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ABSTRACT

In the geometrical-optics approximation for the Helmholtz equation with a point source, traveltimes

and amplitudes have upwind singularities at the source. Consequently, both first-order and higher-

order finite-difference solvers exhibit formally at most first-order convergence and relatively large

errors. Such singularities can be factored out by introducing appropriate factorizations for trav-

eltimes and amplitudes, where one factor is a known function capturing the corresponding source

singularity and the other factor is an unknown function smooth in the neighborhood of the source.

The resulting underlying unknown functions satisfy factored eikonal and transport equations, re-

spectively. A third-order weighted essentially non-oscillatory (WENO) based Lax-Friedrichs scheme

is designed to compute the underlying functions. Thus highly accurate traveltimes and reliable am-

plitudes can be computed. Furthermore, we construct the asymptotic wave fields using computed

traveltimes and amplitudes in the WKBJ form. 2-D and 3-D examples demonstrate the performance

of the proposed algorithms, and the constructed WKBJ Green functions are in good agreement

with direct solutions of the Helmholtz equation before caustics occur.
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INTRODUCTION

In geometrical-optics approximations for high frequency wave propagation, the point-source trav-

eltime has an upwind source singularity which makes it extremely difficult to numerically compute

the traveltime field with high accuracy even by higher-order finite-difference eikonal solvers. The

resultant inaccurate traveltimes prevent reliable computations of takeoff angles, out-of-plane curva-

tures and amplitudes. Even with accurate traveltime fields, the source singularity of takeoff angles,

out-of-plane curvatures and amplitudes can also make it difficult to obtain high accuracy with usual

finite-difference schemes.

Many finite-difference schemes have been introduced to solve the eikonal equation with point-

source conditions (Vidale (1990); van Trier and Symes (1991); Qin et al. (1992); Schneider et al.

(1992); Schneider (1995); Sethian and Popovici (1999); Kim and Cook (1999); Qian and Symes

(2002a,b); Zhao (2005); Tsai et al. (2003); Qian et al. (2007b,a); Kao et al. (2005); Leung and

Qian (2006); Benamou et al. (2010)). Most of the higher-order finite-difference schemes suffer from

the upwind source singularity. Special treatments like initializing the traveltime filed in a fixed

grid-independent region of constant velocity near the source point are employed in order to obtain

high accuracy (e.g. Sethian (1999); Zhang et al. (2006); Serna and Qian (2010); Benamou et al.

(2010)). These methods have drawbacks such as: (1) the velocity may not be homogeneous near

the source, and/or (2) the size of the region of analytic computations must be set by the user and

bears no direct relation to the grid parameters. The drawbacks of these methods can be overcome

with the adaptive grid refinement method as proposed in Qian and Symes (2002a). However, the

adaptive grid refinement method incurs a heavy burden in numerical implementations.

In Luo and Qian (2010), these difficulties are overcome with a factorization approach. Inspired

by the factored eikonal equation in Fomel et al. (2009), the authors proposed to factor the takeoff

angle additively and the out-of-plane curvature multiplicatively so that the source singularities are

well-captured by known functions corresponding to constant velocities. Then a weighted essentially

non-oscillatory (WENO) (Liu et al. (1994); Jiang and Shu (1996); Jiang and Peng (2000)) based
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Lax-Friedrichs scheme was designed to compute the resulting underlying functions which are smooth

near the source point. Thus, the traveltime, the takeoff angle and the amplitude can be obtained

with high accuracy. In this companion work, we apply this factorization approach directly to the

amplitude without calculating the takeoff angle and the out-of-plane curvature. We factor the

amplitude into two multiplicative factors, one of which is the amplitude for homogeneous media.

This factor captures the source singularity so that the other factor (the underlying function) is

smooth near the source. Then we apply the third-order WENO based Lax-Friedrichs sweeping

scheme (Luo and Qian (2010); Kao et al. (2004); Zhang et al. (2006)) to numerically compute the

underlying function. Therefore, we can compute the amplitude accurately in both 2-D and 3-D

cases.

