
MATHEMATICS OF COMPUTATION
Volume 74, Number 250, Pages 603–627
S 0025-5718(04)01678-3
Article electronically published on May 21, 2004

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS

HONGKAI ZHAO

Abstract. In this paper a fast sweeping method for computing the numer-
ical solution of Eikonal equations on a rectangular grid is presented. The
method is an iterative method which uses upwind difference for discretization
and uses Gauss-Seidel iterations with alternating sweeping ordering to solve
the discretized system. The crucial idea is that each sweeping ordering follows
a family of characteristics of the corresponding Eikonal equation in a certain
direction simultaneously. The method has an optimal complexity of O(N) for
N grid points and is extremely simple to implement in any number of dimen-
sions. Monotonicity and stability properties of the fast sweeping algorithm are
proven. Convergence and error estimates of the algorithm for computing the
distance function is studied in detail. It is shown that 2n Gauss-Seidel itera-
tions is enough for the distance function in n dimensions. An estimation of the
number of iterations for general Eikonal equations is also studied. Numerical
examples are used to verify the analysis.

1. Introduction

The Eikonal equation

(1.1) |∇u(x)| = f(x), x ∈ Rn,

with boundary condition, u(x) = φ(x), x ∈ Γ ⊂ Rn, has many applications in
optimal control, computer vision, geometric optics, path planing, etc. This nonlin-
ear boundary value problem is a first order hyperbolic partial differential equation
(PDE). Information propagates along characteristics from the boundary. Due to
the nonlinearity, characteristics may intersect like the formation of shocks in hyper-
bolic conservation law. The solution is still continuous at these intersections but
may not be differentiable. The existence and uniqueness of the viscosity solution
are shown in [4].

There are two key ingredients for any numerical algorithm for the Eikonal equa-
tion. The first key ingredient is the derivation of a consistent and accurate dis-
cretization scheme, i.e., a numerical Hamiltonian. The numerical scheme has to
follow the causality of the partial differential equation and has to deal with non-
differentiability at intersections of characteristics properly. Since the problem is

Received by the editor September 20, 2003.
2000 Mathematics Subject Classification. Primary 65N06, 65N12, 65N15, 35L60.
Key words and phrases. Eikonal equation, characteristics, Godunov scheme, upwind difference,

Gauss-Seidel iteration, Courant-Friedrichs-Lewy (CFL) condition.
This work was partially supported by the Sloan Fundation, ONR grant N00014-02-1-0090 and

DARPA grant N00014-02-1-0603.

c©2004 American Mathematical Society

603

604 HONGKAI ZHAO

nonlinear, a large system of nonlinear equations has to be solved after the dis-
cretization. Hence the second key ingredient is an efficient method for solving the
large nonlinear system.

There are mainly two types of approaches for solving the Eikonal equation. One
approach is to transform it to a time dependent problem. For example, if we have
u(x) = 0, x ∈ Γ, then u(x) is the first arrival time at x for a wave front starting
at Γ with a normal velocity that is equal to 1

f(x) . This can be solved by the level
set method. In the control framework, a semi-Lagrangian scheme is obtained for
Hamilton-Jacobi equations by discretizing in time the dynamic programming prin-
ciple [9, 10]. However, many time steps may be needed for the convergence of the
solution in the entire domain due to finite speed of propagation and CFL condi-
tion for time stability. The other approach is to treat the problem as a stationary
boundary value problem and to design an efficient numerical algorithm to solve the
system of nonlinear equations after discretization. For example, the fast marching
method [19, 16, 11] is of this type. In the fast marching method, the update of
the solution follows the causality in a sequential way; i.e., the solution is updated
one grid point by one grid point in the order that the solution is strictly increasing
(decreasing). Hence an upwind difference scheme and a heapsort algorithm are
needed. The complexity is of order O(N log N) for N grid points, where the log N
factor comes from the heapsort algorithm.

Here we present and analyze an iterative algorithm, called the fast sweeping
method, for computing the numerical solution for the Eikonal equation on a rect-
angular grid in any number of space dimensions. The fast sweeping method is
motivated by the work in [2] and was first used in [21] for computing the distance
function. The main idea of the fast sweeping method is to use nonlinear upwind
difference and Gauss-Seidel iterations with alternating sweeping ordering. In con-
trast to the fast marching method, the fast sweeping method follows the causality
along characteristics in a parallel way; i.e., all characteristics are divided into a fi-
nite number of groups according to their directions and each Gauss-Seidel iteration
with a specific sweeping ordering covers a group of characteristics simultaneously.
The fast sweeping method is extremely simple to implement. The algorithm is op-
timal in the sense that a finite number of iterations is needed. So the complexity
of the algorithm is O(N) for a total of N grid points. The number of iterations
is independent of grid size. The accuracy is the same as any other method which
solves the same system of discretized equations. The fast sweeping method has
been extended to more general Hamilton-Jacobi equations [18, 12]. Extensions to
high order discretization will be studied in future reports.

The idea of alternating sweeping ordering was also used in Danielsson’s algo-
rithm [6]. The algorithm computes the distance mapping, i.e., the relative (x, y)
coordinate of a grid point to its closest point using an iterative procedure. Daniels-
son’s algorithm is based on a strict dimension by dimension discrete formulation
which in general does not follow the real characteristics of the distance function in
two and higher dimensions and hence results in low accuracy and twice as many
iterations compared to the fast sweeping method we present here. Danielsson’s
algorithm does not work for distance functions to more general data sets such as
the distance to a curve or a surface. Neither does it extend to general Eikonal
equations. Recently another discrete approach that uses the idea of fast sweeping
method was proposed in [17]. It can compute the distance function more accurately

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 605

but does not apply to general Eikonal equations either. Other related methods in-
clude a dynamic programming approach and post sweeping idea in [15] and a group
marching method in [13].

Here is the outline of the paper. In Section 2 we present the scheme and the
motivation behind it. We then show a few monotonicity properties and a maximum
change principle for the fast sweeping algorithm in Section 3. In Section 4 we prove
the convergence and error estimates for the distance function. We discuss the fast
sweeping method for general Eikonal equations in Section 5. In Section 6 we present
numerical results to verify our analysis and we show a few applications.

2. The fast sweeping algorithm and the motivation

We present the fast sweeping method for computing the viscosity solution u(x) ≥
0 for the model problem

(2.1)
|∇u(x)| = f(x), x ∈ Rn,
u(x) = 0, x ∈ Γ ⊂ Rn,

where f(x) > 0. For simplicity the algorithm is presented in two dimensions. The
extension to higher dimensions is straightforward. We use xi,j to denote a grid
point in the computational domain Ω, h to denote the grid size and uh

i,j to denote
the numerical solution at xi,j .

2.1. The fast sweeping algorithm.
Discretization. We use the following Godunov upwind difference scheme [14]

to discretize the partial differential equation at interior grid points:

(2.2)
[(uh

i,j − uh
xmin)+]2 + [(uh

i,j − uh
y min)+]2 = f2

i,jh
2

i = 2, . . . , I − 1, j = 2, . . . , J − 1,

where uh
x min = min(uh

i−1,j , uh
i+1,j), uh

y min = min(uh
i,j−1, u

h
i,j+1) and

(x)+ =

{
x, x > 0,

0, x ≤ 0.

One sided difference is used at the boundary of the computational domain.
For example, at a left boundary point x1,j , a one sided difference is used
in the x direction,

[(uh
1,j − uh

2,j)
+]2 + [(uh

1,j − uh
y min)+]2 = f2

1,jh
2.

Initialization. To enforce the boundary condition, u(x) = 0 for x ∈ Γ ⊂ Rn,
assign exact values or interpolated values at grid points in or near Γ. These
values are fixed in later calculations. Assign large positive values at all
other grid points. These values will be updated later.

Gauss-Seidel iterationswith alternating sweeping orderings. At each
grid xi,j whose value is not fixed during the initialization, compute the
solution, denoted by u, of (2.2) from the current values of its neighbors
uh

i±1,j , u
h
i,j±1 and then update uh

i,j to be the smaller one between u and its
current value; i.e., unew

i,j = min(uold
i,j , u). We sweep the whole domain with

four alternating orderings repeatedly:

(1) i = 1 : I, j = 1 : J, (2) i = I : 1, j = 1 : J,
(3) i = I : 1, j = J : 1, (4) i = 1 : I, j = J : 1.

