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This paper is concerned with several eigenvalue problems in the linear stability
analysis of steady state morphogen gradients for several models of Drosophila
wing imaginal discs including one not previously considered. These problems
share several common difficulties including the following: (a) The steady state
solution which appears in the coefficients of the relevant differential equations
of the stability analysis is only known qualitatively and numerically. (b) Though
the governing differential equations are linear, the eigenvalue parameter appears
nonlinearly after reduction to a problem for one unknown. (c) The eigenvalues
are determined not only as solutions of a homogeneous boundary value problem
with homogeneous Dirichlet boundary conditions, but also by an alternative
auxiliary condition to one of the Dirichlet conditions allowed by a boundary
condition of the original problem. Regarding the stability of the steady state
morphogen gradients, we prove that the eigenvalues must all be positive and
hence the steady state morphogen gradients are asymptotically stable. The
other principal finding is a novel result pertaining to the smallest (positive)
eigenvalue that determines the slowest decay rate of transients and the time
needed to reach steady state. Here we prove that the smallest eigenvalue
does not come from the nonlinear Dirichlet eigenvalue problem but from the
complementary auxiliary condition requiring only to find the smallest zero
of a rational function. Keeping in mind that even the steady state solution
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needed for the stability analysis is only known numerically, not having to solve
the nonlinear Dirichlet eigenvalue problem is both an attractive theoretical
outcome and a significant computational simplification.

1. Introduction

Morphogens (also called ligands in some cases) are molecular substances
that bind to cell surface receptors and other molecules. The gradients of
different morphogen-receptor concentrations are known to be responsible
for the patterning of biological tissues during the developmental phase of
the biological host. For a number of morphogen families including Dpp
in the wing imaginal disc of Drosophila fruit flies, it is well established
that the concentration gradients are formed by morphogens transported from
a localized production site and bound to cell surface receptors downstream
(see [3], [4], [8], [16], and other references cited in [10]). Recently, the
mechanism of morphogen transport has been re-examined by both theoreticians
and experimentists, resulting in considerable uncertainty regarding the role
of diffusion in transporting morphogens and in other transport mechanisms
being suggested as replacements. The observations against diffusive transport
are summarized and addressed in [10] on the basis of the results from
a quantitative analysis of two mathematical models describing the known
morphogen activities in the wing imaginal disc of Drosophila fruit flies. Each of
these takes the form of a system of partial differential equations and auxiliary
conditions defining an initial-boundary value problem (IBVP). The first group
of results from this quantitative study reported in [10] shows that diffusive
models of morphogen transport can account for much of the data obtained
on biological systems including those that have been used to argue against
diffusive transport. When observations and data are correctly interpreted, they
not only fail to rule out diffusive transport, but actually favor it.

The mathematical underpinning of the case for diffusive transport of
morphogens made in [10] is provided in a two-part report. In the first part
[12], we focused on the morphogen activities in the extracellular space of the
Drosophila wing imaginal disc corresponding to the model designated as System
B in [10]. Specific results presented there include a necessary and sufficient
condition for the existence of nonnegative, monotone decreasing steady state
concentration gradients, the characterization of the shape of these gradients,
and their stability with respect to small perturbations. In the second part of the
report [11], we address the mathematical problems associated with a formulation
that explicitly accounts for the effects of endocytosis and receptor synthesis
and degradation in the intracellular compartments, designated as System C
in [10].
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One remarkable outcome of our analysis of System C shows that the
governing boundary value problem (BVP) for the steady state behavior of
this more realistic model (in the case of a uniform receptor synthesis rate)
may be reduced to the corresponding BVP for System B with the amplitude
parameter β and the shape parameter ψ for that basic system replaced by the
corresponding amplitude and shape parameters βω and ψω (see Sections 2
and 4 of this paper). The equivalence of the two steady state BVP implies
that we do not have to be concerned with internalization when investigating
additional biological processes impacting morphogen gradients in Drosophila
mentioned in [10], except for determining an effective degradation rate for
the extracellular formulation of the problem. There is also a similar formal
equivalence between the eigenvalue problem for the linear stability analysis of
the steady state behavior of System B and that of the more complex System
C. This equivalence allows us to establish asymptotic stability for the more
complex system by the same method used for System B in [12].

One principal result of this paper is the formulation and analysis of a
morphogen gradient system of intermediate complexity, designated as System
R. It allows for receptor synthesis and degradation but not endocytosis. With
the results in [11], such an extracellular model is now seen to be adequate
for the study of additional morphogen processes without the complication of
internalization. Not surprisingly, the analysis of the steady state behavior of
System R is again formally equivalent to those of Systems B and C. We note
here that the eigenvalue problems associated with the linear stability analysis
of these three systems have the following common features: (a) The steady
state solution, which occurs in the coefficients of the relevant differential
equations of the stability analysis is only known qualitatively and numerically.
(b) Though the governing differential equations are linear, the eigenvalue
parameter appears nonlinearly in the differential equations as well as in the
boundary conditions after reduction to a problem for a single unknown. (c)
The eigenvalues, already proved to be all positive, are determined not only as
solutions of a homogeneous BVP in differential equations with homogeneous
boundary conditions of the Dirichlet type, but also by an alternative auxiliary
condition (to one of the Dirichlet conditions) arising from the dynamics of
morphogen production at the source end of the solution domain. Nonlinear
eigenvalue problems of the kind described in Ref. [2] arise frequently in
applications (see [6] and [9]). But the three features mentioned above have
made the stability analysis less straightforward.

The most interesting feature in our problems, however, is a novel consequence
of the alternative auxiliary condition pertaining to the slowest decay rate
of transients. We prove that the smallest eigenvalue does not come from
the nonlinear Dirichlet eigenvalue problem but from the alternative auxiliary
condition requiring only the determination of the smallest zero of a rational
function. The development and proof of this theoretically important and
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computationally useful result will be given first for System B in Subsections
2.3 and 2.4. Some of the intermediate results for this system are known exactly
and explicitly, enabling us to focus on dealing with the main mathematical
difficulty. The more involved analysis of the analogous problem in Section 3
for System R is more typical for other systems with receptor synthesis and
degradation. The experience gained from the analysis of the simpler problem of
System B makes it possible to deal mainly with issues not already addressed in
the simpler system.

Only results for a one-dimensional version of these models will be analyzed
herein. The same models in two and three dimensions previously formulated in
[12] can be analyzed similarly as demonstrated in [12] and [11] for the various
results pertaining to the steady state behavior of the morphogen gradients.

2. Diffusion, reversible binding, and degradation

In [10], we focus on a Drosophila wing disc so that comparison can be made
with both the recent measurements of [3] and [16] and the conclusions based on
a “diffusion and receptor-binding” model considered by [8]. More specifically,
we simplified the development of the wing imaginal disc of a Drosophila
fly to a one-dimensional reaction-diffusion problem in which morphogen is
introduced at the rate v at one end, the border between the anterior and
posterior compartment of the disc, and absorbed at the other end, the edge of
one of these compartments. Let a(x , t) be the concentration of the diffusing
morphogen specie (Dpp) normalized by the fixed uniform concentration R0 of
cell receptors at a dimensionless distance x, a fraction of the distance Xmax

from the point source of morphogen production (at x = 0) to the edge of
the posterior chamber, and dimensionless time t, in units of X 2

max/DL where
DL is the diffusion coefficient. Let b(x , t) be the corresponding normalized
concentration of morphogens bound to cell receptors. The simplest model
of morphogen gradient formation developed and analyzed in [10] and [12]
(designated as System B in [10]) consists of the following dimensionless system
of nonlinear differential equations of the reaction-diffusion type governing the
rates of change of free and bound morphogens:

∂a

∂t
= ∂2a

∂x2
− h0a(1 − b) + f0b (0 < x < 1, t > 0), (1)

∂b

∂t
= h0a(1 − b) − ( f0 + g0)b (0 ≤ x ≤ 1, t > 0). (2)

In (1)–(2), the parameters h0, f 0, and g0 are the on-rate constant kon R0, off-rate
constant koff, and degradation rate constant kdeg normalized by X 2

max/DL. The
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nonlinear reaction-diffusion system (1) and (2) is augmented by the boundary
conditions

x = 0 :
∂a

∂t
= ν0 − h0a(1 − b) + f0b, x = 1 : a = 0 (3)

for t > 0 and the homogeneous initial conditions

t = 0 : a = b = 0 (0 ≤ x ≤ 1). (4)

(Note that a flux term may be included in the boundary condition at x = 0 but
numerical results obtained show that such an addition contributes only a small
perturbation for a sufficiently large shape parameter ψ .) In these relations, the
dimensionless per unit receptor concentration production rate ν0 is the actual
production rate per unit receptor concentration ν/R0 normalized by DL/X 2

max:

ν0 = ν/R0

DL/X 2
max

.

