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Abstract. We analyze a numerical algorithm for solving radiative transport

equation with vacuum or reflection boundary condition that was proposed in [4]
with angular discretization by finite element method and spatial discretization

by discontinuous Galerkin or finite difference method.

.

1. Introduction

Radiative transport equation (RTE) (1.1) models a wide range of applications,
such as neutron transport, atmospheric radiative transfer, heat transfer and photon
migration in tissues. In this paper, we study a numerical algorithm for the following
RTE on a bounded domain Ω with smooth boundary ∂Ω

(1.1) ŝ · ∇Φ(~x, ŝ) + µtΦ(~x, ŝ) = µs

∮
f(ŝ, ŝ′)Φ(~x, ŝ′)dŝ′ + q(~x, ŝ), (~x, ŝ) ∈ Ω× S,

where Φ(~x, ŝ) is the particle density at position ~x along direction ŝ, q is the source
term, S denotes the angular space, i.e., unit circle in two dimensions (2D) S1 or
unit sphere in three dimensions (3D) S2.

The parameters in (1.1) are absorption coefficient µa, scattering coefficient µs,
transport coefficient µt = µa + µs and scattering kernel f . We assume all the
parameters in (1.1) are non-negative and bounded. In particular, µa is bounded
below by a positive constant Cµ, i.e., 0 < Cµ ≤ µa.

Very often f is rotationally invariant, i.e., f(ŝ, ŝ′) = f(ŝ · ŝ′), and is normalized
with

∮
f(ŝ · ŝ′)dŝ′ = 1. Although we assume this rotational invariance in this paper

for simplicity, our algorithm and analysis can be extended for the general case. As
an example, the commonly used f in optical imaging to model photon transport in
tissues is the following Henyey-Greenstein (H-G) function

(1.2) f(ŝ · ŝ′) =

{
1−g2

2π(1+g2−2gŝ·ŝ′) , n = 2
1−g2

4π(1+g2−2gŝ·ŝ′)3/2 , n = 3
,

where the parameter 0 ≤ g ≤ 1 indicates how forward peaking the scattering is.
To specify the boundary condition, we define n̂(~x) as the boundary normal for

~x ∈ ∂Ω, Γ+(Γ−) = {(~x, ŝ) ∈ ∂Ω×S, with ŝ · n̂ > 0(≤ 0)} as the outgoing (incoming)
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boundary, and ni(no) as the refraction index of the medium (environment). Then
the reflection boundary condition for (1.1) is

(1.3) Φ(~x, ŝ) = R(~x, ŝ, ŝ′)Φ(~x, ŝ′), (~x, ŝ) ∈ Γ−, (~x, ŝ′) ∈ Γ+,

where ŝ′ refers to angular direction at ~x ∈ ∂Ω that is reflected into ŝ at ~x when
ni 6= no, and R corresponds to the reflection energy ratio computed through Fresnel
formula [5]. When there is no refraction index mismatch, i.e., ni = no, (1.3) is the
so called vacuum boundary condition with R = 0.

With the aforementioned conditions on µa, µs and f , there exists a unique
positive solution to RTE (1.1), when Q(~x, ŝ) =

∫ d

0
q(~x− rŝ, ŝ)e−

∫ r
0 µt(~x−r′ŝ)dr′dr is

bounded and positive [6]. Here d is the distance from ~x to the domain boundary
∂Ω along the direction −ŝ.

2. Numerical Algorithms

The analytical solution for RTE is rarely available except in very special setup.
Efficient numerical algorithms are in need for many applications. However, the
efficient numerical computation of RTE is challenging mainly due to the following
difficulties:

• high dimensionality;
• different solution behavior, e.g., from the transport regime near the source

to the diffusion regime after a few mean free paths;
• forward peaking due to anisotropic scattering kernel function;
• general boundary conditions.

Moreover, a large and not so sparse (due to the scattering term) linear system has
to be solved after discretization that requires an efficient matrix solver.