606 HONGKAI ZHAO

The unique solution to the equation

(2.3) [(x − a)+]2 + [(x − b)+]2 = f2
i,jh

2,

where a = uh
x min, b = uh

y min, is

(2.4) x =




min(a, b) + fi,jh, |a − b| ≥ fi,jh,

a+b+
√

2f2
i,jh2−(a−b)2

2 , |a − b| < fi,jh.

In n dimensions the unique solution x to

(2.5) [(x − a1)+]2 + [(x − a2)+]2 + · · · + [(x − an)+]2 = f2
i,jh

2

can be found in the following systematic way. First we order the ak’s in increasing
order. Without loss of generality, assume a1 ≤ a2 ≤ · · · ≤ an and define an+1 = ∞.
There is an integer p, 1 ≤ p ≤ n, such that x is the unique solution that satisfies

(2.6) (x − a1)2 + (x − a2)2 + · · · + (x − ap)2 = f2
i,jh

2 and ap < x ≤ ap+1;

i.e., x is the intersection of the straight line x = y, x, y ∈ Rp, with the sphere
centered at a = (a1, a2, . . . , ap) of radius fi,jh in the first quadrant in Rp. We find
x and p in the following recursive way. Start with p = 1. If x̃ = a1 + fi,jh ≤ a2,
then x = x̃. Otherwise find the unique solution x̃ > a2 that satisfies

(x − a1)2 + (x − a2)2 = f2
i,jh

2.

If x̃ ≤ a3, then x = x̃. Otherwise repeat the procedure until we find p and x that
satisfy (2.6).

Here are a few remarks about the algorithm:
(1) The upwind difference scheme (2.2) is a special case of the general Godunov

numerical Hamiltonian proposed in [1]. The numerical Hamiltonian can be
written as

Hh(Dx
−ui,j, D

x
+ui,j , D

y
−ui,j, D

y
+ui,j)

=
√

max{(Dx−ui,j)+, (Dx
+ui,j)−}2 + max{(Dy

−ui,j)+, (Dy
+ui,j)−}2,

where

Dx
−ui,j = ui,j−ui−1,j

h , Dx
+ui,j = ui+1,j−ui,j

h ,

Dy
−ui,j = ui,j−ui,j−1

h , Dy
+ui,j = ui,j+1−ui,j

h ,

and (·)+ means taking the positive part and (·)− means taking the negative
part. Instead of using the upwind difference scheme (2.2), we can also use

[(uh
i,j − uh

i−1,j)
+]2 + [(uh

i,j − uh
i+1,j)

+]2

+ [(uh
i,j − uh

i,j−1)
+]2 + [(uh

i,j − uh
i,j+1)

+]2 = f2
i,jh

2,

i = 2, . . . , I − 1, j = 2, . . . , J − 1,

(2.7)

which corresponds to the numerical Hamiltonian

Hh(Dx
−ui,j , D

x
+ui,j, D

y
−ui,j , D

y
+ui,j)

=
√

[(Dx−ui,j)+]2 + [(Dx
+ui,j)−]2 + [(Dy

−ui,j)+]2 + [(Dy
+ui,j)−]2.

Both numerical Hamiltonians are monotone. The only difference between
these two formulations is at the intersections of characteristics. The second

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 607

formulation may have larger truncation errors at those intersections as will
be explained in Section 4.

(2) In practice it may be desirable to restrict the computation to a neighbor-
hood of the boundary Γ. For example, if we want to restrict the compu-
tation in the neighborhood where the first arrival time is less than T , i.e.,
{xi,j : u(xi,j) < T }, then we can use the following simple cutoff crite-
rion: in the Gauss-Seidel iteration we update the solution at a grid point
xi,j only if at least one of its neighbors has a value smaller than T , i.e., if
min(uh

x min, u
h
y min) < T .

(3) The large value assigned initially should be larger than the maximum pos-
sible value of u(x) in the computation domain. For example, let fM =
maxx∈Ω f(x) and let D be the diameter of the computational domain Ω.
The initially assigned large value should be larger than FMD.

(4) In higher dimensions, the discretization (2.2) is easily extended dimension
by dimension and there are 2n different sweeping orderings in n dimensions.

(5) If we want to compute the viscosity solution u(x) ≤ 0 for (2.1), we modify
the discretization (2.2) to

(2.8)
[(uh

i,j − uh
xmax)−]2 + [(uh

i,j − uh
y max)−]2 = f2

i,jh
2,

i = 2, . . . , I − 1, j = 2, . . . , J − 1,

where uh
x max = max(uh

i−1,j , uh
i+1,j), uh

y max = max(uh
i,j−1, u

h
i,j+1) and

(x)− =

{
0, x > 0,

−x, x ≤ 0.

In the initialization, we assign small negative values at grid points whose
values are to be updated. In the Gauss-Seidel iteration, we update the value
at a grid point only if the new value obtained by solving (2.8) is larger than
its old value.

2.2. The motivation. In the fast sweeping algorithm the upwind difference scheme
used in the discretization enforces the causality; i.e., the solution at a grid point
is determined by its neighboring values that are smaller. The one sided difference
scheme at the boundary enforces the propagation of information to be from inside
to outside since the data set Γ is contained in the computational domain. If all
grid points can be ordered according to the causality along characteristics, one it-
eration of the Gauss-Seidel iteration is enough for convergence. For example, the
heapsort algorithm is used in the fast marching method to sort out this order every
time a grid point is updated. The key point behind Gauss-Seidel iterations with
different sweeping ordering is that each sweep will follow the causality of a group
of characteristics in certain directions simultaneously and all characteristics can be
divided into a finite number of such groups according to their directions. The value
at each grid point is always nonincreasing during the iterations due to the updating
rule. Whenever a grid point obtains the minimal value it can reach, the value is
the correct value and the value will not be changed in later iterations.

We use the distance function as an example to illustrate the motivation. The
distance function d(x) to a set Γ satisfies the Eikonal equation

|∇d(x)| = 1, d(x) = 0, x ∈ Γ.

608 HONGKAI ZHAO

All characteristics of this equation are straight lines that radiate from the set Γ. In
one dimension, the upwind differencing at the interior grid point i is

(2.9) [(uh
i − min(uh

i−1, u
h
i+1))

+]2 = h2, 2 ≤ i ≤ I − 1.

We use two Gauss-Seidel iterations with sweeping orderings, i = 1 : I and i = I : 1
successively, to solve the above system. The update of the distance value at grid i
simply becomes

unew
i = min(min(ui−1, ui+1) + h, ui).

Figure 2.1 shows how one sweep from left to right followed by one more sweep
from right to left is enough to finish the calculation of the distance function. This
follows because there are only two directions for the characteristics in one dimen-
sion, left to right or vice versa. In another word, the distance value at any grid
point can be computed from either its left neighbor or right neighbor by exactly
di = min(di−1, di+1) + h. The first sweep will cover those characteristics that go
from left to right; i.e., those grid points whose values are determined by their
left neighbors are computed correctly. Similarly, in the second sweep all those grid
points whose values are determined by their right neighbors are computed correctly.
Since we only update the current value if the newly computed value is smaller, those
values that have been calculated correctly in the first sweep have achieved their min-
imal possible values and will not be changed in the second sweep. Convergence in
two sweeps is true for arbitrary Eikonal equations in one dimension. In the special
case of the distance function, it is easy to see that the fast sweeping method finds
the exact distance function in two sweeps.

