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Abstract. We develop an expectation-maximization algorithm with local adaptivity for image segmentation
and classification. The key idea of our approach is to combine global statistics extracted from the
Gaussian mixture model or other proper statistical models with local statistics and geometrical
information, such as local probability distribution, orientation, and anisotropy. The combined infor-
mation is used to design an adaptive local classification strategy that improves the robustness of the
algorithm and also keeps fine features in the image. The proposed methodology is flexible and can be
easily generalized to deal with other inferred information/quantities and statistical methods/models.
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1. Introduction. Image analysis is of great importance in many application fields, and a
large body of methods and algorithms has been proposed for dealing with different tasks from
various perspectives. Main image analysis tools include statistical, partial differential equation
(PDE), and variational formulation approaches. Each has its own formulation, starting point,
advantages, and disadvantages.

The PDE and variational formulation approaches have become important in many ap-
plications of image processing and computer vision/graphics. Successful examples include
total variation (TV)-based image denoising and deconvolution [29, 37], snakes/active contour
models and Mumford–Shah models for image segmentation [10, 27, 11], shape reconstruction
from point cloud or range data [25], etc. The main advantage of these methods is their direct-
ness and ease in dealing with geometric features, such as edges and boundaries, while their
main disadvantage is their underutilization of global statistical information and modeling of
randomness/noise.

Another group of image processing methods consists of statistical-based approaches, such
as wavelet, Markov random field (MRF), and graphical models, to name a few. Of statistical
approaches, the MRF model [3] plays an important role in statistical image processing and
has been successfully applied to many image applications, such as image denoising [4], image
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segmentation [21], and object recognition [40]. The main advantage of statistical modeling is
that the randomness information is explicitly taken into consideration, but on the other hand,
it is hard to represent geometric information in statistical modeling.

Recently, much attention and research has focused on combining these two different classes
of approaches. One common approach is again based on the PDE and/or variational formu-
lation but incorporates statistical information such as prior knowledge for shapes, intensity
distributions, and local statistics for textures [24, 35, 14, 16, 19, 17, 12, 33, 2, 18, 20, 30, 38,
8, 36, 39]. A Bayesian inference framework is typically used. Various statistical models, such
as parametric models, e.g., Gaussian mixtures, and nonparametric models based on kernel
density estimation, are proposed for approximating the probability distribution. One major
advantage of the PDE or variational approach is that the regularity (smoothness) of the seg-
mentation boundary can be controlled. In recent work [7, 23, 39], the geodesic active contour
model has been turned into a weighted TV formulation which becomes a convex minimization
problem for binary images. Hence global minimum can be computed in this setup. For this
type of approach a PDE or variational problem has to be solved. For a typical active contour
or snake model (see, e.g., [33, 39]), the image is classified into two regions, inside/outside or
foreground/background. Extension to vector-valued images is not straightforward.

In this paper, we propose a simple statistical method that can incorporate adaptivity
and spatial and geometric information directly. In particular, our method is based on an
efficient expectation-maximization (EM) algorithm with local adaptivity that combines the
statistical inference and geometric information in image segmentation/classification. The idea
of our approach is to couple local statistical and geometric information with global statistics
extracted from efficient statistic models, such as the Gaussian mixture model (GMM). This
can be done efficiently using an efficient EM algorithm. Using neighborhood and geometric
information, such as local orientation and anisotropy, we then determine an optimal adaptive
local filtering strategy which can both improve the robustness of the method and also keep fine
features in the image. No PDE or variational problem is solved. Furthermore, our method,
which is based on a general statistical framework, can be extended to multiple classes, other
statistical models, and more general data analysis.

Various methods can be used to improve the GMM and its estimations. Simultaneous
feature and model selection [22, 15] is employed to optimize feature saliency, number of com-
ponents, and parameter estimates of the mixture models. Better estimation of the probability
density function for the EM algorithm is proposed in [1, 9]. The main purpose of our work
is not to develop new methods for estimating GMMs, but to combine relevant geometrical
features with the statistical classification algorithm to generate better classification results.
Our method is simple and can be applied on top of other statistical models or methods such
as the improved approaches referenced above. With a similar idea [32], region and edge cues
(provided by some edge detector) are incorporated into the EM algorithm so that pixels sep-
arated by edges do not interfere with each other. However, both the starting point and the
approach are different from ours.

Even though we focus our application only on image segmentation in this paper, our
approach can be readily generalized to other image or data analysis tasks. This framework
can also be easily extended to other inferred information/quantities and statistical methods/
models. Moreover, the adaptivity and spatial and geometric information we used in this paper
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are all locally defined, and hence our algorithm is computationally cheap.