Our primary concern with System B is whether it can sustain stable steady
state morphogen concentration gradients and how the gradients depend on the
biological rate parameters. We summarize the known results for the steady-state
problem in the next subsection.

2.1. Time-independent steady state solution

We denote a time-independent steady-state solution of (1)–(3) by ā(x) and
b̄(x). For this steady state solution, we have ∂ ā/∂t = ∂ b̄/∂t = 0 so that these
equations and boundary conditions become

d 2ā

dx2
− h0ā(1 − b̄) + f0b̄ = 0 (0 < x < 1), (5)

h0ā(1 − b̄) − ( f0 + g0)b̄ = 0 (0 ≤ x ≤ 1), (6)

ν0 − h0ā(0)[1 − b̄(0)] + f0b̄(0) = 0, ā(1) = 0. (7)

We can use (6) to eliminate b̄ from all other relevant equations to obtain a
BVP for ā alone:

d 2ā

dx2
= g0ā

ā + α0
, ā(0) = ν0α0

g0 − ν0
, ā(1) = 0 (8)

with

b̄(x) = ā(x)

ā(x) + α0
, α0 = f0 + g0

h0
= Koff + Kdeg

Kon R0
. (9)
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Upon setting

β = ν0

g0
, β̄ = β

1 − β
, ψ ≡ µ2 = g0

α0
, ā = β̄α0 A, (10)

the BVP (8) for ā(x) may be written as

A′′ = ψ A

1 + β̄ A
, A(0) = 1, A(1) = 0, (11)

where (·)′ = d(·)/dx . It is evident from the development above that the
normalized steady state morphogen concentrations A = ā/(β̄α0) and b̄ depend
only on the two parameters β and ψ ≡ µ2. Moreover, the value of the
normalized ligand-receptor concentration at the source point x = 0 is simply β:

b̄(0) = ν0

g0
≡ β. (12)

In terms of the original biological parameters, we have

β ≡ ν0

g0
= ν

kdeg R0
, ψ ≡ g0

α0
= kdeg

kdeg + koff

x 2
max

DL
kon R0. (13)

Note that β = ν0/g0 characterizes the relative strength of the morphogen
production rate and the degradation rate, and ψ = h0g0/(g0 + f 0) charac-
terizes the relative strength of the effective morphogen-receptor binding rate
and morphogen diffusion rate. The following existence, uniqueness, and
monotonicity theorem for steady state morphogen concentrations was proved
in [12] by the monotonicity method [1, 14, 15]:

THEOREM 1. A unique pair of (time-independent) strictly decreasing steady
state solutions ā and b̄ for (5)–(7) exists in [0,1] if and only if g0 > ν0 (so that
β < 1).

The differential equation for A(x ; β, ψ) is second order and autonomous;
hence an exact solution is possible. However, this exact solution is in the form
of a quadrature with an unknown parameter in the integrand to be determined
by a boundary condition. It is neither informative nor computationally useful.
On the other hand, with β much less than unity, we may seek a parametric
series expansion of the steady state solution in powers of β(
β̄). The following
leading term perturbation solutions for ā and b̄ were obtained in [12]:

ā(x ; β, ψ) ∼ ν0

ψ

{
sinh(µ(1 − x))

sinh µ
+ O(β)

}
,

b̄(x ; β, ψ) ∼ β

{
sinh(µ(1 − x))

sinh µ
+ O(β)

}
. (14)
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Thus the effect of increasing ψ is to steepen the gradient of the concentrations
with the gradient becoming a boundary layer if µ � 1. On the other hand,
when β̄ � 1, we have as a leading term perturbation solution in 1/β̄

ā(x ; β, ψ) ∼ ν0

ψ(1 − β)

{
(1 − x) + O(1/β̄)

}
(15)

while b̄(x ; β, ψ) ∼ 1 except for a boundary layer correction adjacent to the
sink at x = 1.

2.2. Stability of the steady state solution

With the existence of a unique time-independent steady state ligand-receptor
concentration gradient with all the right properties established, we want to
know if it is stable. For a linear stability analysis, we consider perturbations
from the steady state solution in the form

a(x, τ ) = ā(x) + e−λτ â(x), b(x, τ ) = b̄(x) + e−λτ b̂(x) (16)

where the time-independent portion of the perturbations, â and b̂, are negligibly
small compared to the corresponding steady state solution. After linearization,
the two differential equations for a and b require that â and b̂ satisfy

−λâ = â′′ − h0(1 − b̄)â + ( f0 + h0ā)b̂, (17)

−λb̂ = h0(1 − b̄)â − ( f0 + g0 + h0ā)b̂. (18)

We solve (18) for b̂ in terms of â, making use of b̄ = ā/(ā + α0) and α0 =
( f 0 + g0)/h0 to get:

b̂ = − h0[1 − b̄(x)]

λ − [h0ā(x) + g0 + f0]
â

= − h0(g0 + f0)

[h0ā + f0 + g0][λ − (h0ā + g0 + f0)]
â. (19)

Upon substituting (19) into (17), we obtain

â′′ + [λ − q(x, λ)] â = 0, (20)

where

q(x, λ) = h0( f0 + g0)

h0ā + f0 + g0

λ − g0

λ − g0 − f0 − h0ā
. (21)

A corresponding development of the boundary conditions (3) leads to the
following two homogeneous boundary conditions for â(x):

K (λ)â(0) = 0, â(1) = 0 (22)
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where

K (λ) = λ − h0(1 − β)(λ − g0)

λ − [h0ā(0) + g0 + f0]

= λ − h0(1 − β)(λ − g0)

[λ − (1 + β̄)(g0 + f0)]
. (23)

The equation K (λ) = 0 has two solutions given by

λ = σ ±
√

σ 2 − 4h0g0(1 − β)3

2(1 − β)
(24)

= σ ±
√

σ̃ 2 + 4h0(1 − β)2(βg0 + f0)

2(1 − β)
≡

{
λ1

λ0

}
(25)

with

σ = f0 + g0 + h0(1 − β)2, σ̃ = f0 + g0 − h0(1 − β)2. (26)

Note that for either solution, we can always obtain a nontrivial solution of the
ODE (20) and the second boundary condition in (22) with the first boundary
condition trivially satisfied because we have K (λk) = 0, k = 0 or 1.

We see from (25) that the zeros are real and from (24) that they are positive.
We have also shown in [12] that the eigenvalues of the homogeneous boundary
value problem defined by the differential equation (20) and the homogeneous
Dirichlet boundary conditions

â(0) = 0, â(1) = 0 (27)

must also be positive. As the eigenvalues of (20) and (22) consist of those of
the eigenvalue problem (20) and (27) and the zeros of K (λ) = 0, we have the
following theorem:

THEOREM 2. The eigenvalue problem (20) and (22) has only positive
eigenvalues. Hence the unique steady state morphogen gradients, ā and b̄, are
asymptotically stable.

In addition to the zeros of K (λ) = 0 being positive, we can say more about
their locations. We see from (23) that K(λ) has only one singularity (a simple
pole) at

λ = (1 + β̄)(g0 + f0) ≡ λc (28)

with K (0) < 0 and K (λ) → ∞ as λ → λc. Hence, K(λ) has at least one real
(positive) zero in the interval 0 < λ < λc. In fact, the following stronger
statement can be made:
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LEMMA 1. K(λ) is a monotone increasing function of λ in 0 ≤ λ < λc and
hence has only one positive real zero in that interval given by (see (24)):

λ0 = σ −
√

σ 2 − 4h0g0(1 − β)3

2(1 − β)
. (29)

Proof : It suffices to calculate dK/dλ to obtain

dK

dλ
= 1 + h0( f0 + βg0)

[λ − (1 + β̄)( f0 + g0)]2
= 1 + h0(1 − β)2( f0 + βg0)

[( f0 + g0) − (1 − β)λ]2
,

which is positive for all λ in 0 ≤ λ < λc. As K(λ) changes sign in that interval,
it has one crossing, which is at the smaller root λ0 of the two zeros of K (λ) =
0 given in (29). �

2.3. The smallest eigenvalue of the Dirichlet eigenvalue problem

Although knowing the eigenvalues being positive is sufficient to ensure the
(linear) stability of the steady state morphogen concentration gradients, we
want to know the order of magnitude of the smallest eigenvalue. It would give
us some idea of how quickly the system returns to the steady state after a small
perturbation. As parametric studies require that we repeatedly compute the time
evolution of the concentration of both free and bound morphogens from their
initial conditions, the value of the smallest eigenvalue will also give us some
idea of the decay rate of the transient behavior and the time to steady state.