In higher dimensions characteristics have infinitely many directions which cannot
be followed exactly by the Cartesian grid lines. Here are two important questions for
the fast sweeping algorithm: (1) How many Gauss-Seidel iterations are needed? (2)
What is the error estimate? The most important observation is that all directions of
characteristics can be classified into a finite number of groups for distance functions.
For example, in two dimensions all directions of characteristics can be classified into
four groups, up-right, up-left, down-left and down-right. Information propagates
along characteristics in the above four groups of directions. The four different
orderings of the Gauss-Seidel iterations and the upwind differencing are meant to
cover the four groups of characteristics, respectively. Figure 2.2(a) illustrates why
the fast sweeping method converges after four sweeps with different orderings for
the distance function to a single point. The solution uh

i,j at each grid point in the
first quadrant depends on the solution at uh

i−1,j and uh
i,j−1 which have already been

computed and can be recursively traced all the way back to the data point in the
first sweep. So we get the correct values for all grid points in the first quadrant
plus the points on the positive x and y axes after the first sweep. For the same
reason, after the second sweep the grid points in the second quadrant and on the

(a) the computed distance function af-
ter the first left to right Gauss-Seidel
sweeping

(b) the computed distance function af-
ter the second right to left Gauss-
Seidel sweeping

Figure 2.1. The fast sweeping algorithm in one dimension.

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 609

i=1:I, j=1:J

i=1:I, j=J:1

i=I:1, j=1:J

i=I:1, j=J:1

i

j

(a) the fast sweeping algorithm for a
single data point

i

j

i=1:I, j=1:J

i=1:I, j=1,J

i=1:i, j=J:1

i=1:i, j=J:1

i=I:1, j=1:J

i=I:1, j=1:J

i=I:1, j=J:1

i=I:1, j=J:1

(b) the fast sweeping algorithm for a
circle

Figure 2.2. The fast sweeping algorithm in two dimensions.

negative x axis get the correct values. Moreover, since those grid points in the
first quadrant and on the positive x and y axes already have their minimal values
and satisfy the discretized equations, these values will not change in the second
sweep. Similarly, after the third sweep those grid points in the third quadrant
and on the negative y axis get the correct values and the computed correct values
in the first and second quadrants are maintained. After four sweeps we get the
correct values for all grid points that satisfy the system of equations (2.2). Figure
2.2(b) demonstrates another case which computes the distance function to a circle
in two dimensions using the fast sweeping algorithm. Again, each grid point gets
its correct value in one of the four sweeps.

In the case of one data point, the distance function is smooth except at the
data point. For a more general data set, interactions of characteristics at their
intersections can cause more than 2n sweeps for the iteration to converge in n
dimensions. It is impossible to track the exact number of sweeps for the highly
nonlinear discretized system in general. However, we will show that in n dimensions,
after 2n sweeps the fast sweeping method can compute a numerical solution to the
distance function that is as accurate as the numerical solution after the iteration
converges. This means 2n sweeps is good enough in practice for computing the
distance function to an arbitrary data set. For general Eikonal equations, the
characteristics are curves instead of straight lines. So more than one sweep may
be needed to cover one characteristic curve. We will see that given a fixed domain
and the right-hand side f(x), the number of sweeps needed is still finite and is
independent of grid size.

3. Basic properties of the fast sweeping algorithm

Here we prove a few basic monotonicity properties and a maximum change prin-
ciple for the fast sweeping algorithm. The following simple fact for the solution of
equation (2.5) provides the monotonicity and maximum change principle for the
fast sweeping algorithm.

610 HONGKAI ZHAO

Lemma 3.1. Let x be the solution to equation (2.5). We have

(3.1) 1 ≥ ∂x

∂a1
≥ ∂x

∂a2
≥ · · · ≥ ∂x

∂an
≥ 0

and

(3.2)
∂x

∂a1
+

∂x

∂a2
+ · · · + ∂x

∂an
= 1.

Proof. Differentiating equation (2.5) with respect to ak, we get

∂x

∂ak
=

(x − ak)+∑n
m=1(x − am)+

. �

As a direct consequence of the lemma, we have

Proposition 3.2. In the Gauss-Seidel iteration for the fast sweeping method, the
maximum change of uh at any grid point is less than or equal to the maximum
change of uh at its neighboring points.

Lemma 3.3. The fast sweeping algorithm is monotone in the initial data.

Proof. This is a direct consequence from Lemma 3.1; i.e., the monotonicity property
of the solution to (2.5). If uh(xi,j) ≤ vh(xi,j) at all grid points initially, then
uh(xi,j) ≤ vh(xi,j) at all grid points after any number of Gauss-Seidel iterations.

�

Lemma 3.4. The solution of the fast sweeping algorithm is nonincreasing with
each Gauss-Seidel iteration.

Proof. This is exactly because of the way we update the solution in the Gauss-Seidel
iterations described in the third step of the algorithm. �

The following corollary shows the stability property for the fast sweeping method.
We present it in two dimensions but it is true in general.

Corollary 3.5. Let u(k) and v(k) be two numerical solutions at the k-th iteration
of the fast sweeping algorithm. Let ‖ · ‖∞ be the maximum norm. We have

(1) ‖u(k) − v(k)‖∞ ≤ ‖u(k−1) − v(k−1)‖∞,
(2) 0 ≤ maxi,j{u(k)

i,j − u
(k+1)
i,j } ≤ maxi,j{u(k−1)

i,j − u
(k)
i,j }.

Proof. Let us assume that the first update at the k-th iteration is at point xi,j ,
u

(k)
i,j = min{u(k−1)

i,j , u}, where u solves (2.2) with neighboring values u
(k−1)
i−1,j , u

(k−1)
i+1,j ,

u
(k−1)
i,j−1 , u

(k−1)
i,j+1 . The same is true for v

(k)
i,j . From the maximum change principle, we

have
|u(k)

i,j − v
(k)
i,j | ≤ ‖u(k−1) − v(k−1)‖∞.

For an update at any other grid point later in the iteration, the neighboring values
used for the update are either from the previous iteration or from an earlier update
in the current iteration, both of which satisfy the above bound. By induction, we
prove (1).

The second statement is a simple consequence of the monotonicity of the fast
sweeping method and the previous statement by setting v(k) = u(k−1). �

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 611

Remark. The second statement provides an effective stopping criterion for sweeping.
Before correct information from the boundary Γ has reached all grid points, ‖u(k)−
u(k−1)‖∞ is of O(1). When ‖u(k) − u(k−1)‖∞ is O(h), the information has reached
all points and we can stop the sweeping in practice. Although the iteration has not
converged yet, the numerical solution is already as accurate as the converged one
as we will see from the numerical examples. The iterative solution will change less
and less in later iterations and converges to the solution of the discretized system.

Theorem 3.6. The iterative solution by the fast sweeping algorithm converges
monotonically to the solution of the discretized system.

Proof. Denote the numerical solution after the k-th sweep by u
(k)
i,j . Since u

(k)
i,j

is bounded below by 0 and is nonincreasing with Gauss-Seidel iterations, u
(k)
i,j is

convergent for all i, j. After each sweep, for each i, j we have

[(u(k)
i,j − u

(k)
xmin)+]2 + [(u(k)

i,j − u
(k)
y min)+]2 − f2

i,jh
2 ≥ 0,

because any later update of neighbors of u
(k)
i,j in the same sweep is nonincreasing.

Moreover, it is easy to see that after u
(k)
i,j is updated, the function

F (u(k)
i−1,j , u

(k)
i+1,j , u

(k)
i,j−1, u

(k)
i,j+1) = [(u(k)

i,j − u
(k)
x min)+]2 + [(u(k)

i,j − u
(k)
y min)+]2 − f2

i,jh
2

is Lipschitz continuous in all variables and the Lipschitz constant is bounded by

2 max{(u(k)
i,j − u

(k)
i−1,j)

+, (u(k)
i,j − u

(k)
i+1,j)

+, (u(k)
i,j − u

(k)
i,j−1)

+, (u(k)
i,j − u

(k)
i,j+1)

+}.
Since u

(k)
i,j is monotonically convergent for every i, j, we can have an upper bound

C > 0 for the Lipschitz constant. Let δ(k) = maxi,j(u
(k−1)
i,j − u

(k)
i,j) be the maxi-

mum change at all grid points during the k-th sweep. From Corollary 3.5 and the
convergence of u

(k)
i,j , δ(k) goes monotonically to zero. After the k-th iteration, we

have
0 ≤ [(u(k)

i,j − u
(k)
x min)+]2 + [(u(k)

i,j − u
(k)
y min)+]2 − f2

i,jh
2 ≤ Cδ(k).