This paper is structured as follows. In section 2, we introduce the GMM and the EM
algorithm for extracting global statistics from the whole data set. The posterior probability
estimate is computed for each pixel. In section 3, we estimate local statistical and geomet-
rical information such as anisotropy and orientation. A local adaptive neighborhood of each
pixel is chosen accordingly, and the classification rule is designed based on the neighborhood
information. In section 5, extensive numerical experiments are conducted to demonstrate the
performance of our algorithm.

2. Gaussian mixture model. In statistics, the GMM [5, 31, 26] uses a linear mixture of
Gaussian distributions to model the phenomenon of interest. Let y be a measurement vector
at a pixel. GMM models its distribution using the form

(2.1) f(y) =
K∑

k=1

αkfk(y;μk,Σk) with
K∑

k=1

αk = 1,

where K is the total number of mixtures, αk’s are the weights of each Gaussian component,
and μk, Σk are the mean and variance of the kth Gaussian distribution fk, respectively. The
number of components, K, is usually assumed to be known. Otherwise, it is possible to use
a model selection procedure to determine a good K along with estimations of other model
parameters [31]. This is one of the advantages of the GMM over many PDE-based approaches
since the number of classes can be determined from the global data before actual segmentation.
Examples in the experiment section will show that our algorithm can still get good results
even if K is overestimated.

The GMM is well suited for the task of image segmentation due to its simplicity and power
of representation. The Gaussian assumption might seem restrictive at first glance, but it is
actually flexible in capturing the image dynamics due to the mixing properties. In practice,
Gaussian or near-Gaussian noises are the most prominent noise types. Furthermore, it is
possible to use nonlinear transformation to make the transformed signal be more Gaussian
mixture–like [6]. In the experiment section, the robustness of our approach is tested on images
of different types of noises, such as multiplicative and salt-and-pepper noises.

The EM constitutes an efficient algorithm for obtaining parameter estimates in maximizing
the likelihood function. Given the data y1, . . . ,yN , we assume that all data vectors are
independent of each other. Suppose the initial guess for the Gaussian mixture model is
α̂

(0)
k , μ̂

(0)
k , Σ̂(0)

k ; then the EM algorithm iterates between the following two steps until the
parameter estimates converge (t = 1, 2, . . . ):

• E-step

p
(t)
k (x) =

α̂kfk(yx; μ̂(t)
k , Σ̂(t)

k )∑K
l=1 α̂lfl(yx; μ̂(t)

l , Σ̂(t)
l )

, x = 1, . . . , N,
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• M-step

α̂
(t+1)
k =

∑N
x=1 p

(t)
k (x)

N
, μ̂

(t+1)
k =

∑N
x=1 p

(t)
k (x)yx∑N

x=1 p
(t)
k (x)

,

Σ̂(t+1)
k =

∑N
x=1 p

(t)
k (x)(yx − μ̂

(t)
k )′(yx − μ̂

(t)
k )∑N

x=1 p
(t)
k (x)

.

After obtaining estimated parameters given the image data, the usual way of segmenting an
image is to classify pixels into the class (or segment) with the largest conditional probability
of each pixel:

label(yx) = arg max
1≤k≤K

p̂k(x) = arg max
1≤k≤K

α̂kfk(yx; μ̂k, Σ̂k).

The GMM can be viewed as a global method in the sense that all data contribute evenly
to the final parameter estimate. The EM algorithm is computationally fast; hence, it is
suitable for multiple image or data analysis. However, one shortcoming of this model is that
the statistical model is based solely on the distribution of the data, and the classification
does not utilize any neighborhood coherence or geometric information, such as orientation or
anisotropy. Moreover, this model does not take into account any adaptivity ability due to
the local statistical variation. This information might be crucial for image segmentation and
other types of data analysis. In the following we will develop an adaptive EM algorithm that
can incorporate this information into the model.

3. Local estimation and adaptivity. In practice, the classical EM algorithm usually does
not perform well despite its optimality under the GMM assumption. The poor performance
is largely due to the lack of geometric information in the GMM. In order to improve the
classification performance, we need to utilize some geometric information in the classification
phase. Such geometric and local statistical information is vital to the success of the final
segmentation.

The idea of our approach is to incorporate information from neighboring pixels. The main
underlying assumption is that pixels in an appropriate neighborhood of a given point tend
to belong to the same group. Such an assumption holds well for most natural and synthetic
images. Nevertheless, because the spatial distribution of image pixels is irregular, the key is to
choose an appropriate homogeneous neighborhood to borrow information from. In this paper,
we propose using local geometric features such as anisotropy and orientation to determine such
a neighborhood. To further improve the method, an adaptive optimal classification strategy
is designed based on locally estimating both statistics and geometric information. The three
main steps of our local adaptation method are as follows:

1. Estimate the local anisotropy and orientation (section 3.1).
2. Determine a local neighborhood according to those estimates in the first step (sec-

tion 3.2).
3. Compute local statistics in the neighborhood and classify the pixel by minimizing the

misclassification rate adapted to these local statistics (section 3.3).
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In short, our strategy is to use local information to determine which neighboring pixels’
information is used. Ideally, a good neighborhood for classification is a region with only pixels
of the same group. For simplicity, we use only elliptical neighborhoods with a certain aspect
ratio (related to the strength of the anisotropy) and orientation (related to the orientation of
the anisotropy) in our paper.

