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1. Effects of varying parameter values
Figure 5 shows the evolution of a gradient of receptor occupancy at a variety of times, and

Figure 6 gives profiles of receptor occupancy for particular sets of parameters evaluated at

different time points.  Figures S1-S6 supplement this information as follows:

Fig. S1 shows the time evolution of the full solution for the parameters in Fig. 5, giving the
values for [L], [S], [ST], [T] and [LST] as well as [LR].  The curves depict 5 minute intervals

with the final, red curve representing 60 minutes.  All gradients start at time=0 from an initial
value of zero everywhere.

Fig. S2-S6 show how three characteristics of the dorsal midline peak of [LR] vary when

several of the critical parameters are altered, pairwise, over a substantial range from the “base”
parameter set of Fig. 5.  In each figure, the top left image depicts the peak height at 38 minutes,

the time given in Fig. 6.  The top right image depicts peak height at 90 minutes.  This was used,

rather than steady state peak height, because for some parameter sets, steady state occurs later
than 90 minutes, a time too long to be biologically significant.  The lower left image depicts the

time required for the height of the [LR] peak to achieve 63.2% (1-e-1) of its 90-minute value; this
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Figure S1.  Dynamic behavior of the model, using the parameters in Fig. 5.  All concentrations
are zero at t=0, and correspond to the red curves at t=60 min.  The blue curves give values at 5
minute intervals between 0 and 60 minutes.

gives a sense of the overall rate of formation of the BMP activity gradient.  The point at the very

center of each square represents the parameter set used is Fig. 5.

From Fig. S2-6, one can observe a variety of interesting ways in which the results depend on

the parameters.  For example, Fig. S2 shows that increasing vL and vS have opposite effects on
the rate at which the midline signaling peak forms, which helps explain why reducing sog gene

dosage compensates (under non-steady state conditions) for some of the effect of a reduction in

dpp dosage (Fig. 7).
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Figure S2.  Effect of pairwise variation of vS and vL on characteristics of the BMP gradient
model of Fig. 4.  Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value
of the dorsal midline peak of [LR] at 90 min.  Lower left, time for [LR] at the dorsal midline to
attain 63.2% of its 90-minute value.  The point in the center of each square represents the
parameter set used in Fig. 5, and color coding (see calibration bars) is used to represent values of
[LR] or time, as appropriate.  The model was numerically solved for 25 separate parameter pairs,
and contours were generated by interpolation using Matlab software.
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Figure S3.  Effect of pairwise variation of kdeg and vL on characteristics of the BMP gradient
model of Fig. 4.  Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value
of the dorsal midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to
attain 63.2% of its 90-minute value.  The point in the center of each square represents the
parameter set used in Fig. 5, and color coding (see calibration bars) is used to represent values of
[LR] or time, as appropriate.  The model was numerically solved for 25 separate parameter pairs,
and contours were generated by interpolation using Matlab software.
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Figure S4.  Effect of pairwise variation of vS and vT on characteristics of the BMP gradient
model of Fig. 4.  Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value
of the dorsal midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to
attain 63.2% of its 90-minute value.  The point in the center of each square represents the
parameter set used in Fig. 5, and color coding (see calibration bars) is used to represent values of
[LR] or time, as appropriate.  The model was numerically solved for 25 separate parameter pairs,
and contours were generated by interpolation using Matlab software.
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Figure S5.  Effect of pairwise variation of jon and τ on characteristics of the BMP gradient model
of Fig. 4.  Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the
dorsal midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain
63.2% of its 90-minute value.  The point in the center of each square represents the parameter set
used in Fig. 5, and color coding (see calibration bars) is used to represent values of [LR] or time,
as appropriate.  The model was numerically solved for 35 separate parameter pairs, and contours
were generated by interpolation using Matlab software.
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Figure S6.  Effect of pairwise variation of vS and τ on characteristics of the BMP gradient model
of Fig. 4.  Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the
dorsal midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain
63.2% of its 90-minute value.  The point in the center of each square represents the parameter set
used in Fig. 5, and color coding (see calibration bars) is used to represent values of [LR] or time,
as appropriate.  The model was numerically solved for 25 separate parameter pairs, and contours
were generated by interpolation using Matlab software.
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2. Model structure and parameter choices
We sought to minimize the assumptions and simplifications that went into the reaction

diffusion model (Fig. 4) that was studied here.  However, in searching for the fundamental

behaviors of a system, well-chosen simplifications have practical benefits (e.g. in reducing the
size of the parameter space to be explored).  Here we point out assumptions and simplifications

of the present study.

