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Abstract

The equilibrium shapes of misfitting precipitates in elastically anisotropic systems are obtained in both two and three dimensions,

and the corresponding Gibbs–Thomson equation is derived as a function of the characteristic ratio between elastic and interfacial

energies, L 0. The effect of elastic inhomogeneity is investigated systematically. For soft or moderately hard particles, the stable equi-

librium shape bifurcates from a fourfold symmetric shape to a twofold symmetric one in 2D and from a cubic symmetric shape to a

plate-like one in 3D. For a very hard particle, the shape bifurcation is not observed in 2D for the range of L 0 investigated, but both

plate-like and rod-like shapes are found in 3D. The computed Gibbs–Thomson equation is well approximated by a piecewise linear

function of L 0. Predictions are made for coarsening of many-particle systems based on an established mean-field theory. The results

predict that the elastic stress has no effect on coarsening kinetics where most particles are highly symmetric (fourfold in 2D and cubic

in 3D), and the exponent remains 1/3 but the rate constant increases if stress is sufficient to induce symmetry-breaking bifurcation on

most particles.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Microstructural evolution during processing and

operation plays a critical role in the macroscopic prop-

erties of many technologically important materials. In

many multiphase materials, the microstructure consists

of second-phase particles embedded in a matrix. The

equilibrium morphology of a particle in an infinite ma-
trix helps us understand the factors controlling the

morphologies observed in microstructures where many

particles are present.
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Equilibrium shapes of stress-free particles embedded

in another homogeneous phase is well understood. Here,

the particle shapes are determined solely by the interfa-

cial energy and have been examined in various litera-

tures including [1–5]. A particle assumes the Wulff

shape, which may be obtained through a simple geomet-

ric construction that minimizes the total surface energy

of a particle with fixed volume. On the other hand, when
elastic stress is present, the construction of an equilib-

rium shape is a complex task, involving the minimiza-

tion of the sum of the interfacial and elastic energies.

The resulting equilibrium shapes are often not simple

geometric shapes (like a sphere or spheroid), and thus

obtaining such shapes relies on numerical approaches.

In addition, while the equilibrium shape of a stress-free
ll rights reserved.
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particle is independent of the particle size, this is not the

case when misfit stress is present (as in solid two-phase

coherent alloys). Since the relative importance of elastic

energy to interfacial energy increases with particle size,

the equilibrium shape must be determined as a function

of the particle size, or alternatively, of the relative
importance of these two energies.

We here consider elastically anisotropic systems sim-

ilar to those used in high temperature alloys since many

materials possess anisotropic elastic properties reflecting

their crystallographic structure. In two dimensions,

Thompson et al. [6] studied the equilibrium shapes of

misfitting second-phase particles for elastically homoge-

neous, cubic systems. To characterize the relative impor-
tance of elastic energy compared to interfacial energy,

they used the parameter L ” e2C44l/r introduced in [7],

where e is the magnitude of the misfit strain, which is as-

sumed to be dilatational and independent of composi-

tion, C44 is an elastic constant for the solid (assumed

equal in the matrix and the precipitate phases), in which

there are three independent components for a cubic sys-

tem, and r is the constant surface energy per unit length.
The characteristic length l is determined by the equiva-

lent radius of the precipitate, r = (A/p)1/2, where A is

the area of the particle. Note that the parameter L does

not reflect the elastic inhomogeneity, thus, in Section 2,

we introduce a new parameter L 0 for inhomogeneous

systems. Thompson et al. [6] found that the equilibrium

shape changes from a circle (of stress-free particle) to a

fourfold symmetric shape, approximately square with
rounded corners, as L increases, and at a critical value

of L, Lc, the particle shape bifurcates to a twofold sym-

metric shape elongated along the elastically soft

directions.

Inhomogeneity in elastic properties (i.e., the elastic

constants are different in the matrix and the particles)

introduces further complications. Both the equilibrium

shapes and the critical value of L at which the bifurca-
tion occurs depend on elastic inhomogeneity [8–11].

When elastic homogeneity is assumed in 2D, there exists

a Green�s function which allows the displacement field

to be calculated via integration along the interface [6].

When the elastic constants are different, two coupled

integral equations corresponding to the elastic equations

must be solved for the displacement and traction fields

even though there exist explicit expressions for Green�s
functions. Jou et al. [8], Schmidt et al. [9,10], and Leo

et al. [11] have examined elastically inhomogeneous sys-

tems using the boundary integral method in 2D.

In three dimensions, there have been analytical stud-

ies examining energy-minimizing shapes restricting the

shapes to a certain type [12–14]. These results will not

give true equilibrium shapes for which the chemical

potential on the surface is constant. Nevertheless, John-
son and Cahn [15] were able to show that particle shape

bifurcations are possible and determined analytically the
structure of the bifurcation within the class of spheroi-

dal shapes.

Recently, numerical studies have been conducted

imposing no restrictions on the shape of the particles.

Application of boundary integral method becomes even

more challenging for three-dimensional anisotropic elas-
ticity. The Green�s function must be evaluated numeri-

cally since explicit expressions of the Green�s function

are not available. Thompson and Voorhees [16] have

studied the equilibrium shapes in 3D with homogene-

ous, cubic elasticity by energy minimization. Using a

configurational force, Mueller and Gross [17–19] have

calculated 3D equilibrium shapes for inhomogeneous

systems. The equilibrium shapes of periodically ar-
ranged particles have been computed using a boundary

integral method by Mueller and coworkers [20] and Eck-

ert et al. [21] and using a phase-field method by Zhu

et al. as well [22]. Li et al. [23] examined both the equi-

librium shape and the dynamics of the morphological

evolution of a precipitate in an elastically anisotropic,

inhomogeneous medium. Using a boundary element

method, along with the adaptive surface mesh algorithm
developed by Cristini et al. [24], they found an equilib-

rium shape of tetragonal symmetry for a Ni3Al precipi-

tate in a nickel matrix in the absence of external loading.

In all of these studies, the focus was on the equilib-

rium shapes or the dynamics, and not on the interfacial

concentration when a equilibrium shape is attained. The

interfacial concentration of an equilibrium shape is con-

stant along the interface, and thus it is a single value for
the equilibrium. For a stress-free system with isotropic

interfacial energy, a sphere is the equilibrium shape,

and the interfacial concentration is a sole function of

the radius of the sphere for a given interfacial energy.