The paper is organized as follows. We start to present the methodology by first recalling the

factorization for the traveltime in Fomel et al. (2009) and Luo and Qian (2010), then we present the

factorization for the amplitude. We further present the third-order WENO based Lax-Friedrichs

scheme to solve the factored equations in 3-D (Luo and Qian (2010); Kao et al. (2004); Zhang et

al. (2006)). Both 2-D and 3-D numerical examples are presented in the numerical experiments.

We use our results to construct the asymptotic Green functions and compare the resulting Green

functions with those obtained by the Helmholtz solver in Erlangga et al. (2006) and Engquist and

Ying (2010). Some remarks are given at the end.

METHODOLOGY

Traveltime and amplitude

For a source (x0, y0, z0) in an isotropic solid, the traveltime τ(x, y, z) is the viscosity solution of an

eikonal equation (Lions (1982); Crandall and Lions (1983)),

|∇τ | = s(x, y, z), (1)
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with the initial condition,

lim
(x,y,z)→(x0,y0,z0)

 τ(x, y, z)√
(x− x0)2 + (y − y0)2 + (z − z0)2

− 1
v(x, y, z)

 = 0, (2)

where v = 1/s is the velocity.

Based on the traveltime field, one can approximate the amplitude field by solving a transport

equation (Cerveny et al. (1977)),

∇τ · ∇A+
1
2
A∇2τ = 0. (3)

Equation (3) is a first-order advection equation for the amplitude A. In order to get a first-order

accurate amplitude field, one needs a third-order accurate traveltime field since the Laplacian of

the traveltime field is involved (Qian and Symes (2002a); Symes (1995)).

The traveltime τ and the amplitude A have an upwind singularity at the source (x0, y0, z0).

Any first-order or higher-order finite-difference eikonal solvers or finite-difference methods for the

amplitude can formally have at most first-order convergence and large errors, because the low

accuracy near the source can spread out to the whole space. In Qian and Symes (2002a), an adaptive

method based on the WENO technique for the paraxial eikonal equation overcomes this difficulty.

The mesh needs to be refined near the source until expected accuracy requirement is satisfied.

In Fomel et al. (2009), the traveltime is factorized into two multiplicative factors, one of which

is already known and captures the source singularity. This factorization results in an underlying

function that is smooth in a neighborhood of the source. The underlying function satisfies a factored

eikonal equation. Numerical schemes can be designed to compute the underlying function. As a

consequence, the accuracy of the traveltime can be greatly improved as demonstrated in Fomel et

al. (2009). This factorization approach has been extended in Luo and Qian (2010) for takeoff angles

and out-of-plane curvatures to obtain reliable amplitudes. Takeoff angles can be decomposed into

two additive factors and out-of-plane curvatures can be decomposed into two multiplicative factors.

4



In both cases, one of the two factors is known corresponding to homogeneous media and captures

the source singularity.

In this work, as a companion paper to a previous work (Luo and Qian (2010)), we apply the

factorization idea to the amplitude A in the transport equation (3). We decompose A into two

multiplicative factors. One of them is the amplitude corresponding to a constant velocity field, and

it is known analytically. The factorization of A results in an underlying function that satisfies a

factored advection equation. For the factored equations, we use the Lax-Friedrichs scheme based

on third-order WENO differences (Luo and Qian (2010); Kao et al. (2004); Zhang et al. (2006)) to

solve them numerically.

Factorization of traveltime and amplitude

Let us consider the following factored decompositions (Fomel et al. (2009); Luo and Qian (2010)),


τ(x, y, z) = τ0(x, y, z)u(x, y, z),

s(x, y, z) = s0(x, y, z)α(x, y, z),
(4)

and assume that τ0 satisfies

|∇τ0| = s0, (5)

with the initial condition,

lim
(x,y,z)→(x0,y0,z0)

 τ0(x, y, z)√
(x− x0)2 + (y − y0)2 + (z − z0)2

− s0(x, y, z)

 = 0. (6)

If we choose s0 as some constant, we have

τ0 =

√
(x− x0)2 + (y − y0)2 + (z − z0)2

v0
,
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which is the traveltime corresponding to the constant velocity field v0 = 1/s0.

