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Starting from the Navier–Stokes equation, we rigorously prove that a modified third-
order structure function, S̃3(r), asymptotically equals −4

3
εr (ε is the dissipation rate)

in an inertial regime. From this result, we rigorously confirm the Kolmogorov four-
fifths law, without the Kolmogorov assumption on isotropy. Our definition of the
structure function involves a solid angle averaging over all possible orientations of
the displacement vector y, besides space-time-averaging. Direct numerical simulation
for a highly symmetric flow for a Taylor Reynolds number of up to 155 shows that
the flow remains significantly anisotropic and that, without solid angle averaging,
the resulting structure functions approximately satisfy these scaling relations over
some range of r = |y| for some orientation of y, but not for another.
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1. Introduction

The subject of structure functions has been of much interest over the last five
decades (and continues to be so), since Kolmogorov introduced it in his seminal
paper (Kolmogorov 1941a) on turbulence. The subject is too vast to review properly
in this short paper (see, for example, Monin & Yaglom 1975).

Kolmogorov defined the nth order longitudinal structure functions to be

Sn,K(r) = 〈|u(x + y, t) − u(x, t)|n cosn θδu,y〉, (1.1)

where u(x, t) is the Eulerian velocity field, at a location x (in R
3) at time t, r is

the magnitude of the vector y, n is a positive integer, θδu,y is the angle between
u(x + y, t) −u(x, t) and y and 〈·〉 denotes an ensemble average. In his seminal paper,
Kolmogorov (1941a) used essentially statistical arguments to conclude that for a
homogeneous isotropic flow (for which Sn,K is only a function of r), as Reynolds
number Re → ∞,

Sn,K(r) ∼ kn(εr)ζn , where ζn = 1

3
n, (1.2)

for η � r � L (called the inertial scale), where L is a characteristic energy-producing
length-scale, and η is a viscous cut-off scale, with η/L → 0 as the Reynolds number
Re → ∞. The ε appearing in (1.2) is the dissipation rate, assumed to be finite
and non-zero in the limit of Re → ∞. The kn, appearing in (1.2) are universal
constants, by Kolmogorov’s original argument. An expression for the viscous cut-off
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scale η can be derived from the Navier–Stokes equation by assuming a priori that
(1.2) holds for n = 2 (see remark 2.4 below). This gives the viscous cut-off (the
so-called Kolmogorov length-scale) to be η = ν3/4/ε1/4, where ν is the kinematic
viscosity. This viscous cut-off length-scale, estimated by Kolmogorov, is consistent
with rigorous mathematical results (Constantin et al. 1985; Ruelle 1982; Lieb 1984)
on the dimension of the global attractor of the Navier–Stokes dynamics (if there
exists such an attractor).

Fifty years after Kolmogorov’s seminal paper (Kolmogorov 1941a), the scope of
validity of (1.2) remains a matter of controversy (see Frisch 1995) because, for n 6=
3, there are no proofs or derivations of these results that use the Navier–Stokes
equation. There is some work on the Kolmogorov spectrum (Lundgren 1982; Pullin &
Saffman 1993; Bhattacharjee et al. 1995), associated with n = 2 structure function,
based on modelling of the Navier–Stokes dynamics by assumed vortex structures.
While the model predictions do not appear to be critically sensitive to some of the
assumptions, the results are still not independent of the model parameters. There
has also been some rigorous (Constantin 1997; Constantin et al. 1999) upper bounds
related to the enstrophy spectrum in two dimensions and the energy spectrum in
three dimensions. Constantin & Fefferman (1994) also established rigorous inequality
relations for different order structure functions, Sn(r), defined by

Sn(r) = 〈|u(x + y, t) − u(x, t)|n〉, (1.3)

where 〈·〉 in their work involves space-time-averaging. Note that these sets of struc-
ture functions are different from those originally defined by Kolmogorov; however,
there exist relations between Sn and Sn,K for isotropic† homogeneous flow (see Monin
& Yaglom 1975) and, therefore, Sn will also satisfy relation (1.2) to the same degree
as Sn,K .

Experimental evidence (Gagne 1993; Sreenivasan & Kailasnath 1993; Nelkin 1994;
Benzi et al. 1993) appears to suggest that the Kolmogorov relation needs to be
corrected, at least for n = 4. Experimental inaccuracies appear (Frisch 1995) to
create uncertainties in the reported results for n > 4. The deviation of ζn from the
predicted n/3 of Kolmogorov is popularly known as the intermittency effect, and
has occupied the attention of many researchers in recent years. While there exists
phenomenological theory (She & Leveque 1994) that predicts the deviation of ζn

from n/3 (for n 6= 3) in (1.2), in good agreement with experiment, the relation of
intermittency with Navier–Stokes dynamics remains to be understood. Much of the
theoretical work in this direction involves modelling and simplification of the Navier–
Stokes dynamics (see, for example, L’vov & Procaccia 1996) with a view to capturing
the essential physics behind intermittency. One might expect that a simplification
describing the essential physics should not violate any exact relation satisfied by the
Navier–Stokes dynamics. This highlights the importance of exact relations. These are
also helpful to the experimentalist by providing them with checks for consistency.

Unfortunately, there are not many exact relations known for the Navier–Stokes
dynamics. Aside from the inequalities mentioned before, until now, the only exact
equality involving structure functions that we have been aware of is that S3,K =

† Even without isotropy assumption, x–t integration of equation (3.1) and a volume integration
with respect to y over a sphere of radius r leads to r3S2,K(r) =

∫ r

0
r̂2S2(r̂) dr̂ in the inertial regime.

