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We consider the problem of microstructural evolution in binary alloys in two
dimensions. The microstructure consists of arbitrarily shaped precipitates embed-
ded in a matrix. Both the precipitates and the matrix are taken to be elastically
anisotropic, with different elastic constants. The interfacial energy at the precipitate—
matrix interfaces is also taken to be anisotropic. This is an extension of the inho-
mogeneous isotrpic problem considered by H.-J. Jou et al. (1997, J. Comput. Phys.
131, 109). Evolution occurs via diffusion among the precipitates such that the to-
tal (elastic plus interfacial) energy decreases; this is accounted for by a modified
Gibbs-Thomson boundary condition at the interfaces. The coupled diffusion and
elasticity equations are reformulated using boundary integrals. An efficient precon-
ditioner for the elasticity problem is developed based on a small scale analysis of
the equations. The solution to the coupled elasticity-diffusion problem is imple-
mented in parallel. Precipitate evolution is tracked by special non-stiff time stepping
algorithms that guarantee agreement between physical and numerical equilibria. Re-
sults show that small elastic inhomogeneities in cubic systems can have a strong
effect on precipitate evolution. For example, in systems where the elastic constants
of the precipitates are smaller than those of the matrix, the particles move toward
each other, where the rate of approach depends on the degree of inhomogeneity.
Anisotropic surface energy can either enhance or reduce this effect, depending on
the relative orientations of the anisotropies. Simulations of the evolution of multiple
precipitates indicate that the elastic constants and surface energy control precipitate
morphology and strongly influence nearest neighbor interactions. However, for the
parameter ranges considered, the overall evolution of systems with large numbers of
precipitates is primarily driven by the overall reduction in surface energy. Finally,

1 Current address: Department of Mathematics, University of North Carolina, Chapel Hill, NC 275999-3250.
2 Current address: Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875.

44

0021-9991/00 $35.00
Copyright (© 2000 by Academic Press
All rights of reproduction in any form reserved.



MICROSTRUCTURE EVOLUTION 45

we consider a problem related to the microstructure of fully orthotropic geological
materials. (©) 2000 Academic Press
Key Words: microstructure; anisotropy; inhomogeneity; elasticity, diffusion.

1. INTRODUCTION

In this paper, we consider the numerical solution for the problem of microstructural
evolution in binary metal alloys that are produced by a solid-state phase transformation. As
described in [15], these transformations occur when the temperature of a uniform mixture of
materials is lowered into a regime where a two-phase mixture of solids is stable. The system
responds by nucleating second phase particles (precipitates) which evolve by the diffusion
of matter among the distinct crystal phases until equilibrium is reestablished or diffusion is
stopped by further lowering of temperature. Because the resulting two-phase microstructure
is a major variable in setting the macroscopic properties of the alloy (i.e., stiffness, strength,
and toughness), the transformation process is the basis for the manufacturing of alloys such
as steels and superalloys.

The importance of microstructure in setting the properties of the alloy is seen by the
following example. In many alloys (especially those used at high temperatures), there is
an in situ coarsening process in which a dispersion of very small precipitates evolves to a
system consisting of a few very large precipitates in order to decrease the surface energy of
the system. This coarsening severely degrades the properties of the alloy and can lead to in
service failures.

The details of this coarsening process depend strongly on the elastic properties and crystal
structures of the alloy components. Experimental observations of the diffusional evolution
of nickel-based superalloy microstructures show cuboidal precipitates aligned in specific
crystallographic orientations. This structure arises because of the elastic fields generated
by the misfit between the precipitate and matrix crystal lattices and is a reflection of the
competition between the elastic and surface energies in lowering the total energy of the
system (i.e., the sum of the surface and elastic energies). See, for example, [1, 25, 26,
28, 13, 6, 46]. There is hope that by carefully choosing the alloy components, it may be
possible to use the elastic fields to improve material performance over time through better
understanding and control of the transformation process.

In this paper, we investigate the influence of elastic stresses on the diffusional motion
of precipitates in the two-phase system in two space dimensions. The precipitate-matrix
interfaces are assumed to be sharp and we consider the precipitate and the surrounding matrix
phases to be both elastically anisotropic and to have different elastic constants (elastically
inhomogeneous). In order to more fully investigate the role of crystalline anisotropy on the
transformation process, we also consider anisotropic surface energies at matrix—precipitate
interfaces. This is, to our knowledge, the first time both anisotropy and inhomogeneity have
been included in a boundary integral (sharp interface) simulation of precipitate motion.
One of the features we observe in our simulations is that even small inhomogeneities can
strongly influence precipitate evolution.

Most previous work on simulating microstructural evolution in elastic media has focused
either on the case of homogeneous elasticity with cubic anisotropy, e.g., [43, 41, 42, 27,
45, 44] or inhomogeneous, isotropic elasticity, e.g., [15, 20]. In the former, the elastic con-
stants of the two phases are anisotropic, with cubic symmetry, but are identical (elastically
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homogeneous) in the two phases. This case is much easier to treat than the inhomogeneous
case because the elastic fields can be calculated by direct calculation of an integral and so
it is not necessary to solve any equations to obtain the elastic fields [43, 41, 42]. In the
latter case, the elastic constants of the two phases are different but the elasticity is assumed
to be isotropic. Even in this isotropic setting, the computation of elastic fields is costly
because of the need to solve boundary integral equations over all the precipitate-matrix
interfaces. Jou et al. [20] developed an efficient preconditioner for these boundary integral
equations and applied a non-stiff time stepping method to successfully track the evolution
of microstructures for a relatively large number of particles (approximately 20).

Recently, Schmidtand Gross [37, 38, 39], Orlikowski et al. [36, 31], Li and Chen [23, 24],
and Lee [18, 19, 17] have reported results for elastically anisotropic and inhomogeneous
systems. Schmidt and Gross investigated the effect of inhomogeneity on the equilibrium
shape and stability of a single precipitate (either in all of space or in a periodic box) in cubic
anisotropic media. In their procedure, there is no time evolution as a set of nonlinear equa-
tions is obtained and solved (using a quasi-Newton method) for the boundary of a precipitate
in equilibrium. Orlikowski et al. investigated the morphological evolution and coarsening
statistics of elastically inhimogeneous, cubic anisotropic precipitate-matrix systems in both
two and three dimensions. Rather than solving the sharp interface equations, Orlikowski
et al. used a phase-field (diffuse interface) approach in which mesoscopic field equations
are introduced to mimic the diffusion and elasticity problems. Li and Chen used a simi-
lar phase field approach to study morphological evolution and splitting of inhomogeneous
precipitates; see also Nishimori and Onuki [30] among others. In a different approach, Lee
studied the effect of inhomogeneity and anisotropy on particle morphology and evolution
by constructing a “discrete atom method.” In this method, atoms are considered as balls
connected by elastic springs, and diffusional evolution is simulated by taking a series of
discrete Monte-Carlo steps.

In this paper, we generalize the approach used by Jou et al. [15] to study the case of
anisotropic, inhomogeneous elasticity. The set-up of the problem is the same as in that
paper: the microstructure consists of arbitrarily shaped precipitates growing diffusionally
in an elastically stressed matrix. The precipitate—matrix interfaces are assumed to be sharp
and coherent. Diffusion of the solute is taken to occur in the matrix only and is assumed
to be quasi-static. Elastic stresses may be generated by either far-field applied strains or by
mismatch strains between the phases. Unlike [15], the phases are elastically anisotropic with
different material constants. The elasticity and composition fields are assumed to interact
through an elastic energy term in a generalized Gibbs—Thomson boundary condition for the
composition field. This boundary condition includes an anisotropic surface energy following
Herring [11]. We refer the reader to [15] for further discussion, implications, and references.

Both the diffusion and elasticity problems for the multi-phase system are reformulated
in terms of boundary integral equations; their solutions are used to generate the normal
velocity of the interface through a flux-balance condition. As in [15], we use the method
of Greenbaum et al. [8] to solve the integral equations for the diffusion problem. However,
both the elasticity solver and the non-stiff time stepping algorithms presented here are new,
although our approach parallels [15].

To solve the elasticity problem, we use a direct boundary integral representation involving
both monopoles and dipoles based on the fundamental solution for orthotropic elasticity
given by Green [7] and we use the approach of Rizzo and Shippy [34]. Analogously to
the inhomogeneous, isotropic case investigated in [15], four linear integral equations are
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obtained for each interface by using the coherency conditions at the interface, i.e., continuity
of both displacements and tractions. Although the structure of the equations is similar to
the isotropic inhomogeneous case, the integral kernels in the anisotropic case are more
complicated. As is the case with the inhomogeneous isotropic elasticity, these integral
equations are not of Fredholm type because they involve Cauchy, logarithmic, and smooth
kernels. This leads to the ill-conditioned linear systems. However, following the approach
in [15], we perform an analysis of the integral equations at small spatial scales and use the
result as a preconditioner to reformulate the integral equations to a second kind Fredholm
form. We then use the iterative method GMRES [35] to solve the system.

To track the evolution of the interfaces, we present new non-stiff time integration algo-
rithms. These algorithms are designed to accurately capture certain details of the numerical
solutions such as the chemical potential on the interface. We show that these details can
sensitively depend on the numerical time integration algorithms. This sensitive dependence
was apparently first noticed only recently in [20] in the context of a diffuse interface method.
This is likely because macroscopic properties such as particle shapes are much less sensitive
to the algorithms.

Finally, we implement our method using parallel computation. The main cost of the
algorithm is computing integrals for the diffusion and elasticity integral equations and the
normal velocity. If there are M computational points on an interface, then direct summation
requires O(M?) operations to compute each integral at each grid point on the interface.
Although fast summation techniques have been developed for isotropic elasticity [9] in
which the computational effort is reduced to O(M), there is as yet, no fast algorithm for the
anisotropic case due to the form of the integral kernels. To reduce the computational cost,
we exploit the easily parallelizable structure of direct summation as follows. Let P be the
number of processors. Then, we compute M/ P integrals at each processor simultaneously
and we broadcast the result to all the other processors. This has a perfect workload balance if
M/ P is aninteger and has a communication load of order O(M). For the O(M) operations,
such as updating the interface in time, we perform the computations sequentially. For large
numbers of computational nodes, we regularly achieve efficiencies on the order of 90%.

Our results show that small elastic inhomogeneities in cubic systems can have a strong
effect on precipitate evolution. For example, in systems where the elastic constants of the
precipitates are smaller than those of the matrix, the particles move toward each other, where
the rate of approach depends on the degree of inhomogeneity. We find that anisotropic inter-
facial energy can either enhance or reduce this effect, depending on the relative orientations
of the elastic and interfacial anisotropies. However, simulations of the evolution of multiple
precipitates indicates that while there are qualitative differences that arise owing to different
elastic constants and interfacial anisotropies, the process as a whole is primarily driven by
an overall reduction in interfacial energy. Finally, we consider a problem related to the
microstructure of fully orthotropic geological materials.