In [4], we developed an efficient multigrid numerical algorithm for RTE that
works for general geometry and general reflection boundary condition. The solver
is available at http://sites.google.com/site/rtefastsolver/. The key features of our
method include

• angular and spatial discretization that (1) preserves the correct behavior of
transport and scattering operator, (2) captures both short and long range
interactions in spatial and angular domain effectively when using the multi-
grid strategy;

• improved source iteration (ISI) based on Gauss-Seidel iterations with angle-
dependent ordering of spatial nodes which (1) captures transport efficiently,
(2) converges faster than source iteration (SI);

• multigrid method in both angular and spatial domain with ISI as the relax-
ation which further accelerates the solution algorithm, particularly in the
diffusion regime;

• flexibility for both structured and unstructured grids in 2D and 3D with
general boundary conditions.

In the following, we will briefly describe our solution algorithms for RTE and
the details can be found in [4].

2.1. Angular discretization. Let {Lm(ŝ), 1 ≤ m ≤ M} be the piecewise linear
angular basis on an angular mesh {ŝm, 1 ≤ m ≤ M} of S, and wm =

∮
Lmdŝ.
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Then we approximate the scattering angular integration I =
∮

f(ŝ · ŝ′)Φ(ŝ′)dŝ′ by

(2.1) Ĩ =
∮

f̃Φ̃dŝ′,

where f̃ and Φ̃ are the linear approximation of f and Φ respectively.
We start with angular discretization (Figure 1) for 2D spatial domain, where S1

is equally divided into angular intervals {θm, 1 ≤ m ≤ M} with interval length ha,
and therefore is also rotationally invariant in terms of ha. The angular discretization
of the scattering summation by the finite element method (FEM) goes as follow. For
each ŝm, Ĩ =

∮
f̃(θm′−θm)Φ̃(θm′)dθm′ . Moreover, since Φ̃ =

∑
m′ Φm′Lm′ , we have

Ĩ =
∑

m′ w0
mm′Φm′ with w0

mm′ =
∮

f̃(θm′ − θm)Lm′dθm′ . Then we normalize the
weight w0

mm′ ’s to get wmm′ ’s, i.e., wmm′ = w0
mm′/(

∑
m′ w0

mm′) so that
∑

m′ wmm′ =
1. In summary, the angular scattering summation is discretized as

(2.2) Iha =
M∑

m′=1

wmm′Φm′ , 1 ≤ m ≤ M.

Please note that wmm′ = wm′m due to the rotational invariance of f and the
uniformity of the angular mesh.

Direction
M

4
+ 1

Direction 2

Direction M

Direction
M

2
+ 1

Direction 1

Figure 1. Angular discretization in 2D

In 3D, the angular mesh on the unit sphere S2 is the projection of eight tri-
angular planes, each of which belongs to a different quadrant. The mesh on the
triangular plane in the first quadrant is shown in Figure 2. And then the mesh
is projected onto the unit sphere which gives a polyhedral approximation of the
sphere. This simple triangulation is quite uniform although it is not rotationally
invariant. Moreover it is easy to coarsen and refine for multigrid method in angular
domain. The discretization is similar to 2D and the weight w0

mm′ is computed on
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the polydedron with the piecewise linear approximation f̃ defined on each element
of the polyhedron. Then the weight wmm′ is normalized from w0

mm′ as in 2D.
Note that wmm′ = wm′m is not the case in 3D due to the violation of the rotation
invariance of the angular mesh in 3D.

Comparing with the angular discretization through spherical harmonic expan-
sion, the direct use of an angular mesh allows to (1) capture both short and long
range interactions effectively when using the multigrid method, (2) deal with gen-
eral reflection boundary condition at ease, which consequently is transformed into
some local dependence in angular domain, e.g. through Snell’s law. Moreover,
piecewise linear approximation guarantees that wmm′ ≥ 0, which preserves the
qualitative behavior of localized scattering even if the angular mesh resolution may
not be enough in an extremely forward peaking situation. We will estimate the er-
ror between φ after the angular discretization (2.3) and RTE solution Φ in section
3.1.