So u
(k)
i,j converges to the solution to (2.2). �

4. Convergence and error estimate for the distance function

Although it is shown that the fast sweeping algorithm is convergent by Theorem
3.6, the main issue for the efficiency of the fast sweeping method is the number of
iterations needed and the error estimate. In this section we prove a few concrete
results for the distance function. Since the fast sweeping algorithm is highly nonlin-
ear, the proof can only be based on the monotonicity properties and the maximum
change principle proved in Section 3. Some of the proofs will be stated in two
dimensions for simplicity. We use the following notations: Γ denotes the data set
to which we want to compute the distance function, uh(x, Γ) denotes the numer-
ical solution using the fast sweeping method, d(x, Γ) denotes the exact distance
function, h is the grid size, and n is the spatial dimension.

Theorem 4.1. For a single data point Γ = {x0}, the numerical solution, uh(x, x0),
of the fast sweeping method converges in 2n sweeps in Rn and satisfies

d(x, x0) ≤ uh(x, x0) ≤ d(x, x0) + O(|h log h|),
where d(x, x0) is the distance function to x0.

612 HONGKAI ZHAO

Proof. We prove the theorem in two dimensions. The proof can be easily extended
to any number of dimensions.

First, assume the data point is a single grid point. Without loss of generality the
point is at the origin. For each grid point xi,j in the first quadrant its value uh

i,j

only depends on its two down-left neighbors uh
i−1,j , u

h
i,j−1. Each grid point on the

positive x axis depends on its left neighbor and each point on the positive y axis
depends on its neighbor below. The first Gauss-Seidel iteration i = 1 : I, j = 1 : J
exactly propagates information from the data point to all these grid points in the
right order. This order of dependence is illustrated clearly in Figure 4.1(a) for
points in the first quadrant, e.g., values at grid points on the dashed line two are
determined by values at grid points on dashed line one, etc. In exactly the same
way grid points in the second quadrant and on the negative x axis, grid points in
the third quadrant and on the negative y axis, and points in the fourth quadrant
get their correct values of uh in the second, third and fourth sweep successively.
Moreover the four quadrants are separated by two grid lines, i.e., the x and y
axes. The values of grid points on these two lines do not depend on any values of
grid points off these two lines. So the propagation of information in one quadrant
during the corresponding sweep cannot cross these two lines into other quadrants.
Actually, whenever a grid point achieves its correct value of uh for the system of
equations (2.2), it is the minimum value that can be achieved and will not change
afterward.

For a data point that is not a grid point, we initially assign the exact distance
values for grid points that are the vertices of the grid cell that contains the data
point. The closest vertical grid line and the closest horizontal grid line partition
the whole domain into four quadrants. It can be checked that the solution uh

at grid points on these two lines does not depend on values of grid points off
these two lines and the grid points in each quadrant get their correct values in
one of the corresponding Gauss-Seidel sweeps. Figure 4.1(b) shows an example
of a particular partition. This ends the proof that for a single data point the

0 h 2h 3h 4h

h

2h

3h

4h

1
2

3 4

(a) order of dependence in the first
quadrant

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

i=1:I, j=1:Ji=I:1, j=1:J

i=I:1, j=J:1 i=1:I, j=J:1

(b) quadrant partition for an arbitrary
data point

Figure 4.1.

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 613

fast sweeping algorithm converges in four Gauss-Seidel iterations with alternating
sweeping ordering in two dimensions.

Now we show the error estimate for grid points in the first quadrant. The proof
is exactly the same for all other quadrants. Again we first assume the data point
is a grid point. The exact distance function d(x) satisfies the Eikonal equation
|∇d(x)| = 1 everywhere except at the data point. Using Taylor expansion at grid
point xi,j , we have

di,j − di−1,j = h(dx)i,j − h2

2 dxx(ξi,j),

di,j − di,j−1 = h(dy)i,j − h2

2 dyy(ηi,j),
(4.1)

where ξi,j and ηi,j are two intermediate points on the line segments connecting xi,j ,
xi−1,j and connecting xi,j , xi,j−1, respectively. At x = (x, y),

(4.2)
dx(x, y) = x√

x2+y2
> 0, 0 < dxx(x, y) = y2

(x2+y2)3/2 ≤ 1√
x2+y2

,

dy(x, y) = y√
x2+y2

> 0, 0 < dyy(x, y) = x2

(x2+y2)3/2 ≤ 1√
x2+y2

.

So the distance function satisfies the following equation at xi,j :

(4.3) [di,j − (di−1,j − h2

2
dxx(ξi,j))]2 + [di,j − (di,j−1 − h2

2
dyy(ηi,j))]2 = h2.

Since the solution of the quadratic equation (2.3) depends monotonically on (a, b),
we have d(x, x0) ≤ uh(x, x0). Using the explicit expression (4.2) for the derivatives
and the maximum change principle, the local truncation error satisfies

(4.4) eT (xi,j) ≤ h2

2
max(dxx(xi−1,j), dyy(xi,j−1)) ≤ h2

2 min(d(xi−1,j), d(xi,j−1))
.

The global error estimate comes from the fact the accumulation of truncation errors
is in the same direction of information propagation as is shown in Figure 4.1(a);
i.e., grid points on line i + j = k depend only on grid points on line i + j ≤ k − 1.
Define ek = maxi+j=k(uh

i,j − di,j). Using the simple fact that

d(xi,j) = h
√

i2 + j2,
(i + j)2

2
≤ i2 + j2 ≤ (i + j)2,

and the maximum change principle, we have

uh
i,j − di,j ≤ max(uh

i−1,j − di−1,j +
h2

2
dxx(xi−1,j),

uh
i,j−1 − di,j−1 +

h2

2
dxx(xi,j−1))

≤ ek−1 +
h2

2 min(d(xi−1,j), d(xi,j−1))
≤ ek−1 +

h√
2(k − 1)

.

So the maximum error that can be accumulated at xi,j for k = i + j is

(4.5) ek ≤ e1 +
h√
2

i+j−1∑
k=1

1
k
≤ e1 +

h√
2
(1 + ln(i + j − 1)) = O(h log(

1
h

)).

Here e1 is the maximum error for grid points on the line i + j = 1, which is 0 if
the data point is a grid point. The proof and estimate are exactly the same in n
dimensions.

614 HONGKAI ZHAO

If the data point x0 is not a grid point, all the error estimates are the same
except that e1 = O(h), which yields the same result. �

Remark. The error estimate is sharp since there is no cancellation of local truncation
errors and the accumulation of truncation errors for grid points xi,i on the diagonal
is exactly of O(h log(1

h)).

When there is more than one data point, the situation becomes more complicated
because there are interactions among data points. Characteristics from different
data points intersect and the distance function is not differentiable at equal distance
points. For the exact distance function to a data set composed of discrete points,
i.e., Γ = {xm}M

m=1, the interaction is simply the minimum rule, i.e.,

d(x, Γ) = min[d(x, x1), d(x, x2), . . . , d(x, xM)].

Let uh(x, xi) be the numerical solution to the distance function to a single point
xi by the fast sweeping method and define

(4.6) uh(x, Γ) = min[uh(x, x1), uh(x, x2), . . . , uh(x, xM)].

From our previous results for a single point we have

d(x, Γ) ≤ uh(x, Γ) ≤ d(x, Γ) + O(|h log h|)
after four sweeps.

Lemma 4.2. For an arbitrary set of discrete points Γ = {xm}M
m=1, uh(x, Γ) ≤

uh(x, Γ).

Proof. For any fixed x there is an i, 1 ≤ i ≤ M , such that

uh(x, Γ) = min[uh(x, x1), uh(x, x2), . . . , uh(x, xM)] = uh(x, xi).

After the initialization step, uh(x, Γ) ≤ uh(x, xi), 1 ≤ i ≤ M . From the mono-
tonicity in initial data for the fast sweeping algorithm, stated in Lemma 3.3, we
have

uh(x, Γ) ≤ uh(x, xi) = uh(x, Γ)

after any number of sweeps. �

Let uh(x, Γ) be the solution to the system of discretized equations, e.g., (2.2) in
two dimensions.