The equation that provides the interfacial concentration

(for example, as a function of the interfacial curvature

or the radius of the particle) is called the Gibbs–

Thomson equation. The significance of the Gibbs–
Thomson equation lies in that it provides the boundary

condition at the interface for a solution to the diffusion

equation in the sharp interface description of both single

and multiple particle systems [25]. Thus, it is often used

to understand growth and coarsening in multiphase sys-

tems. In particular, in stress-free systems the Gibbs–

Thomson equation takes a very simple form, C(R) � 1/

R, where C and R are the dimensional concentration
and the dimensional particle radius, respectively. Such

an equation is used to study coarsening kinetics of sec-

ond-phase particles, and, when combined with the stea-

dy state diffusion equation and mass conservation, yields

the well-known t1/3 power-law for the average particle

size.

In a system where stress is important, the Gibbs–

Thomson equation becomes very complex since the
equilibrium particle shape is not given by a simple geo-

metric shape; the interfacial concentration is therefore
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obtained numerically. In addition, a priori, we do not

know if elastic interactions may have a significant effect

on the coarsening since it depends not only on the vol-

ume fraction but also on the elastic constants of the

two phases and the microstructure. Thus, for a two-di-

mensional, elastically homogeneous system, Thornton
et al. [26–28] performed a large-scale simulation of the

coarsening process using boundary integral methods.

They examined the temporal evolution of the average

circularly equivalent radius ÆRæ and found that,

ÆRæ3 = Kt, where K is the rate constant, just as in the ab-

sence of stress. Moreover, when the particles are small

enough such that the particles are fourfold symmetric,

the rate constant K is equal to that in the absence of
stress. Thus, when the particle is fourfold symmetric,

elastic stress has no effect on the rate of coarsening when

ÆRæ is used to characterize the length scale in the coars-
ening process. Furthermore, when the majority of the
particles become large enough such that most particles
have undergone a shape bifurcation to twofold symmet-
ric shapes, the temporal exponent remains 1/3, but the
rate constant K increases. The two regimes are bridged
by a smooth crossover where fourfold and twofold sym-
metric particles both have significant presence. They
identified the source of the increase in K as a change
in the equilibrium interface concentrations accompany-
ing the change in morphology from fourfold to twofold
shapes [26,28]. In particular, they found that the equilib-
rium concentration of an isolated particle can be de-
scribed as

C ¼ Ca
1 1þ a

lc
R
þ b

lce2C44

r

� �
; ð1Þ

where Ca
1 is the equilibrium concentration at a planar

interface in the matrix phase in a stress-free system, lc
is the capillary length in the absence of stress, and a

and b are constants that depend on the elastic constants
(a = 1 and e = 0 recovers the Gibbs–Thomson equation

for a stress-free circular particle). Thus, the elastic stress

changes the driving force for coarsening by the factor, a.

The Gibbs–Thomson equation is a function only of the

symmetry of the equilibrium particle shape, not the ac-

tual shape of the particle at a given L. Using this insight,

the analytical theory of Marqusee [29] on the coarsening

process for stress-free systems was extended to include
elastic effects. The theory, which is consistent with the

numerical simulations, predicts that

hRi3 ¼ aDAmf ð/ÞlcCa
1t; ð2Þ

where D is the diffusion coefficient, Am is the molar area

(in 2D) or volume (in 3D), and f(/) gives the dependence
of the coarsening rate on volume fraction in the absence

of stress. The effects of elastic stress are contained in the

coefficient a appearing in the stress-modified Gibbs–

Thomson equation, Eq. (1). For a fourfold symmetric

particle of equilibrium shape, a = 1, whereas for a two-
fold symmetric particle a > 1, with the exact value

depending on the elastic properties of the system [28].

Thus, if most of the particles are fourfold symmetric,

the coarsening rate will be exactly the same as that in

the absence of stress, and when most of the particles

are twofold symmetric the coarsening rate will be higher,
assuming that elastic interactions do not bias coarsen-

ing. A similar theory can be developed for a three-

dimensional system based on the mean-field theory of

Marqusee and Ross [30], resulting in the same

conclusion.

In this work, we will obtain the concentration on an

isolated precipitate interface at equilibrium state for a

wide range of materials, both elastically homogeneous
and inhomogeneous, in two and three dimensions, and

discuss its implications on the prediction of the coarsen-

ing kinetics without performing large scale simulations.

The paper is organized as follows. In Section 2, we

state the problem, the governing equations, and the

solution procedure. In Section 3, we present the numer-

ical results, including the equilibrium shapes for two-

and three-dimensional isolated precipitate in an infinite
matrix and the Gibbs–Thomson relation as a function

of L 0, and we examine the effect of elastic inhomogene-

ity. In Section 4, we compare the results from two-

dimensional and three-dimensional systems, discuss the

significance of the elastic interactions among particles

and summarize our findings.
2. Governing equations

We investigate the equilibrium states of an isolated

precipitate in an infinite matrix. The two phases are sep-

arated by a closed sharp interface (the Gibbs dividing

surface) S. Equilibrium is reached through the diffu-

sional flow of mass in the bulk, governed by Laplace�s
equation, $2c = 0, and the boundary condition is given
by the generalized Gibbs–Thomson relation

c ¼ jþ L0gel on S; ð3Þ
where c is the dimensionless concentration, j is the cur-

vature (in 2D) or the sum of the principle curvatures (in
3D) of the interface, and gel is the dimensionless elastic

energy density. To characterize the ratio of elastic en-

ergy and surface energy of an elastically inhomogeneous

system, we introduce a new dimensionless parameter L 0

defined by

L0 � gel l
r

; ð4Þ

where gel is a characteristic dimensional strain energy

density. For a homogeneous system, gel is chosen to be

CM
44e

2 as in [7], making L 0 identical to L defined earlier,

where CM
44 denotes the elastic constant C44 in the matrix.

In an inhomogeneous system, however, the original
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nondimensional parameter L from [7] does not take into

account changes in the elastic energy due to inhomoge-

neity. Thus, inhomogeneous systems that have the same

value of L may in fact have different ratios of elastic to

surface energies which can lead to significantly different

microstructure morphologies. Here, L 0 is introduced to
scale out this effect of inhomogeneity. In particular, gel

is taken to depend on the elastic constants of both

phases such that L 0 reflects more accurately ratio of elas-

tic to surface energies in an inhomogeneous system. This

is accomplished as follows. Since elastic energy depends

on size and particle morphology, gel is defined as CM
44e

2

multiplied by the ratio of the elastic energies of the inho-

mogeneous system and the corresponding homogeneous
system for a circular (in 2D) or spherical (in 3D) precip-

itate of unit radius embedded in an infinite matrix. Thus,

the ratios of the elastic and the surface energies We/Ws

are identical for the same value of the new parameter,

L 0, regardless of the inhomogeneity of systems contain-

ing a circular or spherical particle of unit radius.