The above procedure combines global statistics with local information, thus providing
adaptivity for improving the robustness and accuracy of the classification. Meanwhile, fine
features are well kept, as our experiments show in section 5.

3.1. Local anisotropy and orientation estimation. Local anisotropy and its orientation
are important information for determining the appropriate neighborhood of a given pixel. We
follow the approach in [28] to estimate the local anisotropy and its orientation at a pixel. At
the pixel centered at x, we collect a small neighborhood within a ball of radius r and denote it
by B(x, r). In general, the local neighborhood for each classification group might be different.
But for simplicity, in this paper we will use the same ball for all classes.

The first moment vector (mass center) for each class label k, k = 1, . . . ,K, at x is defined
by

(3.1) M0
k(r,x) =

∫
B(x,r) W(r,x, x̂,v, 1)pk(x̂)x̂ dx̂∫
B(x,r) W(r,x, x̂,v, 1)pk(x̂) dx̂

,

where pk is the posterior of the k-class and W is a weight function with exponential decay in
terms of the distance from the center x given by

(3.2) W(r,x, x̂,v, 1) = exp
(
−|x− x̂|2

2(r/2)2

)
.

Similarly, the second moment at x is a matrix (2 × 2 for two-dimensional (2D) images) for
each class k defined by

(3.3) M1
k(r,x) =

∫
B(x,r) W(r,x, x̂,v, 1)pk(x̂)[x̂ −M0

k(r,x)] ⊗ [x̂−M0
k(r,x)] dx̂∫

B(x,r) W(r,x, x̂,v, 1)pk(x̂) dx̂
,

where u ⊗ v is the tensor product of the vectors u and v.
The eigenvalues of each first moment matrix are denoted by λ

(1)
k (r,x) and λ

(2)
k (r,x): These

eigenvalues along with their corresponding eigenvectors, v(1)
k (r,x) and v(2)

k (r,x), essentially
measure the anisotropy and its direction of each classification group. To quantify the anisot-
ropy, we define

(3.4) τk(r,x) = 1 − max[λ(1)
k (r,x), λ(2)

k (r,x)]

λ
(1)
k (r,x) + λ

(2)
k (r,x)

.

If the probability distribution pk(x̂) for class i is isotropic in the neighborhood centered at x,
the two eigenvalues λ

(1)
k (r,x) and λ

(2)
k (r,x) will be roughly the same. This implies that the

strength of the anisotropy τk with respect to the group k will be close to, but less than, 1/2.
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On the other hand, if the distribution is very anisotropic in the neighborhood centered at x,
there will be a dominant eigenvalue and therefore the value of τk will be close to, but greater
than, 0.

Since the above moment matrix can be computed for all classes, the anisotropy at a
particular pixel is not uniquely defined. In our algorithm, we use the most anisotropic class,
its eigenvalues and eigenvectors, to define the local neighborhood region for later adaptive
classification (see details in the following sections). This choice is based on the following
observations: A pixel that is in the interior of a homogeneous region or an isolated point (which
belongs to a different class from its neighbors) does not generate anisotropy. A pixel that is
near a smooth boundary between two classes does not generate large anisotropy either. Large
anisotropy indicates existence of some spatial structure, such as a long and thin (elongated)
object/region. As a consequence our choice can maintain this spatial structure well. At
the same time pixels in the interior or near a smooth boundary are hardly affected by the
choice of the neighborhood. In particular, isolated pixels are still removed no matter what
neighborhood information we use. These are two major desirable properties of our algorithm
which the classical EM algorithm does not have.

3.2. Local neighborhood adaptation. Now we incorporate the above anisotropy and ori-
entation estimates into our local adaptive algorithm. We introduce an affine transformation
that consists of both rotation and rescaling according to the local anisotropy and orientation.
For simplicity, we restrict our discussion to 2D images. Let v

(k)
1 , v

(k)
2 be the components of the

unit eigenvector v(k)(r,x) corresponding to the two eigenvalues of the first moment matrix for
class k that has the strongest anisotropy. First we translate and rotate the original coordinate
system to align with the direction of anisotropy:

x̃1 = v
(k)
1 (x̂1 − x1) + v

(k)
2 (x̂2 − x2),

x̃2 = v
(k)
1 (x̂2 − x2) − v

(k)
2 (x̂1 − x1).(3.5)

Next we scale each direction according to the anisotropy. We define the aspect ratio of the
scaling β in terms of the strength of the anisotropy,

(3.6) β = (1 − 2τ)βmax + 2τ,

with βmax = r. Denote the scaling in the x̃1- and the x̃2-direction by a and b, respectively.
An affine distance D is defined as

(3.7) D =
x̃2

1

a2
+

x̃2
2

b2
,

where

(3.8) a2 =
Aβ

π
, b2 =

A

πβ
.