The function substitution transforms the eikonal equation (1) into the factored eikonal equation

(Fomel et al. (2009); Luo and Qian (2010)),

√
τ2
0 |∇u|2 + 2τ0u∇τ0 · ∇u+ u2s20 = s. (7)

The factor τ0 captures the source singularity such that the underlying function u is smooth in a

neighborhood of the source.

Denote A0 as the amplitude corresponding to the constant velocity v0, and consider the following

decomposition for A,

A(x, y, z) = A0(x, y, z)D(x, y, z). (8)

Substituting A = A0D and τ = τ0u into (3), we get the factored transport equation,

A0(τ0∇u+ u∇τ0) · ∇D + (τ0∇u · ∇A0 +A0∇τ0 · ∇u+
1
2
A0τ0∆u)D = 0. (9)

A0 is known analytically and captures the source singularity, thus the underlying factor D is smooth

in a neighborhood of the source.

In order to get first-order accurate A, we need first-order accurate D. In the factored transport

equation (9), in order to get first-order accurate D, we need at least third-order accurate u, since ∆u

is involved. Therefore we need to solve the factored eikonal equation (7) for u with at least third-

order accuracy. The traveltime τ0 and the amplitude A0 corresponding to the constant velocity

field v0 capture the source singularity properly, which makes it easy to design high order methods

to solve (7) and (9) for the underlying functions u and D.
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Lax-Friedrichs scheme based on third-order WENO

We present the Lax-Friedrichs scheme for the factored equations (7) and (9) on a rectangular mesh

Ωh with grid size h covering the domain Ω (Luo and Qian (2010); Kao et al. (2004); Zhang et al.

(2006)). Let us consider equations in the following general form,

H(x, y, z, u, ux, uy, uz) = f(x, y, z). (10)

At grid point (i, k, j) = (xi, yk, zj) with neighbors,

N{i, k, j} ={(xi−1, yk, zj), (xi+1, yk, zj), (xi, yk, zj−1),

(xi, yk, zj+1), (xi, yk+1, zj), (xi, yk−1, zj)},

we consider a Lax-Friedrichs Hamiltonian (Osher and Shu (1991); Kao et al. (2004); Luo and Qian

(2010)),

HLF (xi, yk, zj , ui,k,j , uN{i,k,j})

= H

(
xi, yk, zj , ui,k,j ,

ui+1,k,j − ui−1,k,j

2h
,
ui,k+1,j − ui,k−1,j

2h
,
ui,k,j+1 − ui,k,j−1

2h

)
− αx

ui+1,k,j − 2ui,k,j + ui−1,k,j

2h
− αy

ui,k+1,j − 2ui,k,j + ui,k−1,j

2h

− αz
ui,k,j+1 − 2ui,k,j + ui,k,j−1

2h
,

(11)

where αx, αy and αz are chosen such that for fixed (xi, yk, zj),

∂HLF

∂ui,k,j
≥ 0,

∂HLF

∂uN{i,k,j}
≤ 0.

(12)
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For example, we can choose,

αx = max
m≤u≤M,A≤p≤B,C≤q≤D,E≤r≤F

{
1
2
|H1(x, y, z, u, p, q, r)|+ |∂H

∂u
(x, y, z, u, p, q, r)|

}
,

αy = max
m≤u≤M,A≤p≤B,C≤q≤D,E≤r≤F

{
1
2
|H2(x, y, z, u, p, q, r)|+ |∂H

∂u
(x, y, z, u, p, q, r)|

}
,

αz = max
m≤u≤M,A≤p≤B,C≤q≤D,E≤r≤F

{
1
2
|H3(x, y, z, u, p, q, r)|+ |∂H

∂u
(x, y, z, u, p, q, r)|

}
,

(13)

where H1, H2 and H3 denote the derivatives of H with respect to the first, second and third

gradient variable, respectively. The flux HLF is monotone for m ≤ ui,k,j ≤ M,A ≤ p ≤ B,