Although the particles we consider in this work are gen-

erally not circular or spherical, we find that this scaling
nevertheless enables us to examine the effect of inhomo-

geneity for nearly fixed elastic to surface energy ratios.

Finally, as will be discussed later in Section 3, for a spe-

cial class of inhomogeneous systems, an explicit expres-

sion of gel can be obtained.

The non-dimensionalization of the variables follows

[31,32] except that the stress is scaled by

gel=e instead of CM
44e. Note, in three dimensions, the

characteristic length l is determined by the spherically

equivalent radius R = (V/(4p/3))1/3, where V is the vol-

ume of the precipitate. The energy density gel is ex-

pressed in terms of the scaled strain and dimensionless

stress tensors, e and r, respectively, on both sides of

the coherent interface

gel ¼ 1
2
rP � eP � eT

� �
� rM � eM

� �
þ rM � eM � eP

� �
on S;

ð5Þ

where we denote the variables defined in the matrix or in

the precipitate by the superscript M or P, respectively.

The motion of the interface is governed by the flux

balance vn ¼ ½½oc
on�� where vn is the magnitude of the nor-

mal velocity of the precipitate–matrix interface,

[[ f ]] ” fjS+ � fjS� denotes the jump of a quantity f from
the precipitate side to the matrix side of the interface,

n is the coordinate along the normal of the interface

pointing into the particle, and we have assumed that

the diffusion coefficients in the matrix and particle

phases are identical. The far-field condition for the diffu-

sion problem reflects zero mass flux into the system,

�SvndA = 0.

From Eq. (5), one realizes that obtaining gel requires
solving the elasticity equation $ Æ r = 0 both in XP, the

domain occupied by the precipitate, and in the matrix,
XM. The interface between the two phases S is taken

to be coherent and the elastic stress exists due to the

presence of mismatch in lattice spacing between the

two different phases. The misfit strain is assumed purely

dilatational, eT = I, where I is the identity matrix.

The total energy of the system, Wtot, is the sum of the
surface energy, Ws, and the elastic energy, We, where

W s ¼
Z
S
dA;

W e ¼
L0

2

Z
XP

rP � eP � eT
� �

dV þ
Z
XM

rM � eM dV
� �

: ð6Þ

Here, we briefly describe the solution procedure for
evolving the shape of the precipitate. The details are pre-

sented in [11] for the two-dimensional simulations and in

[23] for the three-dimensional case.

Both the diffusion equation and the elasticity equa-

tion can be reformulated in boundary integral equa-

tions, which are solved by a boundary integral method

in 2D [11] and a boundary element collocation method

with adaptive surface mesh in 3D [23,24]. The position
of the interface is traced by a set of marker points on

the interface {xi}, i = 1,. . .,N, where N is the total num-

ber of mesh points. Requiring the integral equations be

satisfied at these marker points reduces the integral

equations to linear systems. Since the corresponding

coefficient matrices are dense and non-symmetric, the

GMRES method is applied to solve the discretized lin-

ear equations.
At each time-step, the discretized elasticity equations

are solved to obtain the boundary condition for the dif-

fusion equation. The normal velocity is acquired by

solving the discretized integral equation corresponding

to diffusion, and the marker points are evolved by the

differential equation, dx/dt = vnn. The simulation of

the evolution is stopped, when the precipitate reaches

an equilibrium shape, in particular, as the variation in
the concentration c on the surface of the precipitate is

less than 0.02% of the average value of c.
3. Results

In this section, we present the numerical results on

the equilibrium states of homogeneous and inhomoge-
neous media in two and three dimensional dimensions.

We consider an isolated precipitate in an infinite matrix.

Both the matrix and the precipitate phases have cubic

elasticity, and the three independent parameters in the

dimensionless elastic constant tensor for the matrix are

given by those of nickel, CM: cM11 ¼ 1:98; cM12 ¼ 1:18;
and cM44 ¼ 1. The isolated particle evolves according to

the diffusional processes described by the quasi-steady
diffusion equation and the generalized Gibbs–Thomson

boundary condition, Eq. (3). The total energy, Wtot,
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given in Eq. (6), decreases during the evolution. The sys-

tem reaches an equilibrium state when the total energy

reaches an extremum.

3.1. Accuracy of numerical simulations

In most of our two-dimensional calculations, the ma-

trix–precipitate interface is represented by 512 marker

points. We find that the equilibrium shapes are indistin-

guishable if the number of marker points is increased to

1024. The constant concentration values at equilibrium

obtained from the two resolutions are identical to the

eighth and the third significant figure for fourfold and

twofold symmetric shapes, respectively. For a detailed
account on the performance of the numerical methods,

see the work by Leo et al. [11].

For three-dimensional simulations, Fig. 1 shows

the x–y plane cross-sections of the equilibrium

shapes of a three-dimensional precipitate in an inho-

mogeneous system at different resolutions. The mesh

size for the dashed-line contour has 204 triangles on

the surface, while the dotted and the solid lines cor-
respond to finer mesh sizes of 408 and 816 triangles,

respectively. The small difference in the equilibrium

shapes of different mesh sizes demonstrates the accu-

racy of our methods. Furthermore, the dimensionless

concentration c of a particle with unit equivalent ra-

dius at equilibrium is c(h) = 2.8094 for the coarse

mesh, cðh=
ffiffiffi
2

p
Þ ¼ 2:8011 for the median mesh size,

and c(h/2) = 2.7978 for the fine mesh. The concentra-
tion data implies that the order of convergence of

the methods is between O(h2) and O(h3). The result

shown in Fig. 1 is representative of our three-dimen-

sional simulations of inhomogeneous systems. In this

work, the three-dimensional results have been ob-

tained with the mesh size similar to the median size
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Fig. 1. Convergence test: the cross-sections of the equilibrium shapes

of a three-dimensional precipitate in the elastically inhomogeneous

system [Ni–Ni0.5] at L 0 = 1.44 (L = 2) for different mesh sizes: a coarse

mesh with 204 triangles (the dashed line), a median-sized mesh with

408 triangles (the dotted line) and a fine mesh with 816 (the solid line).

A selected region of the cross-sections is magnified and also shown in

the figure. The dotted line almost overlaps the solid line.
displayed in Fig. 1. For further discussion on the

performance of the numerical schemes, refer to [23].

3.2. L 0: the scaled ratio of elastic to interfacial energies

In order to study the effect of inhomogeneity system-
atically, the elastic constants of the precipitate are ob-

tained by multiplying those of the matrix phase,

nickel, by a constant factor 1/w where w � CM
44=C

P
44.