To find the smallest eigenvalue of (20) and (22), we need to compare the
smallest zero λ0 of K (λ) = 0 with the smallest eigenvalue λs of the Dirichlet
eigenvalue problem (20) and (27). We already have the former; but instead
of trying to determine the latter, our goal in fact is to show that λs > λ0

without actually obtaining λs explicitly. In this subsection, we will obtain some
preliminary results toward this final goal.

Let λ(>0) be an eigenvalue of (20) and (27) and â(x) the corresponding
eigenfunction. Upon multiplying ODE (20) for this eigen-pair by â(x) and
integrating by parts, we obtain the following Rayleigh quotient-like relation
for λ after observing the boundary conditions (27):

λ

∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx −

∫ 1

0

[
h0(λ − g0)

δB(x ; λ)

]
(â)2 dx, (30)

where

δB(x ; λ) = {1 + β̄ A(x)}{( f0 + g0)[1 + β̄ A(x)] − λ}. (31)

The following key result follows from (30) and the first mean value theorem
for integrals (see p. 107, [13]):
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LEMMA 2. There exists some ξ = ξ (λ) in (0,1) for which

λ

∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx −

[
h0(λ − g0)

δB(ξ ; λ)

] ∫ 1

0
(â)2 dx . (32)

Proof : The conclusion is a straightforward application of the first mean
value theorem for integrals on page 107 of [13] by taking in that theorem

α(x) =
∫ x

0
(â)2 dx, f (x) = δB(x ; λ). (33)

�

We now rewrite (32) as

K1(λ, Aλ)
∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx, (34)

where Aλ = A(ξ (λ)) and

K1(λ, η) = λ + h0(λ − g0)

{1 + β̄η}{( f0 + g0)(1 + β̄η) − λ} . (35)

The relation (34) is seen to be the Rayleigh quotient for K 1(λ, Aλ). With the
auxiliary conditions (27), it is well known (see [17]) that∫ 1

0 (â′)2 dx∫ 1
0 (â)2 dx

≥ π2. (36)

Therefore, we have:

LEMMA 3.

K1(λ, Aλ) ≥ π2 (37)

with K 1 = π2 only when â is a multiple of sin(πx).

In particular, we have K1(λs, Aλs ) ≥ π2 because the eigenfunction âλs

associated with the smallest eigenvalue λs of the Dirichlet eigenvalue problem
(20) and (27) is generally not proportional to sin(πx). It is possible to establish
a relation between λs and the smallest zero λ̃s of

K1(λ, Aλs ) = π2. (38)

This relation is a consequence of the following lemma:
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LEMMA 4. For every η ∈ [0, 1], K 1(λ, η) is a monotone increasing functions
of λ and therefore K 1(λ, η) = π2 has only one zero in [0, λπ (η)), where

λπ (η) = ( f0 + g0)(1 + β̄η) ≤ λc (39)

is the only singularity (a simple pole) of K 1(λ, η) and λc is the only singularity
(a simple pole) of K(λ) given in (28).

Proof : With η as a parameter, it is a straightforward calculation to find

dK1

dλ
= 1 + h0[ f0(1 + β̄η) + g0β̄η]

[1 + β̄η][λ − (1 + β̄η)( f0 + g0)]2
. (40)

As η is nonnegative, the right-hand side of the relation above is positive for λ

in the interval [0, λπ (η)). With K 1(0, η) < 0 and K 1(λ, η) → +∞ as λ →
λπ (η) for η ≥ 0, K 1(λ, η) has exactly one (positive) zero in the interval
0 ≤ λ < λπ (η) for η ≥ 0. At the same time, we have for η ≤ 1

λπ (η) ≤ ( f0 + g0)(1 + β̄) = λc;

the lemma follows. �

Lemma (4) assures us that λ̃s is the only zero of (38) in [0, λπ (Aλs )). It is
therefore also the smaller of the two zeros of (38) given that both zeros must be
positive and K1(λ, Aλs ) in [0, λπ (Aλs )) is a monotone increasing function of λ

for 0 ≤ λ < λπ (Aλs ). We then have the following useful inequality between λ̃s

and the smallest eigenvalue λs of the Dirichlet eigenvalue problem (20) and (27):

LEMMA 5. λ̃s ≤ λs .

Proof : There are two cases: (a) For λs ≥ λπ (Aλs ), the result follows from
λ̃s ≤ λπ (Aλs ). (b) For 0 < λs < λπ (Aλs ), it follows from (37) and the definition
of λ̃s that

K1(λs, Aλs ) ≥ π2 = K1(λ̃s, Aλs ). (41)

Since 0< λ̃s, λs ≤ λπ (Aλs ), the desired result is an immediate consequence of
(41) and Lemma (4) with η = Aλs . �

2.4. The decay rate of transients

We are ready to show λs > λ0, where λ0 is the smaller of the two zeros of
K (λ) = 0 as given in (29). This remarkable result is important both theoretically
and computationally. It will make it unnecessary to solve the Dirichlet eigen-
value problem (20) and (27).
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We first make the following observation:

LEMMA 6. The smaller zero of K 1(λ, η) = π2 is a decreasing function of
the parameter η provided that λ is in the interval [0, g0).

Proof : Differentiate both sides of (35) with respect to η to get{
1 + h0[( f0 + g0)β̄η + f0]

(1 + β̄η)[λπ (η) − λ]2

}
dλ

dη
= h0β̄(λ − g0)[2λπ (η) − λ]

(1 + β̄η)2[λπ (η) − λ]2
. (42)

The coefficient of dλ/dη on the left is positive for 0 ≤ λ < λπ (η). The right-
hand side of (42) is negative for all 0 ≤ λ < g0 < λπ (η). Hence, we have
dλ/dη < 0 for 0 ≤ λ < g0. �

THEOREM 3. λ0 < λs for every β ε [0, 1).

Proof : To establish the desired result, we consider the two cases π2 ≥ g0

and π2 < g0 separately.

Case (1) g0 ≤ π2: For this case the proof is reduced to showing (1a) λ0 <

g0, and (1b) g0 ≤ λs .
For (1a), λ0 < g0, we note

K (λ0) = 0 < K (g0) = K1(g0, Aλs ) = g0 ≤ π2 ≤ K1(λs, Aλs ), (43)

and 0 < g0 < λc (see (28)). With dK1/dλ > 0 in the interval 0 ≤ λ < λc (by
Lemma (4)) and 0 < λ0, g0 < λc, we have λ0 < g0 proving (1a).

For (1b), g0 ≤ λs , we need to consider two possibilities. If λs ≥ λπ (Aλs ),
we have the desired result because λπ (Aλs ) ≥ g0. If on the other hand
λs < λπ (Aλs ), the desired result follows from Lemma (4), the second half of
(43), and 0 < λ0, g0, <λπ (Aλs ).

Case (2) π2 < g0: For this case, the proof is reduced by Lemma (5) to
showing (2a) λ∗ > λ0, and (2b) λ∗ < λ̃s , where λ∗ is the smaller root of
K 1(λ∗, 1) = π2.

For (2a), λ∗ > λ0, we note K 1(λ∗, 1) = K (λ∗) so that λ∗ is also a root of
K (λ∗) = π2. Hence, we have K (λ0) = 0 < π2 = K (λ∗) and therewith λ0 < λ∗

by Lemma (1).
For (2b), λ∗ < λ̃s , we have from K1(λ̃s, Aλs ) = π2 < g0 = K1(g0, Aλs ) and

0 < λ̃s, g0 < λπ (Aλs ) the inequality λ̃s < g0 by Lemma (4). As λ̃s < g0 and
λ∗ < g0 (because π2 < g0), we have from Lemma (6) λs > λ̃s > λ∗ giving
(2b). �

Altogether, the results above indicate that the decay rate of perturbations
from steady state (or of any transient solution) of System B corresponds to the
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Table 1
Decay Rate of Transients for System B

v/R0 β β/(1 − β) t s λt λ0

2 × 10−5 0.10 1/9 34.7 0.19907 0.19947
5 × 10−5 0.25 1/3 34.9 0.19793 0.19816
10−4 0.50 1 35.8 0.19295 0.19194
1.5 × 10−4 0.75 3 40.7 0.16972 0.15896
1.8 × 10−4 0.90 9 103.3 0.06687 0.06798

smaller root λ0 of K (λ) = 0 given in (29); it is therefore not necessary to
solve the more difficult Dirichlet eigenvalue problem (20) and (27). Keeping
in mind that the steady state solution ā(x) can only be obtained numerically
[5] and ā(x) appears in the coefficients of the differential Equation (20), only a
numerical solution can be expected of the Dirichlet eigenvalue problem. Not
having to solve that eigenvalue problem numerically to determine the decay
rate of the transients is a huge simplification.