First, we note that, for our initial conditions (i.e. at time=0) the levels of L, S, T, and their

molecular complexes were taken to be zero.  In the absence of biological data to suggest

otherwise, this is a reasonable choice, but it should be kept in mind that only the steady state
solution lacks dependence on the initial conditions. Determining how nonzero initial conditions

would alter the time dependent solutions would require more extensive numerical simulations.

Second, we note that Tld was not modeled explicitly, but rather represented by a first order

rate constant.  This is equivalent to assuming a constant level of Tld at all times and in all

locations (in the embryo Tld is produced on the dorsal side and little is known about its protein
levels).  In the course of initial simulations in which Tld was explicitly modeled (as a dorsally-

expressed enzyme that transiently interacts with its substrates), we realized that, due to
unhindered diffusion, Tld localization rapidly equilibrated across the embryo.  Furthermore, its

levels simply increased monotonically with time.  It seemed more likely that some degradation

process would ultimately slow the rate of Tld increase, but no biological data are available
regarding this.  It seemed that neglecting such a process (or modeling it with an arbitrarily

chosen rate constant) would be just as likely to introduce error as taking Tld levels to be

constant, so we took the latter approach.

Similarly, little is known about degradative processes that might counteract a steady rise in

the concentration of Tsg due to its continuous production.  However, because of its interaction
with Sog, we chose to model Tsg explicitly, including its localized production (we note,

however, biological data indicating that the location of Tsg expression appears not to be

important to patterning [Mason et al., 1997]).

In the case of Sog, Tld-mediated destruction itself counteracts continuous production, so

there is no compelling need, from the modeling standpoint, to include other means of removing
Sog (and therefore none was included in this study).  However, recent experimental data have
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demonstrated a Tld-independent, endocytosis-dependent, process of Sog degradation in the

embryo (Srinivasan et al., 2002).  Thus, we also carried out a series of calculations in which a
fixed rate constant of degradation of free Sog was included.  While the effects of this change

were not tested over as wide a set of parameters as those shown in Fig. S2-S6, we did not
observe a dramatic alteration in the general behavior of the system, and found that results similar

to those in Fig 5-7 and S1 could be obtained by adjusting the values of other parameters.

It should also be noted that, in the present study we equate [LR] with the morphogen
“signal”, i.e. PMad.  This assumes that PMad is generated rapidly in response to receptor

occupancy, and that, when receptor occupancy falls, PMad staining falls as rapidly.  We have
explored the effects of explicitly defining a “signal” that integrates [LR] over a particular time

period, and find that this change has little effect on the results, as long as the rate constant of

PMad degradation is reasonably fast.

Finally, we mention that parameter choices were, whenever possible, chosen to fit available

experimental data.  Choices for the circumference of the embryo, D and R0 follow reasoning

similar to that presented by Eldar et al. (2002), although given the sizes of the cells in the
embryo, we chose a somewhat higher level of receptors per cell; choices for kon and koff follow

references and discussion in Lander et al., (2002).  The value of kdeg was chosen based on
information inferred from Fig. 3 (see text).  All other parameters were chosen from within ranges

that were consistent with the biophysics of protein-protein interactions and, where applicable,

that gave plausible equilibrium binding constants.

3. In vivo effects of receptor overexpression

In the model, receptor-mediated BMP degradation plays an important role in allowing for the
formation of relatively stable PMad patterns.  To the extent that receptors act as a “sink” for

BMPs, one would predict that the localized expression of ectopic receptors would cause a net

flux of free BMPs toward the site of receptor overexpression.  One result of this would be a
depression of BMP signaling in adjacent areas.  Recently, Wang and Ferguson (2005) presented

experiments in which mRNA for the Dpp receptor Tkv was injected in a localized fashion into
early embryos.  No discernable differences were observed in the PMad patterns that ultimately
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developed, unless a constitutively active form of the receptor was used (a result that was taken in

evidence of a signaling-mediated feedback loop that regulates gradient formation).