This gives the proportionality relation between S2 and S2,K known before for isotropic flow (Monin &
Yaglom 1975).
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−4

5
εr as Re → ∞ for r in the inertial regime. This was obtained by Kolmogorov

himself (Kolmogorov 1941b) by using the Karman–Howarth equation (von Karman
& Howarth 1938), that was, in turn, derived from the Navier–Stokes equation for a
statistically stationary homogeneous isotropic flow. This has been referred to in the
literature as the Kolmogorov four-fifths law.

In this paper, we present a second equality

ε−1S̃3(r) = −4

3
r,

in an inertial regime, where S̃3 is a modified third-order structure function. This
result is rigorously derived without making any assumptions about the flow structure,
though the result follows in a rather straightforward manner from the anisotropic
generalization of the Karman–Howarth equation (von Karman & Howarth 1938)
attributed to Monin (see Monin & Yaglom 1975, p. 402). However, to the best of our
knowledge, the results for S̃3(r) do not appear anywhere in the existing literature.
We also use this result on S̃3(r) to rigorously re-derive the Kolmogorov four-fifths
law without the Kolmogorov assumption on flow isotropy.

A direct numerical simulation of Navier–Stokes equations for a highly symmetric
periodic flow in a box, originally devised by Kida & Ohkitani (1992), was carried
out up to a Taylor Reynolds number Reλ of about 155. The solid angle averaging
over all possible orientations of the displacement vector y present in our definition of
the structure functions (along with space-time-averaging) makes a numerical com-
putation of the structure functions prohibitively expensive. Instead, we computed
structure functions without solid angle averaging for two independent orientations of
y. We expected to get approximately the same results in both directions, as would be
consistent with an isotropic flow. Instead, we found that up to Reλ = 155, the flow
was far from isotropic, even for this highly symmetric flow. Without the solid angle
averaging, we found that the computed structure functions for y = (r/

√
3)(1, 1, 1)

displayed the theoretical large Reynolds number inertial regime dependences of S̃3(r)
and S3,K(r) over some range in r. However, for another orientation of y, namely
y = r(1, 0, 0), we find no such scaling regime, at least up to Reλ = 155.

For our purposes, we define

S̃3(r) = lim
T→∞

1
T

∫ T

0

∫

dΩ

4π

∫

dx

L3
|u(x + y, t) − u(x, t)|3 cos[θy,δu]. (1.4)

Here, L is some characteristic energy-producing length-scale, and integration with
respect to Ω refers to solid angle integration over the spherical surface |y| = r. Also,
we redefine Kolmogorov’s longitudinal structure functions as

Sn,K(r) = lim
T→∞

1
T

∫ T

0

dt

∫

dΩ

4π

∫

dx

L3
|u(x + y, t) − u(x, t)|n cosn[θy,δu], (1.5)

and Sn(r) as

Sn(r) = lim
T→∞

1
T

∫ T

0

dt

∫

dΩ

4π

∫

dx

L3
|u(x + y, t) − u(x, t)|n. (1.6)

Note that these definitions of structure functions involve space-time-averaging, as
well as an averaging over all possible orientations of y. Ensemble averages appear in
Kolmogorov’s original work. If the flow is homogeneous, space integration over x is
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unnecessary. If the flow is isotropic, the integration over solid angle Ω is redundant.
If the flow is both homogeneous and isotropic, then the definition above will reduce
to the usual ensemble average if it can be assumed that for stationary turbulence
the system goes through all possible states over a long time. However, if the flow is
neither homogeneous (say for an infinite geometry) nor known to be isotropic, the
definitions of structure functions above are still meaningful and the results quoted in
this paper remain valid. Earlier, Pullin & Saffman (1996), in the context of studying
the Burger–Lundgren models for turbulence, also introduced spherical averaging,
and noted that their spherically averaged structure functions satisfied the isotropic
Karman–Howarth equation.

The incompressible forced Navier–Stokes equations determining the velocity field
are given by

ut(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∇2u(x, t) + f(x, t), (1.7)
∇ · u(x, t) = 0. (1.8)

It will be also assumed that the forcing f(x, t) is such that the assumptions (a)–(c)
listed below are valid:

(a) lim
T→∞

1
T

∫ T

0

dt

∫

dx

L3
|f(x, t)|2 ≡ 〈|f(x, t)|2〉 < ∞;

(b) lim
T→∞

1
T

∫ T

0

dt

∫

dx

L3
|∇f(x, t)|2 ≡ 〈|∇f |2〉 < ∞;

(c) Ē = 1

2
lim

T→∞

1
T

∫ T

0

dt

∫

dx

L3
|u(x, t)|2 ≡ 〈|u|2〉 < ∞.

Note that we have introduced 〈·〉 above to denote space-time-averaging, rather
than the ensemble averages of Kolmogorov. It is to be noted that assumption (c) is
only necessary for a completely unbounded geometry. For a periodic box (or even
a strip) geometry, there exists a uniform upper bound for energy in terms of the
forcing function f and the viscosity ν (Doering & Gibbon 1995). In that case, (c)
actually follows from the given properties of f .