To illustrate the conclusion that the decay rate of transients and the time to
steady state are given by λ0, the smaller root of K (λ) = 0 (with K(λ) given in
(23)), we calculate λ0 from (29) for a range of β = (v/R0)/kdeg by varying the
morphogen production rate v/R0 while keeping all other parameters fixed (with
DL = 10−7 cm2/sec, X max = 0.01 cm, kdeg = 2 × 10−4/sec, koff = 10−6/sec,
and konR0 = 0.01/sec). The results are compared with the corresponding
estimates λt obtained from the time ts needed for the solution of the initial
boundary value problem defined by (1)–(4) to reach steady state. This time is
defined as the value t s of t, for which 1 − b(0, t)/β/� ε with λt = −lu(ε)/ts. In
Table 1, the comparison is given for five values of v/R0 with ε taken to be
10−3. Other cases have also been investigated with similarly good agreement
between λt and λs .

3. Receptor synthesis and degradation

The system (1)–(4) is understood to be a simplified model of the actual
morphogen activities in the biological host (such as the wing imaginal disc
of a Drosophila fruit fly). Among the simplifications made to arrive at this
model, designated as System B in [10], one feature is particularly difficult to
justify. The concentration of cell surface receptors, whether or not occupied
by morphogens, is taken to be fixed and uniform across the span of the
wing disc in this system. In reality, morphogen-receptor complexes in a wing
disc eventually degrade and the receptors involved are lost. Concurrently,
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new receptors are synthesized to replenish the receptor concentration possibly
resulting in a spatially nonuniform distribution of receptor concentration. In
this section, we will formulate a more realistic wing disc model that allows for
receptor degradation and synthesis explicitly and designate it as System R.
One principal result for this system is the successful reduction of the BVP
for the steady state behavior to one of the same form as the corresponding
BVP for System B. The reduction allows us to use simpler systems with
fixed receptor concentration (without receptor synthesis and degradation
analogous to System B) to investigate the effects of other morphogen activities
such as feedback mechanism and morphogens binding to nonreceptors (e.g.,
proteoglygans). In Subsection 3.5, we will establish for System R a result
on the decay rate of transients analogous to that of System B proved in
Subsection 2.4. More specifically, we will prove that it is also not necessary to
solve the nonlinear eigenvalue problem for the differential equations in the
linear stability analysis for the steady state solution of System R.

3.1. An extracellular formulation with receptor synthesis

Instead of the simple system (1)–(4), we will investigate here a more complex
system where receptor synthesis and degradation are accounted for explicitly.
Let r (x , t) be the unoccupied receptor concentration at the dimensionless
location x and dimensionless time t normalized by the uniform initial receptor
concentration R0. The binding term in the rate of change equation for both
free and bound morphogen concentrations now takes the form h0ar (instead of
h0a(1 − b)). In addition, there is now a third differential equation governing the
rate of change of the unoccupied receptor concentration r (x , t). In terms of the
normalized concentrations, we have the following system of three differential
equations:

∂a

∂t
= ∂2a

∂x2
− h0ar + f0b (0 < x < 1), (44)

∂b

∂t
= h0ar − ( f0 + g0)b,

∂r

∂t
= �0wr (x, t) − h0ar − grr + f0b (0 ≤ x ≤ 1) (45)

for t > 0 where wr(x , t) is the nonnegative receptor synthesis rate normalized
by its own maximum value, ωmax (so that wr(x , t) ≤ 1), gr is the receptor
degradation rate constant k ′

deg normalized by DL/X 2
max and

�0 = ωmax/R0

DL

/
X2

max

.
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The nonlinear reaction-diffusion system (44) and (45) is augmented by the
boundary conditions

x = 0 :
∂a

∂t
= ν0 − h0ar + f0b, x = 1 : a = 0 (46)

for t > 0 and the inhomogeneous initial conditions

t = 0: a = b = 0, r = r0(x), (0 ≤ x ≤ 1). (47)

For the existence of a time-independent steady-state behavior, the morphogen
production rate at the source end must be uniform in time as well (so that ν0 is
a constant) and the prescribed receptor synthesis rate must also be uniform in
time so that wr(x , t) = wr(x). (We will defer a discussion of feedback effects
on receptor synthesis to a future article.) Though it is not necessary to do so,
we will for simplicity limit ourselves to a uniform synthesis rate ωmax so that
wr(x) = 1. With the initial receptor concentration taken to be the steady state
receptor distribution prior to the onset of morphogen production, we have

R0 = ωmax

k ′
deg

= ωmax

gr DL

/
X2

max

(48)

so that �0 = gr.

3.2. Time-independent steady-state behavior

We seek a time-independent steady-state solution for the reaction-diffusion
system (44)–(46) by setting all time derivatives to zero to get

0 = ā′′ − h0ār̄ + f0b̄ (0 < x < 1) (49)

0 = h0ār̄ − ( f0 + g0)b̄, 0 = gr − h0ār̄ − gr r̄ + f0b̄ (0 ≤ x ≤ 1), (50)

where a prime indicates differentiation with respect to x and where we have
taken wr(x) = 1 in this article. The nonlinear system of ODE (49) and (50) is
augmented by the boundary conditions

x = 0: 0 = ν0 − h0ār̄ + f0b̄, x = 1: ā = 0 (51)

obtained from (46) by setting the time derivative to zero there.
Similar to the steady-state problem for System B, the two equations in (50)

may be solved for b̄ and r̄ in terms of ā to obtain

r̄ = αr

αr + ā
, b̄ = gr ā

g0(αr + ā)
, with αr = gr

g0
α0. (52)
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These expressions are used to eliminate r̄ and b̄ from (49) to get a second-order
ODE for ā:

ā′′ = gr ā

αr + ā
(0 < x < 1).

Similarly, upon elimination of r̄ and b̄ from (51), we obtain the following
boundary conditions for ā(x):

ā(0) = a0 ≡ αr β̄r , ā(1) = 0, (53a)

where

βr = ν0

gr
= g0

gr
β, β̄r ≡ βr

1 − βr
. (54)

Remarkably, the boundary value problem for ā(x) for the present more complex
system that accounts explicitly for receptor degradation and synthesis is
identical in form to the corresponding BVP for System B with the parameters
g0 and β in the simpler system replaced by gr and βr , respectively. Results
similar to those for the simpler system can therefore be obtained by the same
methods used for System B. We summarize the main results for the steady-state
concentrations in the following theorem and its corollary:

THEOREM 4. The condition βr < 1 is a necessary and sufficient condition
for the existence of unique steady state concentrations ā(x), r̄ (x), and b̄(x).

COROLLARY 1. The steady state concentration ā(x) does not attain a
maximum or minimum at an interior point of [0, 1] and hence monotone
decreasing from ā(0) = a0 to ā(1) = 0.

With βr = (g0/gr)β and generally g0/gr < 1, steady morphogen gradients
exist for a wide range of normalized production rate β, including β > 1, as
long as βr < 1 (see Table 2 at the end of subsection (3.6)).

Theorem (4) also holds for any time independent normalized nonnegative
receptor synthesis rate wr(x) which needs not be uniform in space. Corollary (1)
also holds for any positive spatially nonuniform wr(x).

Let

ā(x) = a0 A(x) = αr β̄r A(x). (55)

We can rewrite the BVP for ā(x) in terms of A(x):

A′′ = ψr A

1 + β̄r A
, A(0) = 1, A(1) = 0, (56)

where

ψr = gr

αr
≡ µ2

r = µ2 = ψ. (57)
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In the form of (56), a perturbation solution for A(x) may be obtained for
β̄r � 1 and (1 − βr ) � 1 similar to what was done in System B [12].