At first glance, the lack of effect of wild type tkv in these experiments would seem to argue

against a model in which receptor-mediated BMP degradation is a key event.  However, because
the experiments of Wang and Ferguson (2005) were carried out by RNA injection, it is not

possible to know whether the levels of ectopic tkv were substantial compared with endogenous

tkv, and therefore whether they should have been expected to have any significant influence on
BMP degradation.  To resolve this issue, we utilized the GAL4-UAS system to express ectopic

tkv in the head region of embryos, and observed its subsequent effects on PMad staining.

As shown in Figure S7, endogenous tkv expression in the embryonic head region is already

relatively substantial, and can be elevated by expression of wild type tkv using a bcd-GAL4

driver.  When compared with wild type embryos, those expressing ectopic tkv consistently
showed a narrowing and weakening of the PMad staining pattern over a range of 10-12 cell

diameters posterior to the border of the bcd domain.  Thus, the data are consistent with the

prediction of the model that receptors act as a major BMP sink.

4. A space-independent version of the model

To develop insights into dynamic behaviors of the model that might be independent of
morphogen transport, we considered the following additional simplifications:  First, we assumed

that all molecules were produced everywhere, so that diffusion could be neglected.  Second,

realizing that in many instances either Tsg or Sog synthesis would be rate limiting for the
production of the heterodimeric inhibitor (ST), we represented ST by a single inhibitor species

(which for simplicity we refer to as S) that is generated at a constant rate (vS).  Third, we limited
our analysis to situations in which receptor occupancy is low enough that levels of free receptors

are not appreciably reduced by ligand binding.  Fourth, we assume that the rate of dissociation of

BMPs from their receptors is slow compared with the rate at which ligand receptor complexes
are degraded.  With these simplifications, the equations in Fig. 4 can be reduced to the following

ordinary differential equations:
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Figure S7.  Localized expression of Tkv leads to reduced PMad activation in adjacent cells.  A)
Endogenous tkv expression in a wild-type embryo.  Note that expression is elevated in the
sections of head relative to the trunk region.  At this stage, tkv expression is restricted to the
dorsal region of the embryo.  Embryos are viewed from a dorsal perspective with anterior to the
left in this and subsequent panels.  B) Over-expression of a UAS-tkv transgene in the head with
the bcd-GCN4/GAL4 driver results in increased tkv expression in an anterior cone of cells that
circumnavigates the entire D/V axis in the head region (bracket).  The level of ectopic tkv
expression in dorsal cells is approximately equal to that of endogenous tkv.  C) PMad staining in
a wild-type embryo.  D) PMad staining in an embryo expressing tkv in the head under the control
of the bcd-GCN4/GAL4 driver.  Note that the width and level of PMad expression is decreased
in trunk cells lying posterior to the domain of tkv over-expression.  This depression of PMad
staining extends for 10-12 cells (bracket) in which endogenous levels of tkv are relatively low at
this time (see panel A).

d[L]
dt  = vL - konR0[L] - jon[L][S] + (joff+τ)[LS] (1)

d[LR]
dt  = konR0[L] – kdeg[LR] (2)

d[S]
dt  = vS - jon[L][S] + joff[LS] (3)

d[LS]
dt  = jon[L][S] - (joff+τ)[LS] (4)

The steady state solutions to these equations are

[L]ss= 
vL

konR0
;    [LR]ss = 

vL
kdeg

;    [S]ss = (1+
joff
τ )(vSkonR0

vLjon
);    and [LS]ss = 

vS
τ

For vS > vL, we frequently see that the behavior of this system, as elucidated through asymptotic

analysis and numerical simulations, can be divided into three phases (Fig S8).  During an initial
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Figure S8.  Dynamic behavior of a simplified space-independent model.  Equations 1-4 were
solved numerically from 0 to 3600 seconds (1 hour). [L], [LR], [S] and [LS] are plotted in units
of µM.  Parameters were vL=6 nM; vS=10 nM; konR0 = 0.5 sec-1; kdeg=0.001 sec-1; jonR0 = 5 sec-1;
joff=3x10-4 sec-1; τ=0.001 sec-1.  Note the distinct “plateau” and “jump” phases, which are shaded
in yellow and blue, respectively.

