 4.85
(Fig. 5), the first negative peak starting from o =0 corresponds to the pinching point on
the outer sheet, and the positive peak close to = corresponds to the pinching point on the
inside interface. This indicates an outward flux of fluid from the bottom of the sheet into
the bigger blobs on the top. As a result, the sheet forms a thin and long thread on the bottom
with two big blobs on the top.

We now reduce the surface tension to o = 0.01 and plot the corresponding evolution of the
sheet in Fig. 6. The calculation starts with N =513 and At =104, which are successively
refined up to N =2049 and At =10"° as time advances. As in the previous case, once

mean curvature
=
%
|
T
|

mean curvature

0.00 3.14 6.28 ©.00 3.14 6.28

FIG. 4. Mean curvatures vs « at different times for o =0.04.
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t=4.0
T

.00

3.14 6.28 0.99

3.

14 6.28
o

FIG.5. Vortex sheet strength y vs« at different timesfor o = 0.04.

t=1.1 t=1.5
5
.5
t=2.0 t=2.3
5
5
-2 -2 2
r r

FIG.6. Evolution of an axisymmetric sheet for o = 0.01.
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the sheet passes smoothly through the corresponding singularity time for o =0, part of
the interface becomes vertical, subsequently rolls up, and produces two fingers as seen at
t =1.5. However, these two fingers are much smaller than the previous ones. They grow in
length and the tips of fingers broaden and roll with the sheet. By t = 2.3, one of the fingers
approaches the tail of the other finger and forms a detached blob. The distance between
the interfaces is about 3—4 grid sizes at t =2.25 and about only 1-2 grid lengths at t = 2.3,
which suggests more accuracy may be needed to resolve the solution at these times. Small
wiggles (capillary waves) can also be seen.

We next compare the results with the analogous two-dimensional cases. The evolution
equations for two-dimensional flows are very similar to Egs. (1)-(7) except that (r, 2) is
replaced by (X, ¥), kmean DY &, and the normal velocity V,, by its two-dimensional counterpart
(HLS94). To avoid confusion between the two-dimensional case and the axisymmetric case,
we denote the surface tension coefficient for the two-dimensional case by t.

Figure 7 shows the evolution of a circle with u(«, 0) = —cos(«) and t =0.01 for the
two-dimensional case. Even though we do not present the interface at the exact same time for
both cases, it is clear that the two evolutions are very similar to each other qualitatively. As
seen in the close-ups of Figs. 6 and 7, there are small oscillations near the interaction region
which are due to the development of capillary waves (HLS97). However, the oscillations
are slightly more pronounced for the axisymmetric case as shown in Fig. 6.

Next we increase o to 0.1 for the axisymmetric case. For this case as seen in Fig. 8, the
sheet oscillates as it translates downward and the evolution of the sheet remains smooth.

t=1.1 t=1.7
2.5
>
-3.5
t=2.3 t=2.78
2.5
-
-3.5
-2 2 -2 2
X X

FIG.7. Evolution of a two-dimensional sheet for r = 0.01. Dotted line: the corresponding axisymmetric sheet
at pinch-off.
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=2 t=4 =6
0.9
-4.9
t=8 t=10 t=12
-1.8
-5.8
t=14 t=16 t=18
-4.0
-8.0

FIG. 8. Evolution of an axisymmetric sheet for o =0.1.

This oscillatory behavior of the sheet with large surface tension is also observed for a
periodic open sheet in two-dimensional flows (HLS97).

In Fig. 9, we summarize the results for different values of surface tension. For small
surface tensions the sheet self-intersects during roll-up. For medium-sized surface tensions,
the sheet pinches on its sides. For large surface tensions there is no pinch-off and the sheet
remains smooth. All pinch-offs occur away from the axis of symmetry.

In order to investigate further the effect of surface tension, we next consider a different
dipole strength (corresponding to a different vortex sheet strength)

u(a,0) = —cosRa) « € [0, 7] (38)

as the initial condition for the axisymmetric flow [23]. In this case, the initial vortex sheet
strength is of both positive and negative values for r > 0 in contrast to the case (37).

o= 0.01 o= 0.04 o=0.1

e

FIG. 9. A summary of the profiles of vortex sheets for different values of surface tension with w(«, 0) =
—Cos(a).
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FIG. 10. Evolution of an axisymmetric sheet for o =0.2 and p(«, 0) = —c0s(2w).