3.3. Linear stability

To investigate the stability of the steady-state solution obtained in the last
subsection, we consider small perturbations from steady state in the form

{a(x, t), b(x, t), r (x, t)} = {ā(x), b̄(x), r̄ (x)} + e−λt{â(x), b̂(x), r̂ (x)}. (58)

After linearization, the partial differential equations of System R become

−λâ = â′′ − h0(r̄ â + ār̂ ) + f0b̂, (59)

−λb̂ = h0(r̄ â + ār̂ ) − ( f0 + g0)b̂, (60)

−λr̂ = −h0(r̄ â + ār̂ ) − gr r̂ + f0b̂. (61)

The relations (60) and (61) are then solved for b̂ and r̂ in terms of â making
use of b̄ = gr ā/[g0(ā + αr )] to get

r̂ = h0(λ − g0)r̄ (x)â

(gr − λ)( f0 + g0 − λ) + h0ā(x)(g0 − λ)

= g0h0(λ − g0)â

(1 + β̄r A)[g0(gr − λ)( f0 + g0 − λ) + gr β̄r A( f0 + g0)(g0 − λ)]
, (62)

b̂ = h0(gr − λ)r̄ (x)â

(gr − λ)( f0 + g0 − λ) + h0ā(x)(g0 − λ)

= g0h0(gr − λ)â

(1 + β̄r A)[g0(gr − λ)( f0 + g0 − λ) + gr β̄r A( f0 + g0)(g0 − λ)]
. (63)

Upon using (63) and (62) to eliminate b̂ and r̂ from (59), we obtain

â′′ + [λ − qr (x ; λ)] â = 0, (64)

where

qr (x ; λ) ≡ Nr (x ; λ)

Dr (x ; λ)
= h0r̄ (x)(gr − λ)(g0 − λ)

(gr − λ)(g0 + f0 − λ) + h0ā(x)(g0 − λ)

= g0h0(g0 − λ)(gr − λ)

(1 + β̄r A)[g0(gr − λ)(g0 + f0 − λ) + gr β̄r A( f0 + g0)(g0 − λ)]
.

(65)

A corresponding elimination of b̂ and r̂ from the linearized boundary conditions

x = 0: − λâ = −(h0âr̄ + ār̂ ) + f0b̂, x = 1: ā = 0
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leads to the following two homogeneous boundary conditions for â(x):

Kr (λ)â(0) = 0, â(1) = 0, (66)

where

Kr (λ) = λ − Nr (0; λ)

Dr (0; λ)
= λ − h0r̄ (0)(gr − λ)(g0 − λ)

(gr − λ)(g0 + f0 − λ) + h0ā(0)(g0 − λ)

= λ − g0h0(g0 − λ)(gr − λ)

(1 + β̄r )[g0(gr − λ)(g0 + f0 − λ) + gr β̄r ( f0 + g0)(g0 − λ)]
.

(67)
The first condition in (66) requires that either

â(0) = 0, or Kr (λ) = 0. (68)

LEMMA 7. All three zeros of Kr(λ) = 0 are positive.

Proof : If λ is a complex zero, then so is its complex conjugate λ∗. Form
Kr(λ) − Kr(λ∗) to get

Kr (λ) − Kr (λ∗) = (λ − λ∗) − Nr (0; λ)Dr (0; λ∗) − Nr (0; λ∗)Dr (0; λ)

Dr (0; λ)Dr (0; λ∗)
(69)

= (λ − λ∗)

{
1 + F(λ, λ∗)

|D(0, λ)|2
}

= 0 (70)

where

F(λ, λ∗) = [ f0 + h0ā(0)][Re2(λ) + Im2(λ)] − 2Re(λ)[gr f0 + g0h0ā(0)]

+ [
g2

r f0 + g2
0h0ā(0)

]

= [Fr (λ)]2 − [gr f0 + g0h0ā(0)]2

f0 + h0ā(0)
+ [

g2
r f0 + g2

0h0ā(0)
]

+ [ f0 + h0ā(0)] Im2(λ)

= [Fr (λ)]2 + [ f0 + h0ā(0)] Im2(λ) + f0h0ā(0)[gr − g0]2

f0 + h0ā(0)
(71)

with

[Fr (λ)]2 =
[√

f0 + h0ā(0)Re(λ) − gr f0 + g0h0ā(0)√
f0 + h0ā(0)

]2

> 0. (72)

As F(λ, λ∗) > 0, the relation (70) requires λ − λ∗ = 0 so that λ must be real.
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Given Kr(0) < 0, λ = 0 is not a zero. Suppose λ is negative with λ =
−|λ| < 0. Then we have

Kr (−|λ|) = −
{
|λ| + h0r̄ (0)(|λ| + g0)(|λ| + gr )

(|λ| + gr )(g0 + f0 + |λ|) + h0ā(0)(|λ| + g0)

}
< 0.

Hence, the zeros of Kr(λ) = 0 must be positive. �

We next show that the eigenvalues of the homogeneous BVP defined by the
differential Equation (64) and the homogeneous Dirichlet boundary conditions

â(0) = 0, â(1) = 0 (73)

must also be positive.

LEMMA 8. All the eigenvalues of (64) and (73) are real.

Proof : Suppose λ is complex with eigenfunction aλ(x), then λ∗ is also an
eigenvalue with eigenfunction a∗

λ(x) where (·)∗ is the complex conjugate of (·).
The bilinear relation ∫ 1

0
[(a∗)a′′ − (a∗)′′a] dx = 0

requires ∫ 1

0

{
(λ − λ∗) − [

qr (x ; λ) − qr (x ; λ∗)
]}

(a∗a) dx = 0, (74)

where we have made use of the fact that Kr(λ) �= 0 for a complex λ (see
Lemma 7) so that the boundary conditions in (73) apply. It is straightforward
to verify qr(x ; λ) − qr(x ; λ∗) = −(λ − λ∗)�(x ; λλ∗) where

�(x ; λλ∗)

= g0h0
{
g0 f0([gr − Re(λ)]2 + [Im(λ)]2) + gr β̄r A(x)([g0 − Re(λ)]2 + [Im(λ)]2)

}
Dr (x ; λ)Dr (x ; λ∗)

is a positive real value function. In that case, the bilinear form (74) becomes

(λ − λ∗)
∫ 1

0
aa∗[1 + �(x ; λλ∗)] dx = 0. (75)

Since the integral is positive for any nontrivial function a(x ; λ), we must have
λ − λ∗ = 0. Hence, λ does not have an imaginary part. �

THEOREM 5. All eigenvalues of the eigenvalue problem (59)–(61) and (66)
are positive and the unique steady state concentration ā(x) is asymptotically
stable (and therefore so are b̄(x) and r̄ (x)).
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Proof : We already know that λ must be real and that the zeros of Kr(λ) =
0 are positive. Suppose λ ≤ 0 so that the boundary conditions (73) apply. Let
âλ(x) be a corresponding nontrivial eigenfunction of the homogeneous BVP
(64) and (73) for the eigenvalue λ. Multiply (64) by âλ and integrate over the
solution domain to get

∫ 1

0

{
âλâ′′

λ − qr (x ; λ)(âλ)2
}

dx = −λ

∫ 1

0
(âλ)2 dx .

After integration by parts and applying the homogeneous boundary conditions
(73), we obtain

λ

∫ 1

0
(âλ)2 dx =

∫ 1

0
(â′

λ)2 dx +
∫ 1

0
qr (x ; λ)(âλ)2 dx . (76)

With λ = −|λ| ≤ 0, we have

qr (x ; −|λ|)

= g0h0(g0 + |λ|)(gr + |λ|)
(1 + β̄r A)[g0(gr + |λ|)(g0 + f0 + |λ|) + β̄r Agr ( f0 + g0)(g0 + |λ|)] > 0.

For any nontrivial solution of the eigenvalue problem under the assumption
λ ≤ 0, the right-hand side of (76) is positive, which contradicts the assumption
λ = −|λ| ≤ 0. Hence the eigenvalues of the eigenvalue problem (64) and (73)
must be positive and the theorem is proved. �

3.4. The smallest eigenvalue of the Dirichlet eigenvalue problem

Similar to System B, we want to know the order of magnitude of the smallest
eigenvalue of (59)–(61) and (66). It would give us some idea of how quickly
any transients dies out. However, for System R, we do not have an explicit
solution for either the smallest zero of Kr(λ) or the smallest eigenvalue of
(64)–(66); hence relevant bounds are needed for both quantities. We consider
first the smallest zero for Kr(λ) by noting that this function has only two
singularities; both being simple poles at the two zeros of the denominator
of (67):

�1(λ) ≡ g0(gr − λ)(g0 + f0 − λ) + gr β̄r (g0 + f0)(g0 − λ) = 0. (77)

With �1(g0 + f 0) < 0 and �1(λ) → ∞ as λ → ∞, there is at least one root of
�1(λ) = 0 in the interval (g0 + f 0, ∞). Let λm be the smaller root of (77). We
have the following result on the location of this root:



Nonlinear Eigenvalue Problems 203

LEMMA 9.

(a) Let λm be the smaller of the two roots of (77), gm = min{g0, gr} and
gM = max{g0, gr}. The location of λm is given by

{
gm < λm < gM if gr < g0 + f0

g0 < λm < g0 + f0 if gr > g0 + f0.

(b) There is at least one zero of Kr(λ) = 0 in the interval 0 ≤ λ < gm < λm .