very fast phase, [L] undergoes a rapid rise and fall.  For reasonable parameter choices this occurs

too quickly to be of biological significance.  During a second “plateau phase”, [L] and [LR]
remain relatively constant, well below their steady state values, [S] rises and then falls, and [LS]

rises almost linearly.

The plateau phase ends when [S] falls to near its steady state value.  In the subsequent

“jump” phase, [L] and [LR] rise rapidly to their steady state values (in some cases undergoing a

damped oscillation as they approach those values), while [S] and [LS] remain relatively constant.

This “plateau”-“jump” behavior bears striking resemblance to the behavior of the full system

(e.g. Fig. 4) at the dorsal midline (Figure S9; Fig. 5).  Therefore, we decided to see how this
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behavior, in particular the duration of the plateau phase, depends upon the parameters.

Since simulations show the rise and fall of [S] during the plateau phase is invariably nearly
symmetrical, we may estimate the duration of the plateau phase to be twice T, the time for [S] to

achieve a maximum, which occurs when d[S]
dt  = 0.  Since, [L] and [LR] are relatively constant

during the plateau phase, we may also consider that, at time T , d[L]
dt   ≈ 0.  Thus, combining

equations 1 and 3 we get that

vL - konR0[L]T - jon[L]T[S]T + (joff+τ)[LS]T = vS - jon[L]T[S]T + joff[LS]T

where the subscripts indicate evaluation at time T. From this we derive that [LS]T = vS-vL+konR0[L]T
τ .

We note that if [L] is well below its steady state value during the plateau phase, then from the

steady state solution, we may infer that konR0[L]T << vL.  Accordingly, we may approximate

[LS]T = 
vS-vL
τ . (5)

Combining equations 3-4, we find that d[S]
dt  + d[LS]

dt  = vS–τ[LS].  At times close to T, d[S]
dt  will

be close to zero, and so may be neglected.  If we then replace [LS] with its previously estimated

value at T from (5), we get d[LS]
dt  ~ vL, which agrees with the observed linear rise in [LS] during

the plateau phase.  Noting that [LS] appears to grow linearly from almost the earliest times, it is
appropriate to use the initial condition [LS]t=0 = 0 in integrating this expression, which gives:

[LS] = tvL, (6)
By requiring equations (5) and (6) both to hold at t=T, we derive that

T = 
vS-vL
τ vL

 = (1
τ )( 

vS
vL

 - 1) (7)

Thus, the duration of the plateau phase, which should be twice the value of T, should vary

inversely with τ and, when vS is large compared with vL, directly with the ratio vS
vL

.  Numerical

solutions of the simplified system support this conclusion.  Moreover, when the full system (i.e.

Fig. 4) is analyzed, one can easily see the same linear dependence of T on vS
vL

 (Figure S10a).

Interestingly, the dependence on 1
τ  appears to be less than linear (Figure S10b), suggesting that

spatial effects that depend upon τ also have an important influence on the full system’s behavior.
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Figure S9.  Dynamic behavior of the full model at the dorsal midline.  The equations in Fig. 4
were solved for the parameters listed in Fig. 5.  Values of [L], [LR], [S], [ST], [T], and [LST] at
the dorsal midline (x=0) are plotted as a function of time.  Note the distinct “plateau” and “jump”
phases of the [L] and [LR] curves.  As in the space-independent model (Fig. S8), the plateau
phase is characterized by a nearly symmetrical rise and fall in [S], and a nearly linear rise in
[LST].
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Figure S10.  Time for [S] to reach a maximum at the dorsal midline, as a function of vL and vS
(left image) or τ and vS (right image), for the complete model shown in Fig. 4.  To create each
image, the model was numerically solved for 25 separate parameter pairs, and contours were
generated by interpolation using Matlab software.  Time (in minutes) is represented by color
coding (see calibration bar).  Parameters corresponding to those used in Fig. 5 are located at the
center of each square.  In the left image, the contour lines all exhibit a slope=1, indicating that
the time for [S] to reach a maximum at the dorsal midline is directly proportional to vL/vS.  In the
right image, the lower slope of the contour lines indicates that the time for maximum [S] is less
sensitive to τ than predicted.