C ≤ q ≤ D and E ≤ r ≤ F with p = (ui+1,k,j − ui−1,k,j)/2h, q = (ui,k+1,j − ui,k−1,j)/2h and

r = (ui,k,j+1 − ui,k,j−1)/2h. Then we have a first-order Lax-Friedrichs scheme,

unewi,k,j =(
1

αx/h+ αy/h+ αz/h

)
×[

fi,k,j −H
(
xi, yk, zj , u

old
i,k,j ,

ui+1,k,j − ui−1,k,j

2h
,
ui,k+1,j − ui,k−1,j

2h
,
ui,k,j+1 − ui,k,j−1

2h

)
+αx

ui+1,k,j + ui−1,k,j

2h
+ αy

ui,k+1,j + ui,k−1,j

2h
+ αz

ui,k,j+1 + ui,k,j−1

2h

]
.

(14)

As in Zhang et al. (2006) and Luo and Qian (2010), we replace ui−1,k,j , ui+1,k,j , ui,k+1,j , ui,k−1,j ,

ui,k,j−1 and ui,k,j+1 with,

ui−1,k,j = ui,k,j − h(ux)−i,k,j , ui+1,k,j = ui,k,j + h(ux)+i,k,j ;

ui,k−1,j = ui,k,j − h(uy)−i,k,j , ui,k+1,j = ui,k,j + h(uy)+i,k,j ;

ui,k,j−1 = ui,k,j − h(uz)−i,k,j , ui,k,j+1 = ui,k,j + h(uz)+i,k,j .

(15)

(ux)−i,k,j and (ux)+i,k,j are third-order WENO approximations of ux, (uy)−i,k,j and (uy)+i,k,j are third-

order WENO approximations of uy, and (uz)−i,k,j and (uz)+i,k,j are third-order WENO approxima-

tions of uz; see Osher and Shu (1991), Liu et al. (1994), Jiang and Shu (1996) and Jiang and Peng
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(2000). For example,

(ux)−i,k,j = (1− ω−)
(
ui+1,k,j − ui−1,k,j

2h

)
+ ω−

(
3ui,k,j − 4ui−1,k,j + ui−2,k,j

2h

)
(16)

with

ω− =
1

1 + 2γ2
−
, γ− =

ε+ (ui,k,j − 2ui−1,k,j + ui−2,k,j)2

ε+ (ui+1,k,j − 2ui,k,j + ui−1,k,j)2
, (17)

and

(ux)+i,k,j = (1− ω+)
(
ui+1,k,j − ui−1,k,j

2h

)
+ ω+

(
−3ui,k,j + 4ui+1,k,j − ui+2,k,j

2h

)
(18)

with

ω+ =
1

1 + 2γ2
+

, γ+ =
ε+ (ui,k,j − 2ui+1,k,j + ui+2,k,j)2

ε+ (ui+1,k,j − 2ui,k,j + ui−1,k,j)2
. (19)

Similarly, we can define third-order WENO approximations for (uy)−i,k,j , (uy)+i,k,j , (uz)−i,k,j and

(uz)+i,k,j . ε is a small positive number to avoid division by zero.

Then we have a Lax-Friedrichs scheme based on the third-order WENO approximations (Zhang

et al. (2006); Luo and Qian (2010)),

unewi,k,j =(
1

αx/h+ αy/h+ αz/h

)
×[

fi,k,j −H

(
xi, yk, zj , u

old
i,k,j ,

(ux)−i,k,j + (ux)+i,k,j
2

,
(uy)−i,k,j + (uy)+i,k,j

2
,
(uz)−i,k,j + (uz)+i,k,j

2

)

+αx
2uoldi,k,j + h((ux)+i,k,j − (ux)−i,k,j)

2h
+ αy

2uoldi,k,j + h((uy)+i,k,j − (uy)−i,k,j)

2h

+αz
2uoldi,k,j + h((uz)+i,k,j − (uz)−i,k,j)

2h

]
.