Proof :

(a) The proof is simply a matter of checking the signs of �1(g0), �1(gr), and
�1(g0 + f 0) for the two ranges of gr.

(b) As a consequence of part (a), we have Kr(λ) bounded in 0 ≤ λ < λm , and
Kr(λ) → ∞ as λ ↑ λm . The desired result follows from Kr(0) < 0 and
Kr(gm) = gm > 0. �

The following stronger statement can be made about the smallest zero λ0 of
Kr(λ) = 0:

LEMMA 10. Kr(λ) is a monotone increasing function of λ in 0 ≤ λ < λm ;
hence it has only one (and therefore the smallest) root λ0 in that interval.

Proof : It suffices to compute the derivative of Kr with respect to λ to obtain

dKr

dλ
= 1 + g0h0

{
gr β̄r (g0 + f0)(λ − g0)2 + g0 f0(λ − gr )2

}
(1 + β̄r )[�1(λ)]2

> 0. �

The smallest eigenvalue of the homogeneous BVP defined by the differential
Equation (64) and the homogeneous boundary conditions (66) is the smaller of
two positive numbers: the smallest zero λ0 of Kr(λ) = 0 and the smallest
eigenvalue λs of the nonlinear Dirichlet eigenvalue problem (64) and (73).
While we have from Lemma (10) some qualitative estimate of the location
of λ0 (but not an explicit solution as we did for System B), the solution of
the smallest eigenvalue of (64) and (73) can only be obtained by numerical
methods. Fortunately as in System B, it is not necessary to determine any of
the eigenvalues of (64) and (73) because, as we prove in the next subsection,
the eigenvalues of this Dirichlet eigenvalue problem must be greater than λ0.
As a first step toward this result, we will again obtain an explicit lower bound
for the minimum eigenvalue of (64) and (73).

Let λ(>0) be an eigenvalue of (64) and (73) and â(x) the corresponding
eigenfunction. Upon multiplying ODE (64) for this eigen-pair by â(x) and
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integrating by parts, we obtain the following Rayleigh quotient-like relation
for λ after observing the boundary conditions (73) which apply to â(x):

λ

∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx +

∫ 1

0
qr (x ; λ)(â)2 dx . (78)

The following key result follows from (78) and the first mean value theorem
for integrals (see p. 179, [13]):

LEMMA 11. There exists some ξ = ξ (λ) in (0,1) for which

λ

∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx + qr (ξ ; λ)

∫ 1

0
(â)2 dx . (79)

Proof : The proof is analogous to that for the corresponding lemma for
System B and will not be repeated here. �

We now rewrite (79) as

K1r (λ, Aλ)
∫ 1

0
(â)2 dx =

∫ 1

0
(â′)2 dx, (80)

where Aλ = A(ξ (λ)),

K1r (λ, η) = λ − g0h0(g0 − λ)(gr − λ)

(1 + β̄rη)�η(λ, η)
, (81)

and

�η(λ, η) = g0(gr − λ)(g0 + f0 − λ) + gr β̄rη( f0 + g0)(g0 − λ). (82)

The relation (80) is the Rayleigh quotient for K1r . With the auxiliary
conditions (73), it is well known that the minimum value of K1r is π2 attained
when â(x) is a multiple of sin(πx) [17] so that we have

K1r (λ, η) ≥ π2. (83)

The following observation on K1r (λ, η) will be useful later:

LEMMA 12. For any η ∈ [0, 1], let λπr (η) be the smaller of the only two
(positive simple pole) singularities of the K1r (λ, η). Then K1r (λ, η) is a
monotone increasing function of λ in 0 ≤ λ < λπr (η). Hence, K1r (λ, η) = π2

has only one zero in that interval.

Proof : Note that Kr(λ) = K1r (λ, 1) and we can compute dK1r/dλ to show
that it is positive for η ∈ [0, 1] as we did for Kr(λ). As K1r (0, η) < 0 and
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K1r (λ, η) ↑ ∞ as λ ↑ λπr (η) for η ∈ [0, 1], there is only one zero of K1r (λ, η) =
π2 in 0 < λ < λπr (η). �

Let λs denote the smallest eigenvalue of the Dirichlet eigenvalue problem (64)
and (73). By Lemma 12 and K1r (0, Aλs ) < 0, the equation

K1r (λ, Aλs ) = π2 (84)

has a unique zero, denoted by λ̃s , in the interval [0, λπr (Aλs )). The following
lemma on the relative magnitude of λ̃s and λs gives an approximate location
for λs useful in subsequent developments:

LEMMA 13. λ̃s ≤ λs .

Proof : With 0 < λ̃s < λπr (Aλs ), we have from (83)

K1r (λs, Aλs ) ≥ π2 = K1r (λ̃s, Aλs ). (85)

The results to be proved follows from Lemma 12 with η = Aλs ∈ [0, 1]. �

3.5. The decay rate of the transients

To show λs ≥ λ0, where λ0 is the smallest of the three zeros of Kr(λ) = 0, we
first make the following observation:

LEMMA 14. The smallest zero of K1r (λ, η) = π2 is a decreasing function of
the parameter η provided λ ∈ [0, gm) (with gm = min{g0, gr} as previously
defined).

Proof : Differentiate both sides of K1r (λ, η) = π2 with respect to η to get{
1 + h0g0ζ (λ, η)

(1 + β̄rη)[�(λ, η)]2

}
dλ

dη
= −g0h0β̄r (g0 − λ)(gr − λ)�(λ, η)

(1 + β̄η)2[�(λ, η)]2
, (86)

where �(λ, η) are as previously defined in (82),

�(λ, η) = g0(gr − λ)( f0 + g0 − λ) + gr ( f0 + g0)(g0 − λ)(1 + 2β̄rη). (87)

and

ζ (λ, η) = g0 f0(gr − λ)2 + gr β̄rη( f0 + g0)(g0 − λ)2.

As ζ (λ, η) > 0, the coefficient of dλ/dη on the left side of (86) is positive.
With λ < gm, the right-hand side of (86) is negative. �

THEOREM 6. For every βr ε [0, 1), we have λ0 < λs .
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Proof : We have for gm ≤ π2,

Kr (λ0) = 0 < gm = Kr (gm) = K1r (gm, Aλs ) ≤ π2 ≤ K1r (λs, Aλs ).

With λ0 < λm and dKr/dλ > 0 for λ < λm , it follows that gm > λ0. On the
other hand, with K1r (λ, Aλs ) monotone increasing in λ ∈ [0, λπr (Aλs )] and
gm < λπr (Aλs ), we have λs ≥ gm. Together, these two results imply

λs ≥ gm > λ0.

For gm > π2, let the smallest zero of Kr(λ) = π2 be denoted by λ∗
r so that

Kr(λ∗
r ) = π2. We first show 0 < λ∗

r , λ̃s < gm (in order for the relevant lemmas
to be applicable). But this follows from Kr(λ∗

r ) = π2 < gm = Kr(gm) and
K1r (λ̃s, Aλs ) = π2 < gm = K1r (gm, Aλs ). Note that

Kr 1
(
λ∗

r , 1
) = Kr

(
λ∗

r

) = π2 = K1r (λ̃s, Aλs ).

Therefore, we have by Lemma 14 λ̃s > λ∗
r . But Kr(λ) is a monotone increasing

function of λ; hence we have λ0 < λ∗
r and the desired result λ0 < λs follows

by Lemma 13. �

As a consequence of this main result, the decay rate of any small perturbation
from steady state (or of any transient solution) of System R is given by the
smallest zero λ0 of Kr(λ) = 0. It is not necessary to solve the more difficult
Dirichlet eigenvalue problem (64) and (73).

3.6. Approximate decay rates

For β̄r � 1, a leading term perturbation solution for λ0, denoted by λ̄0, is
determined by Cr (λ̄0) = 0 where Cr(·) is Kr(·) (as defined by (67)) with all
terms multiplied by β̄r omitted. This leaves us with the cubic polynomial:

Cr (λ̄0) ≡ g0(gr − λ̄0)
{
λ̄2

0 − ( f0 + g0 + h0)λ̄0 + g0h0
} = 0.

Thus, λ̄0 is the smaller of gr and the smaller root of the quadratic equation

λ̄2
0 − ( f0 + g0 + h0)λ̄0 + g0h0 = 0.