Figure 10 shows the evolution from a sphere with (38) as the initial condition for the
dipole strength for an axisymmetric flow with o = 0.2. The calculation starts with N =513
and At =5 x 10~* and is refined up to N =2049 and At =5 x 107> at t = 1.89. Because
of the initial vorticity arrangement, the sphere first elongates as the middle part of the sheet
(at z=0) moves toward r = 0. As the sheet self-approaches, it develops a neck region with
the middle point (z= 0) moving more slowly than its neighbors. Around t = 1.89, the sheet
pinches at r =0 and forms satellites.

InFigs. 11 and 12, the mean curvature and vortex sheet strength are plotted as functions of
« at different times. Att = 1.89, the distance between the sheet around pinching is slightly
larger than the corresponding one at t =4.85 in Fig. 1, in which the pinching occurs at
r > 0. However, the corresponding curvature and vortex sheet strength as seen in Figs. 11
and 12 (notice a different vertical scale att = 1.89) are much larger than those in Figs. 4 and
5. This is consistent with our observation that the case with pinch-off at r > 0 can be better
resolved numerically than pinch-off at r = 0. This additional numerical difficulty is mainly
caused by the presence of 1/r in the curvature. The large curvature present at pinch-off
near r = 0 introduces large variation in y and in the integrands near the axis of symmetry.
Consequently, the accurate evaluation of the integrals becomes increasingly difficult.

At t =1.89 (see Fig. 12), the first peak (counting from o =0) of y corresponds to the
location of pinch-off at z < 0 for the right part of the sheet. The formation of a concentrated
peak of positive circulation around the pinch-off indicates an outward flux of fluid to the
satellite drop. This peak also results in an acceleration of the sheet around the pinch-offs. On
the other hand, the nearly vanishing vortex sheet strength along the middle part of the sheet
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FIG.11. Mean curvature vs« at different timesfor o = 0.2 and u(a, 0) = —cos(2x).
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FIG. 12. Vortex sheet strength y vsa at different timesfor o =0.2 and u(«, 0) = —cos(2x).
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FIG. 13. Evolution of a two-dimensional sheet for r =0.2 and u(«, 0) = —cos(2«). Dotted line: the corre-
sponding axisymmetric sheet at pinch-off.

(the part between the two peaks with opposite signs) is responsible for its slower motion.
As a result the sheet around the pinching region accelerates to r =0 with the middle part
of the sheet left behind, and the formation of a satellite drop becomes inevitable.

The evolution for the analogous two-dimensional flow is shown in Fig. 13 (the same initial
condition with = 0.2). One of the striking features of the axisymmetric case in Fig. 10 is the
overturning of the sheet near the pinching region, i.e., z has multiple values for some fixed
r > 0, in contrast to the two-dimensional case shown in Fig. 13. In Fig. 14, close-ups of the
pinch-offs are plotted for both axisymmetric flows and two-dimensional flows, and the neck
distances for both cases are plotted as functions of time as well. Clearly, the axisymmetric
vortex sheet accelerates toward pinching more rapidly than its two-dimensional counterpart.
As a consequence, the satellite drop that forms in the axisymmetric flow is larger than its
two-dimensional counterpart. A detailed study of the pinching requires higher resolution and
is currently in progress [41]. Overturning associated with pinch-offs in various fluid flows
has been studied in [42—45]. In order to establish simple models for the local behavior of
solutions near pinch-off, a priori knowledge of the existence of overturning is necessary [42].

We notice that for the first initial vortex sheet strength (37) the axisymmetric and two-
dimensional pinch-offs have similar structures, as demonstrated in Figs. 6 and 7. However,
the pinch-offs in Figs. 10 and 13 are less like one another. It should be anticipated that
when a pinch-off occurs at r =0 (Fig. 10) or x =0 (Fig. 13) the flow dynamics near the
pinch-off region is very different between axisymmetric flows and two-dimensional flows.
It is observed that the self-induced velocity near the axis is larger in the axisymmetric case
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FIG. 14. Close-ups around the pinch-offs for the axisymmetric sheet with o = 0.2 and the two-dimensional
sheet with 7 = 0.2. The axisymmetric sheetsareplottedatt =1.88 +i x 0.001 fori =0, ..., 10; the two-dimen-
sional sheetsareplottedatt =1.66+1 x 0.02for 0=0, ..., 12; and the neck distances are plotted as functions
of time.
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FIG. 15. Evolution of an axisymmetric sheet for o = 0.04 and u(r, 0) = —cos(2x).
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FIG. 16. Evolution of an axisymmetric sheet for o =0.02 and u (e, 0) = —cos(2x).