3.3. Classification by minimizing the misclassification rate. The classical EM algorithm
classifies a pixel into one of the k-groups using the posterior at that particular pixel; i.e., one
classifies pixel x into group k̂ such that

(3.9) k̂ = arg max
1≤k≤K

p̂k(x)
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with the posterior p̂k computed from the whole image. To take into account the neighborhood
information, we define a likelihood function and minimize the misclassification rate in a local
patch centered at the pixel x. The local patch is an elliptic neighborhood D(x) of x determined
by local anisotropy and its direction:

(3.10)
{

x̃2
1

a2
+

x̃2
2

b2
− 1 < 0

}
.

Hence local information on anisotropy and orientation is now embedded into such local
patches.

Let (μ̂k, Σ̂k) be the mean and the variance for class k computed from the EM algorithm
in section 2 from the whole image. The likelihood function for the local patch for class k is
defined as

L(μ̂k, Σ̂k;D(x)) =
∏

z∈D(x)

1√
2π

|Σ̂k|−1/2 exp
(
−1

2
(z − μ̂k)T Σ̂−1

k (z − μ̂k)
)

.

Theorem 3.1. The following rule classifies each pixel into one of k classes by minimizing
the misclassification rate based on the local likelihood:

(3.11) arg max
1≤k≤K

α̂kL(μ̂k, Σ̂k;D(x)),

where α̂k is the weight for each class in the Gaussian mixture.
A simple proof of the optimality of this decision rule is provided in the appendix. Another

interpretation of the above classification rule is by maximum likelihood: We can view α̂k

as the prior (estimated from the whole data set), and L(μ̂k, Σ̂k;D(x)) is the probability (or
likelihood) of the local patch around x belonging to the group k.

In the classical EM method, only the global statistics of the pixel values are utilized.
The classification rules of different pixels are spatially independent of each other; i.e., if the
pixels are shuffled around, the classification of a particular measurement will be unchanged.
In contrast, our classification rule of a pixel has taken into account statistical, spatial, and
geometric information in an appropriately chosen neighborhood. As a consequence, our classi-
fication/segmentation can keep fine features, while the number of isolated misclassified points
is greatly reduced compared to the classical EM method. We will see these improvements for
our method in various numerical examples in section 5.

3.4. Further adaptation. A further adaptation of the algorithm helps to improve the
estimation of anisotropy and hence the choice of local neighborhood. For example, we can
incorporate an extra step by modifying the weight function in the moment formulas (3.1) and
(3.3) using the affine distance D in (3.7); i.e.,

(3.12) W(r,x, x̂,v, τk) = exp
(
−D

2

)
,

where class k has the strongest anisotropy. Once we get the new estimates of local anisotropy
and its orientation, we follow the same procedure as described above to pick up the local
neighborhood and minimize the misclassification rate. As we will see in section 5 this extra
step can improve the segmentation.

4. Algorithm. To help readers follow the procedures, we now summarize our algorithm.
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Algorithm:

Input: An image with N pixels with measurements y1, . . . ,yN ; the number of groups k.
Output: The label for each pixel label(yx).
Initialization:
(a) Mixture parameters pk(x), α̂k(x), μ̂k(x), and Σ̂k(x) with the GMM using the EM

algorithm.
(b) Local neighborhood D(x) = B(x, r) and a weight function W(r,x, x̂,v, 1) according

to (3.2).
Iteration:

Do t = 1, 2, . . .
i. Estimate the local anisotropy τk(r,x) using (3.3) and (3.4).
ii. Determine a local neighborhood for each pixel D(x) according to (3.10).
iii. Classify the pixel according to the classification rule (3.11).
iv. Modify the weight function W(r,x, x̂,v, τk).
Enddo

5. Experiments. In this section, we test our algorithm on various intensity scalar images
and vector images and also compare these results with the standard EM algorithm and some
PDE-based approaches. We show that by incorporating the local statistical, spatial, and geo-
metric information, our method can keep sharp or fine features while maintaining robustness
with respect to noise of various types. Based on the efficient EM algorithm, our local adaptive
algorithm can also be efficiently implemented.

Unless otherwise specified, we define an intensity image as a function u : Ω → [0, 255] ⊂ I.
Except in the example we have used in Figure 3, where Ω = [1, 256]2, we are using an image
with Ω = [1, 128]2. The original clean image is binary with the piecewise constant intensity
levels of 85 and 170, while the noisy image is obtained by adding a Gaussian noise of standard
deviation σ = 50. To visualize the segmentation results, we plot all pixels within the same
group in the same color, either black or white. For instance, to generate the input image in
Figure 1(a), we first construct a piecewise constant image with the above prescribed intensity.
Then we add to the image a Gaussian noise with known variance. Once we have obtained
the segmented results of this noisy input, i.e., pixels classified into groups, we show the
corresponding classes with the color black/white in images (b)–(d).