For example, [Ni–Ni0.9] refers to the inhomogeneous

system where the elastic constants of the precipitate

are those of nickel multiplied by the factor 1/w = 0.9,

i.e., CP = 0.9CM.

The characteristic scale for the elastic energy density
gel in the definition of L 0, Eq. (4), depends on the elastic

energyWe for a circular (in 2D) or spherical (in 3D) par-

ticle of unit radius. For the special case where CP = CM/

w, we find 1 that the dependence of the elastic energy on

inhomogeneity is given by W eðwÞ ¼ 1þB
1þwBW eðw ¼ 1Þ,

where the parameter B is a homogeneous function of

the elastic constants CP. We find that the parameter B

is independent of w: B � 0.628 in 3D and B � 0.389 in
2D for the nickel constants chosen in this work. Thus,

in this special class of elastic inhomogeneities, the char-

acteristic strain energy density gel and the nondimen-

sional parameter L 0, characterizing the relative effects

of elastic and surface energies, introduced in Section 2

can be explicitly expressed as

gel ¼ 1þ B
1þ wB

e2CM
44 and L0 ¼ 1þ B

1þ wB
e2CM

44l
r

¼ 1þ B
1þ wB

L:

ð7Þ
3.3. The equilibrium shapes of a misfitting particle

3.3.1. Two-dimensional simulations

In this work, the equilibrium states are obtained

through dynamic simulations. For each value of L 0,
two simulations are performed, one starting from a pre-

cipitate having the shape of the unit circle, the other

from the shape of an ellipse with area p given by the

equations x = (3/2)cosh and y = (2/3)sinh.
The equilibrium shapes of a two-dimensional misfit-

ting particle as a function of L 0, their stability and the

effect of inhomogeneity on the shapes have been dis-

cussed in [6,8,9,11]. In two dimensions, we will focus
our discussion on the Gibbs–Thomson relation later in

this section, and here we summarize the related results

on equilibrium shapes for completeness and better
1 For the system of a precipitate with the shape of the unit sphere

and isotropic elastic constants lP and KP in an infinite matrix with lM

and KM, Leo [33] gives the expression for the elastic energy

W e ¼ 8pLeTiil
M=ð1þ 4

3
lP

KP wÞ. Our expression of We is derived from

that of the isotropic elasticities and has been verified numerically.
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understanding of the corresponding three-dimensional

results followed.

For an elastically cubic system with dilatational mis-

fit, the equilibrium shape of a precipitate depends on the

value of L 0: for small values of L 0, it is fourfold symmet-

ric and circular or squarish; when the value of L 0 is lar-
ger than a critical value, denoted by L0

c, there exist at

least two types of equilibrium shapes, one remains four-

fold symmetric and the other is twofold symmetric and

rectangular. Examples of these two kinds of shape are

shown in Fig. 6(b). For each value of L 0 less than L0
c,

the fourfold symmetric equilibrium is unique and mini-

mizes the total energy; for L0 > L0
c, the twofold symmet-

ric equilibrium is stable and possesses the minimum
total energy, but the fourfold symmetric one is unstable

and is a saddle point in total energy. Thompson et al. [6]

constructed the bifurcation diagram for the parameter

L 0 and showed the symmetry-breaking bifurcation is

supercritical for the homogeneous systems. To date,

the corresponding bifurcation diagram for the inhomo-

geneous systems is not complete.

Inhomogeneity has significant effect on the equilib-
rium shapes: the fourfold symmetric equilibrium shapes

become more rounded as the hardness of the precipitate

increases with respect to that of the matrix phase; the as-

pect ratios of the twofold symmetric equilibrium shapes

increases as the precipitate becomes softer. The estima-

tion of the shape bifurcation value L0
c for various sys-

tems can be looked up in Fig. 8(d) presented later in

Section 3.4. L0
c is an increasing function of the hardness

of the precipitate, indicating that a harder precipitate

will bifurcate to twofold symmetric shapes at higher ra-

tio of elastic energy to surface energy. Note that in 2D,

for [Ni–Ni1.5], where the precipitate is elastically much

harder than the matrix, the estimate of L0
c is not given

since the equilibrium shape retains fourfold symmetry

for the values L 0 up to 33.1. The more accurate estima-

tion of L0
c is difficult to obtain through dynamic simula-

tions since the evolution toward equilibrium becomes

extremely slow near the bifurcation point, and thus they

are not investigated. Our results are consistent with

those obtained by Schmidt and Gross [9] after convert-

ing their results in terms of L 0 defined by Eq. (7).

3.3.2. Three-dimensional simulations

The initial shapes in three-dimensional simulations
are obtained from the equilibrium shapes for smaller

values of L 0. For each combination of the matrix and

the precipitate phases, we compute the equilibrium

shape for the smallest value L 0 starting with the initial

shape of a unit sphere; incrementing L 0, we calculate

the series of equilibrium shapes using the equilibrium

shape calculated for the previous step in L 0 as the initial

shape; we continue to increment L0 and obtain the steady
states until the computation becomes too costly to

perform due to the large number of meshes required.
Fig. 2 shows equilibrium shapes of a three-dimen-

sional precipitate with unit equivalent radius for differ-

ent values of L 0 in the homogeneous system [Ni–Ni],

where the elastic constants of the two phases are equal

CP = CM. Again, in a homogeneous system, the scaled

parameter L 0 is identical to L. When L 0 = 1, Fig. 2(a)
shows that the equilibrium shape is similar to a sphere

which is the shape that minimizes the surface energy,

but with somewhat flatter faces and rounded edges

and corners. Figs. 2(b) and (c) show steady states just

before and after the shape bifurcation for L 0 = 3 and 4

respectively. At L 0 = 3, the shape clearly forms a flat face

perpendicular to each of the three mutually perpendicu-

lar elastically soft directions of the cubic anisotropy,
Æ100æ, and retains cubic symmetry. When L 0 = 4, our

calculations show that the equilibrium shape with cubic

symmetry is unstable, and the stable equilibrium shape

attains a plate-like shape, as shown in Fig. 2(c). Here,

a plate refers to a shape with tetragonal symmetry in

which the side along the fourfold-symmetry axis is

shorter than the other sides. In contrast, a rod has the

side along the fourfold-symmetry axis that is longer than
the other sides. As L 0 increases further to 8, the equilib-

rium shape becomes a flatter plate as shown in Fig. 2(d).

This is consistent with the analytic result [34,35] that

predicts the equilibrium shape becomes an infinitely thin

plate for an elastically homogeneous system as L 0 goes

to infinity. Note that the maximum curvature of the

equilibrium shapes increases as the value of L 0 is raised.