(20)

unewi,k,j denotes the to-be-updated numerical solution for u at the grid point (i, k, j) and uoldi,k,j denotes

the current old value for u at the same point.

The third-order Lax-Friedrichs sweeping method for equation (10) is summarized as follows
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(Kao et al. (2004); Zhang et al. (2006); Luo and Qian (2010)):

1 Initialization: assign exact values or interpolate values at grid points within a cubic volume

centered at the source point with side equal to 2h+ 2h, such that the grid points are enough

for the third-order WENO approximations. These values are fixed during iterations.

2 Iterations: update unewi,k,j in (20) by Gauss-Seidel iterations with eight alternating directions:

(1) i = 1 : I, k = 1 : K, j = 1 : J ; (2) i = 1 : I, k = 1 : K, j = J : 1;

(3) i = 1 : I, k = K : 1, j = 1 : J ; (4) i = 1 : I, k = K : 1, j = J : 1;

(5) i = I : 1, k = 1 : K, j = 1 : J ; (6) i = I : 1, k = 1 : K, j = J : 1;

(7) i = I : 1, k = K : 1, j = 1 : J ; (8) i = I : 1, k = K : 1, j = J : 1.

3 Convergence: if

|unewi,k,j − uoldi,k,j |∞ ≤ δ,

where δ is a given convergence threshold value, the iterations converge and stop.

We use this scheme to solve the factored equations:

• Equation (7) with Hamiltonian and f as,

H(x, y, z, u, ux, uy, uz) =
√
τ2
0 |∇u|2 + 2τ0u∇τ0 · ∇u+ u2s20,

f = s.
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• Equation (9) with Hamiltonian and f as,

H(x, y, z,D,Dx, Dy, Dz) =

A0(τ0∇u+ u∇τ0) · ∇D + (τ0∇u · ∇A0 +A0∇τ0 · ∇u+
1
2
A0τ0∆u)D,

f = 0.

NUMERICAL EXPERIMENTS

In this section, we present several 2-D and 3-D examples to demonstrate the performance of the

method.

2-D Examples

For all 2-D examples, we show results computed with our method, and we use computed results to

approximate the Green functions for the Helmholtz equation with high frequencies,

∇2G2(x, y, ω) +
ω2

v2(x, y)
G2(x, y, ω) = −δ(x− x0)δ(y − y0), (21)

where G2(x, y, ω) is the Green function dependent on the frequency ω.

We approximate the 2-D Green function in the WKBJ form (Appendix C in Leung et al. (2007)),

G2(x, y, ω) ≈ 1√
ω
A(x, y)ei(ωτ(x,y)+

π
4
). (22)

First we use the following two velocity models, and we compare our results with the solutions

computed with a Helmholtz solver (Erlangga et al. (2006)). We choose ω = 32π.

1. Constant velocity v(x, y) ≡ 5.0, (x0, y0) = (0.5, 0.5), and domain [0, 1] × [0, 1]. We apply

our method on a 100× 100 mesh and solve the Helmholtz equation (21) with the Helmholtz

solver (Erlangga et al. (2006)) on a 1200 × 1200 mesh. Figure 1 shows the traveltime and
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amplitude computed with our method. Figure 2 shows the results for the 2-D Green function

on a 100 × 100 mesh. The results by our method are very close to those obtained by the

Helmholtz solver. The reason is that the traveltime field is smooth everywhere away from the

source. Therefore, the constructed asymptotic Green function approximates the true Green

function faithfully.