Because of assumptions (a)–(c) above, the characteristic energy-producing length-
scale L can be precisely defined:

L =
〈|f |2〉1/2

〈|∇f |2〉1/2
. (1.9)

We define a characteristic velocity scale U also in terms of the averaged energy Ē,
defined in (c):

U =
√

2Ē. (1.10)

The averaged dissipation, ε, is given by

ε = ν〈|∇u|2〉. (1.11)

On taking the dot product of (1.7) with u(x, t) and carrying out a space-time-
integration, it follows that this average dissipation equals the averaged work done,
i.e.

ε = 〈f · u〉. (1.12)
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It follows from Holder’s inequality that

ε 6 〈|f |2〉1/2U < ∞. (1.13)

For the purposes of our paper, it is convenient to define two additional length-scales
l and ηc as follows:

l =
ε

U〈|∇f |2〉1/2
, (1.14)

ηc = U(ν/ε)1/2, (1.15)

ηc is usually referred to in the literature as the Taylor microscale. It is to be noted
from (1.9) and (1.13) that l 6 L.

Besides the assumptions (a)–(c), our results for S̃3(r) and S3,K have so far been
shown to hold rigorously in the theoretical limit

ηc

l
=

ν1/2U2〈|∇f |2〉1/2

ε3/2
→ 0. (1.16)

For fixed forcing f in (1.7), this limit can be expected to be attained through a
sequence of decreasing viscosity ν, or, perhaps, by increasing f for fixed ν. However,
without knowledge of rigorous upper bounds on the energy Ē (and, therefore, U), and
a suitable lower bound on the dissipation ε, we cannot rigorously show that the limit
(1.16) is theoretically attainable by changing the given control parameters (viscosity
ν and forcing f) in (1.7). Earlier, Kolmogorov hypothesized that the limiting ε as
ν → 0 is finite and non-zero in three dimensions. If this can be assumed in addition
to energy Ē growing slower than ν−1/2, then the theoretical limit (1.16) is implied
by ν → 0. In the rigorous proofs presented here, we do not specifically assume the
Kolmogorov hypotheses about ε or anything about the dependence of energy, Ē,
on viscosity. Our results only require the theoretical limit in equation (1.16). For
the theoretical results to be physically valid, all we need to know is that the limit
(1.16) is achievable, in principle, by suitably changing the control parameters of the
problem. We will refer to the set of all distances r satisfying ηc � r � l, in the
limit ηc/l → 0 as an inertial scale, though the traditional definition of inertial scale
is wider: η � r � L (as the Reynolds number tends to infinity). We remark that our
restrictions on inertial scale are needed for the purpose of achieving rigorous proofs;
we fully expect the results to be valid over the wider traditional inertial scale. The
reasons for this are discussed in the paper in remarks 2.4 and 2.5.

Under the assumptions (a)–(c) and the further assumption that solutions u(x, t)
to (1.7) and (1.8) exist for all times (a physically reasonable assumption that is yet
to be proved rigorously), it will be proved that in the limit (1.16):

(i) lim
r/l→0,

r/ηc→∞

(S̃3(r)/εr) = −4

3
; (1.17)

(ii) lim
r/l→0,

r/ηc→∞

(S3K(r)/εr) = −4

5
. (1.18)

The latter relation (1.18) is the Kolmogorov four-fifths law. In the standard notation
of asymptotics, (1.17) and (1.18) can, alternatively, be written as

S̃3(r) ∼ −4

3
εr, S3K(r) ∼ −4

5
εr, (1.19)
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for l � r � ηc. Since S3(r) > |S̃3(r)|, it follows from (1.17) that

lim
r/l→0,

r/ηc→∞

(S3(r)/εr) > 4

3
. (1.20)

Further, as a consequence of (1.20), it follows from a routine application of the Holder
inequality that for any n > 3 and m < 3,

S3−m
n (r)Sn−3

m (r)
[εr]n−m > (4

3
)n−m, (1.21)

with the inequality understood in the same sense as (1.20).

2. Derivation of results for S̃3(r)

We now proceed to derive our results for S̃3. We replace argument x by x+y in (1.7)
and subtract (1.7) from the new equation to obtain

[δu]t + u(x, t) · ∇[δu] = −∇[δp] + ν∇2[δu] + [δf ] − (∂/∂yj)[δujδu], (2.1)

where

δu = u(x + y, t) − u(x, t), δp = p(x + y, t) − p(x, t), δf = f(x + y, t) − f(x, t),
(2.2)

and the subscript j denotes the jth component of the vector involved. A standard
repeated index summation convention has also been used. A similar form of equations
for vorticity appears in Constantin (1997). Taking the dot product of (2.1) with δu
and integrating with respect to x over the entire volume (normalized by L3), we
obtain (after using (1.8) many times):

1
2

∂R

∂t
(y, t) + ν

∫

dx

L3
∇(δui) · ∇(δui) = ∇ · N(y, t) + F (y, t). (2.3)

In (2.3), the scalar functions R(y, t) and F (y, t) are defined as

R(y, t) =
∫

dx

L3
|δu|2, (2.4)

F (y, t) =
∫

dx

L3
(δf) · (δu), (2.5)

and the vector function N(y, t) is given by

N(y, t) = −1
2

∫

dx

L3
δu|δu|2. (2.6)

We notice that

ν

∫

dx

L3
∇(δui) · ∇(δui) = 2ε1(t) − 2ν

∫

dx

L3
(∇ui(x, t)) · (∇ui(x + y, t))

= 2ε1(t) − ν∇2R, (2.7)

where ε1(t) is the instantaneous normalized dissipation rate:

ε1(t) = ν

∫

dx

L3
|∇u(x, t)|2. (2.8)
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Substituting (2.7) into (2.8), it is clear that

1
2

∂R

∂t
(y, t) + 2ε1(t) − ν∇2R(y, t) = ∇ · N(y, t) + F (y, t). (2.9)

For isotropic flow, the dependence on y in (2.9) is only through |y|. In that case, (2.9)
becomes the well-known Karman–Howarth equation. The anisotropic generalization
in the form (2.9) appears to have been first derived by Monin & Yaglom (1975,
p. 402). Here, we have re-derived this for the sake of completeness in the present
context (where space-time-averaging replaces ensemble averaging of an assumed sta-
tistically stationary homogeneous flow). Also, some of the intermediate steps leading
up to (2.9) are useful in our later derivation of the Kolmogorov four-fifths law, with-
out the Kolmogorov assumption on isotropy.

We replace y by ỹ in (2.9) and integrate with respect to ỹ over a sphere of radius
r = |y| centred at ỹ = 0. Using divergence theorem on resulting volume integrals,
and dividing the result by 2πr2, we obtain

∂

∂t

{

1
4πr2

∫

|ỹ|<r

dỹR(ỹ, t)
}

+ 4

3
ε1r − 2ν

d
dr

T2(r, t) − 1
2πr2

∫

|ỹ|<r

dỹF (ỹ, t) = −T̃3(r, t),

(2.10)

where T2(r, t) is defined by expression (1.6) for n = 2, but without any time-
averaging. Similarly, T̃3(r, t) is defined by the same expression as for S̃3 in (1.4),
except that time-averaging is not performed. On time-integrating (2.10) from 0 to
T and dividing the resulting expression by T , and taking the limit as T → ∞, it
follows that

4

3
εr − 2ν

d
dr

S2(r) − 1
2πr2

∫

|ỹ|<r

dỹ G(ỹ) = −S̃3(r), (2.11)

where

ε = lim
T→∞

1
T

∫ T

0

dtε1(t), G(ỹ) = lim
T→∞

1
T

∫ T

0

dtF (ỹ, t). (2.12)

So far, everything is exact and involves no approximations or assumptions on the
nature of the flow or the range of r.

We now present two propositions that ensure that the second and third terms
on the left-hand side of (2.11) are asymptotically negligible compared to εr in the
asymptotic limit (1.16), when l � r � ηc.

Proposition 2.1. Under assumptions (a)–(c), if a smooth solution† u(x, t) satis-
fying (1.7) and (1.8) exists for all times, then

lim
r/l→0

1
εr3

∫

|ỹ|<r

dỹ G(ỹ, t) = 0. (2.13)

Proof . We note that on using the well-known triangular equality

|δu · δf | 6 [|u(x + y, t)| + |u(x, t)|]|δf |.

† It was pointed out by P. Constantin (personal communication) that the condensing of propositions
2.1, 2.2, 3.1 and 3.2 is valid, even for a known global weak solution.
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On using ‖δf‖ 6 ‖∇f‖|y|, where ‖ · ‖ denotes the L2 norm in x, and Holder’s
inequality, it follows that

|G(ỹ)| 6 2U〈|∇f(x, t)|2〉1/2|ỹ|. (2.14)

It follows that
∣

∣

∣

∣

1
2πr2

∫

|ỹ|<r

dỹ G(ỹ)
∣

∣

∣

∣

6 Ur2〈|∇f(x, t)|2〉1/2. (2.15)

On dividing (2.15) by εr and using the definition of l from (1.14), the statement of
proposition 2.1 follows. �

Proposition 2.2. Under assumptions (a)–(c), if a smooth solution u(x, t) satis-
fying (1.5) and (1.6) exists for all times, then

lim
r/ηc→∞

ν

εr

d
dr

S2(r) = 0. (2.16)

Proof . First, we note that

∇y

∫

dx |δu|2 =
∫

dx (δui)∇ui(x + y, t) =
∫

dx (ui(x, t) − ui(x − y, t))∇ui(x, t),

(2.17)

where the symbol ∇y is the gradient with respect to the y variable. Therefore, using
(2.17),

∣

∣

∣

∣

y

r
· ∇y

∫

dx

L3
(|δu|2)

∣

∣

∣

∣

6

∫

dx

L3
|u(x)| |∇u(x, t)| +

∫

dx

L3
|u(x − y)| |∇u(x, t)|. (2.18)

We notice from (1.6) that S′
2(r) is bounded in absolute value by the time-solid-

angle average of the expression on the left-hand side of (2.18), which, from Holder’s
inequality, is bounded by

6 2〈|u(x, t)|2〉1/2〈|∇u(x, t)|2〉1/2.

Therefore,

ν|S′
2(r)| 6 2Uν〈|∇u(x, t)|2〉1/2 = 2Uν1/2ε1/2. (2.19)

Proposition 2.2 follows from (2.19), if we divide it by εr and use the definition of ηc

in (1.15). �

Remark 2.3. Both limits on r appearing in (2.13) and (2.16) can be satisfied if
and only if ηc/l → 0, as assumed in (1.16).

Remark 2.4. r/ηc → 0 is a sufficient condition for the conclusion of proposi-
tion 2.2 to hold. It is not expected to be necessary. Indeed, if the Kolmogorov
expression (1.2) is assumed valid for S2(r) and used to evaluate S′

2(r) in (2.16),
then it is clear that (2.16) would remain equally valid for r/η → 0 for η = ν3/4ε−1/4.