For vector images u : Ω → R
d, we have chosen both colored images in the RGB format

(d = 3) and images with higher dimensions (d > 3). In these cases we segment the images
into more than two groups, we color all pixels classified into the same group in black, and we
plot each of these groups separately.

We start with some standard model comparisons in the sense that images are indeed
satisfying the assumption of Gaussian mixture distribution. Then we will vary some of the
assumptions of the GMM to check the robustness of our proposed method. We will then
compare some of our solutions with a modified version of the Chan–Vese (CV) model [34].

5.1. Preservation of fine structures. Preservation of fine features is a difficult task for
image segmentation. Figure 1 shows a synthetic example to assess the ability of our algorithm
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(a) (b)

(c) (d)

Figure 1. (a) The original noisy image, (b) the classification by EM, (c) our classification, and (d) with
further adaptation.

to preserve these small structures. The original clean image Figure 1 is binary (dark and
light) with three distinct regions. The left and right regions are homogeneous with different
intensity values (dark and light, respectively). The middle region consists of horizontal stripes
only two pixels wide. Our goal is to segment the image into two groups according to their
intensities. The main challenge is the segmentation of the middle stripe region. Anisotropy
is therefore an important quantity in incorporating appropriate neighborhood information to
improve robustness while preserving fine structures.

Figure 1(a) shows the input image with significant noise added (standard deviation σ
of 30). The segment solution from our method performs well, as shown in Figure 1(c). Al-
though the stripes are each only two pixels wide, the initial circular neighborhood, which is the
size of a few pixels, can correctly detect the anisotropy and the orientation using the moment
estimation described in section 3.1. We also apply in Figure 1(d) the further adaptation step
described in section 3.4. The classification result is further improved. Compared to the result
from the standard EM algorithm, Figure 1(b), in which pixels are spatially independent of
each other, our algorithm has significantly improved the segmentation result in that we have
far fewer isolated misclassified pixels.

The next example, Figure 2, shows that our algorithm can keep an extremely elongated
fine feature in the image while the noises are nicely removed. This example is similar to
the previous example except that there is only one stripe of one pixel width in the middle
region. This example shows that our method effectively estimates both the anisotropy and
its direction. With this neighborhood information appropriately used, we are able to produce
remarkable results.

We further test our algorithm on the example in Figure 3, which consists of stripes of
different orientations and a classical square picture. Our method significantly improves the
result of the standard EM algorithm. With another extra adaptation, some of the isolated
dots are further removed from the final segmentation results as shown in Figure 3(d). Indeed,
the boundary of this segmented object (and also results from our other examples) is not as
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(a) (b)

(c) (d)

Figure 2. (a) The original noisy image, (b) the classification by EM, (c) our classification feedback, and
(d) with further adaptation.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 3. (a) The original noisy image, (b) the classification by EM, (c) our classification, and (d) with
further adaptation.

smooth as those obtained by typical variational methods where the regularity of the boundary
is imposed explicitly in the energy/functional. In the current algorithm, we do not directly
penalize on the regularity of the boundary but by adaptively modifying the local neighborhood
for computing the local statistics. This type of anisotropic filtering usually gives a less regular
boundary than those PDE methods.

5.2. Robustness.

5.2.1. Various noise types. Although we have assumed the GMM in our approach, such
an assumption might be violated in practice. Below, we use a few examples of various noise
types to test the robustness and the applicability of our algorithm when the Gaussian assump-
tion does not hold.

In this example, we randomly select 5% (the first row in Figure 4) or 10% (the second row
in Figure 4) of the pixels of the original clean binary image and switch their intensities from
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 4. (a) The original noisy images (the same as their classification results by EM), (b) our classi-
fication, and (c) with further adaptation. First row: 5% of pixels are flipped. Second row: 10% of pixels are
flipped.

one color to another. Since the EM algorithm does not take into account any local information,
the classification by the classical EM is the same as this noisy version. Figure 4(c) shows the
classification with further adaptation. Most noise is successfully removed.

Figure 5 shows segmentation results of an image polluted by different types of noise. In
the first row, we consider the additive Gaussian noise. The resulting noisy image does satisfy
our GMM. In the second row, we study the multiplicative noise. In this case, we multiply the
original clean image by a white noise with standard deviation 0.2. The third row in Figure 5
shows segmentation results of an image with 10% salt-and-pepper noise. To better improve
the classification results with respect to different types of noises, one might incorporate a more
appropriate model to capture the noise dynamics. For instance, a Bernoulli model can be used
for the salt-and-pepper noise. Nevertheless, the above examples indicate that the GMM is
robust. Even though the Gaussian assumption is violated, our algorithm still nicely classifies
all images.