2. FORMULATION

In this section, the field equations for the diffusion and elasticity problems and the
formulation of the elasticity problem as a boundary integral equation are presented. The
diffusion problem and its reformulation as a boundary integral equation are given in [15]
and so here we only give a brief review of the relevant equations. The matrix and precipitate
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phases occupy the two-dimensional plane R?, with the matrix phase M extending to infinity
and the precipitate phase QP consisting of p separate particles occupying a finite area. The
individual interfaces between the two phases are denoted by I'j, i = 1. .. p, with the entire
interface given by I' = Uip=1 I';. Each I is assumed to be a smooth disjoint closed curve
with unit normal vector n taken to point from the precipitate phase to the matrix phase.
For the case of precipitate growth, it is convenient to take a circular far boundary I', with
radius R, and inward normal n that encloses all the precipitates. This boundary will appear
only in the limit Ry, — oo through a far-field mass flux condition for the diffusion field.
All variables are dimensionless, with the normalization described in an appendix of [15].

2.1. Diffusion

The problem for the diffusion fields is as follows. Let ¢ be a non-dimensional composition.
We suppose that the diffusion is quasi-static in the matrix, so

Ac=0 inQM €))

and we suppose there is no diffusion in the precipitate phase. The boundary condition for the
matrix composition at the precipitate—matrix interface is the generalized Gibbs—Thomson
condition [11, 22, 15, 20]

c=@@) +1"O)k+2g® onT, )

where 6 is the tangentangle to ', () = 1 + 19(0) is the anisotropic surface energy, « is the

mean curvature of the interface, Z characterizes the relative contribution of the elastic and

surface energies, and g is an elastic energy density defined by Eq. (14) below. The surface

energy 7 () is assumed to be a smooth function of 6 (i.e., no cusps) such that T + t” > 0.
One may also allow a mass flux J into the system through the far-field condition

—J = lim i Vc-nds. ©)
Reo—0021 J1
Here, J is the total mass flux into the system. If J > 0 the total area of the precipitates
increases with time (growth), while if J =0 the total area of the precipitates remains fixed
(coarsening). In this paper, we consider only J =0.
Finally, the normal velocity V of the precipitate—matrix interface is computed through a
flux balance at the interface,

V = Vc-n|r. 4)

Equations (1)-(4) can be formulated in terms of boundary integrals by using a dipole
density on I" and source terms for the far-field flux. Given = (9) and g® from the solution to the
elasticity problem, the boundary integral problem for diffusion can be solved numerically,
and the normal velocity can be computed by using the Dirichlet-Neumann map. Details are
given in [15, 8].

2.2. Elasticity

In order to calculate the elastic energy density g® used in Eq. (2), we must first compute
the elastic fields on each interface I';. The elastic fields arise because of misfit strains
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between the precipitate and matrix phases as well as far-field applied strains. Misfit is taken
into account through the constitutive relations between the stress X and the strain £. In the
precipitate,

sP=cPEP - &h), (5)
where T denotes the misfit strain, while in the matrix,

M =cMeM, (6)

In Egs. (5) and (6), C denotes the fourth-rank stiffness tensor of the material. The strain
components Si)j are computed from the displacement components u; by

& =5 (uffj +ufy), @)

N| =

with x = P, M to denote the the precipitate and matrix, respectively.

In this work, we take both phases to have orthotropic symmetry, i.e., two directions of
symmetry. Using compact notation in two dimensions and letting 1 and 2 be the symmetry
directions, we write, for x = P, M,

zh €
o= | =5 and &= | & (8)
D1} &

with the stiffness tensor given by

ch ¢ 0
Cr=|c, ¢ 0. 9)
0 0 cf

Alternatively, we may define the compliance tensor

Sfl X2 0
S=CHt=|sh s, 0. (10)
0 0 s

We remark that if the region x has cubic anisotropy then s = s,; for isotropic symmetry
Si1 =S5, and s55 = 2(Sf; — ).

We now give the classical formulation of the elasticity problem in the two-phase domain.
In the next subsection, we present the reformulation of the system as boundary integral
equations.

The field equations for elasticity are

V.2X=0 inQ=MP (11)
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in the absence of body forces. We assume that the two-phase interface I' is coherent, and
so the boundary conditions are given by the continuity of displacement,

Ulp = Ulm, (12)
and traction,
tlp=3"n=3xMn =t|u. (13)
Finally we take far-field conditions
lim eM = £°
r—o0
limuP < oo,
r—0

where £° is an applied far-field strain.
Once the elasticity problem is solved, g is computed as

gd:%zp;(g"—gT)—%zM:5M+2M:(5M—SP) onT.  (14)

Since g® is only needed on the precipitate—matrix interfaces, it is only necessary to compute
the elastic fields on I". This can be done by reformulating Egs. (11)—(14) onto I" through a
system of linear boundary integral equations.

2.3. Boundary Integral Formulation for Elasticity

The reformulation of the elasticity problem through boundary integrals stems from the
fundamental solution to orthotropic elasticity in two dimensions given by Green and Taylor
[7]; see also Rizzo and Shippy [34]. Let «; and «, be positive constants determined from
the elastic compliance tensor by

a1+ o2 = (2812 + Ss6) /S22, (15)
10 = S11/92. (16)

Let U (X, x) be the fundamental solution tensor that generates the displacement vectors u;
atx’ arising from an isolated force at x, acting in the positive x; direction and with magnitude

B =27 (a1 — a2) 2. 17)
Then,
uj (X) = Uij (X', X)& (X), (18)
where g is the base vector along x;. This fundamental solution U is given as

Uy = o’ Alogry — oy ?AZlogra, Ui = AiAx(6, — 6y), (19)
Uy = AtPo(0: —61).  Up = a; " A3logra — o 2 A logr, (20)
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where
Aj =Sp —ajS forj=1,2 (21)
and
=0 — X%+ (X — %)%/, 6 = arctan((Xe — Xp)//aj (X1 — X1)).  (22)

Because «; and a; must be positive, Egs. (15) and (16) may be viewed as restrictions on
the elastic constants. For example, let A be a measure of the anisotropy given by

A =2(/S1152 — S12)/Ses-

Then, the restriction on o1, ap > 0 reduces to requiring A < 1. Fortunately, for cubic systems,
this restriction is not as severe as it appears. In cubic elasticity s;;3 = S, and so rotating
the coordinate system by +7 /4 takes A— 1/A while preserving the cubic structure of the
stiffness and compliance tensors. This restricts the two-phase problem with cubic anisotropy
to cases where the elastic constants of both phases have either A> 1 or A < 1. This trick,
however, does not work for general orthotropic systems, as rotations create non-orthotropic
structure in the stiffness and compliance tensors.

It is straightforward to take derivatives of U;; to find the stresses associated with the
displacement u;. One may then compute the tractions acting on an arbitrary contour L
surrounding the point x (e.g., see [34]). The traction tensor field T (X', x) is found to be

) A A A A
T = (% — Xk)nk(—12 S— 2>, T = Ml—lz - M2—22 (23)
Jor; Joary a1l sl
A A , (A A
T = |V|1—22 - Mz—zl, Tao = (X% — Xk)nk(—lz - —22>, (24)
iz~ M NG NG
where (nf, n,) is the outward unit normal to L, and
M; = o (x) — xmy — a; 72 (x — xp)ny. (25)

The use of Green’s fundamental solution to reformulate the elasticity equations as bound-
ary integrals was derived previously by Rizzo and Shippy [34]. In the absence of misfit and
applied strains, the result is as follows.? Let t, be tractions and uy displacements acting on
an arbitrary contour L. Then for x inside L,

1
uj(x) = 5 /L (t(X(S)Ugj (X, X(S)) — Uk (X(s)) Tij (X, X(5))) ds/, (26)

where we denote the integration point by x(s’) with s’ the arclength along L. If we let
X — X(s)on L,

2
uj(x(s)) = 5 (%(tk(x(s/))ukj (X(8), X(s)) — uk(X(s)) T (X(3), X(S))) ds/)> . (27)

where the P indicates a principal value integral. It is straightforward to generalize this
formula to add misfit and applied strains; both are included in the next subsection.

3 The Einstein summation notation is used: summations are performed over repeated indices.
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2.3.1. Application to two-phase problems. Given the fundamental solution for ortho-
tropic elasticity, the formulation of the boundary integral equation for the two-phase problem
proceeds as in the isotropic case considered in [15]. Briefly, Eq. (27) is used in both the
precipitate and matrix phases with the appropriate elastic constants and applied and misfit
strains. Enforcing continuity of displacement and traction results in four coupled integral
equations for each interface. This is seen as follows.

Precipitate. Let QP =T be the boundary of the precipitate Q. Applying Eq. (27) to
the precipitate boundary and using the constitutive relation Eq. (5), we obtain

2
uf (x(s)) + i (7( uf (X(S) T (x(s). x(s)) ds’ _/t{’(x(s/))ukﬁ’(x(g),x(s))dg)
L r

2 J / /
=5 /F ty (X)) (x(s). x(9)) dS’, (28)
where t = £ is the traction and t] = CJj,,&m,ni is the misfit traction.

Matrix. The matrix phase requires a little more work. We introduce an artificial far
field boundary T, and we decompose the total fields into their uniform far-field compo-
nent (denoted by a superscript 0) plus a remainder (e.g., see [15] for details). Then for x
in QM,

1
u)' () — ul(x) = g /F (" (x(s")) — 2 (x(s)) Ul (x(). %) — (U (x(s))

1
~UROX(S)) T (). ) + 5 / (" () — 12x(s))
oo

x Uyl (X(8), %) — (U (x(8) — ug(x(s)) T (x(8), %)) ds,
(29)

where ul = &3 and analogously for t0. We assume that the applied strain £° is con-
stant.

It can be shown that as I',, goes to oo, the integral over I, tends to a constant independ-
ent of x [2]. This implies that the integral over ", contributes a constant to the displacement,
and so can be neglected. Then, letting x approach I" from M, we have

2
M
2
= u(x(s)) — il ( 7( UR XN T (X(8), x(8)) dS'
r

uy' (x(s)) —

( y{ uy ()T (x(8). x(s)) ds’ — /r M (x(s’))Uk'\j"(x(s’),x(s))ds’)

_ /r t2 (X(s) U (X(S). X(S)) ds’) ) (30)

Coherency conditions. Since uf =u}! and t” =tM on I', Egs. (28) and (30) yield a
system of four linear integral equations for the single-valued displacement and traction
fieldson T.
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Existence and uniqueness of solutions. Although this system is not Fredholm since
TP and TM contain a term with a Cauchy singularity, it can be transformed to a second-
kind Fredholm equation using the small scale decomposition given in the next subsection.
Classical Fredholm theory [33] can then be used to show that solutions exist and are unique
(uC is specified at infinity, ensuring uniqueness).