Remark 2.5. There is no particular physical reason to expect that the magnitude
of the dot product average 〈f · u〉 should not be of the same order as 〈|f |2〉1/2U . In
that case, ε/(U〈|f |2〉1/2) is strictly O(1). l is then strictly the same order as L.
Combining this with remark 2.4, we can expect that (2.13) and (2.16) are actually
valid over the entire inertial regime: η � r � L, though the rigorous proofs so far
are limited to the subrange ηc � r � l.
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3. A derivation of the Kolmogorov four-fifths law

We now proceed to use the result (1.17) for S̃3(r) to re-derive the Kolmogorov four-
fifths law, but without the Kolmogorov assumption on flow isotropy. For this purpose,
it is convenient to return to (2.1) and take the dot product with y. This leads to

[y · δu]t + u(x, t) · ∇[y · δu] = − ∂

∂xi
[yiδp] + ν∇2[y · δu] + [y · δf ]

− ∂

∂yj
[δujδuiyi] + [δujδuj ]. (3.1)

On multiplying (3.1) by y · δu, integrating with respect to x over the whole volume,
replacing y by ỹ and integrating with respect to ỹ over a sphere of radius r = |y| in
a manner similar to that shown explicitly in (2.1)–(2.10), we get

∂

∂t

[

2π

∫ r

0

dr̃r̃4T2K(r̃, t)
]

+ νQ

= P − 2πr4T3K(r, t) + 4π

∫ r

0

T̃3(r̃, t)r̃3 dr̃ +
∫

|ỹ|<r

dỹ F̂ (ỹ, t), (3.2)

where T2K and T3K are given by the expression (1.5) (for n = 2 and n = 3), except
that integration with respect to t is not performed. In (3.2), Q, P and F̂ are defined
by

Q(r, t) =
∫

|ỹ|<r

dỹ

∫

dx

L3
[δ̃u]k,j [δ̃u]l,j ỹkỹl, (3.3)

P (r, t) =
∫

|ỹ|<r

dỹ

∫

dx

L3
([δ̃p][δ̃u]k,iỹiỹk), (3.4)

F̂ (ỹ, t) =
∫

dx

L3
[δ̃uk]ỹk[δ̃fi]ỹi, (3.5)

where the subscript ‘, j’ refers to differentiation with respect to xj , and δ̃u refers to
δu with argument y replaced by ỹ in (2.2). (Similarly, for δ̃p, etc.)

After some manipulation, and using
∫

|ỹ|<r

dỹ ỹkỹl = 4

15
πr5δk,l, (3.6)

where δk,l stands for the usual Kronecker delta, we find

νQ(r, t) = 8

15
πε1(t)r5 − 2νQ1(r, t), (3.7)

where

Q1(r, t) =
∫

|ỹ|<r

dỹ

∫

dx

L3
ul,j(x, t)uk,j(x + ỹ, t)ỹlỹk. (3.8)

On integrating by parts with respect to x, and then with respect to ỹ, one obtains

Q1(r, t) = −
∫

dx

L3
ul(x, t)

∫

dΩ yjylykruk,j(x + y, t)

+
∫

dx

L3
uj(x, t)

∫

|ỹ|<r

dỹ ỹkuk,j(x + ỹ, t). (3.9)
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The latter integral term in (3.9) is zero from integration by parts with respect to x.
Also notice, that in the first integral,

yjuk,j(x + y, t) = r(∂/∂r)uk(x + y, t).

Therefore, it follows from (3.7) and (3.9) that

νQ(r, t) = 8

15
πε1(t)r5 − 4πνr4T ′

2K(r, t), (3.10)

where the prime denotes differentiation with respect to r.
We will now show that P = 0. For this purpose, we notice that P can be written

as

P (r, t) = 2
∫

dx

L3

∫

|ỹ|<r

dỹ p(x, t)uk,i(x, t)ỹiỹk

− 2
∫

dx

L3

∫

|ỹ|<r

dỹ p(x, t)uk,i(x + ỹ, t)ỹiỹk. (3.11)

On using (3.6), and the divergence condition uk,k = 0, it follows that the first integral
on the right-hand side of (3.11) is zero. On integrating the second integral by parts
with respect to ỹ, we get

P (r, t) = −2r3

∫

dx

L3

∫

dΩ p(x, t)uk(x + y, t)yk

+ 8
∫

dx

L3

∫

|ỹ|<r

dỹ p(x, t)uk(x + ỹ, t)ỹk. (3.12)

The first integral in (3.12) is clearly zero since the surface integral
∫

dΩ uk(x + y, t)yk =
1
r

∫

|ỹ|<r

dỹ uk,k(x + ỹ, t) = 0. (3.13)

We also notice that
2ỹk =

∂

∂ỹk
r̃2,

where r̃2 = ỹj ỹj . Using this, the second integral in (3.12) can be integrated by parts
with respect to ỹ and using (3.13) again, we get this to be zero as well. Thus P = 0.