5.2.2. Misspecified number of mixtures. Although there are various statistical methods
for estimating the number of mixtures from the raw data, we would like to demonstrate that
our adaptive EM is quite robust with respect to the misspecification of the number of mixtures.
We first add to the original binary image (with only the black class and the white class) a
Gaussian noise of standard deviation 50. Then we apply our algorithm to classify the image
into three, but not two, classes. In the first row in Figure 6, we show the results from EM.
Black regions from each subplot correspond to classifications from each class. The percentages
of pixels associated to different classes are 23.97%, 68.59%, and 7.44%, respectively. Without
any further adaptation, our algorithm already gives a much better classification result, as
shown in the second column. One class is almost completely empty. The corresponding
percentages of pixels are now 20.54%, 79.46%, and 0.00%, respectively. Comparing these
numerical results to the exact ratio (20%, 80%, 0%), our algorithm can automatically remove
any unnecessary class in the classification.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3) (e)

Figure 5. Application of our algorithm for three different types of noises: additive Gaussian noise (first
row), multiplicative noise (second row), and 10% salt-and-pepper noise (third row). (a) The original noisy
image, (b) the classification by EM, (c) our classification, (d) with further adaptation, and (e) denoising the
salt-and-pepper noise using a median filter.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 6. Classification by (a) EM and (b) our algorithm.

5.3. Comparisons with variational methods. The CV model [11] is a popular PDE-
based method for segmentation. The method aims to segment images without looking into
the gradient of the intensity function. Instead the segmentation from the original version is
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(a) (b)

(c) (d)

Figure 7. (Variances 25 and 100.) (a) The original noisy image, (b) the classification by EM, (c) our
classification, and (d) with further adaptation.

(a) (b)

(c) (d)

Figure 8. (Variances 25 and 100.) (a) The original noisy image, (b) the classification by EM, (c) our
classification, and (d) with further adaptation.

based on average (mean) intensity in different regions. However, not only are small features
difficult to capture by looking only at the first moment, but higher moments such as the
variance are not included. For instance, the original CV model will not work for images
consisting of regions of the same mean but different variances. To take into consideration
higher moments, [34] recently generalized the CV energy by using the average of the probability
density function.

Figure 7 shows the segmentation results of an image with the same mean (intensity
equals 128) in both the left and the right regions but with different variances. The vari-
ances are 25 and 100 for the left and the right regions, respectively. Figure 8 is similar to
Figure 7, but now the region with lower variance is a disc in the middle of the image. This
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Figure 9. (Variances 25 and 100.) Each row shows the evolution of the zero level set in the modified CV
energy in [34] with a different initial guess. The outer circle is the initial guess, while the inside curve shows
the evolutions of the boundary. The model can detect the boundary of the object, but, unfortunately, the result
still depends on the initial guess.

(a) (b)

(c) (d)

Figure 10. (Variances 25 and 400.) (a) The original noisy image, (b) the classification by EM, (c) our
classification, and (d) with further adaptation.

task is quite hard for human eyes. But our approach can reasonably segment both images al-
though a little less accurately near the boundary. For this small variance difference, it is hard
to distinguish these two classes in a small neighborhood for pixels near the boundary since we
have very little consistent information from almost equal mixtures of pixels from these two
close classes. When the variances of different regions are further separated, as in Figures 10
and 11, our segmentation results are much better. To compare them with the results from a
popular model, we plot in Figures 9 and 12 the results from the modified CV model developed
in [34]. The modified CV energy gives reasonable segmentation results. However, such results
would still depend on the choice of the initial guess since the energy is in fact nonconvex.
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(a) (b)

(c) (d)

Figure 11. (Variances 25 and 400.) (a) The original noisy image, (b) the classification by EM, (c) our
classification, and (d) with further adaptation.

Figure 12. (Variances 25 and 400.) Each row shows the evolution of the zero level set in the modified CV
energy in [34] with a different initial guess. The outer circle is the initial guess, while the inside curve shows
the evolutions of the boundary. The model can detect the boundary of the object, but, unfortunately, the result
still depends on the initial guess.

5.4. Vector images. Our method applies naturally to data of any dimension. In this
subsection, we apply our method on vectorial images/data u : R

2 → R
d with d > 1. The first

example is a color three-channel image; i.e., d = 3. Our algorithm can be easily applied to
this example, and our solutions are shown in Figure 13. Figure 13(0) shows the noisy image
with Gaussian noise added to each channel independently. The segmented solutions by the
EM algorithm using three Gaussian classes (k = 3) are given in the rest of the first row. We
plot all pixels classified into the same group in black. Similarly to the previous examples, we
find many isolated dots or misclassified pixels in the segmentation from the EM algorithm.
Figure 13(b) shows results from our method without any feedback. The misclassifications
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(0) (a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 13. (0) The original noisy image, (a) the classification by EM, (b) our classification, and (c) with
further adaptation. Pixels classified into the same group are plotted in black.

are nicely removed. We show in Figure 13(c) results with further adaptation described in
section 3.4. The hypotenuse of the triangle is captured better. The elliptical part inside the
rectangle is also segmented more smoothly.