2.4. Small Scale Preconditioner for the Elasticity Integral Equations

We can analyze the system (28)—(30) at small spatial scales in an analogous way to the
isotropic system presented in [15]. The idea is to determine and separate the dominant terms
at small spatial scales. Roughly speaking, these dominant terms are those terms associated
with singular integral kernels. For example, integral operators with nonsingular kernels are
smoothing at high Fourier wavenumbers (small spatial scales) while those with singular
kernels smooth much less (if at all). Thus, at small scales, operators with singular kernels
are dominant. We refer the reader to [15] for a full discussion of this procedure.

Let the boundary displacements u=uP = u™ and tractions t =t” =tM. Then, Egs. (28)
and (30) can be written as

Ku,t) =f (31)
with

Uj + P (U, t) fP
K(u,t) = . f= : (32)

uj —’C}\A(Uk,tk) ij
Ki¥ (U, t) = ﬁix (f u(2)Tg (Z,2)ds — / (@)U (Z, Z)dS> ; (33)

r r

fP=KkP0t), fM=u—cM(u.t). (34)

We now analyze the smoothness of the kernels. We suppose that the interfaces are well
separated and do not self-intersect so that z(s) # z(s') unless s=¢.

We first notice that U12(z(S), z(S')), U1 (2(S), (S)), T11(z(s), z(s)),and T (2(S), z(S))
contain no singularities and remain smooth as s — s'. The remaining kernels U1, Uy, Ty,
and T,; do become singular as s — s'. Their structure is obtained as follows.

Let 0 <« <27 parameterize I, i.e., S=S(«). Then, observe that

rf~ (x5, + %5, /)@ —a)?  asa—a, (35)
where the «; are determined from elastic constants via Egs. (15)—(16) and are not related
to the parameter «. Also, we use the notation ~ to denote that the difference between two

is a smoothing operator (integral operator with a smooth kernel) [15]. By using Eg. (35),
one can show that

Aq A, 1 o—ao .
Tp = — — — ) —cot smooth function, 36
o (\/Oll \/052)2501 ( 2 ) * 39
o—ao

1
Tor = (ApJog — Alﬁ)gcot< 5 ) + smooth function, (37)
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Now, define the periodic Hilbert transform by

2w

Hw) = i/ w(a)cot 1(oz —ao)da'. (38)

27'[ 0 2

Then, we obtain

A A
/FMle ds <ﬁ - E)WH(M)a (39)
/ UTor dS ~ (Ve Ay — VazADTH (L), (40)

r

This is the small scale decomposition of the integral operators with kernels Ty, and Ty;.
It should be observed that the Hilbert transform is not smoothing at small scales. Let
(k) denote the Fourier transform of 1 at wavenumber k. Then,

H() (k) = —i sgn(k)z(k) (41)

and so high frequencies are not “damped” as they would be for a smoothing operator. For
a smoothing operator S(11), we have S(u)(k) = O(e~ 37, fu(1)e *!'l) where p denotes
the strip width of analyticity of the kernels (in the Im «-plane) [15]. This justifies the
decomposition.

The small scale decompositions for the operators with kernels U;; and Uy, are obtained
by performing integration by parts on the terms log(r;) and arguing similarly. We obtain

/r uUq ds ~ (ai/zAg - O[;/ZA%)JTSQH(U) (42)
and

/ pUzzds ~ (o 72 A5 — g 2 A s, H(o), (43)
r

where o (o) = [ u(e’) de’ and we have assumed that fOZ”M(a’) do’ = 0. This assumption
is valid because in Egs. (28)—(30), these operators are applied to the tractions t; which have
zero mean.

Putting everything together, we conclude

K (Ui ) ~ L7 (U, 1) = Dt digaM(Ui) — i Ef s H (010, (44)

where o (@) = [;'tc(a) do’. Further,

1 =k - {1, I=1k=2
3|k={ 7 dka=q-1, I=2k=1 (45)
0 | £k
) # O, |=k

and D}, E;}, with X = P, M, have nonzero components given by

2 A A 2
b, = 2% <_l _ _2) Dy = ?ﬂ(\/oTzAl — JarAy), (46)

B \JVeu o
2r 2 —-1/2

Eu = ?(a}/zAg — otzl/zAi), Ex = ?(0‘2 A~ “;l/zAi)’ (47)
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where we drop the superscript x but note that «;, A, and B all depend on the elastic
constants.

Recalling Eg. (32), we now write the small scale decomposition of the full elasticity
system as

K@, t) = L(u,t)+ R, (48)
where
i+ LP (U, t
Lt = (u, i (U k)) (49)
uj — LM Uk, t)

dominates the small scales and R is a smoothing operator.

The primary advantage of this formulation is that for a wide range of elastic parameters,
L can be easily inverted in Fourier space when s, is constant in « (as in the equal arclength
frame discussed in the next section) by using identities like (41). In this frame, computing
£~ reduces to inverting a 4 x 4 matrix at each wavenumber k for each interface. See the
Appendix for this matrix.

Using the small scale decomposition, the elasticity integral equations can be reformulated
as

LKW, ) =14+ LR, t) = £7, (50)

where £~1R is also a smoothing operator [15]. This is a Fredholm integral equation of the
2nd kind.

Computationally, we use £~ as a preconditioner for the elasticity system. This is efficient
because applying £~ on each interface requires O(M log(M)) operations where M is the
total number of grid points on the interface(s) I". This is to be compared with computing 1C
which requires O(M?) operations.

2.5. Energy

Finally, we assert that the system (1)-(4) and (14) evolves to reduce the sum of surface
and elastic energies

vvtotz/r(e)derz >
r

/ TAELdA, (51)
x=M,P “Sx
where
~ {Ep—gT for x = P,

EM otherwise.
Following [15], the elastic energy can be rewritten in terms of a boundary integral. We do
not give the details here. Lastly, a straightforward calculation shows that

d

\Ntot = —Wqat = /(f’( + del)v ds
dt r

= _/QM IVcl2dA, (52)

which justifies our assertion above.
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3. NUMERICAL METHODS

In this section, we describe the numerical methods used to solve the moving boundary
problem. The numerical procedure is the following. (1) The elasticity integral equations are
solved to generate g¥. (2) The composition integral equations are solved to obtain V, the
normal velocity of the precipitate/matrix interfaces. (3) The interfaces are updated and the
process is repeated. Because the first two procedures rely on well-established techniques
we discuss them very briefly and we focus primarily on the time-stepping algorithms for
the interface-update and on parallelization issues.

3.1. Integral Equations

The integral equations for both elasticity and diffusion are solved using the collocation
method together with the iterative solver GMRES [35]. In the elasticity case, the precon-
ditioner £ is used in Fourier space. In the diffusion case, the preconditioner developed by
Greenbaum et al. [8] is used. The implementation of these two methods together is com-
pletely analogous to that in [15] and the normal velocity V is calculated in the same way
as in that paper. We refer the reader to that paper for additional background. The integrals
(except in the preconditioners) are calculated by alternating point quadratures [40]. For the
integrals involving logr; kernels we first perform integration by parts in order to reduce
the kernels to 1/r;-type behavior [15]. This yields spectral accuracy. The reason for us-
ing the alternating point quadrature is that it avoids evaluating the integrands at the point
of removable singularity and we find it gives slightly better numerical performance. Any
derivatives or anti-derivatives are obtained using the FFT. Finally, following [15, 12], a 25th
order Fourier filter is employed to reduce aliasing errors.

3.2. § — AFormulation and Small Scale Decomposition of Evolution Equations

To evolve the precipitate/matrix interfaces ', we follow [15, 12] and use the 6 — A
formulation in the scaled arclength frame. Here, 6 is the tangent angle to the interface
(measured counterclockwise from the horizontal) and A is the area of a precipitate. To
briefly review, let « parametrize the interface. Then,

O(a,t) = tanfl(xg,a/xl,a) and Alt) = %/(xl, Xo) - nds. (53)
r

We evolve the interface I in the scaled arclength frame by choosing the tangential velocity
T to be

2 o
T(a, t):%/ Y da’—/ 6,V do. (54)
0 0

This maintains the relation

L(t)
Su(a, 1) = o’ (55)
T
where L(t) is the length of the interface. This keeps computational points on the curve
equally spaced in arclength at all times.
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The length L (t) is found from 6 and A(t) by using the relation

LZ(t) 2 ] o ) )
Al) = > / sin(@ («, t))/ cos(f(a’, 1)) da
87< Jo 0

— cos(f(, t))/a sin(@ (o, t))da/lda. (56)
0

The interface coordinates (x;, X2) are reconstructed from 6 and A by integrating in « the
expressions

L L
X1.¢ = =— COS(O(t, t)) and X2.0 = =— Sin(6(a, 1)), (57)
21 21

where the constant of integration is obtained by evolving the centroid (X;, X,) separately.
The evolution is then given by

O, t) = 2{% +T6,), (58)
At) = / Vds, (59)
r
. 1 _ .
X1 = m |:/r X1V ds — XlA:| (60)
- 1 _ .
Xy = m [/F XV ds — XZA] , (61)

where ds= (L (t)/27) da.
In [12], it was shown that at small scales

2
v () M+ 0] 2
and thus the evolution Eq. (58) for 6 is stiff. That is, for an explicit time stepping algorithm,
the constraint At < (hL(t)/27)%, where At and h are the temporal and spatial grid sizes,
respectively, must be imposed to maintain stability. An advantage of using the scaled ar-
clength formulation is that it is straightforward to develop non-stiff time integration schemes
for Eq. (58). For example, in [12, 15], a time stepping method based on an integrating factor
approach was used to remove the stiffness. We note that the remaining equations are not
stiff and any explicit time integration scheme can be used to solve them.

3.3. Time Discretizations

Taking advantage of the small scale decomposition (62) and the fact that 7 + 17" =
1+ (70 + 74), one can rewrite Eq. (58) as

3
6 = (i—”) H[Owae] + N, t), where (63)

2 27\ 3
N, t) = T”(Va +T6,) — (T”) H[Bual- (64)
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Except for the anisotropic surface energy contribution, the remainder terms N are “lower
order” at small spatial scales. Although the anisotropic surface energy term H[(zp +
74)0 4] o IS Of the same order as the term H[6 4], We find the splitting in Eq. (63)
to be effective numerically provided zo + 73 is smooth and not too close to 1.