Theorem 4.3. For an arbitrary set of discrete points Γ = {xm}M
m=1, the numerical

solution uh(x, Γ) by the fast sweeping method after 2n sweeps, satisfies

uh(x, Γ) ≤ uh(x, Γ) ≤ d(x, Γ) + O(|h log h|).
Proof. The solution to the system of discretized equations, uh(x, Γ), can be viewed
as the solution by the fast sweeping algorithm after the iteration converges as
is shown in Theorem 3.6. Since the solution of the fast sweeping algorithm is
nonincreasing with Gauss-Seidel iterations, we have uh(x, Γ) ≥ uh(x, Γ) after any
number of sweeps. So after 2n sweeps, the numerical solution uh(x, Γ) produced
by the fast sweeping algorithm satisfies

uh(x, Γ) ≤ uh(x, Γ) ≤ uh(x, Γ) = d(x, Γ) + O(h log
1
h

). �

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 615

Since the upwind difference is of first order accuracy, |uh(x, Γ) − d(x, Γ)| is at
most O(h). The general results for Hamilton Jacobi equations, e.g., [5, 14, 3, 7],
show that the numerical solution from a consistent and monotone scheme converges
to the viscosity solution with the order of h

1
2 . The upper bound in the above

theorem is sharp as is shown in Theorem 4.1. If the error estimate, |uh(x, Γ) −
d(x, Γ)|, is also O(|h log h|) or worse, the theorem says that for the distance function,
the iterative solution after 2n sweeps is as accurate as uh(x, Γ). Any other method
that solves the same discretized system of equations has the same accuracy too.

However, we do not have d(x, Γ) ≤ uh(x, Γ) for a general data set Γ due to the
interactions among data points. Figure 4.2 shows an example of two data points.
At those circled grid points the characteristics from both data points meet. The
distance function follows either one of the characteristics. For example at grid point
(1, 1) the distance function satisfies

[(d1,1 − d1,2)+]2 = h2 or [(d1,1 − d2,1)+]2 = h2

and d1,1 = 2h. However in our upwind scheme, the numerical solution uh uses both
characteristics and satisfies

[(uh
1,1 − uh

1,2)
+]2 + [(uh

1,1 − uh
2,1)

+]2 = h2,

which gives uh
1,1 = (1 + 1√

2
)h < d1,1. We can view this as the information propaga-

tion speed is numerically doubled. However, since the upwind scheme uses at most
two characteristics from ux min in the x-direction and from uy min in the y-direction
in two dimensions, we show that this is actually the worst truncation error that can
occur at a grid point due to the interactions of data points, i.e. when characteristics
intersect orthogonally and align with both axes. For instance in two dimensions,
without loss of generality suppose uh

i,j ≥ uh
i,j−1 ≥ uh

i−1,j and

(uh
i,j − uh

i−1,j)
2 + (uh

i,j − uh
i,j−1)

2 = h2.

Then (uh
i,j − uh

i−1,j)
2 ≥ h2/2 and the equality holds when uh

i,j−1 = uh
i−1,j. On the

other hand the distance function satisfies (di,j−di−1,j)2 ≤ h2 and the equality holds
when the x axis is a characteristic. In n dimensions, the characteristics can be used
at most n times when they intersect at one grid point. So the worst local truncation

error due to the interactions of characteristics is
√

1 − 1
nh. For the modified version

of the fast sweeping algorithm (2.7), the truncation errors at equal distance points
can be twice as much.

To get a clearer picture of the convergence of the iteration and error estimate for a
general data set, we have to study the interactions among data points more carefully.
We can partition all grid points into the Voronoi cell of each data point. The
Voronoi diagram is according to the the numerical solution uh(x, x1), uh(x, x2), . . . ,
uh(x, xM); i.e., a grid point x is in the Voronoi cell of xm if

uh(x, xm) = min[uh(x, x1), uh(x, x2), . . . , uh(x, xM)].

If a grid point and all its neighboring grid points belong to the same Voronoi cell, we
call it an interior point. Otherwise we call it a boundary point. The interaction of
different data points occurs only at boundary points. Figure 4.3(a) shows a typical
Voronoi cell for a data point xm. For cell boundary points (those circled points),
uh(x, Γ) may pick up information from more than one data point.

616 HONGKAI ZHAO

x

x

1

2
(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

The numerical solution for two data
points �1,�2

Figure 4.2.

�
�
�
�

xm

Voronoi cellxi,j x

x

(a) error at the cell boundary and its
propagation

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

domain of dependence

Voronoi cell

x m
(b) domain of dependence of a grid
point

Figure 4.3.

To get the lower bound for the numerical solution after 2n sweeps, we use
uh(x, Γ) = min[uh(x, x1), uh(x, x2), . . . , uh(x, xM)] as the initial data and start
the fast sweeping iteration. Due to the monotonicity in initial data we get a solu-
tion that provides a lower bound for the numerical solution for which we use the
standard initialization step. uh(x, Γ) already satisfies the discretized equations at
interior points of each Voronoi cell. After we start the fast sweeping algorithm, the
decrease of the values at interior points of each Voronoi cell is caused by the inter-
actions at Voronoi cell boundaries. Moreover, if we start with uh(xi,j , Γ), it is easy
to show |uh(xi,j , Γ)−uh(xi±1,j±1, Γ)| ≤ h from the system of discretized equations
at each grid point and the definition of Voronoi cells. Hence from the maximum
change principle Proposition 3.2, we can imagine that the maximum decrease of
values at all grid points due to the interactions at the Voronoi cell boundary is
of order h. But unlike the case for the real distance function where information
propagates only along characteristics and all characteristics flow into the Voronoi
cell boundary, in the finite difference scheme a grid point may have a larger domain
of dependence as is illustrated in Figure 4.3(b). So interactions at Voronoi cell
boundaries may propagate into the cell. This may also cause more than 2n sweeps

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 617

for convergence in n dimensions. Example 1 in Section 6 shows that even for two
data points in two dimensions, more than four sweeps are needed for the iteration
to converge.

Now we consider computing the distance function to an arbitrary set. For ex-
ample, instead of discrete points, Γ is a smooth curve or surface.

Theorem 4.4. If the distance function in the neighborhood of an arbitrary data set
Γ in Rn is given initially, let uh(x, Γ) be the numerical solution by the fast sweeping
method after 2n sweeps. We have

uh(x, Γ) ≤ uh(x, Γ) ≤ d(x, Γ) + O(h log
1
h

),

where uh(x, Γ) is the solution to the discretized system (2.2).

Proof. Let Γ be the set of grid points that encloses the set Γ; i.e., Γ contains vertices
of all those grid cells that intersect with Γ. We have

(4.7) |d(x, Γ) − d(x, Γ)| = O(h),

since for any y ∈ Γ, ∃yi,j ∈ Γ such that |yi,j − y| = O(h) and vice versa.
By the monotonicity in initial data, uh(x, Γ) ≥ uh(x, Γ) after any number of

sweeps, since initially uh(x, Γ) starts with distance to Γ for x ∈ Γ while uh(x, Γ) = 0
for x ∈ Γ. However, the initial difference between uh(x, Γ) and uh(x, Γ) is O(h).
By the contraction property from Corollary 3.5, we have

(4.8) uh(x, Γ) − uh(x, Γ) = O(h), ∀x,

after any number of sweeps. We apply Theorem 4.3 to uh(x, Γ) and combine it
with (4.7) and (4.8) to finish the proof. �

Actually for an arbitrary data set, which can be discrete points and/or continuous
manifolds, we only need approximate distance values at grid points near the data
set within first order accuracy, since the upwind finite difference scheme is at most
of first order.