The following example shows image segmentation based on quantities/information (deter-
ministic or statistical) derived from the original images, such as local homogeneity, texture,
and others. Figures 14(a) and (b) show both the clean image and its noisy version with ad-
ditive Gaussian noise. A similar image has been segmented in a previous section based on
the intensity value. However, this example is even more extreme in the sense that each white
and black alternating stripe is only one pixel wide now. The texture is extremely fine and
homogeneous. Here we segment the image based on pattern information. In other words, we
separate the image into regions with different textures. In the first test, we segment the image
according to the contrast of a pixel to its neighbors. First we derive a vectorial function in
R

4 by transforming the intensity ui,j at each pixel (i, j) into

(5.1) ui,j → yi,j =

⎛
⎜⎜⎝

Δ+
x ui,j

Δ−
x ui,j

Δ+
y ui,j

Δ−
y ui,j

⎞
⎟⎟⎠ ∈ R

4,

where Δ±
x and Δ±

y are the forward and the backward differences in the x- and the y-direction,
respectively. For instance,

Δ+
x ui,j = ui+1,j − ui,j,

Δ−
x ui,j = ui,j − ui−1,j.(5.2)
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(a) (b)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Figure 14. (a) The original clean image, (b) the noisy image, (c) the classification by EM, (d) our
classification, and (e) with further adaptation. Pixels classified in the same group are plotted in black.

The vector function yi,j gives the contrast of pixel xi,j to its four neighbors.
As an example, consider the clean image Figure 14(a) and denote the intensity of black by 0

and that of white by 1. The intensities in the left and right regions are homogeneous, which
gives y = (0, 0, 0, 0)T . For the middle region, we have y = (0, 0, 1,−1)T and y = (0, 0,−1, 1)T

for the pixels at the dark and light stripes, respectively.
We test our method on the noisy image with Gaussian noise of standard deviation 30

as shown in Figure 14(b). The second row in Figure 14(c) represents the results from the
standard EM algorithm. Our results are shown in Figure 14(d). Segmentation of the stripe
region is a very challenging task because the texture is extremely fine and homogeneous. One
difficulty is that almost no anisotropy can be detected from a ball of any size around any pixel
in the stripe region using the method described in section 3.1. Second, unless we are using
an extremely anisotropic neighborhood like a line segment only one pixel wide, neighborhood
information might not help much in classifying those pixels in the stripe region. This explains
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 15. (a) The classification by EM, (b) our classification, and (c) with further adaptation. Pixels
classified into the same group are plotted in black.

why our segmentation result in the homogeneous region is better than for the classical EM as
in previous examples, while the segmentation of the stripes is comparable.

To further separate the dark and the light homogeneous regions, we embed the image u
in R

5 by including the intensity value

(5.3) ui,j → yi,j =

⎛
⎜⎜⎜⎜⎝

Δ+
x ui,j

Δ−
x ui,j

Δ+
y ui,j

Δ−
y ui,j

ui,j

⎞
⎟⎟⎟⎟⎠ ∈ R

5.

Figures 15(b) and (d) show the results from our algorithm.

5.5. Misclassification rate. In this subsection, we study the accuracy of our methods by
examining the misclassification rate of our experiment results. Since all examples shown in
the experiment section are synthetic, we can always determine the exact segmentation results.
The misclassification rate is computed by dividing the total number of mismatched pixels by
the total number of pixels. In other words, we look at the percentage of mismatch in each
classification result.

Table 1 summarizes all the misclassification rate results. It indicates that our segmentation
algorithm outperforms the original EM algorithm. The improvement is dramatic, especially
for hard segmentation examples. For instance, in Figure 7, the original EM gives more than
30% error in the classification, while our proposed method has a misclassification rate less
than 10%. With one more adaptation, the misclassification rate is further driven down to less
than 4%.
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Table 1
Percentage of misclassified pixels in each example.

Figure EM Ours without feedback Ours with one feedback

1 2.0935 1.3550 2.1606
2 2.6855 0.7874 0.8545

3 (row 1) 2.1545 3.3142 2.2400
3 (row 2) 10.9619 1.2604 0.3876

4 (row 1) 4.8523 0.7751 1.0681
4 (row 2) 9.0820 1.4771 1.3916

5 (row 1) 7.3120 2.1606 1.3306
5 (row 2) 0.3845 2.1606 2.7771
5 (row 3) 4.9622 0.7446 0.8850

6 (redundant) 7.3059 0.0000 0.0000
6 (background) 13.7390 1.4954 1.4587

6 (objects) 6.4331 1.4954 1.4587

7 31.2927 9.1309 3.7842
8 32.5684 11.7676 6.1401
10 16.9373 1.1963 1.3916
11 23.3032 2.1790 2.2949