For

4g0h0

( f0 + g0 + h0)2
� 1

which is the case for useful biological gradients, we have

λ0 ∼ λ̄0 =
{

g0

1 + (g0 + f0)/h0
(g0 < gr )

gr (gr < g0).
(88)
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On the other hand, the first approximation of λ0 for β̄r � 1 is found to be
λ̃0(1 − βr )2 with

λ0 ∼ λ̃0(1 − βr )2 = g0h0

f0 + g0
(1 − βr )2. (89)

To illustrate the conclusion that the decay rate of transients and the time to
steady state are governed by λ0, the smallest root of Kr(λ) = 0 (see (67)), we
calculate λ0 for a few typical values of kdeg while keeping all other parameters
fixed (with D = 10−7 cm2/sec, X max = 0.01 cm, v/R0 = 8 × 10−5/sec, koff =
10−6/sec, k′

deg = 10−3/sec, and konR0 = 0.012/sec). The results are compared
with the corresponding estimates λt = −lu(ε)/ts obtained from the (normalized)
time ts required for the solution of the initial boundary value problem defined
by (44)–(47) to reach steady state. For our numerical solutions, this time is
defined as the first value t s of t for which 1 − b(0, t)/β � ε. In Table 2,
comparisons are shown for four values of kdeg in the biologically meaning
range g0 < gr < π2 with ε taken to be 10−3. The corresponding leading term
perturbation solutions given by (88) are also included to show the accuracy of
the asymptotic approximation.

We know from Lemma (9) that λ0 is necessarily less than g0 for these cases
(with g0 < gr). For βr � 1 and g0/h0 � 1 (which applies to for all four cases
in Table 2), λ0 is remarkably close to g0 = kdeg/(D/X 2

max) and accurately
predicted by (88).

Table 2
Decay Rate of Transients for System R

kdeg g0 β βr t s λt λ0 λ̃0

10−5 0.010 8.000 0.08 690.929 0.009998 0.009999 0.009991
3.3 × 10−5 0.033 2.424 0.08 209.436 0.032983 0.032997 0.032907
8 × 10−5 0.080 1.000 0.08 86.4464 0.079908 0.079993 0.079464
3.3 × 10−4 0.330 0.242 0.08 21.0305 0.328465 0.329969 0.321142

4. Endocytosis

In reality, the receptor synthesis and degradation of the (normalized)
morphogen-receptor complexes b(x , t) and unoccupied receptors r (x , t) take
place in the interior of the cell compartments. A mathematical model more
accurately accounting for this development would include the biological
process of internalization, an informal reference to the biological processes of
endocytosis and exocytosis. Such a model was formulated in [10] (designated
as System C therein) and analyzed in [11] to investigate the effect of
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internalization. For steady state behavior, we will be mainly interested in a
receptor synthesis rate independent of time so that ω(X , T ) = ω(X ) = ω0w(x)
and take ω0 = ω(X = 0) so that w(0) = 1. For System C, b(x , t) is designated
as the normalized morphogen-receptor concentration in the extracellular space
while a new quantity c(x , t) is the corresponding normalized concentration
inside the posterior chamber. Also, we have to distinguish the receptor
concentration outside and inside the cell compartment, denoted by d(x , t) and
e(x , t), respectively, replacing the single normalized receptor concentration
r (x , t). Our choice of reference receptor concentration R̄0 is the steady state
receptor concentration in the extracellular space in the absence of morphogens
and for ω(X ) = ω0 so that ω(X ) = 1. In that case, the initial-boundary value
problem (IBVP) for the various concentrations can now be formulated in the
following normalized form:

∂a

∂t
= ∂2a

∂x2
− h0ad + f0b, (90)

∂b

∂t
= h0ad − ( f0 + j0)b + k0c,

∂c

∂t
= j0b − (k0 + g0)c, (91)

∂d

∂t
= −h0ad + f0b − j1d + k1e,

∂e

∂t
= j1g1

k1
w − (k1 + g1)e + j1d (92)

all for t > 0, 0 ≤ x ≤ 1, except for the first equation, which holds for the open
interval 0 < x < 1. In the notation of [10], j0, k0, and g0 in these equations
are the in-, out-, and degradation rate constants, k in, kout, and kdeg, for the
bound morphogen, normalized by DL/X 2

max, j1, k1, and g1 are the in-, out-,
and degradation rate constants for the unoccupied receptors, kp, kq, and kg,
normalized by DL/X 2

max. Correspondingly, the boundary conditions become

x = 0:
∂a

∂t
= ν0 − h0ad + f0b (t > 0) (93)

x = 1: a = 0 (t > 0) (94)

and the initial conditions for ω(X ) = 1

t = 0 : a = b = c = 0, d = 1, e = j1/k1 (0 ≤ x ≤ 1). (95)

4.1. Time-independent solution

Our primary concern with this five-component system is the existence,
uniqueness, and monotonicity of a steady state concentrations ā(x), b̄(x), etc.
More specifically, we consider the case of a nonnegative, time-independent
receptor synthesis rate ω(x) and a positive morphogen production rate v and
investigate the condition(s) under which steady state concentration gradients
can be sustained and how the shape of the steady state gradients depends on
the biological parameters. For reasons similar to that for System R, the steady
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state problem can be reduced to a BVP identical in form to that for ā(x) in
Systems B and R (see [11]).

The reduction is accomplished by solving the four algebraic relations
obtained from setting in (91) and (92) the time derivatives of b̄, c̄, d̄, and ē to
zero and express these four quantities in terms of ā. The results are then used
to express the remaining relations in terms of ā(x) alone to get:

d 2 A

dx2
= ψωw(x)A

1 + β̄ω A
, with ā(x) ≡ ā0 A(x) = β̄ωαω A(x) (96)

A(0) = 1, A(1) = 0. (97)

with

gω = j1g1

k1 + g1
, αω = gω(k0 f0 + f0g0 + j0g0)

j0g0h0
,

ψω = gω

αω

= j0g0h0

j0g0 + f0g0 + k0 f0
, (98)

β̄ω = βω

1 − βω

, βω = ν0

gω

= v

R̄0kg,obs
, kg,obs = kp

kg + kq
kg (99)

because w(0) = 1. The four steady state concentrations are given in terms of
ā(x) by

b̄(x) = αb(x)ā(x)

ā(x) + αω

, c̄(x) = j0b̄(x)

k0 + g0
= αc(x)ā(x)

ā(x) + αω

, (100)

d̄(x) = ( j0g0 + f0g0 + f0k0)b̄(x)

(k0 + g0)h0ā(x)
= αωw(x)

ā(x) + αω

, (101)

ē(x) = 1

k1 + g1

{
j1g1

k1
w(x) + j1( j0g0 + f0g0 + f0k0)

(k0 + g0)h0ā(x)
b̄(x)

}

= j1g1w(x)

k1(k1 + g1)

{
1 + k1

g1

αω

ā(x) + αω

}
(102)

where

αb(x) = j1g1(k0 + g0)w(x)

j0g0(k1 + g1)
, αc(x) = j1g1w(x)

g0(k1 + g1)
. (103)

Compared to System B (or R) the only difference in the BVP for ā(x) is the
appearance of the parameters β̄ω and ψω instead of β̄ and ψ (or β̄r and ψr ).
As such, all the results for Systems B (and R) apply to this new system after
we make the appropriate changes in the parameters. Additional comments on
the similar form of the steady state BVP for Systems B and C can be found
in [11].
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4.2. Linear stability analysis of the steady state

A linear stability analysis similar to that for Systems B and R done in the
previous sections can be carried out. We will only record here the final form of
the relevant eigenvalue problem that determines linear stability:

â′′ + {λ − qω(x ; λ)}â = 0, (104)

κ(λ)â(0) = 0, â(1) = 0 (105)

where

qω(x ; λ) = ϕ0(λ)h0d̄(x)

δ(x ; λ)
, (106)

κ(λ) = λ − qω(0; λ) = λ − ϕ0(λ)
h0d̄(0)

δ(0; λ)

= λ − h0d̄(0)ϕ0(λ)

�21(λ)�20(λ) − �2a(λ)�1a(λ)h0ā(0)
.