2. Velocity v(x, y) = 1+0.2 sin(0.5πy) sin(3π(x+0.05)), (x0, y0) = (0.5, 0.1), and domain [0, 1]×

[0, 2]. We apply our method on a 200 × 100 mesh and solve the Helmholtz equation (21)

with the Helmholtz solver in Erlangga et al. (2006) on a 1600×800 mesh. Figure 3 shows the

velocity model and the resulting traveltime and amplitude computed by our method. Figure

4 shows the results for the 2-D Green function on a 200 × 100 mesh; especially we plot two

slices at y = 0.3 (no kink, no caustics) and at y = 1.5 (kink, caustics). The constructed

Green function in the weak sense can not approximate the true Green function faithfully

because the traveltime field is not smooth. However, we notice that before the kinks appear

in the single-valued traveltime field or caustics appear in the multi-valued traveltime field, the

true traveltime filed is smooth and the asymptotic Green function in the single-valued sense

approximate the true Green function faithfully. Only after the kinks in the single-valued

traveltime field or caustics in the multi-valued traveltime field appear, the two traveltime

fields yield totally different Green functions.

Marmousi velocity model

We consider the smooth Marmousi velocity model as in Figure 5. Note that the velocity is rescaled

by a factor 10−4. The traveltime and amplitude computed with our method are shown in Figure

5. Figure 6 shows the constructed Green function with ω = 32π.

In this model, we see kinks in the computed traveltime field and discontinuities in the computed

amplitude and constructed WKBJ Green function.
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3-D Examples

We use three 3-D velocity models to demonstrate the performance of our method. With the

computed amplitude, we approximate the 3-D Green functions for the Helmholtz equation with

high frequencies,

∇2G3(x, y, z, ω) +
ω2

v2(x, y, z)
G3(x, y, z, ω) = −δ(x− x0)δ(y − y0)δ(z − z0), (23)

where G3(x, y, z, ω) is the Green function dependent on the frequency ω.

We approximate the 3-D Green function in the WKBJ form (Appendix C in Leung et al. (2007)),

G3(x, y, z, ω) ≈ A(x, y, z)eiωτ(x,y,z). (24)

3-D example 1: constant velocity. The velocity v ≡ 5. The domain is [−1, 1]× [−1, 1]×

[−1, 2]. We use an 81 × 81 × 121 mesh. The source point is at (x0, y0, z0) = (0, 0, 0). We choose

ω = 64π. Figure 7 shows the computed traveltime, amplitude and constructed Green functions. In

Figure 8, we compare our computed amplitude with the exact amplitude,

A(x, y, z) =
1

4π
√

(x− x0)2 + (y − y0)2 + (z − z0)2
,

at (y = 0, z = 0.3) and (y = 0, z = 1.5). In Figure 9, we compare the constructed Green functions

with the exact asymptotic form obtained in Leung et al. (2007) at (y = 0, z = 0.3) and (y = 0, z =

1.5). The computed amplitude and constructed Green function are very accurate.

3-D example 2: Vinje’s Gaussian model. The velocity model is given by,

v(x, y, z) = 4− 1.75e−
((2x−1)2+(2y−1)2+(2z−1.75)2)

0.52 . (25)

The domain is [0, 1]× [0, 1]× [0, 1]. The velocity field v is rescaled by a factor 2/(max0≤x,y,z≤1 v+

13



min0≤x,y,z≤1 v). We use a 159× 159× 159 mesh. The source point is at (x0, y0, z0) = (0.5, 0.5, 0.5).

We choose ω = 40π. Figure 10 shows the computed traveltime, amplitude and constructed Green

functions at z = 29/158 and z = 109/158.

Figure 11 shows the comparisons between constructed WKBJ Green function and that obtained

by the Helmholtz solver in Engquist and Ying (2010) at z = 29/158 and z = 109/158. In Figure 12,

we show comparisons at (y = 79/158, z = 29/158) and (y = 79/158, z = 109/158). The constructed

Green functions are very accurate.