13 (one object) 0.1953 0.2441 0.4517
13 (two objects) 0.2441 0.3601 0.7141
13 (background) 0.3296 0.6042 1.1414

14 (background) 2.6611 2.6794 1.9775
14 (stripes 1) 1.2268 1.2695 1.2207
14 (stripes 2) 1.4343 1.4099 1.0620

15 (left background) 0.3906 0.3906 0.5493
15 (right background) 0.3723 0.3723 0.2625

15 (stripes 1) 0.3540 0.3540 0.4028
15 (stripes 2) 0.4089 0.4089 0.7629

For some examples, the misclassification rates of our algorithm are comparable to (or
slightly worse than) those of the original EM. We analyze them case by case. In general,
our method does not show much improvement over the original EM for the vector image
examples shown in Figures 13–15. Our analysis suggests that these examples are relatively
simple segmentation problems: Vector images are generally relatively easy to segment since
pixels in images of higher dimensions are inherently more separated. Our algorithm performs
much better in hard segmentation problems. When the original EM already performs well,
there lacks room for further improvement. Another observation worth mentioning is that our
algorithm effectively removes many isolated misclassified pixels. Even though the improvement
of misclassification rates might not be significant for some cases, the final segmentation results
are much more appealing to human eyes.

5.6. Real images. In previous sections, we have studied the behavior of our proposed
algorithm by applying it to various synthetic images. In this section, we further examine its
performance by applying it to several images in the real world. Unlike previous examples,
there is no rigorous definition of segmentation for these real-world images. Instead, we will
classify the pixels into k groups according to the intensity level, with k assumed to be given.

The images in Figures 16 and 17 are widely used in image processing. We apply our
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Figure 16. Classifying a real image into four groups. The first row shows the original color image. The
second row shows the classification using the original EM algorithm. We plot our classification without feedback
(third row) and with one feedback (fourth row).

segmentation algorithm using k = 4 and k = 3, respectively. Since the image intensity is the
only input measurement of the segmentation algorithm, our method separates out the red
nose (Figure 16) and the green peppers (Figure 17) reasonably well.

The brain image in Figure 18 is taken from [13]. Even though we choose k = 4 as an input
to the algorithm, our method automatically eliminated a redundant class, leaving only three
groups in the output. The white matter in the brain is reasonably well segmented out from
both the background and the grey matter.

6. Conclusion. In this paper, we propose an expectation-maximization (EM) algorithm
with local adaptivity for image segmentation. A GMM is used due to its simplicity and power
to express a variety of images. The idea of our approach is to incorporate statistical and
geometric information (anisotropy, orientation) in selecting an appropriate neighborhood to
improve the classification rate and preserve fine features of noisy images. Experiments are
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Figure 17. Classifying a real image into three groups. The first row shows the original color image. The
second row shows the classification using the original EM algorithm. We plot our classification without feedback
(third row) and with one feedback (fourth row).

conducted to access the performance of our algorithm for various images. The results show
that our algorithm is robust and outperforms many existing image segmentation methods.
Furthermore, our proposed methodology is flexible and can be easily generalized to deal with
other inferred information/quantities and statistical methods/models.

Appendix: Misclassification rate minimization.

Proof of Theorem 3.1. For the ellipse D(x) centered at a given pixel at x, it is our
assumption that all pixels within the ellipse belong to the same group. Hence, the likelihood
that the whole ellipse is of class k is

Lk = L(μ̂k, Σ̂k;D(x)) =
∏

z∈D(x)

1√
2π

|Σ̂k|−1/2 exp
(
−1

2
(z − μ̂k)T Σ̂−1

k (z − μ̂k)
)

, k = 1, . . . ,K,
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Figure 18. Classifying a real image into four groups. The first row shows the original image. The second
row shows the classification using the original EM algorithm. We plot our classification without feedback (third
row) and with one feedback (fourth row).

where μ̂k and Σ̂k are the mean and variance of the kth group. (In practice, we use the
estimated version of means and variances.)

A decision rule A is a partition of the sample space Ω: A1, . . . , AK ; then the expected
misclassification rate of a decision rule A is

m(α) =
K∑

k=1

∫
Ak

∑
j �=k

α̂jLj dD(x)

=
∫

Ω

K∑
j=1

α̂jLj dD(x) −
K∑

k=1

∫
Ak

α̂kLk dD(x).

In the above equation, the first term is a constant. In order to minimize the whole term,
we need to pick the classification region Ak such that the second term is maximized. Note
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that each region will be counted only once in the second term, so in order to minimize the
misclassification rate, the optimal decision rule is to classify pixels based on the maximum of
local likelihoods,

(A.1) arg max
1≤k≤K

α̂kL(μ̂k, Σ̂k;D(x)).
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