Correspondingly, the size of surface mesh increases
adaptively to resolve the high curvature area [24]. For

example, to achieve the same accuracy, 362 and 3834

mesh points are needed for L 0 = 1 and L 0 = 8, respec-

tively. The computational cost increases dramatically

when L 0 is large because the cost for each time-step in-

creases as O(N2) where N is the number of the surface

mesh points, and, furthermore, numerical stability re-

quires a smaller time step.
Next, we examine the effect of inhomogeneity on

the equilibrium shapes in 3D, using L 0 instead of L

to characterize the ratio of elastic energy and surface

energy for an elastically inhomogeneous system. For

L 0 = 2, Fig. 3 shows the equilibrium shapes of a soft

precipitate in [Ni–Ni0.5] (Fig. 3(a)), a precipitate in

an elastically homogeneous system [Ni–Ni] (Fig. 3(b))

and a hard precipitate in [Ni–Ni1.5] (Fig. 3(c)). The
cross-sections of the three shapes in the x–y coordinate

plane are plotted together in Fig. 3(d). Since the same

value of L 0 represents the same ratio of elastic energy

and the surface energy for a unit sphere regardless the

inhomogeneity, the equilibrium shapes of these precip-

itates in systems with drastically different elastic inho-

mogeneities are all cubic symmetric and have similar

dimensions for this relatively small value of L 0. How-
ever, as shown in the cross-sections, the differences are

visible, showing the softer precipitate has sharper



Fig. 2. Equilibrium shapes of a precipitate in the homogeneous [Ni–Ni] system for (a) L 0 = 1, (b) L0 = 3, (c) L 0 = 4 and (d) L 0 = 8.
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edges and flatter faces. This is different from our 2D
result at the same L 0 (not shown here) where the dif-

ferences in the equilibrium shapes are undetectable.

The disagreement may be due to the fact that, at the

same value of L 0, the ratio of elastic energy to surface

energy in 3D is greater than that in 2D. In fact, as

shown later in Section 4, L 0 = 2 in 3D corresponds

to L 0�3.7851 in 2D. At a larger value of L 0 = 5, the

equilibrium shapes in the different systems ([Ni–
Ni0.5], [Ni–Ni], [Ni–Ni1.1] and [Ni–Ni1.5]) are distinct

from each other, as shown in Fig. 4. For soft precip-

itate and moderately hard precipitate, the equilibrium

shapes in Fig. 4(a)–(c) are the bifurcated plate-like

shape with tetragonal symmetry, and the aspect ratio

of the particle dimensions (the longer dimension over

the shorter one) increases as the precipitate becomes

softer. For the hardest particle in [Ni–Ni1.5] and
L 0 = 5, the equilibrium shape has not bifurcated and

remains cubic symmetric as shown in Fig. 4(d).

For the homogeneous and inhomogeneous systems

where the precipitate is softer to moderately harder than

the matrix, the equilibrium shape is cubic symmetric for

small L 0, and is plate-like after the bifurcation. How-

ever, for the case of very hard precipitate [Ni–Ni1.5],

the stable equilibrium shape is a cubic symmetric shape
(Fig. 4(d)) for 0 < L 0 < 6.8 (0 < L < 6), becomes a plate-

like shape with small aspect ratio of 1.104 (Fig. 5(a)) at

an L 0 between 6.8 and 8.0 (L between 6 and 7), and then
changes to a rod-like shape (Fig. 5(b)) at an L 0 between
8.0 and 9.2 (L between 7 and 8).

Using configurational forces for microstructural evo-

lution, Mueller and Gross [17–19] studied the effects of

L and the inhomogeneity on equilibrium shapes of

three-dimensional precipitates with cubic symmetry.

Our results, obtained by a diffusional process, are con-

sistent with their findings prior to the shape bifurcation

point. Since the bifurcated shapes in absence of external
loading were not discussed in their work, a more de-

tailed comparison cannot be made.

3.4. The Gibbs–Thomson equation as a function of L 0

As described in Section 1, based on Marqusee�s
mean-field theory for stress-free systems [29], Thornton

et al. [26] developed an analytical theory for the coarsen-
ing process where the effects of elastic stress on the

coarsening rate can be accounted for by the Gibbs–

Thomson equation with elastic effects, which can be

approximated by the constant concentration c along

the interface of an isolated precipitate at equilibrium.

The theory motivates us to study the dependence of c

on the dimensionless parameter L 0.

In this paper, we compute the concentration c when
the precipitate evolves to an equilibrium state for differ-

ent values of L 0. The misfit strain is purely dilatational

and elastic inhomogeneity is confined to have the



Fig. 3. Equilibrium shapes of a precipitate at L0 = 2 in (a) the elastically inhomogeneous system with a soft particle [Ni–Ni0.5], (b) the homogeneous

system [Ni–Ni], and (c) the inhomogeneous system with a hard particle [Ni–Ni1.5]. (d) The cross-section in x–y plane of the three precipitates at

equilibrium in [Ni–Ni] (shown with the solid line), [Ni–Ni0.5] (the dashed line) and [Ni–Ni1.5] (the dash-dotted line) systems. A magnified region is

also plotted.
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property CP = CM/w where 1/w = 0.5, 0.9, 1, 1.1, and 1.5.

The dependence of c as a function of L 0 is plotted in

Figs. 6 and 7 for the two- and three-dimensional sys-

tems, respectively.

Independent of the dimensionality (2D or 3D) and

elastic inhomogeneity, our results show that the

Gibbs–Thomson equation for a particle with unit equiv-

alent radius at equilibrium is always well approximated
by a piecewise linear function of L 0 for the range of L 0

studied

c0 � c=j0 ¼
1þ b1L0 if L0 < L0

c;

a2 þ b2L0 if L0 > L0
c;

�
ð8Þ

where the constant j0 is defined such that c 0 = 1 when

L 0 = 0, i.e., j0 = 1 in 2D and j0 = 2 in 3D. Thus, c 0 = c

for 2D. Note that, since the scaling parameter in

Eq. (7) is a constant for a fixed system, the relation be-
tween c and L in their original definitions remains

approximately piecewise linear. This piecewise linear

relation between c 0 and L 0 was first discovered in a

two-dimensional, elastically homogeneous system by

Thornton et al. [26]. In addition, from the generalized
Gibbs–Thomson relation (3), the value of c 0 at equilib-

rium increases from one to infinity as L 0 is raised from

zero to infinity.