5.  Effect of expression level on range of morphogen action
According to Fick’s law, the flux of a diffusing species will be proportional to its

concentration gradient.  Accordingly, even if a molecule has low intrinsic diffusivity, there can

be a substantial flux of it away from a source if the concentration gradient is large enough.  Thus,

with a high enough level of production, a morphogen should be able to act at a substantial
distance even if its diffusivity is very low.  In the experiments in Fig. 2-3, st2-dpp is expressed at

a level up to 2.5 times higher than endogenous Dpp.  We wished to address whether this amount

of overexpression could have had a significant effect on the observed range of action, leading
Fig. 2-3 to overestimate the range that endogenous Dpp would normally have in the absence of

Sog.

In a sog- embryo expressing st2-dpp, we may model morphogen gradient formation as a one-

dimensional problem (particularly if endogenous Dpp is ignored or, even better, eliminated

genetically as in Fig. 3):  Morphogen is produced at rate vL in a zone of width “p” equal to the
width of eve stripe 2, and diffuses out in anterior and posterior directions, with diffusivity D.

Receptors are assumed to be uniformly distributed, and to bind and degrade morphogen with rate
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constant kdeg.  We have analyzed this problem elsewhere (Lander et al., 2002; Lander et al., 2005)

and may obtain approximate steady state solutions in two regimes:

When vL is sufficiently low that levels of morphogen are nowhere high enough to saturate the

majority of receptors, the gradient of receptor occupancy [LR], as a function of distance x from
either edge of the morphogen production region, is approximated by exponential decay:

[LR] = 
vL
kdeg

  
e-xΛ

1+coth(Λ
p
2)

 (8)

In this formula, the production region is given by –p<x<0, and the gradient region on one side of

the production region by x>0.  The parameter Λ is a length constant (units of length-1) given by

Λ = 
kdegkonR0

D(koff+kdeg) ,

where kon, koff and R0 have their usual meanings (Lander et al., 2005).  The inverse of Λ is

roughly equivalent to what Eldar et al. (2003) call the degradation length.

Diffusivity enters into the formula in (8) through the fact that Λ is inversely proportional to

the square root of D.  Decreasing D thus increases Λ and makes the exponential term in the

numerator fall more rapidly.  It also lowers the value of LR at the start of the gradient (i.e. x=0)

by decreasing the value of 1+coth(Λp
2 ), although it should be noted that once Λp

2 ≥1, the effect of

varying Λ on this term is small.

Using the parameters given in the legend to Fig. 5, and an approximate width for eve-st2 of

35µm, we get [LR] ≈ 0.98e-0.12x, which describes a morphogen gradient that falls from 33% to

0.33% receptor occupancy over about 39 µm.   This is on the order of size of the signaling
gradient we observe in Fig. 3.  In contrast, were we to use a value of D 100-fold lower than that

of a freely diffusible protein, we would have [LR] ≈ e-1.2x, which falls from 33% to 0.33%
receptor occupancy over 3.9 µm.  This is much smaller than the signaling gradient observed in

Fig. 3.  However, by adjusting the parameters, we might be able to boost this value.  According

to equation 8, there are three ways we might do this:  (1) We could increase vL, so that more
ligand is made, and the gradient therefore starts from a higher level of receptor occupancy.  (2)

We could modify some of the parameters that determine the value of Λ to directly counteract the

effects of lowering D. (3) We could assume that cells detect even very low levels of receptor
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occupancy (for example, when receptor occupancy may be 0.33% at 3.9 µm, if cells were able to

detect 0.00033% receptor occupancy then signaling could extend to almost 10 µm.