3-D example 3: waveguide model. The velocity model is given by,

v(x, y, z) = 1.5− e−0.5(2x−1)2 . (26)

The domain is [0, 1]×[0, 1]×[0, 1]. The velocity field v is rescaled by a factor 2/(max0≤x,y,z≤1 v+

min0≤x,y,z≤1 v). We use a 159× 159× 159 mesh. The source point is at (x0, y0, z0) = (0.5, 0.5, 0.5).

We choose ω = 40π. Figure 13 shows the computed traveltime, amplitude and constructed Green

functions at z = 29/158 and z = 109/158. Figure 14 shows more wavefields of constructed Green

functions with our method.

CONCLUSIONS

As a companion work to Luo and Qian (2010), we apply the factorization technique based on

the factored eikonal equation (Fomel et al. (2009); Luo and Qian (2010)) directly to compute the

amplitude. We decompose the amplitude into two multiplicative factors. One of them is known

analytically corresponding to a constant velocity field, and it captures the source singularity of

the amplitude. Then we apply the third-order WENO based Lax-Friedrichs sweeping method

(Kao et al. (2004); Zhang et al. (2006); Luo and Qian (2010)) to solve the factored equations

for the underlying function numerically. The advantage of decomposing the amplitude into tow

multiplicative factors is that since the known factor captures the source singularity, the other factor
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is smooth at the source. With computed traveltime and amplitude, we construct the asymptotic

Green functions in both 2-D and 3-D cases. Numerical examples are presented to demonstrate the

performance of our method.
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Figure 1: 2-D example case 1. Left: traveltime field; Right: amplitude.
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Figure 2: 2-D example case 1. Two-dimensional Green function. Top: image of the real part of
the Green function (left: our method, right: Helmholtz solver). Bottom: two slices of the Green
function (real part) at y = 0.3 (left) and x = 0.3 (right). Red circle: our method. Blue dot:
Helmholtz solver.
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Figure 3: 2-D example case 2. Left: velocity field; Middle: traveltime field; Right: amplitude.
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Figure 4: 2-D example case 2. Two-dimensional Green function. Top: image of the real part of
the Green function (left: our method, right: Helmholtz solver). Bottom: two slices of the Green
function (real part) at y = 0.3 (left) and y = 1.5 (right). Red line: our method. Blue dash line:
Helmholtz solver.
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Figure 5: 2-D example with Marmousi velocity model. Left: velocity field; Middle: traveltime;
Right: amplitude.
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Figure 6: 2-D example with Marmousi velocity model. Constructed Green function with ω = 32π.

Figure 7: 3-D example 1. From top to bottom: traveltime, amplitude and constructed Green
function with ω = 64π. Left: z = 0.3; Right z = 1.5.
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Figure 8: 3-D example 1. Comparison of amplitudes. Left: (y = 0, z = 0.3); Right: (y = 0, z = 1.5).
Red circle: our method; Blue line: exact amplitude.
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Figure 9: 3-D example 1. Comparison of constructed Green functions. Left: (y = 0, z = 0.3);
Right: (y = 0, z = 1.5). Red circle: our method; Blue line: exact asymptotic form.
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Figure 10: 3-D example 2. From top to bottom: traveltime, amplitude and constructed Green
function with ω = 40π. Left: z = 29/158; Right z = 109/158.
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Figure 11: 3-D example 2. Comparison of constructed Green functions. Top: z = 29/158; Bottom:
z = 109/158. Left: our method; Right: Helmholtz solver.
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Figure 12: 3-D example 2. Comparison of constructed Green functions. Left: (y = 79/158, z =
29/158); Right: (y = 79/158, z = 109/158). Red circle: our method; Blue line: Helmholtz solver.

Figure 13: 3-D example 3. From top to bottom: traveltime, amplitude and constructed Green
function with ω = 40π. Left: z = 29/158; Right z = 109/158.
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Figure 14: 3-D example 3. Constructed Green function with ω = 40π. Top: z =
14/158, 29/158, 49/158; Bottom: z = 109/158, 129/158, 144/158.
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