5. General Eikonal equations

For the general Eikonal equation (2.1), the characteristics are curves starting
from the boundary. The key issue is the maximum number of sweeps needed to cover
information propagation along a single characteristic curve. This number, which is
analogous to the condition number for elliptic equations, determines the number
of iterations needed for the fast sweeping algorithm. For a single characteristic
curve starting at a point x0 ∈ Γ, we divide it into the least number of pieces such
that the tangent directions in each piece belong to the same quadrant. Information
propagation along each piece can be covered by one of the sweepings ordering
successively. So the number of sweeps needed to cover the whole characteristic
curve is proportional to the number of pieces or turns. Figure 5.1 shows an example
in 2D. The characteristic curve starting from x0 ∈ Γ can be divided into five pieces.
The tangent directions in each piece belong to the same quadrant. If we order one
round of four alternating sweeps as in Section 2, the first and the second pieces
are covered by the first and fourth sweeps in the first round, respectively, the third
piece is covered by the third sweep in the second round, the fourth piece is covered
by the second sweep in the third round and the fifth piece is covered by the first
sweep in the fourth round.

618 HONGKAI ZHAO

x 0

1 2

3

4

5

Ω

Γ

Figure 5.1. Division of a characteristic curve for a general
Eikonal equation.

One quantity that can characterize how sharp the tangent of a curve can turn is
curvature. The following lemma shows a bound on the curvature of any character-
istic curve.

Lemma 5.1. The maximum curvature for any characteristic curve of equation

(2.1) is bounded by max
x∈Ω

∣∣∣∣∇f(x)
f(x)

∣∣∣∣.
Proof. Denote H(q, x) = |q| − f(x), where q = ∇u. The characteristic equation is


ẋ = ∇qH = ∇u

f(x) ,

q̇ = −∇xH = ∇f(x),
u̇ = ∇u · ẋ = f(x).

The information propagates along the characteristics from smaller u to larger u.
Since |ẋ| = 1, the curvature along a characteristic is

ẍ =
∇u̇

f(x)
− ∇u

f2(x)
∇f · ẋ

=
∇f(x)
f(x)

−
(∇f(x)

f(x)
· ∇u

|∇u|
) ∇u

|∇u|
=

∇f(x)
f(x)

− Pn
∇f(x)
f(x)

,

where Pn is the projection on the normal direction n =
∇u

|∇u| . So |ẍ| ≤
∣∣∣∣∇f(x)

f(x)

∣∣∣∣.
�

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 619

So for general Eikonal equations the number of iterations for the fast sweeping
method depends on the right-hand side f(x) and the size and dimension of the com-
putational domain only. The computed numerical solution has the same accuracy
as the solution by any other method that uses the same discretization.

If the boundary Γ and f(x) are smooth and f(x) > 0, then Γ is a noncharac-
teristic boundary and there is a neighborhood of Γ in which characteristics do not
cross each other and the solution u(x) is smooth (see [8]). Let this neighborhood
be ΩΓ. We have

Theorem 5.2. The numerical solution uh
i,j to the discretized system (2.2) is of

first order in ΩΓ; i.e., |uh
i,j − u(xi,j)| = O(h), xi,j ∈ ΩΓ.

Proof. Without loss of generality, suppose the numerical solution to (2.2) satisfies
the equation

(uh
i,j − uh

i−1,j)
2 + (uh

i,j − uh
i,j−1)

2 = f2
i,jh

2

at a grid point xi,j , while the true solution u(x) satisfies

[ui,j − (ui−1,j − h2

2
uxx(ξi,j))]2 + [ui,j − (ui,j−1 − h2

2
uyy(ηi,j))]2 = f2

i,jh
2

at xi,j , where ξi,j and ηi,j are two intermediate points on the line segments con-
necting xi,j , xi−1,j and connecting xi,j , xi,j−1, respectively. Since uxx, uyy are
bounded, from the maximum change property, Lemma 3.1, we can deduce that the
local truncation error is O(h2). The propagation and accumulation of truncation
errors following the causality along characteristics in a finite domain is at most
O(h). �

This error estimate breaks down when the solution has singularities. Since the
characteristics do intersect for general Eikonal equations, we cannot use this ar-
gument after characteristics intersect. We quote the general error estimate results
for monotone schemes for Hamilton-Jacobi equations [5, 14, 3, 7]. The error is of
order O(h1/2). In general, there are two scenarios for the solution to have singular-
ities. In the first scenario Γ is smooth but characteristics intersect and shocks are
formed. The solution is continuous but not differentiable at shocks. The numerical
solution can be only first order accurate at shocks. However, characteristics and
information flow into shocks for the true solution. Numerically we also observe that
errors made at shocks do not propagate away from shocks and hence high order
schemes can achieve high order accuracy in smooth regions. In the second scenario
Γ has singularities such as corners and kinks. Hence the solution also has singular-
ities at Γ. The distance function to a single point is such an example. Again only
first order accuracy can be achieved near the boundary for any numerical scheme.
Since characteristics and information flow out of the boundary, errors made near
the boundary will propagate out to the computational domain. So the global error
will be at most of first order no matter what scheme is used. The only solution is
to use a finer grid near singularities at the boundary.

6. Numerical results

In this section we will use numerical examples to test the fast sweeping algo-
rithm and to verify the analysis in previous sections. We can compute the distance
function only in a narrow neighborhood of the data set as is described in Section 2
if needed, which saves an order of magnitude of computational cost.

620 HONGKAI ZHAO

For computing the distance function to a set of discrete points, we use the fol-
lowing procedure for the initialization step. First initialize the distance value of all
grid points to be a large value, which should be larger than the maximum possible
values for our later computed distance value uh in the domain. Then go through
each data point and update the distance values of its neighboring grid points. For
example, for each data point we find the grid cell that contains it and then compute
the exact distance value of vertices of the grid cell to the data point. We replace
the current values of these vertices whenever distance to this data point provides
a smaller value. Of course we can include more neighboring grid points for which
the exact distance values are computed. In our calculations, distance values are
computed at grid points that are within two grid cells of the data set in the ini-
tialization step except for the first example. After going through all data points,
we have computed exact distance values at those grid points in a neighborhood of
the data set. All other grid points remain to have a large value. This procedure is
of complexity O(M) for M data points. In general we can find the global distance
function to any data set as long as the distance values on grid points neighboring
the set are provided or computed initially.

Example 1. This example shows the interaction of two data points on a simple
grid in two dimensions. Five iterations are needed for the fast sweeping algorithm to
converge. However, changes after four iterations are O(h) no matter what size the
grid is as we have tested. In Figure 6.1 we show the results after each iteration on
a 7× 7 grid. The two data points are grid points at (2, 6), (5, 2). For this example,
we scale the grid size to be 1. Initially, as is shown in Table 6.1(a), we assign a large
enough number (100 is enough for this grid) to grid points that are not data points
and assign zero to those two data points. Table 6.1(b) shows the numerical solution
after the first sweep, i = 1 : 7, j = 1 : 7. Table 6.1(c)–(f) shows the numerical
solution after second, third, fourth and fifth sweep. Table 6.2 shows the maximum
change between each sweep. The changes in the first four sweeps are significant
since every time there are grid points whose values change from their initial (large)
assignments to the correct values. The change between fourth sweep and fifth sweep,
which is caused by the interaction of two points when their characteristics intersect
at the Voronoi cell boundary, is much less than O(h) (h = 1 in this case). For tests
with different grid sizes and different locations of two data points, it may take more
than five iterations to converge but changes after four iterations are always small.
Table 6.1(g) shows the exact distance function. Those underlined numerical values
in Table 6.1(e) show where the numerical solution is smaller than the exact distance
function due to the interaction of these two data points. Table 6.1(h) shows the
Voronoi diagram according to the numerical solutions of the distance function to
each single data point, as is explained in Section 4. The integer at each grid point
shows to which data point it is closer. We see the interaction occurs exactly at the
Voronoi boundary. All these numerical results agree with our analysis.

Example 2. In this example we compute the distance function to discrete points
in both two and three dimensions to test the convergence and accuracy of the fast
sweeping method. In the first case we have a single data point in both two and
three dimensions. The domain is a unit square/cube. The data point is located
at (1√

2
, 1√

3
) in two dimensions and (1√

2
, 1√

3
, 0.1π) in three dimensions. Table 6.3

shows errors measured in different norms with different grid sizes. For one single
point the fast sweeping method converges exactly in four sweeps in two dimensions
and in eight sweeps in three dimensions.

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 621

Table 6.1.