Note that the term H[6 44«] is diagonalized by the Fourier transform and so in Fourier
space, we obtain

6 = —ml’ )0 + N@©), (65)

where m= (27k)? and

t
(1) = / dt' /L3 (1), (66)
0

Thus, in Fourier space, implicit time discretizations can be easily applied. However, some
care must be taken with these temporal discretizations so that certain properties of the
continuous equations are maintained on the discrete level. For example, in equilibrium,
there is an exact balance between the linear and nonlinear terms

m N 1 /0%
WQ = N(6"), (67)
where the * denotes the equilibrium value. In fact, this balance characterizes the equilibrium
solution. Since we are interested in equilibrium microstructures, this balance should also
hold on the discrete level. It turns out that this requires some care. For example, in the context
of a diffuse interface model, it was observed in [20] that the integrating factor method used
in [12, 15] violates an analogous version of this balance. This also occurs in the boundary
integral context. We refer to this method as IF:
Method IF,

an+1 _ e_m(|n+1_|n)5n i % [3e_m(|n+1_|n) Nn _ e_m(|n+1_|n—1) Nn_l} (68)

which was originally given in [12]. This method is 2nd order accurate in time [12]. It is
straightforward to see that the IF method violates Eq. (67) in equilibrium. Using the same
* notation, we find the following discrete balance for the IF method in equilibrium

At B 31 A~
— 7 [SE’mM/(L ¥ 672mAI/(L )3] N[@*]. (69)

[1 _ efmAt/(L*)?’]g*
Equation (69) is a 2nd order approximation to Eq. (67). In fact,

(L*)3 - [ ] - (L*)3 - E (3 _ efmAt/(L*)3)

0. (70)

For large m, the dominant error term comes from the term 5% 2 [emat/L! P 1]5* Thus, the
error will be small if either & is exponentially small (Iarge m) or mAt is small. Recall
that m= (27 |k|®) where k is the Fourier wavenumber. If large gradients are present in 6,
such as would be associated with formation of “corners” greglons of high curvature) in
the precipitate—-matrix interfaces, the exponential decay of & (k) may only be achieved for
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rather large values of the wavenumber k (and hence m). For example, suppose exponential
decay is observed for |k| > k*. Then, the right hand side of Eq. (70) (i.e., the error term) is
small only if m(k*) At « 1. This is an accuracy condition. If this condition is violated, then
the error term can be significant. Typically, the composition on the interface is sensitive to
this error term while the interface position and curvature are not. This will be shown in the
next section.

If k* is large, then the accuracy condition m(k*)At « 1 can be very restrictive. As
indicated above, this restriction is due to the fact that the IF method overdamps the numerical
solution. By reducing the amount of damping, this accuracy restriction can be removed
completely while the overall order of accuracy is maintained. Of course, reducing the
damping narrows the stability region of the numerical scheme. Consider the following
Crank-Nicholson type scheme:

Method CN,

an+l 1 — Atm/(L" 13 an-1 2At -
" WACKER): L X", (71)
1+ Atm/(L"1)3 14 Atm/(L"+1)3

Like the IF scheme, the CN scheme is 2nd order accurate in time. However, at the highest
modes, there is little damping of the linear term and only algebraic damping of the nonlinear
term. We find that because there is less damping, smaller time steps (than those used with
the IF method) are required for stability. This is discussed further in the next section. It is
straightforward to see that numerical equilibria of the CN scheme satisfy the equilibrium
condition (67) exactly.

In a sense, the IF and CN schemes represent extremes in the amount of damping of the
linear and nonlinear terms for 2nd order methods. One can also derive 2nd order schemes
in which the amount of damping varies between these two extremes yet the numerical
equilibrium still satisfies the condition (67) exactly. For example, suppose one wishes to
have exponential damping on the nonlinear term. Then, one can consider the scheme

an+1 an—1 n m A
5" Lnb 4 2Ate ™M1 (72)

which is analogous to the CN scheme applied to Eq. (65) using an integrating factor.
However, the Fourier coefficient L, is chosen so that Eq. (67) is satisfied exactly for the
numerical solution. It is straightforward to see that

Lm h= [l _ m(l n+1 |n—1)e—m(I"+1—I”*1)/2]

is the appropriate choice. This leads to the scheme
Method IF2,

an+1 an—

n n— 1 n ny A
0 =[1L—ma™t—nhemITTH21 5T L o AteMITIIONN (73)

which is 2nd order accurate. Like the CN scheme, there is little damping on the linear term
at the highest wavenumbers. However, like the IF method (and unlike the CN scheme), the
nonlinear terms are damped exponentially. As we show in the next section, this scheme has
a larger stability region than the CN method, although it still requires a smaller time step
for stability than the IF method.
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The method we find to perform the best, in that the time step required for stability is
essentially that of the IF method and that the numerical equilibria satisfy Eq. (67) exactly,
is given as follows. We take exponential damping on the linear term and algebraic damping
for the nonlinear term. One way to do this which maintains 2nd order accuracy is to use the
scheme:

Method IF3,
an+1 1 an

1 N
- 1+m(Inl—| n—1)em<'"—'”*1>9 +24t m(I "L — |01y 4 g-m("—I"D)

(74)

This is the time-stepping method that we will use primarily in our nonlinear simulations.

3.4. Parallel Implementation

We now discuss the issues involved in implementing our method efficiently in paral-
lel. Recall that at each time step, we (1) solve the integral equations for elasticity to ob-
tain g® on I'; (2) solve the integral equations for diffusion to find the composition on T°;
(3) calculate the normal velocity of T"; and (4) update I". The dominant computational cost
is associated with steps (1)—(3). In particular, if M is the total number of grid points on I,
then the operation count for each of steps (1)—(3) is O(M?) while the operation count for
step (4) is O(M). We note that solving the integral equations for elasticity has the highest
computational cost because there are 4M unknowns. Consequently, we implement (1)—(3)
in parallel and (4) sequentially.

As an example, consider the integral equations for elasticity. Using a collocation method
with an iteration procedure to solve integral equations, a sum that must be performed at
each iteration step is

M
D t(X(s)UF(X(s), X(9)) (75)
i=1
forl =1,..., M. Thus, for each |, a total of M summations must be performed with each
summation taking O(M) work. We use the following strategy for the parallel implementa-
tion of the M summations. First, we distribute all t, as well as all other necessary quantities,
e.g., the location of the all interfaces x(s), to every processor. Second, we compute M/P
integrals at each processor simultaneously, where P denotes the total number of processors.
Third, after the iteration procedure we broadcast the new t, from one processor to all other
processors for the next iteration. This strategy has a perfect work-load balance if M/P is
an integer and has a communication load of order O(M). We apply the same strategy to
all the other summations required to solve the integral equations for elasticity, diffusion
and to compute the normal velocity. This strategy has been successfully employed for other
problems involving computation of boundary integrals [29].

4. PERFORMANCE AND CONVERGENCE STUDIES

In this section, we consider the impact of preconditioning, time stepping, and paralleliza-
tion on the numerical results, and we verify the accuracy and convergence of the elasticity
solver.

Unless otherwise stated, all numerical tests in this section are performed using a dilata-
tional misfit strain €]; = €5, = 1, €/, = 0 with no applied fields and no far field flux (J = 0).
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The elastic constants are chosen to have cubic symmetry in both the matrix and precipitate
phase. We use cM =c)¥ =1.98,cM =1.18,cM =1, and cf, =c}, =3.03, cf, =1.61, and
cf; = 1.35. These elastic constants (scaled by ci4) are appropriate for a Nickel matrix and
NisS precipitates [43, 32]. All precipitates are taken to have the same elastic constants.
The surface tension given in Eq. (2) is chosen to allow four-fold symmetry

7(0) = 1 + 19 COS 4(0 — ). (76)

The values of g and 6, as well as Z, are chosen for each numerical experiment. The
precipitates are initially circular with radius of unity. The GMRES error tolerance is 10~
and we use 25th order Fourier smoothing with the filter level 10~ [12].

4.1. The Effect of Preconditioning

Figure 1 shows the iteration count for solving the elasticity equations using GMRES ver-
sus time, both with preconditioning and without preconditioning. For this study, 7o =0.05
and 6y = 0 for the surface energy, and we consider a single precipitate system with Z =10.
The temporal scheme used is method IF with the number of grid points N = 512 and the time
step At =10, The tolerance level for GMRES is 10~1°. The precipitate starts from a circle
and evolves toward a square shape, as expected from the four-fold symmetry of the problem
[3]. At the final time t =0.05, the precipitate reaches its steady state. Without precondi-
tioning, the iteration count starts at around 45 and decreases to about 6 at t =0.05. With
preconditioning, the initial iteration count is 11 (a factor of 4 improvement) and decreases
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FIG. 1. Iteration count vs time. Dotted line (lower curve), with preconditioners; solid lines (upper curve),
without preconditioners.
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to about 4 at the steady state t = 0.05. In addition, we observe that changing the number of
grid points does not change the iteration count if the precipitate shape is well resolved.

4.2. Performance of Parallel Implementation

We have implemented our parallel computations on four different machines: (1) an Origin-
2000 with 195-MHz IP27 Processors; (2) Pentium 11 cluster with 300-MHz Processors (OS
linux 2.0.33) and 100baseT ethernet connection; (3) an IBM-SP2 with 120-MHz P2SC
Processors; and (4) a Cray-T3E with 300-MHz DEC alpha Processors. In all cases, we use
the Message Passing Interface (MPI) for the communication among processors.

We consider both a three precipitate and a six precipitate calculation. For the Pentium Il
cluster we also consider a 10 precipitate calculation. In all cases, we take N = 256, Z = 2 for
each precipitate and we update in time using Method IF with At =10~*. For the three and
six precipitate simulations, some of the precipitates have isotropic surface energy (zo =0)
and the others have anisotropic surface energy o =0.05 and 6, = 0. In the ten precipitate
simulation, all precipitates have isotropic surface energy. Because of limited computer
resources, we only sample the computational time for the first 20 time steps. We compute
the cases on the four different machines and with different number of processors. The
speed-up and efficiency are defined in the standard way,

T T
speed-up = T_l efficiency = # (77)
b P

where Tp is the computational time using P processors. In Table I, we present the perfor-
mance results for the Origin-2000 for (a) three precipitates and (b) six precipitates using up
to 8 processors. Tables I, 1V, and V give the same information for the Pentium |1 cluster,
the IBM-SP, and the Cray-T3E, respectively. We used up to 32 processors for the latter two
machines. In Table 111, we show the computational time, speed-up, and efficiency for the
ten particle simulation on the Pentium I cluster.