Using the simplifications for Q and P back in (3.2) and time-integrating this
equation from 0 to T , and then dividing it by T , we obtain, in the limit T → ∞
(after dividing by 2πr4),

4

15
εr − 2

r4

∫ r

0

S̃3(r̃)r̃3 dr̃ − 2νS′
2K(r) = −S3K(r) +

1
2πr4

∫

|ỹ|<r

dỹ Ĝ(ỹ), (3.14)

where

Ĝ(ỹ) = lim
T→∞

1
T

∫ T

0

dtF̂ (ỹ, t). (3.15)

We now claim that in the inertial regime, as identified before, νT ′
2(r) and

1
r4

∫

|ỹ|<r

dỹ Ĝ(ỹ)

are negligible, compared to εr in (3.14). We make the following propositions, whose
proofs closely parallel those of propositions 2.1 and 2.2.
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Proposition 3.1. If a smooth solution u(x, t) satisfying (1.5) and (1.6) exists for
all times, then

lim
r/l→0

1
εr5

∫

|ỹ|<r

dỹ Ĝ(ỹ) = 0. (3.16)

Proof . We note, on using the well-known triangular equality, that

|[ỹ · δ̃u][ỹ · δ̃f ]| 6 2|ỹ|2[|u(x + ỹ, t)| + |u(x, t)|]|δ̃f |.
On using ‖δ̃f‖ 6 ‖∇f‖ |ỹ|, where ‖ · ‖ denotes the L2 norm in x, and Holder’s
inequality, it follows that

|Ĝ(ỹ)| 6 2〈u2(x, t)〉1/2〈|∇f(x, t)|2〉1/2|ỹ|3. (3.17)

It follows that
∣

∣

∣

∣

1
πr4

∫

|ỹ|<r

dỹ Ĝ(ỹ)
∣

∣

∣

∣

6 4

3
〈|∇f(x, t)|2〉1/2Ur2. (3.18)

On dividing (2.15) by εr and using the definition of l from (1.14), the statement of
proposition 3.1 follows. �

Proposition 3.2. If a smooth solution u(x, t) satisfying (1.5) and (1.6) exists for
all times, then

lim
r/ηc→∞

ν

εr

d
dr

S2K(r) = 0. (3.19)

Proof . First, we note that S′
2K(r) is the time-average of T ′

2K(r, t). From (3.7) and
(3.10), it clearly follows that

T ′
2K(r, t) =

1
2πr4

Q1(r, t). (3.20)

But, from expression (3.9) for Q1(r, t), we know that only the first integral is non-zero
and this, after integration by parts with respect to x, leads to

T ′
2K(r, t) =

1
2πr4

∫

dx

L3
ul,j(x, t)

∫

dΩ ylyjykruk(x + y, t). (3.21)

Noticing that each of yl, yj and yk are bounded by r, on long time-integration of the
above equation and using Holder’s inequality, it follows that

ν|S′
2K(r)| 6 2νU〈|∇u|2〉1/2 = 2Uν1/2ε1/2. (3.22)

Proposition 3.2 follows by dividing the above expression by εr, and using the defini-
tion of ηc in (1.15). �

Remark 3.3. As before, with S̃3(r), propositions 3.1 and 3.2 both hold when
ηc � r � l. This defines the inertial scale for the purposes of the proof, though a
wider range, η � r � L, is expected, as discussed in remarks 2.4 and 2.5.

Given propositions 3.1 and 3.2, it implies that in the inertial range, (3.14) simplifies
to

4

15
εr − 2

r4

∫ r

0

S̃3(r̃)r̃3 dr̃ = −S3K(r), (3.23)
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where the equality in (3.23) holds in the same sense as (1.17). Using the relation
(1.17), proved before for r/ηc � 1 and r/l � 1, it is not difficult to see that in the
inertial range,

− 2
r4

∫ r

0

S̃3(r̃)r̃3 dr̃ = 8

15
εr. (3.24)

The simplest way to prove this result is to institute a change in the variable s = r/η,
s̃ = r̃/η, so that the left-hand side of the above equation becomes

− 2
s4

∫ s

0

ds̃S̃3(s̃η)s̃3 ds̃. (3.25)

Since s � 1, it is clear from (1.17), that the leading asymptotic behaviour of the
integral above for large s is dominated by the contribution near the upper limit. This
gives the result (3.24), where the equality is to be understood in the asymptotic sense
as in (1.17). Using the result (3.24) in (3.23), we obtain the Kolmogorov four-fifths
law, given by (1.18). Hence the proof is complete.

4. Numerical simulation

Since the computation of S̃3 and S3,K involves one three-dimensional space integra-
tion with respect to x, a two-dimensional solid angle averaging with respect to orien-
tations of y, as well as a one-dimensional time-integration, numerical computations
for S̃3 and S3,K for sufficiently large Reynolds number were deemed prohibitively
expensive.

Instead, we computed S̃c
3 and Sc

3,K , defined as

S̃c
3 =

1
T

∫ T

0

dt

∫

dx

L3
|u(x + y, t) − u(x, t)|3 cos θδu,y, (4.1)

Sc
3,K =

1
T

∫ T

0

dt

∫

dx

L3
|u(x + y, t) − u(x, t)|3 cos3 θδu,y, (4.2)

which are, respectively, modifications of S̃3 and S3,K , in that no solid angle aver-
aging is involved. We chose two significantly different orientations of the vector y:
y = (r/

√
3)(1, 1, 1) and y = r(1, 0, 0). At the outset, we expected that for a highly

symmetric flow, the assumptions of isotropy would actually be satisfied over some
range of scales at the highest computable Reynolds number. This would make solid
angle averaging moot. This would be suggested by the independence of computed
S̃c

3/(εr) and Sc
3,K/(εr) on the orientations of y. However, this did not turn out to be

the case. The numerical results are presented here to indicate the degree of anisotropy
of the flow and how well the linear scaling of the third-order structure functions hold
in some regime of r for specific orientations of y.