than in the two-dimensional case, and as a result, stronger local jets develop and accelerate
the pinch-off. Consequently there is overturning in the axisymmetric case and not in the
two-dimensional case. The reason for the larger self-induced velocity in the axisymmetric
case is likely due to the filament curvature, which is large near the axis. Away from the
axis, the axisymmetric curvature is closer to the planar one and as a result, the self-induced
velocities as well as the shapes of the pinch-offs are more comparable.

t=0.5 t=1 t=1.5
2.9
-2.0

t=2 t=2.5 t=3.0
2.0
-2.0

FIG. 17. Evolution of an axisymmetric sheet for o =2 and u(«, 0) = —cos(2a).
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FIG. 18. A summary of the profiles of vortex sheets for different values of of surface tension with
n(a, 0) = —cos(2w).

Now we turn our attention back to study the effect of surface tension for axisymmetric
flows. We reduce o by a factor of 5 to o =0.04 with other parameters the same as those
in Fig. 10. Figure 15 shows a calculation for o =0.04 with a numerical resolution from
N =513and At =1 x 10~*to N =2049 and At =2 x 107°. At early times (up to around
t =2.25), the sheet develops internal roll-up structures that are similar to those observed
using (37) with a comparable surface tension. However, unlike Fig. 6 in which the roll-
up continues and results in pinching at r > 0, the sheet in Fig. 15 forms a thin jet which
causes the sheet pinch at r =0 first. During the evolution there is competition between
different types of pinch-offs: the two-dimensional pinch-offs (those occurring at r > 0) and
three-dimensional pinch-offs (atr = 0). For this case, the three-dimensional pinch-off wins.

We next reduce the surface tension by a factor of 2 to o = 0.02. As shown in Fig. 16, the
sheet self-intersects at r > 0. The sheet profile at t =0.75 in Fig. 16 is very similar to the
profile att = 0.5 in Fig. 15. However, for o = 0.02 the sheet develops much smaller fingers
afterward. The smaller roll-up structure, which is due to smaller surface tension, leads to
continuation of the roll-up and pinch-off at r > 0, in contrast to the previous case with the
larger surface tension o =0.04.

On the other hand, when the surface tension is sufficiently large, for example, o =2 (see
Fig. 17), the sheet remains smooth and oscillates similarly to what is shown in Fig. 8, which
uses the first initial vortex sheet strength (37).

In summary, we show the profiles of the sheet in Fig. 18 for different values of surface
tension strength when the initial vortex sheet strength (38) is used. For very large surface
tensions (o = 2), the sheet oscillates. For small surface tensions (o =0.02), the sheet de-
velops a rolled-up structure and self-intersects away from the axis of symmetry. Both cases
are similar to the dynamics of analogous two-dimensional flows. On the other hand, for
relatively large surface tensions (o = 0.2), the sheet necks down and pinch-off occurs at the
axis of symmetry, and an overturning of the interface is found. This is not observed for the
two-dimensional flows. For moderately sized surface tensions (o = 0.04), the sheet evolves
via a combination of spirals, necks, and pinch-offs.

5. CONCLUSIONS AND DISCUSSIONS

In order to simulate the evolution of free surfaces in axisymmetric flows, there are two
major computational challenges: (1) the accurate evaluation of the boundary integrals and (2)
the strong stability constraints associated with the presence of surface tension. By combining
adaptive quadratures with the small-scale decomposition technique, we have developed an
accurate and efficient computational method of computing the motion of vortex sheet with
surface tension in axisymmetric flows. In particular, using this method we have investigated
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the effect of surface tension on the evolution of vortex sheets in axisymmetric flows. As
shown in Figs. 9 and 18, which illustrate the solutions at pinch-off for different values of
surface tension, we observe that the interface may form either spirals or necks or may form
a combination of these structures at pinch-off.

We anticipate that similar computational methods can be developed for other free-surface
motions in axisymmetric flows, such as the motion of drops [28] or porous media flows
[30]. Also it would be interesting to compare different strategies for evaluating the boundary
integrals, such as [19, 30], for free-surface flows with or without surface tension.
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