Consider first case (a). We see excellent speed-up and efficiency for all four machines
using two or four processors. In fact, we see super linear speed-up for the Cray-T3E with
two processors. However, with more processors the efficiency decreases and there is almost
no improvement in the speed-up from 16 processors to 32 processors. This is because there
are not enough operations in computing the summations to compensate for the expense of
communicating among the large number of processors. For case (b) where there are more
computational points, we see excellent speed-up and efficiency using up to eight processors.
Further, at every processor level, both efficiency and speed-up are significantly improved

TABLE |
Origin-2000

Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency

1 339 1343

2 181 1.87 94% 681 1.97 99%
4 102 3.32 83% 365 3.68 92%
8 63 4.46 56% 213 6.30 79%

Note. (a) Three precipitates; (b) 6 precipitates; N =256 and 20 time-steps.
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TABLE |1
Pentium 2 Cluster: 100 BaseT Ethernet Connection
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 374 1492
2 202 1.85 92% 772 1.93 96%
4 124 3.02 75% 421 3.59 88%
8 77 4.85 47% 255 5.85 73%
16 60 6.23 39% 202 7.39 46%
Note. (a) Three precipitates; (b) 6 precipitates; N =256 and 20 time-steps.
TABLE 1
Pentium 2 Cluster: 100 BaseT Ethernet Connection
Pro Time (s) Speed-up Efficiency
1 21017
2 10738 1.95 98%
4 5666 3.70 93%
8 3071 6.84 86%
16 1573 13.36 84%
Note. Ten precipitates; N =256 and 20 time-steps.
TABLE IV
IBM-SP
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 477 1952
2 254 1.88 94% 1006 194 97%
4 149 3.20 80% 537 3.64 91%
8 92 5.18 65% 309 6.32 79%
16 67 7.11 44% 195 10.0 63%
32 63 7.57 24% 154 12.7 40%
Note. (a) Three precipitates; (b) 6 precipitates; N = 256 and 20 time-steps.
TABLEV
Cray-T3E
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 224 897
2 109 2.05 1.03% 445 2.02 101%
4 57 3.93 98% 227 3.95 99%
8 31 7.23 90% 118 7.60 95%
16 18 12.4 78% 64 14.0 88%
32 18 124 39% 46 19.5 61%

Note. (a) Three precipitates; (b) 6 precipitates; N =256 and 20 time-steps.

63
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over those obtained in case (a). For example, on both the IBM-SP and the the Cray-T3E,
the efficiency using 32 processors improves about 60% from case (a) to case (b). Next,
consider the simulation of ten particles on the Pentium I cluster (Table I11). Here, excellent
speed-up and efficiencies are obtained using up to 16 processors (the most we were able
to use). This demonstrates the scalability of our parallel implementation and also suggests
that to achieve 80% efficiency one should use approximately 200 points/processor.
Finally, we notice that among the four machines, the Origin-2000, Pentium Il cluster, and
IBM-SP have similar efficiency with the Origin-2000 being slightly faster. As expected, the
Cray-T3E shows by far the best performance and computational speed of all the machines. It
is interesting that the Pentium 11 cluster, which is by far the most inexpensive machine, gives
timings and efficiencies comparable to the much more costly Origin-2000 and IBM-SP.

4.3. Sudies of Different Temporal Schemes

Four different time-stepping schemes are implemented, three of which ensure that nu-
merical equilibrium and physical equilibrium agree (Methods CN, 1F2, and IF3), and one
which does not (Method IF). We now elaborate on this result and discuss the performance
of the different methods.

We consider first how the difference between the numerical and physical equilibria man-
ifests itself. Figure 2 shows the profiles of a single precipitate at t = 0.2 with no elasticity,
Z =0, but with anisotropic surface tension o =0.05 and 6y == /4. The initial condition
is a unit circle. Also, N =512 and At=10"*. This figure was generated using Method
CN, but graphs generated using the other schemes are similar. Note that because of the
anisotropic surface energy, the precipitate develops high curvature regions as it approaches

FIG. 2. The profile of one precipitate at t =0.2.
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FIG. 3. dWet/dt vs time. +, Method IF; O, Method IF2; *, Method CN; x, Method IF3. The *x and x
overlap.

the steady-state. By the final time shown, t = 0.2, the precipitate is very close to its steady
state.

Figure 3 shows time derivatives of the total energy plotted against time for computations
using Method CN, Method IF, Method IF2, and Method IF3 with the same parameters as
above. Clearly, the time derivative of the total energy W, for the physical system should
approach zero as the system approaches the true steady-state. This is indeed the case for
Method CN and Method IF3 (whose graphs = and x overlap), but not for Method IF
(4 graph). For Method IF, W, approaches a nonzero constant (=~ —0.737), indicating that
the solution is “trapped” in a numerical steady state. For Method IF2, it appears that Wiy is
very slowly approaching zero indicating that it may take a very long time before Method
IF2 reaches the true equilibrium (as it must).

This behavior is further demonstrated by plotting the composition ¢ on the precipitate—
matrix interface versus the scaled arclength parameter & at t =0, 0.01, 0.02, ..., 0.2 for
the four different temporal methods (Fig. 4). In the steady state, ¢ should be constant.
Indeed, this is the case for the computations using Method CN and Method IF3 att =0.2.
However, for the computations using Method IF and Method IF2, c oscillates in the regions
corresponding to the corners of the precipitate. For Method IF2, the amplitude of these
oscillations appears to be decreasing very slowly in time indicating a trend towards the
true steady state. By comparing the curvatures of the different shapes shown in Fig. 5,
one finds that Methods IF and IF2 damp out the high curvature at the corners much more
than Methods CN and IF3. This is similar to behavior observed in the diffuse interface
calculation of [20], where problems arose due to the high frequencies associated with the
diffuse transition layer.
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FIG.4. catt=0,0.01,0.02,..., 0.2. (a) Method IF; (b) Method IF2; (c) Method CN and Method IF3. They
overlap.

Essentially, the time stepping used in Methods IF and IF2 acts to filter the numerical
solution and in effect prevents the particle from reaching its true equilibrium shape, although
we expect that the simulation using Method 1F2 will eventually reach the true steady-state
at very long times. As At decreases, Methods IF and IF2 become more accurate albeit more
costly. Also, while curves such as Figs. 3 and 4 are striking, the actual differences in the
shapes generated by the different methods are negligible.

The problem of damping the high frequencies occurs whenever a particle shape develops
corners. Hence it will occur when we include anisotropic elasticity with isotropic surface
energy, because the anisotropic elasticity leads to square shapes quite similar to the 4-fold
surface energy. Table VI shows results for Z =8 and isotropic surface energy (zop =0)
computed by using the four temporal schemes using N =256 and At =2.5 x 10~°. Based
on the anisotropic surface energy results, the error in the curvature is measured relative to the
results computed by using Method CN Table VI shows that the error in curvature is reduced
by a factor of 10 by using Method IF2 over Method IF, and by another factor of 10 by using
Method IF3. Also, we see that the time derivative of the total energy, which should be zero
in equlibrium, decreases from 10~* using Method IF to 10~° using either Method CN or
IF3, which is close to the error tolerance of 106 used for solving the elasticity equations.

While Method CN and Method IF3 are good at capturing the true equilibrium of the
system, they are also more expensive in terms of computational cost compared to the other
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(e)

FIG. 5. Curvature vs « at t =0.2. Solid curves in all graphs, Method CN; (a) dotted curves, Method IF;
(b) dotted curves, Method IF2; (c) dotted curves, Method IF3.

methods. If we use the iteration count per time step as an index of cost, then Method IF
and Method IF2 are roughly equivalent, Method IF3 is twice as expensive as Method IF2
and Method CN is twice as expensive as Method IF3. In general, we believe that Method
IF3 demonstrates the best combination of accuracy, efficiency, and stability. This is most
evident for calculations with large Z. For example, with Z = 10, we are able to use Method
IF3 with N =256 and At =10~° to compute the solution such that the the time derivative
of the energy is about 10~° (near steady state). However, for the same N and At, Method
CN diverges because of the accumulation and amplification of the high frequencies in the
solutions (primarily due to elastic fields generated by the high curvature regions).

TABLE VI
Comparison of Methods for Caseswith Z=8

Method IF Method IF2 Method IF3 Method CN

dW/dt at equilibriumt =0.1 —101 —1073 —10-% —10-5
Maximal curvature difference relative
to the one by Method CN 107t 1072 10°3

Average iteration count
per time step 1.6 1.7 2.9 5.3
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In summary, Method IF3 has the best balance of accuracy and efficiency of the four
methods we have tested. Of the other methods, Method IF and Method IF2 are efficient, but
need extremely small time-steps to accurately capture high curvature regions. Method CN
can accurately capture the high curvature regions with a moderate time-step, but it needs a
very small time-step for numerical stability in solving the integral equations for elasticity.

4.4. Convergence Tests

Analytic solutions for the displacement and traction of a single precipitate in inhomoge-
neous orthotropic elastic media can be obtained by using conformal mapping techniques;
see, for example, [4]. We have verified the static numerical solutions from our boundary
integral formulation of the elasticity problem against the analytic solutions in [4]. We have
also compared our time-dependent and multi-precipitate computations for the case of homo-
geneous, cubic elastic media against the solutions found using the elastic solver introduced
by Voorhees et al. [43, 41, 42]. The different solution techniques agree up to numerical
resolution.

We confirm the numerical accuracy of our results by considering the following prob-
lem. We take a single precipitate that is initially a circle of radius unity. The precipitate
has dilational misfit €], =€), =1, €], =0, there are no applied fields, and the far-field
flux J=0. The elastic constants are chosen to be cubic in both the matrix and precipi-
tate, withc} =c)} =2.03, ¢ =1.21, ¢}t =1, cf; =cf, =3.03, ¢, = 1.61,and cf; = 1.35.
Also, Z =5, 1y =0.05, and 6, = 0. Time updating is done using Method IF3 and the error
tolerance for GMRES is set to 10710,

Consider first the resolution in space. We use a computation with N = 1024 to approx-
imate the exact solution. We compare this solution at time t = 0.1 to those with N =64,
128, 256, and 512. Note that the precipitate has essentially reached its steady state. For
all the computations, we choose At =2 x 10~2. The error is defined to be the largest dif-
ference between points on the precipitate—-matrix interface. Figure 6 shows the base 10
logarithm of the error plotted against the base 2 logarithm of N. For N = 256, there are 9
digits of accuracy which is close to the GMRES tolerance 10~1°. Consequently, increas-
ing N to N =512 does not improve the accuracy. Figure 7 shows similar results for the
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FIG. 6. Resolution study for spatial discretization with the error in the interface location as a function of N,
N =64, 128, 256, 512.
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FIG.7. Resolution study for spatial discretization with the error in the solution of the elasticity equation as a
function of N, N =64, 128, 256, 512; O, displacement; x, traction.

displacements and tractions on the interface at t =0.1. Here the error is taken to be the |2
norm of the difference in the appropriate quantity computed for N grid points compared to
that with N = 1024 grid points. We notice that the accuracy for the displacement is about
the same as the accuracy of the interface location, while the accuracy for the traction is
about one digit worse.

Since N =256 is accurate to 9 digits, we use it for the temporal resolution study. We
choose the solution with At =2 x 10~ to approximate the exact solutions. We compare this
to the solution with At =2.5 x 1073, 1.25 x 1073, and 6.25 x 10~*. The error is measured
in terms of the interface positions as in Fig. 6. Figure 8 shows the base 10 logarithm of the
temporal error plotted against time. The distance between the curves in Fig. 8 uniformly
decreases by about a factor of 0.6 with each halving of At thereby confirming the second-
order accuracy.