Because of the piecewise linear relation, we can calcu-

late the value of L 0 where the two linear functions

intersect

L0
i �

1� a2
b2 � b1

; ð9Þ

and L0
c is the bifurcation point beyond which the equilib-

rium shape bifurcates to a shape with less symmetry.
Although, in principle, the values of L0

c and L0
i could

be different, there is evidence that the two values are

close. For two-dimensional elastically homogeneous sys-

tems, we find that L0
i provides a upper bound for L0

c and

the difference between the two values indeed is small

when the anisotropic ratio Ar ” 2c44/(c11�c12) is not

large (Ar < 4.5). Since the value of Ar for Ni constants

in our simulations is 2.5, the bifurcation point L0
c can

be approximated by the value of L0
i. The value of the

intersection point L0
i can be extracted from a few values

of the constant concentration c 0 away from the bifurca-



Fig. 4. Equilibrium shapes of a precipitate at L 0 = 5 in (a) the elastically inhomogeneous system with a soft particle [Ni–Ni0.5], (b) the homogeneous

system [Ni–Ni], (c) the inhomogeneous system with a hard particle [Ni–Ni1.1], and (d) the inhomogeneous system with a hard particle [Ni–Ni1.5].

Fig. 5. Equilibrium shapes of a hard precipitate in the inhomogeneous system [Ni–Ni1.5] at (a) L 0 = 8.03 (L = 7) and (b) L 0 = 12.6 (L = 11).
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tion. Consequently, the bifurcation point L0
c can be esti-

mated without a full scale computation of the equilib-

rium states for values of L 0 near the bifurcation.

The bifurcation point L0
c, the intersection value L0

i and

the constants b1, a2 and b2 depend on the elastic con-

stants. In this work, we will investigate the dependence

of these constants on the dimensionality and the elastic
inhomogeneity. The summary of the results is given in

Fig. 8.

3.4.1. Two-dimensional systems

The dimensionless concentration c 0 as a function of

L 0 is graphed in Fig. 6, where the computed data are

indicated by the circles and the crosses. The least-square
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fit lines are also plotted in Fig. 6 using solid and dashed

lines.

In the elastically homogeneous system [Ni–Ni],
shown in Fig. 6(a), the concentration c 0 at equilibrium

varies piecewise-linearly as L 0 increases and the slope

changes as L 0 passes through the shape bifurcation point

L0
c. (Note L 0 = L in elastically homogeneous cases.) The
least-square fit of the (c 0,L 0)-pairs gives c 0 = 1 + 0.87L 0,

for L0 < L0
c � 5:6 or when the equilibrium shape having

the minimum total energy is fourfold symmetric. Be-
yond the supercritical bifurcation point, the concen-

tration obeys a different linear relation, c 0 = 1.65

+ 0.76L 0, for L 0 > 5.6 where energy-minimizing equilib-

rium shapes are twofold symmetric. When the mean-
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field theory of Marqusee [29] is applied with this Gibbs–

Thomson equation, the coarsening follows the simple

formula, Eq. (2), predicting that coarsening exponent re-

mains 1/3 in the presence of elastic effects and the coars-
ening rate constant K is proportional to a2, the c 0-axis

intercept of (c 0,L 0)-lines [28]. Thus, Fig. 6(a) suggests

that the coarsening rate constant K increases by a factor

of a2 = 1.65 as compared to the stress-free value when

the majority of the precipitates attain twofold symmetric

shapes, assuming that elastic interactions do not on the

average bias coarsening. In this particular case, this re-

sult has been verified by 2D large-scale simulations for
a system with an area fraction of 10% [26,28]. In the rest

of the paper, we make predictions based on this mean-

field theory. Whether the elastic interaction term in the

Gibbs–Thomson equation can be ignored depends on

the system, particularly on the volume fraction and the

elastic inhomogeneity.

Next, we consider the concentration c 0 as the func-

tion of L 0 for a precipitate that is softer than the matrix,
[Ni–Ni0.9]. Shown in Fig. 6(b), the computed (c 0,L 0)-

pairs fall on the two fitted straight lines:

c0 ¼ 1þ 0:87L0; for L0 < L0
c and c0 ¼ 1:67þ 0:73L0; for

L0 > L0
c. The shape bifurcation point L0

c decreases to a

value between 3.8 and 4.9 compared with that for the

elastically homogeneous system [Ni–Ni], indicating that

L0
c decreases when the particle is softer. This is true in

both two-dimensional and three-dimensional systems
we considered, as shown by the approximate values of

the bifurcation point L0
c in Fig. 8(d) and (e), and can

be understood intuitively that softer particles are easier

to deform and requires less elastic energy to do so.
Based on the mean-field theory, the coarsening rate will

remain the same for the elastically inhomogeneous sys-

tem when the average value of L 0 is less than L0
c if all

assumptions in the theory are met. When the precipi-
tates are mostly twofold symmetric, the coarsening rates

for the slightly inhomogeneous system [Ni–Ni0.9] and

the homogeneous system [Ni–Ni] are comparable, be-

cause of the small difference in the c-axis intercepts a2,

1.67 and 1.65.

In the system [Ni–Ni0.5] where the precipitate is

much softer than the matrix, Fig. 6(c) shows that the

shape bifurcates at even smaller value of L0
c, lying in

the interval (2.3,3.2) and the best fitted lines are given

by c0 ¼ 1þ 0:88L0; for L0 < L0
c and c0 ¼ 1:76þ 0:61L0;

for L0 > L0
c. The larger constant 1.76, compared to 1.65

for the homogeneous system, implies that the coarsening

rate based on the piecewise-linear Gibbs–Thomson

equation is somewhat faster for systems with elastically

softer precipitates when most particles have twofold

symmetric shapes. The smaller value of the shape bifur-
cation point L0

c suggests that the coarsening rate starts

increasing at smaller average particle size in the inhomo-

geneous systems with elastically softer precipitates.

For the case [Ni–Ni1.1], where the precipitate is mod-

erately harder than that of the matrix, the least-square

fit yields c0 ¼ 1þ 0:87L0 for L0 < L0
c and c0 ¼ 1:49þ

0:80L0 for L0 > L0
c, where L0

c lies in (6.0,7.0). (The figure

for this case is omitted.) Beyond the bifurcation point
L0 > L0

c, the c-axis intercept, a2 = 1.49, is clearly smaller

than that of the homogeneous case where a2 = 1.65,

which is consistent with the previous conclusion: the

coarsening rate would be higher for softer precipitates



5840 X. Li et al. / Acta Materialia 52 (2004) 5829–5843
when most particles attain twofold symmetric shapes.

For the case where the precipitate is much harder than

the matrix [Ni–Ni1.5], Fig. 6(d) shows that the equilib-

rium shapes remain fourfold symmetric and c 0 follows

the linear relation c 0 = 1 + 0.87L 0 in the range of L 0 up

to 33.1. It�s remarkable that, with the definition of L 0

in Eq. (7), the slope of (c 0,L 0)-lines for fourfold symmet-

ric shapes are almost identical and �0.87. This suggests

that there may be a general theory that is valid for

homogeneous and inhomogeneous systems with four-

fold-symmetric precipitates.