100 100 100 100 100 100 100
100 0 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 0 100 100
100 100 100 100 100 100 100

2 1 1.707 2.545 3.442 4.338 5.192
1 0 1 2 3 3.893 4.673

100 1 2 3 3 3.442 4.048
100 100 100 3 2 2.545 3.252
100 100 100 2 1 1.707 2.545
100 100 100 1 0 1 2
100 100 100 100 1 2 3

(a) initial setup (b) after 1st sweep

1.707 1 1.707 2.545 3.442 4.338 5.192
1 0 1 2 3 3.893 4.673

1.707 1 1.707 2.707 3 3.442 4.048
3 2 2.925 2.545 2 2.545 3.252

4.371 3.442 2.545 1.707 1 1.707 2.545
4 3 2 1 0 1 2

4.707 3.707 2.707 1.707 1 1.707 2.707

1.707 1 1.707 2.545 3.442 4.338 5.192
1 0 1 2 3 3.893 4.673

1.707 1 1.707 2.545 2.925 3.416 4.037
2.545 2 2.545 2.545 2 2.545 3.252
3.541 2.925 2.545 1.707 1 1.707 2.545
3.924 2.997 2 1 0 1 2
4.514 3.544 2.545 1.707 1 1.707 2.545

(c) after 2nd sweep (d) after 3rd sweep

1.707 1 1.707 2.545 3.442 4.338 5.192
1 0 1 2 2.997 3.884 4.668

1.707 1 1.707 2.545 2.925 3.416 4.037
2.545 2 2.545 2.545 2 2.545 3.252
3.416 2.925 2.545 1.707 1 1.707 2.545
3.882 2.997 2 1 0 1 2
4.334 3.441 2.545 1.707 1 1.707 2.545

1.707 1 1.707 2.545 3.441 4.334 5.186
1 0 1 2 2.997 3.882 4.662

1.707 1 1.707 2.545 2.925 3.416 4.037
2.545 2 2.545 2.545 2 2.545 3.252
3.416 2.925 2.545 1.707 1 1.707 2.545
3.882 2.997 2 1 0 1 2
4.334 3.441 2.545 1.707 1 1.707 2.545

(e) after 4th sweep (f) after 5th sweep

1.414 1 1.414 2.236 3.162 4.123 5.099
1 0 1 2 3 4 4.472

1.414 1 1.414 2.236 3 3.162 3.606
2.236 2 2.236 2.236 2 2.236 2.828
3.162 3 2.236 1.414 1 1.414 2.236

4 3 2 1 0 1 2
4.123 3.162 2.236 1.414 1 1.414 2.236

2 2 2 2 2 2 2
2 2 2 2 2 2 1
2 2 2 2 1 1 1
2 2 2 1 1 1 1
2 2 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

(g) exact distance (h) Voronoi diagram

Table 6.2.

k = 1 2 3 4 5 6
‖uk − uk−1‖∞ 99 98.293 0.83 0.181 0.007 0

maximum change in each sweep

Table 6.3.

h = 0.02 0.01 0.005 0.0025

‖e‖∞ 0.04981 0.02440 0.01097 0.00672

‖e‖L2 0.02885 0.01386 0.00554 0.00307

‖e‖L1 0.02864 0.01371 0.00536 0.00283

h = 0.02 0.01 0.005

‖e‖∞ 0.06040 0.02909 0.01429

‖e‖L2 0.02496 0.01135 0.00359

‖e‖L1 0.02461 0.01111 0.00305

(a) two dimensions (b) three dimensions
distance function to a single data point

Table 6.4.

h = 0.02 0.01 0.005 0.0025

‖e‖∞ 0.05565 0.02793 0.01400 0.00693

‖e‖L2 0.03385 0.01695 0.00793 0.00366

‖e‖L1 0.03310 0.01670 0.00777 0.00357

h = 0.02 0.01 0.005

‖e‖∞ 0.06819 0.03355 0.01641

‖e‖L2 0.03728 0.01618 0.00673

‖e‖L1 0.03772 0.01604 0.00653

(a) two dimensions (b) three dimensions
distance function to a set of 100 random data points

In the second case, we generate a set of 100 random points in a unit square in
two dimensions and in a unit cube in three dimensions. In two dimensions it takes
up to eight sweeps to converge. In three dimensions it takes up to 20 sweeps to

622 HONGKAI ZHAO

Table 6.5.

h = 0.02 0.01 0.005 0.0025

‖e‖∞ 0.05565 0.02793 0.01400 0.00693

‖e‖L2 0.03385 0.01695 0.00793 0.00366

‖e‖L1 0.03310 0.01670 0.00777 0.00357

h = 0.02 0.01 0.005

‖e‖∞ 0.02122 0.01304 0.00783

‖e‖L2 0.00381 0.00197 0.00100

‖e‖L1 0.00307 0.00159 0.00081

(a) two dimensions (b) three dimensions
distance function to a continuous set

(a) contour plot in 2D
(b) the contour uh = 0.03 in 3D

Figure 6.1.

converge. We show in Table 6.4 the errors after four sweeps in two dimensions and
eight sweeps in three dimensions.

Example 3. In this example we compute the distance function to two continuous
sets, four linked circles in two dimensions and four spheres in three dimensions.
Again it takes more than four sweeps in two dimensions and eight sweeps in three
dimensions to converge in both cases. We show errors after four sweeps in two
dimensions and eight sweeps in three dimensions in Table 6.5 In Figure 6.1 we
show the contour plot of the numerical solution in two dimensions and a particular
contour in three dimensions.

Example 4. In this example we present two cases for general Eikonal equations.
In the first case we show convergence and order of accuracy of the fast sweeping
algorithm. The exact solution is

u(x, y) = |e(
√

x2+y2−r0)(ax2+2bxy+cy2+d) − 1|,
where r0 = 0.2, a = 0.1, b = 0.5, c = 1, d = 0.4. Also, |∇u| is computed explicitly
and is used as the given f(x, y). The boundary condition is u(x, y) = 0 at the circle√

x2 + y2 = r0. We use the exact values of u(x, y) at grid points near the circle
initially. We set the convergence criterion to be ‖u(k) − u(k−1)‖∞ < ε = 10−6. The
number of iterations and errors in different norms are shown in Table 6.6. We see

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 623

Figure 6.2. Contour plot of the solution; dotted line is where the
boundary condition is prescribed.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) graph of f(x, y) (b) contour plot of the solution (solid
line) and f(x, y) (dashed line)

Figure 6.3.

that the number of iterations is independent of grid size. The contour plot of the
solution is shown in Figure 6.2.

Note that the errors in all norms show first order convergence. This is due to the
fact that the boundary, i.e., the initial wave front, is smooth. The only singularity is
at the center where |∇u| = 0. However, characteristics flow into the singularity; i.e.,
the error at the singularity is determined by the error around it. This is contrary
to the case where the boundary has singularities; e.g., the boundary is a single
point or there are corners at the boundary. In this case characteristics flow out of
the singularities of the boundary. Hence numerical errors made at singularities will
propagate out and can accumulate, which gives a global error of order h log(1

h) just
as in the case for the distance function to a single point.

624 HONGKAI ZHAO

Table 6.6.

h = 0.02 0.01 0.005 0.0025
of iterations 8 8 8 8

‖e‖∞ 0.02538 0.01280 0.00644 0.00322
‖e‖L2 0.00549 0.00274 0.00137 0.00068
‖e‖L1 0.00383 0.00194 0.00097 0.00049

Table 6.7.

iteration 1 2 3 4 5 6 7 8

h=1/200 106 106 106 0.33398 0.01158 0.07068 1.0019x10−6 1.0597x10−6

h=1/300 106 106 106 0.33781 0.01248 0.07368 1.0101x10−6 2.5106x10−6

h=1/400 106 106 106 0.33982 0.01299 0.07529 8.8493x10−7

h=1/500 106 106 106 0.34107 0.01332 0.07630 7.4581x10−7

maximum difference between two consecutive iterations

In the second case we compute the first arrival time for a point source at
(x0, y0) = (0, 0). The Eikonal equation is

|∇u| = f(x, y) = 1 + e−40[(x+0.2)2+(y+0.2)2] − e−40[(x−0.2)2+(y−0.2)2], u(0, 0) = 0.