It is instructive to consider the temporal resolution for all four time discretization algo-
rithms given in Subsection 3.3. Figure 9 shows the temporal error for all four methods.
For Method IF, Method IF2, and Method IF3 the error is measured between the computed
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FIG. 8. Resolution study for temporal scheme Method IF3.
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FIG. 9. Error in the interface location vs time for four different methods. Method CN, error between
At =2 x 10~* and At = 10~* while the other three are error between At =6.25 x 10~* and At =2 x 10~*.

solutions with At =6.25 x 10~*and At =2 x 104, while for Method CN the error is mea-
sured between the computed solutions with At =2 x 10~* and At =104, (The reason for
choosing a different error measure for Method CN is that it diverges with At = 6.25 x 1074.)
Note in Fig. 9 that the three methods (IF3, IF2, and CN), which converge to the true steady
state, show improved accuracy as the system approaches steady state. In contrast, the error
using Method IF saturates in time since since the numerical equilibria depends on the time
step At. We remark finally that when the different time steps are taken into account, one
can show that Method CN and Method IF3 have roughly the same level of accuracy.

5. RESULTS

We now consider how elastic inhomogeneities and anisotropies as well as surface energy
anisotropies affect microstructural development in alloys. We begin by considering Ni-based
cubic systems with a Ni matrix phase and either NizAl, Ni3Ga, or Ni3Si precipitate phases.
Later, we present a calculation using orthotropic elasticity, adapted from observations of
melt pockets in mantle rocks.

5.1. Cubic Elasticity

We begin with calculations of inhomogeneous cubic elasticity. The elastic constants,
normalized by Cgg of the matrix Ni phase, are shown in Table VII [32]. For all phases,
the anisotropy ratio A > 1, indicating that the horizontal (i.e., (10)) and vertical (i.e., (01))
directions are less stiff than the diagonal (i.e., (11) and (—11)) directions (see [43] for
details). Note also that the NigAl and NizGa have elastic constants less than those of the Ni
matrix. Following the notation we used in the isotropic elasticity case [15], we refer to these
precipitates as soft. In contrast, the Ni3Si precipitates have larger elastic constants than the
matrix; we refer to these as hard.

We take an anisotropic surface energy as given by Eq. (2), i.e.,

T(0) =14 19C084(0 — 6p), (78)

where either 6o =0 or 6y = /4. When 6y =0, the surface energy has minima along the
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TABLE VII

Elasticity Constants

71

Cuy

Ci2

Cp2

Ces

Nickel 2.03
NizAl 1.83
Ni;Ga 1.54
Ni;Si 3.04
Olivine 4.1

Soft precipitate 1.14

121
1.21

.996

1.62

0.84
0.22

2.03
1.83
1.54
3.04

2.5
114

1.0

1.02
0.87
1.35

1.0
0.417

diagonal directions and so the minimum surface energy (Wulff plot) shape will be squarish
with sides (facets) oriented perpendicular to the diagonals. See the graphs in Fig. 10 labelled
“competing.” The reason for this notation will be discussed below. When 6y = 7 /4, the
surface energy has minima along the horizontal and vertical directions and so the Wulff
plot shape will be squarish with facets oriented normal to those directions. See the graphs

in Fig. 10 labeled “enhanced.”

5.1.1. Oneparticle. Consider first the effect of elastic inhomogeneity on the equilibrium
shape of asingle particle with isotropic surface energy (o = 0). Equilibrium shapes—shapes
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FIG. 10. Anisotropic surface tension. Upper plots, competing; lower plots, enhanced. For each set, left,
(r 4+ 1) vs tangent angle 6; right, polar angle (r cos(6), T sin(#)). T =1+ 1, cos 4(6 — 6y). In the competing
case, o= 0.05 and 6, = 0. In the enhanced case. 7, =0.02 and 6 = /4.



72 LEO, LOWENGRUB, AND NIE

for which the chemical potential and composition is uniform along the interface—have been
calculated previously by Thompson et al. for the case of homogeneous elasticity [43], and
by Schmidt and Gross [38] for the inhomogeneous case. These workers determined the
equilibrium shapes by determining the composition on the interface for a given particle
shape, and iterating until the shape giving uniform interfacial composition is found. In
contrast, we find the equilibrium shape by evolving an elliptical initial shape until it reaches
equilibrium.

Figure 11 shows a series of equilibrium shapes that evolve from the same initial shape.
In all these figures, Z =5. For the homogeneous system (elastic constants of Ni for both
phases), the equilibrium shape is squarish, in agreement with the calculations of Thompson
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FIG. 11. Equilibrium precipitate shapes, Z =5, 7, =0. For homogeneous simulation, T =3.5, N =256,
At =5 x 10*. For Ni;Si simulation, T = 1.3, N = 256, At =1 x 10~*. For NizAl simulation, T =0.90, N =512,
At =1 x 104, For Ni;Ga simulation, T =1.22, N =512, At =1 x 10~*. In all, the tolerances for the diffusion
and the elasticity solvers are 10~°.
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Ni3Ga Equilibrium Shapes
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FIG.12. Equilibrium precipitate shapes for Ni;Ga with competing anisotropic surface tension. Dotted curve,
7o =0 (from Fig. 10). In all other curves, 7, =0.05 and 6, = 0 (competing surface tension). Solid curve, Z =5.0;
dashed curve, Z = 2.5; dot-dashed curve, Z = 0. For curves with 7, =0.05, Z=0,and Z=2.5, T =0.1, N = 256,
At =1 x 107*, and tol = 10-° for both diffusion and elasticity. For curve with Z=5.0, N =512, At =2.5 x 10~°
with tol as above.

et al. [43].* They predict a bifurcation from a squarish shape to a rectangular shape at
a value Z=>5.6. Based on calculations using isotropic elasticity, see, e.g., [15, 14] as
well as the results of Schmidt and Gross [38], one expects this bifurcation point to be
higher for hard precipitates and lower for soft precipitates. This agrees with our results.
The equilibrium NizSi precipitate is squarish for Z =5, while the equilibrium NizAl and
Ni3zGa precipitates both have rectangular shapes, with the “softer” NizGa precipitate having
the larger aspect ratio. While these trends are expected, it is surprising to note the effect
of the small inhomogeneity of the Ni-NizAl system (see Table VII) on the equilibrium
shape. Indeed, one of our qualitative observations throughout this study is that small elastic
inhomogeneities in anisotropic systems affect microstructure much more profoundly than
similar inhomogeneities in isotropic systems.

We now consider how anisotropic surface energy interacts with elasticity in producing an
equilibrium shape. We first take o = 0.05 and 7o = 0. In this case, the Wulff shape (Z =0)
has facets oriented at 45° to the facets of the elastic equilibrium shapes in Fig. 11. Therefore,
the surface energy anisotropy “competes” with the elastic anisotropy.

In Fig. 12, equilibrium shapes of a NizGa precipitate (soft) are shown for different values
of Z. The tp =0 shape (from Fig. 11) is also superposed on Fig. 12 for comparison. One

4 The elastic constants used by Thompson et al. for Ni differ slightly from those we are using.
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FIG.13. Equilibrium precipitate shapes for Ni;Si. Dotted curve, 7, = 0 (from Fig. 10). Solid curve, 7o = 0.05,
6p=0,Z=5,T =0.10, N =256,and At =1 x 10~*. Inall simulations, tol = 10~ for both diffusion and elasticity.

observes that the anisotropic surface energy causes the Z =5 precipitate to become more
ellipsoidal compared to the corresponding precipitate with isotropic surface tension. The
aspect ratios of these two shapes are quite similar indicating that for this 7o, the value of Z,
at which the bifurcation from a squarish to rectangular shape occurs, seems to be unaffected
by the anisotropic surface energy. When Z =0, one recovers the Wulff shape seen in
Fig. 10. As Z increases, the facets change orientation such that by Z =5, we observe
horizontal facets consistent with the elastic equilibrium shapes shown in Fig. 11 although
the vertical facets seem to disappear.

In Fig. 13, equilibrium shapes of a Ni3Si precipitate (hard) are shown for Z =5 both
with and without anisotropic surface energy. We observe little difference in the overall
shapes, although as expected, the competing anisotropic surface energy acts to smooth the
corners.

We next consider a surface energy anisotropy with 6y = 7 /4. Here, the facets in both the
Wulff and elastic equilibrium shapes are aligned horizontally and vertically. Therefore, this
surface energy “enhances” the elastic anisotropy. In this case, we had difficulty computing
with 7o = 0.05 and so we used the smaller value 7o = 0.02. The results are shown in Fig. 14
for an Ni3Si precipitate. Analogous results are obtained for NizGa and are not shown. In
Fig. 14, Z =5 and precipitates with and without anisotropic surface energy are shown. We
observe that the anisotropic surface energy has little effect on the overall shapes although
the anisotropic case has slightly sharper corners.
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FIG. 14. Equilibrium precipitate shape for Ni;Si with enhanced anisotropic surface tension. Dotted curve,
7o = 0 (from Fig. 10). Solid curve, 7, =0.02, 6y =7 /4, Z=5, T =1.0, N =256, and At =1 x 10~*. In all simu-
lations, tol = 108 for both diffusion and elasticity.

5.1.2. Two particles. We now consider the evolution of two particles with isotropic
surface energy. The primary focus of our simulations is to test how inhomogeneity affects
the observation of a a stable interparticle spacing in elastically homogeneous systems [42].
The presence of this stable spacing has been explained by Su and Voorhees [42], who used
the idea of configurational forces [10] to account for the interaction between particles. How-
ever, the calculation of configurational forces breaks down when the elastic constants of the
precipitate and matrix phases differ. In addition, based on the results for inhomogeneous,
isotropic elasticity [15, 38], we expect inhomogeneity to have a strong influence on inter-
particle forces.

Figure 15 shows the evolution of two particles for the different systems we consider. The
initial configuration in all cases consists of two unit circles separated by a distance of 1 unit.
Also, Z =5 for all cases. For the homogeneous case and the case with Ni3Si particles, the
final times correspond to when particle evolution essentially ceased. For the cases with
NizAl and NizGa particles, the final times correspond to when the interparticle spacing was
too small to resolve the interfaces for the numerical parameters used.

We observe that the spacing between the hard Ni3Si particles is larger than the spacing
between the homogeneous particles, while the spacing between the soft NizAl and NizGa
particles is smaller than the spacing between the homogeneous particles. This is consis-
tent with simulations in isotropic media, which indicate that hard particles repel, while
soft particles attract. However, the situation is more complex with anisotropic elasticity.
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FIG. 15. Two precipitate simulations: shapes. Isotropic surface tension o =0, Z =5.0. For homogeneous
simulation, N =256 on each precipitate, At =1 x 10~*. For Ni;Ga simulation, N =512 on each precipitate,
At =5 x 10~°. For Ni;Si simulation, N = 256 on each precipitate, At =1 x 10~*. For NizAl simulation, N =512
and At =5 x 107% initially, for t > 0.36, N =1024, and t =2.5 x 10~°. In all simulations, tol =10-° for both
diffusion and elasticity.

Figure 16 shows the velocity of the point of closest approach versus the half-distance be-
tween the particles. The initial condition corresponds to a half-distance of 0.5. In all cases,
the particles initially repel (velocity > 0) as the particles square off. At later times, the
particles move towards each other (velocity < 0) though the details depend on the elas-
tic inhomogeneity. In the homogeneous and the Ni3Si case, the particles move towards
each other with very small velocities which seemingly tend to zero at a finite interparticle
distance.