3.4.2. Three-dimensional systems

For three-dimensional systems, Fig. 7 shows that c 0

again is well approximated by a piecewise-linear func-

tion of L 0 independent of the inhomogeneity in the range

of L 0 examined. Also, the slope of the (c 0,L 0)-line

changes when the degree of symmetry of the equilibrium

shape decreases from cubic (like a cube) to tetragonal

(such as a plate or rod, with only one of the coordi-

nate-plane cross-sections being square). The shape bifur-

cates as L 0 passes through the bifurcation point L0
c.

Despite the vastly different elastic inhomogeneity, from

the system with very soft precipitate [Ni–Ni0.5] to that

with very hard precipitate [Ni–Ni1.5], the slope of the

(c 0,L 0)-line for precipitates with the higher symmetry is

approximately 1.24 and the differences in the slope

among different systems are within the numerical error.

If the mean-field theory of coarsening is extended to

three dimensions, the values of the c 0-axis intercept
of the (c 0,L 0)-lines, shown in Fig. 8(b), would imply that

the coarsening rate would remain the same as that of

systems in the absence of elastic effects if most precipi-

tates in a microstructure have cubic symmetry and elas-

tic-interaction effects are on average small. The

coarsening rate would then increase as particle shapes

bifurcate, transiting to another power law with the same

power, but with a larger constant K when the majority
of the precipitates attain tetragonal symmetry. Further-

more, for the systems with softer precipitates, the in-

crease in the coarsening rate would occur at a smaller

value of the average L 0, ÆL 0æ, and the coarsening rate

would be higher. Thus, the qualitative behavior for the

two- and three-dimensional systems are the same. One

notable difference is that, for [Ni–Ni1.5], the bifurcation

does not occur up to the largest value of L 0 of our com-
putations, 33.1, in two dimensions, while the shape of

three-dimensional precipitate bifurcates at a moderate

value of L 0, between 6.8 and 8.0.
4. Discussions and conclusions

Qualitatively, the results from the two-dimensional
and three-dimensional systems are similar. As the effect

of elasticity increases, the equilibrium shape of an iso-
lated precipitate undergoes a bifurcation, from a shape

of higher symmetries to that of lower symmetries. In

2D, when elastic effects are sufficiently small, there is a

unique equilibrium shape, which is squarish with four-

fold symmetries and minimizes the total energy, Wtot.

When the elastic energy, or equivalently L 0, is large en-
ough, there are two types of equilibrium shape: one is

rectangular with twofold symmetry, is stable and pos-

sesses the lowest total energy; the other is fourfold sym-

metric, stable with respect to fourfold perturbations but

unstable to any perturbation with lower symmetry. In

3D, when L 0 is small, the unique equilibrium shape is

cuboidal with cubic symmetry and has the minimum en-

ergy; when L 0 is beyond a critical value, a plate- or rod-
like shape with tetragonal symmetry becomes a stable

equilibrium shape and posses a smaller total energy. It

is difficult to construct a complete bifurcation diagram

using the dynamic simulations as described in this work,

because the number and location of bifurcation

branches are a priori unknown. Other approaches, such

as the arc length continuation method, may be more

suitable for this purpose and will be pursued in future.
Quantitatively, for the elastically homogeneous sys-

tem [Ni–Ni], Thompson and Voorhees [16] compared

the cross-section in a coordinate plane of a three-dimen-

sional particle at equilibrium with the steady state shape

of a two-dimensional particle at the same value of L 0

and the same area. Recall that L 0 is identical to L in elas-

tically homogeneous systems. They found good agree-

ment between the (100)-midpoint cross-section of the
three-dimensional particle shape and the corresponding

two-dimensional shape at L 0 = 2, but significant differ-

ences at L 0 = 4. Also, their results show that the cross-

sections of the three-dimensional particles at L 0 = 4

and L 0 = 2 are nearly identical. Here, we compare the

equilibrium configurations at values of L 0 both before

and after the bifurcation point using a different scheme:

following our method in comparing shapes between dif-
ferent inhomogeneities, we compare the equilibrium

shapes for the values of L 0 resulting in the same ratio

of elastic energy, We, and surface energy, Ws, for the

corresponding reference shape (the unit circle in 2D

and the unit sphere in 3D). For [Ni–Ni], the elastic ener-

gies of a circular particle and a spherical particle of ra-

dius one are 2.77795 and 10.51492, respectively, for

L 0 = 1, while the corresponding surface energies are gi-
ven by 2p and 4p, respectively. Consequently, in Fig.

9, we compare the (100)-midpoint cross-section of the

three-dimensional equilibrium shapes at L 0 = 2 and 5

with the two-dimensional equilibrium shape at

L 0 = 3.7851 and 9.4628, respectively, matching the ratio

We/Ws for the reference configurations. Due to the vol-

ume constraint of the three-dimensional precipitate, the

cross-sections have the smaller area than p, the area of
the two-dimensional particle. For the equilibrium

shapes with higher symmetries, shown in Fig. 9(a), the
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cross-section of the three-dimensional particle is similar

to the contour of the two-dimensional shape. The result

is in general agreement with the findings of Thompson

and Voorhees [16]. For the equilibrium shapes after

the shape bifurcations, Fig. 9(b) shows that the aspect

ratio of the cross-section is smaller than that of the

two-dimensional particle.

As the precipitate becomes harder, the equilibrium
particle shape is more squarish or has a smaller aspect

ratio for comparable ratio of elastic and surface ener-

gies. Shape bifurcation occurs at larger values of L 0

for a harder precipitate. In particular, the equilibrium

shape for the two-dimensional hard precipitate ([Ni–

Ni1.5]) remains fourfold symmetric for L 0 up to 33.1.

In three dimensions, most of the precipitates bifurcate

to plate-like shapes when the effect of elasticity increases
except that the hard precipitate shape for [Ni–Ni1.5] be-

comes rod-like instead of plate-like for large values of

L 0. The appearance of a rod at higher L 0 after a plate-

like shape at a lower L 0 for a very hard particle is

intriguing. It indicates that the elastic-energy minimizing

shape of a domain harder than the matrix is an infinitely

long rod, rather than an infinitely thin plate predicted

for elastically homogeneous systems. Our result is con-
sistent with the bifurcation theory of Johnson et al.