We solve (1.7)–(1.8) in a 2π-periodic cube with an initial condition of ‘high sym-
metry ’ as discussed in Kida (1985). In particular, the flow at all times admits the
following Fourier expansion for the x1 component of the velocity at all times:

u1(x1, x2, x3, t) =
( ∞

∑

even l,m,n=0

+
∞
∑

odd l,m,n=1

)

û1{l,m,n}(t) sin lx1 cos mx2 cos nx3.

(4.3)
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The other velocity components are determined by the permutation symmetry

u1(x1, x2, x3) = u2(x3, x1, x2) = u3(x2, x3, x1).

The special structure of the Fourier components in (4.1) and the permutation rela-
tionship above saves computational time and memory (Kida 1985; Boratav & Pelz
1994). In our study, the initial condition is chosen to be the same as that in Kida et
al. (1989) and Kida & Ohkitani (1992). Specifically,

u1(x1, x2, x3, t = 0) = sin x1(cos 3x2 cos x3 − cos x2 cos 3x3). (4.4)

Two kinds of forcing, f(x, t), are used in this study:

(a) f1(x1, x2, x3, t) = u1(x1, x2, x3, t = 0)/5;

(b) f(x, t) is chosen such that the Fourier mode û1{1,3,1} = −û1{1,1,3} = 1 all
the time, in order to imitate a constant energy supply at lower wavenumbers
(Kida et al. 1989; Kida & Ohkitani 1992). No forcing is used in any of the other
wavenumbers. From (1.7), this is equivalent to choosing the x1 component of
the force as

f1(x, t) = P[u1t + u · ∇u1 + (∂p/∂x1) + ν∇2u1], (4.5)

where P is the projection to the space of scalar functions generated by the
basis

{sin x1 cos[3x2] cos x3, sin x1 cos x2 cos[3x3]}, (4.6)

where Pu1 is given as

Pu1(x1, x2, x3, t) = sin x1 cos[3x2] cos x3 − sin x1 cos x2 cos[3x3]. (4.7)

The other components f2, f3 of f are similarly determined from the cyclic permuta-
tion property of u2 and u3.

The numerical method for solving (1.7)–(1.8) is based on a Fourier pseudo-spectral
technique. The details can be found in Boratev et al. (1992) and Boratav & Pelz
(1994). To perform the integration in time for S̃c

3, Sc
3,K and ε, we use a second-order

Adams–Bashforth method. For the sake of saving computational time, the time-
step for the integration is chosen to be 5∆t, where ∆t is the time-step for solving
the corresponding Navier–Stokes equations (1.7)–(1.8). The spatial integrations in
x for S̃c

3, Sc
3,K and ε are evaluated through summation over N3/64 evenly spaced

grid points in the 2π-periodic box, where N is the number of grid points in each
direction of the 2π-periodic domain. This quadrature is spectrally accurate. For a
computational reason, we always choose y in S̃c

3, Sc
3,K on the grid points, or the

periodic extension of the grid points.
For f(x, t) = 0, we have tested our computational results against those presented

in Boratav & Pelz (1994). For the forcing (b), we have compared our results with
those studied in Kida et al. (1989) for large ν, for example, ν = 0.011. We have also
performed resolution studies in N and ∆t for the computations of S̃c

3, Sc
3,K and ε.

All computations are performed by using 64 bit arithmetic.
In this study, we are interested in the following quantities:

G1 ≡ − S̃c
3

rε
, G2 ≡ −

Sc
3,K

rε
, (4.8)
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Figure 1. Averaged normalized energy versus time for forcing (a) (——). Averaged normalized
energy dissipation rate versus time for forcing (a) (· · · · ·). (a) ν = 0.001; (b) ν = 0.000 667.

as functions of r/η for various r. It was rigorously proved in the previous section that
as r/l → 0 and r/ηc → ∞, G1 → 4

3
and G2 → 4

5
for isotropic flows. Nonetheless, in

view of earlier remarks, we expect the results to be valid in the full inertial range:
η � r � L in the limit η/L → 0. However, in our numerical computations for finite
non-zero ν, η/L is a non-zero-though-small number, and G1 and G2 are generally
functions of r, orientation of y, as well as T—the time-integration length.

We study the forcing (a) from figure 1 to figure 3. In figure 1, we plot averaged
normalized averaged energy Ē = 〈|u(x, t)|2〉 and averaged normalized energy dissi-
pation rate ε as functions of T for ν = 0.001 and ν = 0.000 667. L, the reference
length-scale is chosen to be 2π for computational reasons, rather than that given by
(1.9). This differing choice, made for the sake of simplicity, makes no difference to
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Figure 2. G1 and G2 as functions of r/η at different T for y = (r/
√

3)(1, 1, 1) for forcing (a).
4

3
or 4

5
(– – –). (a) ν = 0.001 and T = 10 + i × 0.5 for i = 0, . . . , 18; (b) ν = 0.000 667 and

T = 9 + i × 0.5 for i = 0, . . . , 10. Note convergence for large enough T .

computations of G1 and G2, since their dependence on L cancels out. Also, L = 2π
is clearly only a multiple of L given by (1.9), with the multiple independent of ν.