The behavior observed in the NizAl and NizGa systems is more interesting. In these
cases, the interparticle attraction at later times is much stronger and may lead to particle
merging. In the Ni3Ga case, the interparticle velocity becomes increasingly negative as
the interparticle spacing decreases. This suggests the particles will merge. In the NizAl
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FIG. 16. Two precipitate simulations: velocity. Velocity of Pt of closest approach vs min half-distance for
approaching precipitates in previous Fig. 15. For Ni;Si, velocity of centroid of right particle vs x-component of
centroid of right particle.

case (which is nearly homogeneous), however, there is a turning point in the velocity at
small separations although the velocity remains negative. More refined calculations are
necessary to determine whether there is in fact a small nonzero interparticle spacing in this
case. The difference between the NizGa and NizAl cases is also reflected in the particle
shapes in the interparticle region (Fig. 15); in the NizGa case, the particles appear to curved
towards each other while in the NizAl case the two particles have “squared off” against
each other.

To conclude this section, and to indicate how sensitive the above results are to changes
in the physics of the problem, we consider one example with anistropic surface energy.
We take two NiszAl precipitates with “competing” anisotropic surface energies o = 0.05
and 6, = 0. All other choices are as above. Figure 17 shows the precipitates at T =0.27.
Observe that unlike the isotropic surface energy case with NizAl precipitates shown in
Fig. 15, the particles are curved towards each other in the interaction region, consistent
with the Wulff shape of each particle. Moreover, as seen in the inset, there is a much
larger interparticle attraction in this case compared to the isotropic surface energy case; the
velocity becomes more negative as the interparticle spacing decreases. Thus, we expect that
in this situation, the particles will merge. Considering the same example with “enhancing”
anisotropic surface energy with tp = 0.02 and 6y = v /4, we find less particle attraction than
in either the isotropic or competing surface tension cases. This is seen in Fig. 18. Despite
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FIG.17. Two precipitatesimulation NizAl, shapeat T = 0.27 with velocity vs half-distanceinset. Anisotropic
surface tension 7, = 0.05 and 6, = 0 (competing). N = 512 on each precipitate, At =1 x 1074, and tol = 10~ for
both diffusion and elasticity.

the lowering of attractive forcesin this case, it is still unclear whether particle merger will
be avoided.

5.1.3. Multiple particles. We next consider the coarsening of systems with multiple
precipitates. We investigate two cases of precipitates embedded in a Ni matrix: (a) 10
NiszAl (soft) precipitatesand (b) 10 Ni3Si (hard) precipitates. In both cases, wetake Z =1,
At =5x 104, N = 256 for each precipitate, the diffusion tolerance 1079, the elasticity
tolerance 10~°, and the initial precipitates are all circular. We choose the elastic tolerance
to be 1075 in order to reduce the computational cost of our simulations.

Because our boundary integral formulation breaks down when topological transitions
such as particle vanishing occurs, we remove precipitates by hand when their area decreases
below 0.1. In aprior work [15], the effects of this procedure were carefully investigated in
the context of isotropic, inhomogeneous elasticity. It was found that the energy Wit and
the envelope of the time derivative of the energy Wi are continuous through precipitate
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FIG. 18. Two precipitate simulation NizAl, velocity vs half-distance. Solid curve, 7o =0.02 and 6, = /4
(enhanced); N =512 and At =1 x 10~* up to t =0.40, N = 1024, and At5 x 107° for 0.40 <t < 0.42 (t =0.42
is final time shown); tol = 10~% for both diffusion and elasticity. Dashed curve, 7, = 0.0 from Fig. 16. Dot-dashed
curve, o = 0.05, 6, = 0 from Fig. 17.

vanishing. W, itself, however, diverges negatively as precipitates vanish. Moreover, as the
precipitates vanish, they become more circular due to the dominance of the surface energy
over the elastic energy. Although we do not present them, we find these results still hold
true for the simulations of NizAl and NizSi precipitates presented below.

The evolution of systems (a) and (b) in time is shown in Fig. 19. The solid curves
correspond to NizAl precipitates and the dashed curves correspond to the Ni3Si precipitates.
Note that only the Ni3Si precipitates are shown at time t =20.09 for reasons explained
below. From a macroscopic point of view, there seems to be little difference in the results
of the two simulations over the times considered. The precipitates become squarish at
very early times and there is only a small amount of particle translation. One can observe
that the upper and lower two relatively large pairs of precipitates tend to align along the
horizontal direction locally. The global alignment of all precipitates on the horizontal and
vertical directions appears to occur on a longer time scale. On the time scale presented, the
kinetics appears to be primarily driven by the surface energy which favors coarsening—the
growth of large precipitates at the expense of the small precipitates to reduce the surface
energy.

Upon closer examination, differences between the simulations are observed. For example,
consider the result at time t = 15.77 which is shown in Fig. 20. In the NizAl case, the two
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FIG.20. Thesixremaining precipitates att = 15.77 from the evolution shown in Fig. 19. Solid, NizAl; dashed,
NisSi.

upper precipitates attract one another and likely merge. In the Ni3Si case, on the other hand,
it does not appear that these two precipitates will merge. This is consistent with the results
of our two precipitate simulations. In addition, the interacting pairs of NizAl precipitates
tend to be “flatter” than their Ni3Si counterparts.

We further observe that the lower two precipitates in the NizAl case also attract one
another. In the process, the lower right precipitate develops very high curvature (note its
flat bottom) which ultimately prevents us from continuing the simulation much beyond
this time. This is why no NizAl precipitates are shown at time t =20.09. By increasing
the numerical resolution of the NizAl simulation (i.e., using N =512 and N =1024), we
are able to continue the simulation slightly further in time. However, much higher local
resolutions are needed in order to determine whether the curvature actually develops a
singularity at a finite time. In a future work [21], we will use adaptive discretizations to try
to answer this question.

5.2. Orthotropic Elasticity

As a final case, we now consider examples where the elasticity displays fully orthotropic
behavior in two dimensions. That is, we have four independent elastic constants Cy1, Cy»,
C,,, and Cgg, rather than the three (Cq, C12, Co» = Cq; and Cgg) needed in cubic elasticity.
The example we present relates to an observation of microstructure in geology.

In a set of experiments performed by David Kohlstedt and Mark Zimmerman in the
Department of Geology at the University of Minnesota, the mineral olivine, which has an
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FIG.21. Top (a), reflected light optical micrographs of the olivine matrix with imbedded melt pockets (dark)
for the experiment described in the text. The faint outlines of the grains (surrounded by the melt pockets) can also
be observed. The coordinate axes correspond to the crystallographic axes. Bottom (b), polar plot indicating the
percentage of melt area in each orientation. Plots courtesy of Kohlstedt and Zimmerman.

orthorhombic crystal structure, was loaded in shear. Melt pockets selectively accumulate
with preferred orientations, as indicated in Fig. 21. This preferred orientation becomes more
pronounced with increasing shear. The orientation of melt pockets has profound implications
for anisotropy in permeability, seismic attenuation, and seismic anisotropy beneath mid-
ocean ridges. See [16] for a more detailed explanation of the experiments and description
of the results.

Our goal is to use our methods to try to understand the relationship between the melt
pocket orientations and the anisotropy of the olivine. We consider the melt pockets to be soft
elliptical particles embedded in an orthotropic material with elastic constants appropriate
to olivine. The elastic constants used in the simulations are given in Table VII. For the
soft precipitate, the ratio of the shear moduli Cgg, (C11 — €12)/2 to bulk modulus ¢i3 + 12 is
approximately equal to 3. Since real fluids typically have very large such ratios, we checked
that increasing the bulk/shear ratio did not significantly alter our results. The simulations
we present include applied biaxial compression and shear but no misfit between the particle
and matrix phases.

We first consider two interacting particles evolving by diffusion. Figure 22 shows the
results of this simulation. The particles translate and elongate to align approximately in the
direction of the shear. In addition, they attract one another. This result is consistent with
our previous experience [15]. However, this result is not consistent with the experiments of
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FIG. 22. Two precipitate simulation: Olivine matrix with soft, nearly isotropic precipitates. Isotropic surface
tension (o = 0). Dashed circles, initial condition (T = 0). Solid curves, precipitates at T =5.20. Solid curves with
boundaries + and O indicate trajectories of centroids. N = 256 on each precipitate, At =1 x 10, and tol = 10~°
for both diffusion and elasticity.

Kohlstedt and Zimmerman. This is not surprising, as there is no reason to expect that the
evolution of the melt pockets is driven by diffusion.

Asanextstep, we separate the elasticity solver from the diffusional evolution and consider
how the average pressure over the precipitate varies with the orientation of the precipitate.
This idea is motivated by the possibility that the molten phase seeps into low pressure
regions of the olivine crystal (e.g., Darcy’s law) [16].

The actual quantity we calculate is the integral of the normal displacement over the
precipitate—matrix interface (uyx ). We justify this choice by noting that for an isotropic
material, this quantity is proportional to the average pressure with proportionality con-
stant equal to the negative of the bulk modulus of the precipitate. In our case, Uy k is not
exactly proportional to the pressure in the inclusion, since the elastic constants we use
to describe the inclusion phase are not isotropic. However, as the precipitate is nearly
isotropic (A=0.91) and since Uy k is easy to compute, we believe Uy k is suitable as a trial
parameter.

We proceed as follows. We solve the elasticity equations for a single elliptical precipitate
with arbitrary orientation under an applied biaxial stress and shear. We determine the orien-
tation of the ellipse that achieves the minimum value of —uy k as a function of the strength
of the applied shear. We refer to this as the “minimum pressure ellipse.” We then varied the
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FIG.23. Static simulation. Orientation of minimum pressure ellipse versus normalized applied shear. Olivine
matrix with soft, elliptical nearly isotropic precipitates. Three ellipses with different aspect ratios are considered.

ratio of lengths of the major and minor axes of the ellipse from 2: 1to 8: 1. In the results that
follow, we used N = 256 and the elasticity GMRES tolerance to 107°. In Fig. 23, we plot
the orientation of the minimum pressure ellipse as a function of applied shear for several
different aspect ratios. The orientation angle is measured with respect to the positive x-axis
with a horizontal ellipse having an orientation of 180 degrees. At zero applied shear, the
minimum pressure ellipse is horizontal. As the applied shear is increased, the orientation
angle decreases rapidly and seems to asymptote to approximately 135 degrees. In addition,
the orientation angle is a non-decreasing function of aspect ratio. Thus, for a given applied
shear, larger orientation angles are obtained for ellipses with larger aspect ratios. However,
we note that the average pressure per unit area of the minimum pressure ellipse increases
with increasing aspect ratio.