As it turns out, there are limitations that prevent us from using any of these strategies to great

effect.  Strategy 1 is limited by the fact that, for sufficiently high vL, receptor occupancy will
approach saturation, and equation 8 will no longer apply (more about how to analyze such cases

will be discussed below).  Strategy 2 is limited by the fact that, although Λ is a function of

several parameters, under conditions of rapid receptor-mediated morphogen degradation, kdeg >>

koff, so that both kdeg and  koff drop out from the definition of Λ.  Since we have specified that D is

100 fold below that of free diffusion, we get Λ = konR0
0.85 µm2 sec-1.  However, since our choice of

kon=0.4 µM-1sec-1 is already at the lower limit of what is typically observed for ligand-receptor

association rate constants (Lander et al., 2002), we may consider that Λ = 0.471R0, and our only

option for decreasing Λ is to decrease R0.

Indeed, it follows from equation 8 that, for x>0, increasing vL by n-fold will shift values of

LR farther from the origin by a distance Δx = ln nΛ = ln n
0.471R0

.  By choosing a value for R 0 that is

low enough, it should be possible—in theory—to expand a gradient by any desired Δx,

regardless of the value of n.  In practice, however, we may not use values of R0 so low that there

are too few receptors per cell to allow generation of a signal.  Let R1 stand for the minimum

concentration of receptors that must be occupied for signaling to take place.  Let θ0 stand for the

value of [LR] at x=0, normalized to R0, that results when vL is increased n-fold from its usual
value.  Then, by equation 8, [LR] = θ0R0e-xΛ (for x>0).  The distance x at which this expression

falls below the threshold for signaling can be found by solving R1=θ0R0e-xΛ for x.   This yields

x = 
-1
Λln

R1
θ0R0

 = 
-1

0.471R0
ln

R1
θ0R0

.

Any attempt to expand a gradient by more than this distance will be futile, as no signaling

can occur past this point.  Setting our previous expression for Δx to this value allows us to

determine that this will happen when R0=
nR1
θ0

, and Δx=1.46 ln n θ0
nR1

.  This expression, then,

represents the maximum amount by which a gradient may be extended by increasing vL and
decreasing R0.  Since this results follows from equation 8, it only holds when receptor saturation
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is not high, a condition that also constrains θ0≤0.5.  

R1, the minimum concentration of receptors that must be occupied for signaling to occur

must, for obvious reasons, be at least 1 receptor per cell.  However, we note that both race

expression and PMad staining (the signals measured in Fig. 2-3) are relatively high threshold
BMP responses, so we must pick a larger value of R1, lest there be no possibility for low

threshold responses.  Five receptors per cell would seem to be a very conservative lower limit.

Converting units of receptors/cell to molarity requires information about cell size and the volume
of the perivitelline space; drawing upon arguments similar to those in Lander et al., (2002) as

well as those used by Eldar et al., (2002) we calculate that 5 receptors per cell represents a
concentration in the perivitelline space of ≈0.00163 µM.

Using this value for R1 and 0.5 for θ0 we get Δx=25.5 ln n
n

.  The maximum value this

expression can attain is 18.8 µm, which occurs when n≈7.4 (i.e. an increase in vL of 7.4 fold).  In
Figures 2-3, where the increase in vL was estimated as no more than 2.5 fold, the value of this

expression is no more than 14.8 µm, about two cell diameters.  This is much less than the

observed range of action of ectopic Dpp in the absence of Sog.  From this we infer that, had
ectopic Dpp been expressed at wild type levels, instead of levels 2.5 fold higher, the resulting

gradients of Dpp activity would have still exhibited a considerable range, just a few cell
diameters lower than what was observed in Fig. 2-3.