Here, we choose N = 256 for both cases with ∆t = 0.001 for ν = 0.001 and
∆t = 0.0005 for ν = 0.000 667 (Kida et al. 1989; Boratav & Pelz 1994). It appears
that Ē and ε start to settle down around T = 10 for ν = 0.001 and T = 9 for
ν = 0.000 667, respectively. Here the time-scale is implicit by the choice L = 2π,
and taking f , which has units of acceleration, to be given by (a). Based on the
equilibrated values of Ē and ε, a Taylor microscale Reynolds number Reλ is defined
as

Reλ =
√

20
3

Ē√
νε

. (4.9)
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Figure 3. G1 and G2 as functions of r/η at different T for y = (r, 0, 0) for forcing (a). 4

3
or 4

5

(– – –). (a) ν = 0.001 and T = 10+ i×0.5 for i = 0, . . . , 18; (b) ν = 0.000 667 and T = 9+ i×0.5
for i = 0, . . . , 10. Note convergence for large enough T .

It is known that for sufficiently large values, this Taylor Reynolds number, Reλ, scales
as the square root of the Reynolds number Re. The ν = 0.001 calculation reported
here corresponds to Reλ = 132, while for the ν = 0.000 667 calculation, Reλ = 154.
The corresponding values of η/L turned out to be 0.001 49 and 0.001 06, respectively,
while ηc/η equalled 10.09 and 10.95, respectively.

In figure 2, we plot G1 and G2 against r/η for different T for the same cases shown
in figure 1. Here, we choose y = (r/

√
3)(1, 1, 1), where r = |y| is given. As shown in

the graphs, there is a range of r (though not very large) where G2 is approximately
4

5
, while G1 is approximately 4

3
. The agreement for G2 appears to be better. Given

the theoretical results, it is not surprising that the range of r over which G1 and G2

are approximately 4

3
and 4

5
is larger for Reλ = 154 than that for Reλ = 132. Indeed,

the fit with a constant is also better for the larger Reλ.
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Figure 4. Averaged normalized energy versus time for forcing (b) (——). Averaged normalized
energy dissipation rate versus time for forcing (b) (· · · · ·). (a) ν = 0.001; (b) ν = 0.000 667.

Similar results are presented in figure 3 for y = r(1, 0, 0) with r given. We see
that there is no significant regime of r/η where G1 and G2 are constants. Further,
the values are significantly smaller than 4

3
and 4

5
, respectively, though the values

are somewhat larger for ν = 0.000 67 than for ν = 0.001. It is possible that these

approach 4

3
and 4

5
, respectively, as ν becomes even smaller.

A similar study has been performed for forcing (b), where the ν = 0.001 calculation
corresponds to Reλ = 134, while for the ν = 0.000 667 calculation, Reλ = 155. Similar
quantities to those in figures 1–3 are plotted in figures 4–6. It is easy to see that the
corresponding graphs are very similar to each other.

The significant differences between figures 2 and 3 as well as between figures 5
and 6 suggest a lack of isotropy in the flow. This is consistent with earlier numerical
calculations (Yeung et al. 1995) that suggest that third-order moments do remain
anisotropic even at later times. While the theoretically predicted quantities involve
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Figure 5. G1 and G2 as functions of r/η at different T for y = (r/
√

3)(1, 1, 1) for forcing (b).
4

3
or 4

5
(– – –). (a) ν = 0.001 and T = 10 + i × 0.5 for i = 0, . . . , 18; (b) ν = 0.000 667 and

T = 9 + i × 0.5 for i = 0, . . . , 10. Note convergence for large enough T .

solid angle averages that cannot be computed with currently available computer
power, the computational results up to Reλ = 155 suggest that, in some directions,
one can observe an approximate linear scaling regime for S̃c

3 and S̃c
3,K that is con-

sistent with the rigorous large Reynolds-number-limiting results for S̃3 and S3,K .
However, there also exist other directions for which such agreement does not exist,
at least up to Reλ = 155.

5. Discussion

We conclude by noting that the rigorous equality for S̃3 and S3,K holds for non-
isotropic or inhomogeneous flows as well, since the definition used here involves a
space-time solid angle averaging. Our computations, even for a highly symmetric flow
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Figure 6. G1 and G2 as functions of r/η at different T for y = (r, 0, 0) for forcing (b). 4

3
or 4

5

(– – –). (a) ν = 0.001 and T = 10+ i×0.5 for i = 0, . . . , 18; (b) ν = 0.000 667 and T = 9+ i×0.5
for i = 0, . . . , 10. Note convergence for large enough T .

in a periodic box for a Taylor Reynolds number of up to 155, suggest that the assump-
tions on isotropy are generally not satisfied. Because of prohibitive computational
expense, we are unable to assess, numerically, how the predicted scaling laws in the
theoretical large Reynolds number limit hold for the newly defined third-order struc-
ture functions (involving space-time solid angle averaging) at the highest Reynolds
number for which computation is feasible. However, by dropping solid angle aver-
aging for computational purposes, we noted approximate scaling regimes for some
orientation of the displacement vector y, though not for others.

At this point, two possible explanations exist for our computational results. Per-
haps, even for larger Taylor Reynolds numbers (beyond what could currently be
computed), all anisotropy would disappear. A second explanation would be that
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anisotropy persists but that computed solid angle averages, as in theory, would have
resulted in much closer agreement with the theoretical limiting results (the four-
thirds law or the Kolmogorov four-fifths law) even at Reλ = 155. Unfortunately, we
are unable to distinguish between these two scenarios.

While the numerical computation is, as yet, not practical for flows that are not
isotropic, the relations in this paper may prove useful to experimentalists as well as to
theoreticians seeking to model the Navier–Stokes dynamics with simpler equations.
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