So the corresponding velocity field is 1/f(x, y) and the ratio between the maximum
velocity and the minimum velocity is 6.667 × 105. The function f(x, y) is shown
in Figure 6.3(a). In Figure 6.3(b) the solid line is the contour plot of the arrival
time and the dashed line is the contour plot of f(x, y). The largest difference
between two consecutive iterations is shown in Table 6.7. We set the initial large
value to be 106. The convergence criterion is the maximum difference between two
consecutive iterations less than 10−6. Although six to seven iterations are needed
for this convergence criterion for different grids, we can see clearly from this table
that only the first six iterations are essential. After six iterations, the difference
drops dramatically and is much smaller than the grid size. This means that it takes
six iterations to cover the information propagation along all characteristic curves in
the computation domain. This pattern is independent of grid size. The computing
time scales linearly with the grid size. For this example, it only takes 0.2 seconds
for the computation on a 500× 500 grid using a 2.4 GHz PC.

Example 5. We present a potential application for function reconstruction. In
theory, for a C1 function u(x), x ∈ Rn, if all local minima (or maxima) of u
together with its gradient |∇u| are known, we can reconstruct the function u(x)
by solving the Eikonal equation with the prescribed local minima (or maxima)
as the boundary condition. Here we apply this idea to the reconstruction of a
discrete function. Suppose ui,j is a two dimensional discrete function defined at
grid points (xi, yj). We first search for all local minima. ui,j is a local minimum
if ui,j ≤ min{ui+1,j, ui−1,j , ui,j−1, ui,j+1}. We record the location, (i, j), and the
value ui,j . Next we extract the gradient information at points that are not local
minima. In order to construct the exact inverse process for our fast sweeping
algorithm, we use upwind difference to compute the gradient at a grid point (xi, yj)

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 625

0
20

40
60

80
100

0

20

40

60

80

100
−8

−6

−4

−2

0

2

4

6

8

10

(a) reconstruction of the peak function (b) reconstruction of the hat function

Figure 6.4.

as follows. Let

uxmin = min(ui−1,j , ui+1,j),

uy min = min(ui,j−1, ui,j+1).

Define

ux =
{ ui,j−ux min

h if ui,j > uxmin,
0 if ui,j ≤ uxmin,

uy =
{ ui,j−uy min

h if ui,j > uy min,
0 if ui,j ≤ uy min,

and
fi,j = |∇u|i,j =

√
u2

x + u2
y.

By enforcing the values at the minima and solving the system (2.2), we can recover
ui,j to machine precision. In regions where ui,j is constant, fi,j = |∇u|i,j = 0.
Here we show the reconstruction of the peak function and the hat function in
Matlab. For the peak function, there are six local minimal grid points and it
takes 10 iterations to converge. The reconstruction is exact to machine precision
and is shown in Figure 6.4(a). For the hat function, there are many local minima
due to the valleys and the number of minima scales with the number of grid points.
It takes seven iterations to converge. The reconstruction is also exact to machine
precision and is shown in Figure 6.4(b).

Example 6. As the last example, we present an application of the distance function
in computer visualization. In [20], efficient algorithms are developed to analyze and
visualize large sets of unorganized points using the distance function and distance
contours. In particular, an appropriate distance contour can be extracted very
quickly for the visualization of the data set, which avoids sorting out complicated
ordering and connections among all data points. Figure 6.5 shows the visualization
of a Buddha statue using a distance contour on a 156× 371× 156 grid from points
obtained by a laser scanner. The data set has 543,652 points and is obtained from

626 HONGKAI ZHAO

(a) front (b) diagonal (c) back

Figure 6.5. Visualization of 3D scanned points using a distance contour.

The Stanford 3D Scanning Repository. The whole process takes a few seconds due
to the fast computation of the distance function.

Acknowledgment

The author would like to thank Dr. Paul Dupuis for some interesting discussions
that started the work.

References

1. M. Bardi and S. Osher, The nonconvex multi-dimensional Riemann problem for Hamilton-
Jacobi equations, SIAM Anal. 22(2) (1991), 344–351. MR 91k:35056

2. M. Boué and P. Dupuis, Markov chain approximations for deterministic control problems with
affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal. 36 (1999), no. 3,
667–695. MR 2000a:49054

3. B. Cockburn and J. Qian, A short introduction to continuous dependence results for Hamilton-
Jacobi equations, Collected Lectures on the Preservation of Stability Under Discretization
(D. Estep and S. Tavener, Eds.), SIAM, 2002.

4. M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.
Math. Soc. 277 (1983) no. 1, 1–42. MR 85g:35029

5. , Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43
(1984), no. 167, 1–19. MR 86j:65121

6. P. Danielsson, Euclidean distance mapping, Computer Graphics and Image Processing 14
(1980), 227–248.

7. K. Deckelnick and C.M. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations
with discontinuities, preprint (2003).

8. Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19,
AMS, 1998. MR 99e:35001

9. M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of
Hamilton-Jacobi-Bellman equations, Numer. Math. 7 (1994), no. 3, 315–344. MR 95d:49045

http://www.ams.org/mathscinet-getitem?mr=91k:35056
http://www.ams.org/mathscinet-getitem?mr=2000a:49054
http://www.ams.org/mathscinet-getitem?mr=85g:35029
http://www.ams.org/mathscinet-getitem?mr=86j:65121
http://www.ams.org/mathscinet-getitem?mr=99e:35001
http://www.ams.org/mathscinet-getitem?mr=95d:49045

A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS 627

10. , Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation for-
mulae and Godunov methods, J. Comput. Phys. 175 (2002), no. 2, 559–575. MR 2003f:65151

11. J. Helmsen, E. Puckett, P. Colella, and M. Dorr, Two new methods for simulating photolithog-
raphy development in 3d, Proc. SPIE 2726 (1996), 253–261.

12. C.Y. Kao, S. Osher, and J. Qian, Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi
equations, UCLA CAM report (2003).

13. S. Kim, An o(n) level set method for Eikonal equations, SIAM J. Sci. Comput. (2001).
14. E. Rouy and A. Tourin, A viscosity solution approach to shape-from-shading, SIAM J. Num.

Anal. 29 (1992), no. 3, 867–884. MR 93d:65019
15. W. A. J. Schneider, K. A. Ranzinger, A. H. Balch, and C. Kruse, A dynamic programming

approach to first arrival traveltime computation in media with arbitrarily distributed velocities,
Geophysics (1992).

16. J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat.
Acad. Sci. 93 (1996), no. 4, 1591–1595. MR 97c:65171

17. Y.R. Tsai, Rapid and accurate computation of the distance function using grids, J. Comp.
Phys. 178 (2002), no. 1, 175–195. MR 2003e:65029

18. Y.R. Tsai, L.-T Cheng, S. Osher, and H.K. Zhao, Fast sweeping algorithms for a class of
Hamilton-Jacobi equations, SIAM J. Numer. Anal. 41 (2003), no. 2, 673–694.

19. J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on

Automatic Control 40 (1995), no. (9), 1528–1538. MR 96d:49039
20. H.K. Zhao, Analysis and visualization of large set of unorganized data points using the dis-

tance function, preprint (2002).
21. H.K. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and non-parametric shape recon-

struction from unorganized points using variational level set method, Computer Vision and
Image Understanding 80 (2000), no. 3, 295–319.

Department of Mathematics, University of California, Irvine, California 92697-3875

E-mail address: zhao@math.uci.edu

http://www.ams.org/mathscinet-getitem?mr=2003f:65151
http://www.ams.org/mathscinet-getitem?mr=93d:65019
http://www.ams.org/mathscinet-getitem?mr=97c:65171
http://www.ams.org/mathscinet-getitem?mr=2003e:65029
http://www.ams.org/mathscinet-getitem?mr=96d:49039

	1. Introduction
	2. The fast sweeping algorithm and the motivation
	2.1. The fast sweeping algorithm
	2.2. The motivation

	3. Basic properties of the fast sweeping algorithm
	4. Convergence and error estimate for the distance function
	5. General Eikonal equations
	6. Numerical results
	Acknowledgment
	References