As already mentioned, the previous analysis depends upon the validity of equation 8, which

does not apply when vL is large enough, or R0 small enough, that receptor saturation is high near
the morphogen source. We now turn our attention to such situations. These cases produce

receptor occupancy gradients that are sigmoidal in shape, with [LR] being nearly constant ([LR]
≈ R0) for some distance away from the morphogen source, and then falling in a manner that

ultimately fits an exponential decay curve (Fig. S11a-b).  The analysis of this situation is

discussed, in part, in Lander et al., 2005, and will be further elaborated elsewhere (Lander, Nie
and Wan, in preparation).  However, it is relatively straightforward to show that xC, the critical

distance at which such curves fall to 50% receptor occupancy, is approximately equal to p2 (β-1),

where β = vL
kdegR0

 .  This can be understood intuitively by noting that, when β=1, morphogen
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production at each location within the production region (vL) exactly equals the maximum rate at

which the morphogen can be degraded (kdegR0) at that location.  Thus, when β >1, morphogen

production exceeds the amount that can be destroyed locally by a factor equal to β-1.  Given that

cells outside the production region degrade the morphogen at the same maximum rate as those
within, one would expect that the total distance outside the production region that would be

needed to absorb all of the excess morphogen produced in the production region would be the

size of the production region times the factor by which morphogen is produced in excess there,
i.e. p(β-1).  Allocating this distance equally to either side of the production region justifies the

formula xC = 
p
2 (β-1).

From this analysis we see that, in cases in which receptor saturation is high near morphogen

sources, we may roughly divide gradients into a highly saturated zone (0<x<xC, receptor

occupancy>50%) followed by an exponential decay zone.  While the shape of the gradient within
the exponential decay zone will certainly depend on D in the manner just described for gradients

in which receptors are far from saturation, we note that xC is independent of D, and increases

monotonically with vL.  Indeed, for β>>1, xC≈
p
2 β, so the width of the highly saturated zone

should expand nearly linearly with vL.  Simulations confirm that this is the case (Fig. S11c).

Figure S11 (page following).  Behavior of morphogen gradients formed when rates of
morphogen synthesis are high enough to saturate receptors close to the morphogen source.  To
investigate the ability of changing levels of morphogen synthesis to compensate for possible
reduced diffusivity of Dpp, the diffusion coefficient used in these calculations was 100 fold
below that of a soluble protein. A) Time evolution of gradients generated by four different values
of vL.  In each case, the gray area represents the region in which morphogen synthesis takes
place, and the number in the upper right gives the value of vL normalized to kdegR0.  The time
interval separating the individual blue curves is 10 minutes.  B) Steady state values of time
evolution curves such as those in panel A, for eight different values of vL normalized to kdegR0:
0.25, 0.5, 1, 2, 3, 5, 8 and 16.  C) Relationship between xC, the location at which the steady state
value of [LR] = 0.5 R0, and β−1= (vL/kdegR0) - 1.  The circles represent individual data points
calculated from the curves in panel B.  The dashed line is the predicted relationship between xC
and β (see text).  D) Relationship between β and the time required for the value of [LR] at x=xC
to attain 90% of its steady state value of 0.5R0.  The parameters used in panels A-D were:
D=0.85 µm2 sec-1; p=35 µm; R0=0.5; kon=0.1 sec-1; koff=10-5 sec-1; kdeg=5 10-4 sec-1.
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 Given this behavior, overexpression of a morphogen by 2.5 fold could potentially extend its

range of action by almost 2.5 fold.  However, we can be fairly certain that the condition β>>1

does not hold when Dpp is produced at its endogenous levels.  This is because, in sog- embryos,
PMad signaling across the dorsal region (where endogenous Dpp is expressed) is considerably

lower than the strong PMad signal seen at the dorsal midline of wildtype embryos.  Thus, within
the broad domain of Dpp production, the wild type rate of Dpp production must be insufficient to

saturate all receptors (in agreement with this, the parameter values chosen for Fig. 5 imply

β=0.67).  If we increase vL by 2.5 fold (the amount by which st2-dpp expression exceeds that of

endogenous dpp in Fig. 2), β will be 1.67, putting xC at 1/3 the width of a st2 domain, or about

two cell diameters.  As stated in previously, this is small compared with the overall range of
action of st2-dpp in Fig. 2-3.

Although the above insights were derived from an examination of steady state behavior,

further analysis shows that the rate of approach of such gradients to steady state increases for
larger vL (Fig. S11d), further diminishing the ability of increased vL to cause significant gradient

expansion within a reasonable time frame.