[36] predicting that, restricting precipitates to be sphe-

roids, a prolate spheroid could be global energy mini-

mizer for cubic materials when the particle size is large

enough.

With regard to the interface concentration at equilib-

rium, we find that, independent of the dimensionality

(2D or 3D) and elastic inhomogeneity of the system,
the concentration at equilibrium is well approximated

by a piecewise linear function of L 0 for the range of L 0

examined and that the slope of this function decreases

at the shape bifurcation point. Furthermore, before

the shape bifurcation, the slope of the linear relation

changes little under the new parameter L 0, given in

Eq. (7), as the elastic inhomogeneity varies from soft

precipitate to hard precipitate. Because the slope
changes near the bifurcation point, the critical value of

shape bifurcation L0
c can be estimated by the intersection

of the two linear functions before and after the bifurca-

tion, L0
i in Eq. (9).

Given the Gibbs–Thomson equation, the mean-field

theory of Thornton et al. [26], based on Marqusee�s
for stress-free systems [29], can now be extended to elas-

tically inhomogeneous and/or three-dimensional cases.
The predictions are made for two limits where ÆLæ is well
below the bifurcation point and most particles remain

fourfold or cubic symmetric and where ÆLæ is well over
the bifurcation point and most particles have undergone

shape bifurcation. Our numerical results combined with

the theory predict the coarsening exponent remains 1/3

for both cases, while the rate constant is expected to

be the stress-free value at the limit where most particles
are fourfold or cubic symmetric, but increases to a calcu-

lated value when particles are mostly twofold or tetrago-

nal symmetric. The change in the rate constant is most

significant when particle are softer than the matrix. It

is remarkable that our results suggest that elastic stress

have no effect on coarsening kinetics in systems where

most particles have not undergone shape bifurcation,

regardless of the dimensionality and the elastic
inhomogeneity.

In this theory, the interparticle elastic interactions,

which depend on the volume fraction of the particle

phase and the elastic inhomogeneity, are assumed negli-

gible in biasing coarsening kinetics. As discussed earlier,

this assumption is valid when the volume fraction is suf-

ficiently small. Let c0Ie denote the portion of the concen-

tration that is included in the Gibbs–Thomson equation
(1), which accounts for the effects of both interparticle

elastic interactions and the shape distortion from the

equilibrium shape in isolation. Taken from Thornton

et al. [28], Fig. 10 shows c0Ie for a 2D, elastically homo-

geneous system with the average value of L, ÆLæ, at 7.1
and area fraction of the particles at 10%. Each solid

point in the figure records the value of c0Ie averaged over

an individual particle, plotted against L of the particle.
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c11 = 3.04, c12 = 1.62 and c44 = 1.35 for Ni3Si [42].
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From Fig. 10, the average c0Ie scatters around a constant

for a wide range of L (or particle size), or at most is a
weak function of the particle size. The result suggests

that interparticle elastic interactions do not affect the

overall coarsening kinetics in this case. There is a large

body of evidence that indicates elastic interactions could

have significant effects on coarsening at higher volume

fractions, as the interactions become stronger with

decreasing distances between particles. The average

behavior of c0Ie as a function of particle size provides
the extra term required in a theory for coarsening in

elastically stressed systems where interparticle elastic

interactions modify the coarsening kinetics. Develop-

ment of such a term is beyond the scope of this paper

but is planned in the near future.

One of our objectives is to compare the prediction of

theory with the experimental results. However, to date,

there has been little experimental work examining the
kinetics of coarsening based on the equivalent radii of

the particles for the range of L 0 large enough to cause

shape bifurcation. The difficulty is caused by the meas-

urement of the equivalent radius, which requires volu-

metric information of the individual particles and thus

three-dimensional reconstructions of a sufficiently large

number of particles. Since experiments involving three-

dimensional reconstructions are time and labor inten-
sive, the currently available experimental data are

instead obtained by imaging two-dimensional cross-

sections. When particles are non-equiaxed, the cross-

sectional area of particle does not necessarily reflect

the true volume of the particle. Thus, many experiments

focus on characterizing the kinetics when particles are

approximately equiaxed (see, for example, [37–40]). To

account for non-equiaxed particle shapes, one could
use another length scale that characterizes the evolution

of a coarsening system: the inverse of the surface area

per unit volume measured on off-Æ100æ-direction cuts.
Since this length scale is different from the equivalent

particle radius used in the theory and computer simula-

tions, a direct comparison cannot be made between the

experimental results and the theoretical predictions
made in this paper. For bifurcated particles, only quali-

tative comparisons have been made between experimen-

tal results and a 2D large-scale simulation [41]. For a

quantitative comparison, we require the volumetric

information for sufficiently large number of particles

in samples that are annealed for various time intervals.

Also, the volume fraction in such experiments must be

chosen so that elastic interactions do not alter the
coarsening kinetics, as mentioned earlier.

In this paper, a new dimensionless parameter L 0, de-

fined in Eq. (4), is introduced to represent the character-

istic ratio between elastic and surface energy of an

elastically inhomogeneous system. To demonstrate the

difference between L 0 and L defined earlier in [7], we

compare the ratio of elastic to surface energies for a

spherical precipitate of unit radius in an infinite matrix,
denoted by Re. For L = 1, in the special cases where CP

is proportional to CM, the value of the ratio Re varies

from 0.60390 for the system [Ni–Ni0.5] to 0.96019 for

[Ni–Ni1.5]; in more realistic cases, Re increases from

0.76894 for the inhomogeneous system [Ni–Ni3Ga]

where a soft precipitate (Ni3Ga) is embedded in the ma-

trix Ni phase, to 0.94992 for [Ni–Ni3Si] with a hard pre-

cipitate (Ni3Si).
2 In contrast, for the same value of L 0

defined as in Section 2, the ratio Re remains constant

independent of the elastic inhomogeneity of the system.

Finally, we demonstrate that the validity of the piece-

wise linear approximation is not due to the special cor-

relation between the elastic constants of the precipitate

and the matrix studied in this paper where CP is propor-

tional to CM. Fig. 11 shows the normalized concentra-

tion at stable equilibrium as a function of L for the
two-dimensional inhomogeneous system [Ni–Ni3Ga],

where a soft precipitate (Ni3Ga) is embedded in the ma-

trix Ni phase. Clearly, the piecewise linear approxima-

tion between c and L remains valid in the realistic

systems.
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