(107)

with

ϕ0(λ) = [
λ2 − (g0 + j0 + k0)λ + j0g0

][
λ2 − (g1 + j1 + k1)λ + j1g1

]
, (108)

δ(x ; λ) = λ4 − δ3(x)λ3 + δ2(x)λ2 − δ1(x)λ + δ0(x)

≡ �4(λ) − �3(λ)h0ā(x)

≡ �21(λ)�20(λ) − �2a(λ)�1a(λ)h0ā(x), (109)

δ3(x) = h0ā(x) + (g1 + j1 + k1) + (g0 + f0 + k0 + j0) ≡ h0ā(x) + δ30,

(110)

δ2(x) = [(g0 + k0 + j0) + (g1 + k1)]h0ā(x)

+ (k1 + g1 + j1)(k0 + g0 + f0 + j0) + ( f0g0 + f0k0 + j0g0) + j1g1

≡ δ2ah0ā(x) + δ20, (111)

δ1(x) = [(g0 + k0 + j0)(g1 + k1) + j0g0]h0ā(x)

+ j1g1( f0 + g0 + j0 + k0) + ( f0g0 + f0k0 + j0g0)(g1 + j1 + k1)

≡ δ1ah0ā(x) + δ10, (112)
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δ0(x) = j0g0(g1 + k1)h0ā(x) + j1g1( f0k0 + j0g0 + f0g0)

≡ δ0ah0ā(x) + δ00. (113)

so that

�4(λ) = λ4 − δ30λ
3 + δ20λ

2 − δ10λ + δ00 = �21(λ)�20(λ), (114)

�3(λ) = λ3 − δ2aλ
2 + δ1aλ − δ0a = �2a(λ)�1a(λ), (115)

where

�21(λ) = λ2 − (g1 + j1 + k1)λ + j1g1, (116)

�20(λ) = λ2 − (g0 + j0 + k0 + f0)λ + ( f0g0 + f0k0 + j0g0), (117)

�2a(λ) = λ2 − (g0 + j0 + k0)λ + j0g0, �1a(λ) = λ − (g1 + k1). (118)

If λ is not a zero of κ(λ) = 0, the two boundary conditions in (105) reduce to
the homogeneous Dirichlet conditions

â(0) = 0, â(1) = 0. (119)

For the eigenvalue problem (104)–(105), we again have (see [11]) the
following results:

LEMMA 15. κ(λ) = 0 has only positive (real) zeros and all the eigenvalues
of (104) and (119) are positive.

THEOREM 7. The unique steady state concentration gradients ā, b̄, c̄, d̄, and
ē for System C are asymptotically stable.

4.3. The decay rate of the transients

As with Systems B and R, knowing the eigenvalues being positive is sufficient
to ensure the (linear) stability of the steady state morphogen concentration
gradients. But just as in the other systems, it is also important to know the
dependence of the eigenvalues on the biological parameters to gain more insight
to the time needed to get to steady state. By the techniques used for the two
simpler systems, we can also prove that the decay rate of transients for System
C comes from the eigenvalue corresponding to the smallest zero of κ(λ) = 0
(and not from the smallest eigenvalue of the eigenvalue problem defined by
(104) and (119)). It is seen from (107) that the eigenvalues associated with
κ(λ) = 0 correspond to the roots of the following fifth-degree polynomial:

λ[�21(λ)�20(λ) − h0αωβ̄ω�2a(λ)�1a(λ)] − h0(1 − βω)ϕ0(λ) = 0, (120)

where βω, gω, ϕ0(λ), and �mn(λ) are as previously defined in terms of the
various biological parameters and β̄ω = βω/(1 − βω). While there is no explicit
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solution for the roots of (120), a numerical solution of the five positive roots
of this fifth-degree polynomial for a given set of biological parameter values to
prescribed accuracy is straightforward. Perturbation solutions for these roots
for β̄ω � 1 and β̄ω � 1 are also similar to those for System B (see [11]).

For the intermediate range of β̄ω, we note that the normalized on-rate
constant h0 is typically large compared to all other normalized rate constants
for useful biological gradients (including those in Drosophila). For positive
β̄ω = O(1) so that

[h0(1 − βω)]2 � h0αωβω = β(k0 f0 + g0 f0 + j0g0)/j0,

a good first approximate solution for the smallest zero of κ(λ) = 0 is obtained
from the following first approximation of (120):

ϕ0(λ) = �2a(λ)�21(λ) ≈ 0 (121)

so that the decay rate of transients corresponds to the smaller root of �2a(λ) =
0 or �21(λ) = 0, whichever is smaller. In other words, except for terms of the
order [h0(1 − βω)]−2, we have

λ0 ∼ min
m ε(0,1)

1
2

{
(gm + jm + km) −

√
(gm + jm + km)2 − 4 jm gm

}
.

(122)

If in addition

(gi + ki + ji )
2 � 4gi ji (i = 0, 1), (123)

we have the following approximate expressions for λ0:

λ0 ≈ λ̄0 =
{

g0,eff = g0

1 + (g0 + k0)/j0
(if g0,eff < g1,eff)

g1,eff = g1

1 + (g1 + k1)/j1
(if g1,eff < g0,eff).

(124)

Instead of giving the proof of the main theorem regarding the decay rate of
transients using the method already implemented for System B and System R,
we compare in Table 3 λ0 (obtained numerically from (120), with the estimate
λN obtained from the time t s needed for the numerical solution of the IBVP
(91)–(95) to first satisfy the threshold condition 1 − b(0, t)/β/≤ ε (taken to be
10−3 for the calculations done in Table 3). Both will be presented as a fraction
of the approximate expression λ̄0 given above to show the adequacy of λ̄0 as a
good first approximation. For the numerical solutions reported, the following
set of biologically realistic parameter values was used throughout:

DL = 10−7cm2/sec−1, Xmax = 0.01 cm, kon R̄0 = 0.012/sec−1,

koff = 10−6/sec−1, kout = 6.7 × 10−5/sec−1, kg = 10−3/sec−1,

kq = 5 × 10−5/sec−1.
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Table 3
Decay Rate for Transients for System C

kp/sec kin/sec kdeg/sec kdeg/kg βω λ0/λ̄0 λN/λ̄0

6 × 10−4 6 × 10−4 10−5 0.01 0.14 1.0134 1.0133
6 × 10−4 6 × 10−4 3.3 × 10−5 0.033 0.14 1.044 1.043
2 × 10−4 2 × 10−4 3.3 × 10−5 0.033 0.42 1.087 1.084
2 × 10−5 2 × 10−5 3.3 × 10−4 0.330 0.53 1.041(a) 1.039(a)

2 × 10−4 2 × 10−5 3.3 × 10−4 0.330 0.42 1.041 1.040
(a)v/R̄0 = 10−5/sec.

The normalized morphogen production rate parameter v/R̄0 is taken to be
8 × 10−5/sec−1 except for one case. As indicated in Table 3, we reduce the
magnitude of ν/R0 for that case to keep βω < 1 to ensure the existence of a steady
state solution. In the cases reported in Table 3 and other cases investigated, the
difference between λ0 and λN is much less than 1%. Given that the five sets of
parameter values in Table 3 all satisfy the relation 4gi ji/(gi + ki + j i)2 <

10%, it is not surprising that percentage error incurred by the approximation
λ̄0 is within the same range in all cases.

5. Conclusion

The two principal objectives of the present paper are to formulate and analyze
System R, an extracellular model for Drosophila wing discs that allows for
receptor synthesis and degradation, and to determine the slowest decay rate of
transients for the free and bound Dpp gradients in three Drosophila systems
(B, R, and C) of increasing complexity. For the decay rate problem, the
usual linearization of the governing partial differential equations with respect
to small perturbations from the steady state gradients led to linear system
of differential equations, which can be further reduced to one second-order
ordinary-differential equation for a single unknown in which the decay rate
parameter λ appears nonlinearly. A similar linearization of the boundary
conditions led to two homogeneous Dirichlet boundary conditions as one
possible augmentation of the differential equation to form a conventional
nonlinear eigenvalue problem. Nonlinear eigenvalue problems have occurred
previously in many applications in science and engineering (see [6] for the
earlier efforts in this area). They continue to be an important area of current
research, e.g., [9].

In the present stability analyses for the different Drosophila wing disc models,
the dynamic morphogen production condition at the source end offers an
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alternative for one of the two augmenting conditions for the governing ODE of
the stability problem. This alternative auxiliary condition provides an additional
source for possible decay rates. Therefore, the eigenvalue problem has two sets
of eigenvalues: those of the conventional homogeneous ODE with homogeneous
Dirichlet boundary conditions and those from an auxiliary condition κ(λ) = 0
where κ(λ) is rational function. The former requires numerical solutions of a
conventional nonlinear eigenvalue problem in differential equations while the
latter involves only finding the zeros of a rational function. It is proved in this
paper that the (slowest) decay rate of transients corresponds to the smallest
zero of κ(λ) = 0 thereby completing the developments in [11,12].

This remarkable result on the slowest decay rate is important both theoretically
and computationally. Keeping in mind that even the steady state solutions needed
for the stability analysis of the different models are known only numerically,
not having to solve the nonlinear Dirichlet eigenvalue problem is both an
attractive theoretical outcome and a significant computational simplification.
The techniques for deducing this result will be useful for other linear or
nonlinear eigenvalue problems. They certainly apply to stability problems for
other Drosophila models similar to Systems B, R, and C for investigating
the effects of inhibitors, nonreceptors, such as the HSGP family, ablation of
receptors in small clones cells, and feedbacks as outlined in [10] (see also [7]).
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