In summary, in regimes of either low or high receptor saturation, if Dpp diffusivity is taken

to be 100 fold lower than that of a typical soluble protein, overexpressing Dpp to a degree similar

to that in Fig. 2-3 should not have been able to expand the Dpp activity gradient significantly.
Accordingly, the data do not support very low Dpp diffusivity.

6. Conditions under which soluble inhibitors extend morphogen range of
action

In the text we assert that any diffusible inhibitor can extend the range of action of a
morphogen, even one that is not subject to ligand-induced destruction.  This follows from an

analysis of the one-dimensional model of a morphogen gradient, and its approximate solution
when receptor occupancy is not close to saturation, i.e. equation 8.

If we assume that a competitive inhibitor of morphogen binding is present in such a system,

and at a uniform level everywhere, then some fraction of free morphogen molecules will be
bound to inhibitor, and therefore unable to complex with receptors.  Accordingly, the rate at
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which morphogen molecules bind to receptors will go down by exactly the fraction of

morphogen molecules that is complexed with inhibitor.  As such, the effect of the inhibitor on
the steady state distribution of morphogen-receptor complexes can be seen as equivalent to a

decrease in the association rate constant kon.  Λ will therefore decrease by the square root of that

fraction.

What will the effect of a lower Λ  be on the LR gradient?  Both the numerator and

denominator of equation 8 will increase, suggesting that the overall gradient might either expand
or contract, depending upon the parameter values.  This is in fact the case.  The family of curves

in Figure S12 show that as Λ decreases, curves become broader, but also lower.  When Λp >> 2,

Figure S12. Predicted effect of a diffusible inhibitor on the steady state profile of a morphogen
gradient.  According to equation 8, if receptor occupancy (i.e. [LR]) is normalized to vL/kdeg, and
distance is scaled to the width of the morphogen production region, p, then receptor occupancy
versus distance depends only on the unitless parameter Λp.  Since Λ is proportional to kon, and
the presence of a diffusible inhibitor may be modeled as a decrease in kon, we represent the effect
of increasing amounts of inhibitor with a series of curves of decreasing Λp (values of Λp are
shown next to each curve).  Each twofold decrease in Λp may be thought of as the addition of an
amount of soluble inhibitor that lowers by fourfold the amount of free morphogen.   Because
decreasing Λp makes morphogen gradient profiles both lower and broader, the range of
morphogen actions may either increase or decrease, depending on the initial value of Λp and the
threshold level of [LR] required by cells for morphogen response.
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the dominant effect of decreasing Λ is broadening; when Λp << 2, the dominant effect is

lowering.  Since Λ-1 specifies the distance over which such a morphogen gradient declines to

~37% of its value at x=0, we may rephrase the preceding statement as follows: As long as the

region over which a morphogen gradient is spread does not too greatly exceed the width of the
region that produces the morphogen, the addition of a diffusible inhibitor can significantly

extend the effective range of most morphogen actions. The qualification, “most” is included in

the previous sentence because, as Fig. S12 shows, the amount of range extension depends on the
threshold of the morphogen response.  For example, when one compares the curves representing

Λp=4 with Λp=1, one sees that the width of a cellular domain specified by a morphogen

response with a threshold level of 0.2 will expand more than twofold, while a domain specified
by a response with a threshold level of 0.3 will contract more than twofold.

Note that, in Fig. 3c-e, the region of morphogen production is clearly on the same order as

the width of the Dpp activity gradient.  Thus, one would expect the presence of modest amounts
of a soluble inhibitor to expand the range of Dpp action for most response thresholds.  Whether

Sog, at its endogenous levels, is in the optimal range to have such an effect is not known, but
from the simulations in Fig. S1 we see (at least when the parameters in Fig. 5 are used) that

about 3/4 of the Dpp that is not receptor-bound is complexed with Sog.  This would suggest that

the inhibitory effects of Sog could be equated with a two-fold decrease in effective Λ, the

consequences of which (according to Fig. S12) could be sufficient to explain much of the greater
range of Dpp action in sog+ vs. sog- embryos.
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