To examine the effect of the elastic constants, we modify the constants corresponding
to the olivine matrix by either enhancing the orthotropy or by making the matrix more
isotropic. In order to enhance the orthotropy (O), we set ¢;1 = 5.0 while keeping the other
elastic coefficients fixed. In order to make the matrix more isotropic (+), we keep ¢, and
Cp» fixed and set ¢;; = 3.4. This gives A=10.96. Our results are shown in Fig. 24 for an
ellipse with aspect ratio 2: 1. Analogous results are obtained for other aspect ratios. We
observe that increasing the orthotropy increases the angle of the minimum pressure ellipse
while increasing the isotropy makes the angle drop faster towards 135 degrees. In fact, if the
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FIG. 24. Static simulation. Orientation of minimum pressure ellipse versus normalized applied shear using
different matrix elastic constants. See text for details.

matrix were elastically isotropic, the minimum pressure ellipse is oriented at 135 degrees
for all non-zero applied shears.

In the experiment shown in Fig. 21a the normalized applied shear (o12/011) is approxi-
mately 0.25. The dominant orientation angle observed in the experiment is 150 + 5 degrees
as shown in Fig. 21b. Using the value 0.25 for the normalized shear, we predict orientation
angles of approximately 145 degrees for the 2: 1 ellipse, 148 degrees for the 5: 1 ellipse,
and 149 degrees for the 8: 1 ellipse. Similar agreement has been found in experiments in
which the olivine crystal is loaded in biaxial compression [5]. The fact that the predicted
melt pocket orientations are consistent with experiments suggests that the orthotropic char-
acter of the olivine may be an important factor in determining the orientation of the melt
pockets. Kohlstedt and Zimmerman are currently testing different experimental loading
configurations to determine whether the orientation of melt pockets changes with applied
shear as predicted in Figs. 23 and 24. We note, however, that there are many other physical
factors we do not model, e.g., plastic slip, polycrystallinity, permeability, and fluid flow,
which likely play an important role in melt pocket alignment.

APPENDIX: PRECONDITIONING MATRIX FOR ELASTICITY

For completeness, we present the 4 x 4 matrix £ used to precondition the elasticity
integral equations in Fourier space.
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For k # 0, we have

1 isgn(k)DS,  sgn(k)gkEf 0
Ao — —isgn(k)Df, 1 0 sgn(K)okES ’
1 —isgn(k)DM  —sgn(k)gEM 0
isgn(k)DM 1 0 —sgn(K)gkEM

where gk =S,/ K. For k=0, we obtain

£(0) =

or opr
~ Oor o
oo oo
o oo o

L£71(K) fork =0 is analytically constructed using Mathematica. Because £(0) is not invert-

ib

le, we set the zero modes to be zero.

ACKNOWLEDGMENTS

It is a pleasure to thank I. Schmidt and P. Voorhees for stimulating and helpful discussions. The authors also

acknowledge the support of the Minnesota Supercomputer Institute and the MCS division at Argonne National
Laboratory for use of their computational facilities. In addition, P.H.L. was partially supported by the National

Sc

ience Foundation Grant CMS-9503393. J.S.L. was partially supported by National Science Foundation Grants

and the Sloan Foundation. Q.N. was partially supported by the Accelerated Strategic Computing Initiative Center

O

OE) and Materials Research Center (NSF) at the University of Chicago. Finally, Q.N. thanks the Institute for

Mathematics and Its Applications for its hospitality.

REFERENCES

. A. J. Ardell and R. B. Nicholson, On the modulated structure of aged Ni-Al alloys, Acta Metall. 14, 1295
(1966).

. C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary Element Techniques (Springer-Verlag, Berlin,
1984).

. L. N. Brush and R. F. Sekerka, A numerical study of two-dimensional crystal growth forms in the presence
of anisotropic growth kinetics, J. Crystal Growth 96, 419 (1989).

. W. T. Chen, On an elliptic elastic inclusion in an anisotropic medium, Quart. J. Mech. Appl. Math. 20, 307
(1967).

. M. J. Daines and D. L. Kohlstedt, Influence of deformation on melt topology in peridotites, J. Geophys. Res.
102, 10,257 (1997).

. M. Féhrman, P. Fratzl, O. Paris, E. Fahrmann, and W. C. Johnson, Influence of coherency stress on microstruc-
tural evolution in model ni-al-mo alloys, Acta Metall. 43, 1007 (1995).

7. A.E. Green and G. I. Taylor, Stress systems in aeolotropic plates, i, Proc. R. Soc. A 173, 162 (1939).
8. A. Greenbaum, L. Greengard, and G. B. McFadden, Laplace’s equation and the Dirichlet-Neumann map in

10.

11.

multiply connected domains, J. Comput. Phys. 105, 267 (1993).
. L. Greengard and V. Rokhlin, A fast algorithm for particle summations, J. Comput. Phys. 73, 325 (1987).
M. E. Gurtin and P. W. Voorhees, The continuum mechanics of two-phase elastic solids with mass transport,
Proc. R. Soc. London A 440, 323 (1993).

C. Herring, Surface tension as a motivation for sintering, in The Physics of Powder Metallurgy, edited by
W. E. Kingston (McGraw—Hill, New York, 1951), p. 143.



12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

MICROSTRUCTURE EVOLUTION 87

T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Removing the stiffness from interfacial flows with surface
tension, J. Comput. Phys. 114, 312 (1994).

J. K. Tien and S. M. Copley, The effect of uniaxial stress on the periodic morphology of coherent gamma
prime precipitates in nickel-base superalloy crystals, Metall. Trans. 2, 215 (1971).

W. C. Johnson and J. W. Cahn, Elastically induced shape bifurcations of inclusions, Acta Metall. 32(11), 1925
(1984).

H.-J. Jou, P. H. Leo, and J. S. Lowengrub, Microstructural evolution in inhomogeneous elastic media,
J. Comput. Phys. 131, 109 (1997).

D. L. Kohlstedt and M. E. Zimmerman, Rheology of partially molten mantle rocks, Annu. Rev. Earth Planet
Sci. 24, 41 (1996).

J. K. Lee, Morphology of coherent particles via a discrete atom method, Materials Sci. Eng. A 238,
1(1997).

J. K. Lee, Coherency strain analysis via a discrete atom method, Scripta Met. 32, 559 (1995).

J. K. Lee, A study on coherency strain and precipitate morphology via a discrete atom method, Metall. Trans.
A 27, 1449 (1996).

P. H. Leo, J. S. Lowengrub, and H.-J. Jou, A diffuse interface model for microstructural evolution in
elastically stressed solids, Acta Mater. 46, 2113 (1998).

P. H. Leo, J. S. Lowengrub, and Q. Nie, The long time evolution of microstructures in elastic media, in
preparation.

P. H. Leo and R. F. Sekerka, The effect of surface stress on crystal-melt and crystal-crystal equilibrium, Acta
Metall. 37, 3119 (1989).

D. Y. Liand L. Q. Chen, Selective variant growth of coherent tiy; ni;, precipitates in a tini alloy under applied
stress, Acta Mater. 45, 471 (1997).

D. Y. Liand L. Q. Chen, Shape evolution and splitting of coherent particles under applied stress, Acta Mater.
47, 247 (1998).

A. Maheshwari and A. J. Ardell, Elastic interactions and their effect on y’ precipitate shapes in aged dilute
nial alloys, Scripta Metall. 26, 347 (1992).

A. Maheshwari and A. J. Ardell, Morphological evolution of coherent misfitting particles in anisotropic elastic
media, Phys. Rev. Lett. 70, 2305 (1993).

M. McCormack, A. G. Khachaturyan, and J. W. Morris, A two-dimensional analysis of the evolution of
coherent precipitates in elastic media, Acta Metall. 40, 325 (1992).

T. Miyazaki, K. Hakamura, and H. Mori, Experimental and theoretical investigations on morphological
changes of gamma’ precipitates in Ni-Al single crystals during uniaxial stress-annealing, J. Mater. ci. 14,
1827 (1979).

Qing Nie, Topicsin the Motion of Bubblesin Incompressible Liquids, Ph.D. thesis, The Ohio State University,
1995.

H. Nishimori and A. Onuki, Pattern formation in phase-separating alloys with cubic symmetry, Phys. Rev. B
42, 980 (1990).

D. Orlikowski, C. Sagui, A. Somoza, and C. Roland, Large-scale simulations of phase separation of elastically
coherent binary alloy systems, Phys. Rev. B 59, 8646 (1999).

S. V. Prikhodko, J. D. Carnes, D. G. Isaak, and A. J. Ardell, Elastic constants of a ni-12.69 at, Scripta Mater.
38, 67 (1997).

M. Reed and B. Simon, Functional analysis, in Methods of Modern Mathematical Physics (Academic Press,
New York, 1980), Vol. 1.

F. J. Rizzo and D. J. Shippy, A method for stress determination in plane anisotropic bodies, J. Comp. Mater.
4, 36 (1970).

Y. Saad and M. R. Schultz, GMRES: A generalized minimum residual method for solving nonsymmetric
linear systems, SAM J. Sci. Satist. Comput. 7, 856 (1986).

C. Sagui, D. Orlikowski, A. Somoza, and C. Roland, Three dimensional simulations of ostwald ripening with
elastic effects, Phys. Rev. E 58:R4092 (1998).



88

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

LEO, LOWENGRUB, AND NIE

I. Schmidt and D. Gross, A strategy for determining the equilibrium shape of an inclusion, Arch. Mech. 47,
379 (1995).

I. Schmidt and D. Gross, The equilibrium shape of an elastically inhomogeneous inclusion, J. Mech. Phys.
Solids 45, 1521 (1997).

I. Schmidt, R. Mueller, and D. Gross, The effect of elastic inhomogeneity on equilibrium and stability of a
two particle morphology, Mech. Mater. 30, 181 (1998).

A. Sidi and M. Israeli, Quadrature methods for periodic singular and weakly singular Fredholm integral
equations, J. Sci. Comp. 3, 201 (1988).

C. H. Su and P. W. Voorhees, The dynamics of precipitate evolution in elastically stressed solids. i. Inverse
coarsening, Acta Mater. 44, 1987 (1996).

C. H. Su and P. W. Voorhees, The dynamics of precipitate evolution in elastically stressed solids. ii. Particle
alignment, Acta Mater. 44, 2001 (1996).

M. E. Thompson, C. S. Su, and P. W. Voorhees, The equilibrium shape of a misfitting precipitate, Acta Metall.
42,2107 (1994).

Y. Wang, L. Chen, and A. G. Khachaturyan, Computer simulation of microstructure evolution in coherent
solids, in Solid-Solid Phase Transformations, edited by W. C. Johnson, J. M. Howe, D. E. Laughlin, and W. A.
Soffa (The Minerals, Metals and Materials Society, Pennsylvania, 1994), p. 245.

Y. Wang and A. G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Metall.
43, 1837 (1995).

Y. S. Yoo, D. Y. Yoon, and M. F. Henry, The effect of elastic misfit strain on the morphological evolution of
y’-precipitates in a model Ni-base superalloy, Metals Mater. 1, 47 (1995).