Remark 2.1. Although an octahedron with eight equilateral triangular faces are
used for angular discretization, for better uniformity, an icosahedron, a regular
polyhedron with 20 identical equilateral triangular faces, can be used.
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Figure 2. Angular discretization in 3D
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2.2. Spatial discretization. Let {φm(~x), 1 ≤ m ≤ M} be the RTE solution
along the angular grid {θm, 1 ≤ m ≤ M} after angular discretization. (1.1) is now
the following coupled system of first-order partial differential equations in space

(2.3) ŝm · ∇φm + µtφm = µs

M∑

m′=1

wmm′φm′ + qm, 1 ≤ m ≤ M,

where qm is the source term along the direction ŝm, i.e., qm = q(~x, ŝm), and the
scattering integral is approximated by the summation with the scattering weight
{wmm′ , 1 ≤ m,m′ ≤ M}. Notice that wmm′ ’s are all positive since they are
computed through piecewise linear FEM for non-negative functions.

Next we discretize the system (2.3) in space. In [4], we chose the Discontinu-
ous Galerkin (DG) method for the unstructured grid (see section 3.2 for the DG
discretization). DG was initially developed for scalar transport equation [8] for
neutron transport, and it deals with hyperbolic problems such as transport equa-
tion effectively due to its natural upwind nature as well as flexibility for high-order
approximation and mesh geometry. Besides, in implementation there is no need
to form global matrix explicitly for DG and the solution is solved by successively
sweeping through individual mesh elements. We will analyze DG discretization of
the system (2.3) on unstructured mesh in section 3.2.

On the other hand, we chose the finite difference method (FDM) for the struc-
tured grid [4]. For example, with the first-order upwind FDM on the 2D spatial
domain when θm ∈ [0, π

2 ), we have

(2.4) (a + b + µt)φi,j,m − (aφi−1,j,m + bφi,j−1,m)− µs

M∑

m′=1

wmm′φi,j,m′ = qi,j,m

where a = cos θm

4x ≥ 0, b = sin θm

4y ≥ 0, and i, j are indices for x and y coordinate
respectively.We will analyze FDM for the system (2.3) on structured mesh in section
3.3.

2.3. Improved source iteration. SI is a popular method for solving the dis-
cretized linear system of RTE. In SI, the scattering entirely lags one step behind
transport, i.e.,

(2.5) (ŝ · ∇+ µt)Φn+1(~x, ŝ) = µs

∮
f(ŝ, ŝ′)Φn(~x, ŝ′)dŝ′ + q(~x, ŝ).

This simple iterative procedure has a clear physical interpretation, e.g., Φn captures
all particles that have been scattered no more than n times. However SI has a slow
convergence when the scattering is dominant, e.g., in the optical thick regime where
the domain size is large in terms of mean free paths.

ISI was developed in [4]. ISI is essentially a Gauss-Seidel method in both angular
and spatial variables, which utilizes the most updated information during iterations.
We also use angle-dependent ordering in ISI, i.e., the ordering that aligns with ŝ
to follow the characteristic direction of the transport operator. For simplicity, we
illustrate SI and ISI using the first-order upwind FDM (2.4). Here since θm ∈ [0, π

2 ),
the ordering in ISI is i = 1, 2, · · · , j = 1, 2, · · · . Then ISI is
(2.6)

φn
i,j,m =

aφn
i−1,j,m + bφn

i,j−1,m + µsij
(
∑m−1

m′=1 wmm′φn
i,j,m′ +

∑M
m′=m+1 wmm′φn−1

i,j,m′) + qi,j,m

a + b + µt − µswmm
,
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while the SI is

(2.7) φn
i,j,m =

aφn
i−1,j,m + bφn

i,j−1,m + µsij

∑M
m′=1 wmm′φn−1

i,j,m′ + qi,j,m

a + b + µt
.

It can be easily shown that upwind spatial discretization combined with angular
discretization for general boundary condition (2.8) produces a linear system with
M -matrix, which guarantees that (1) ISI converges and converges faster than SI, (2)
global error in maximum norm is under the control, (3) ISI is a smoothing operation
and with the correct ordering it efficiently handles the solution in transport regime.
In section 3.3, we will analyze this FDM scheme (2.4) and compare ISI (2.6) with
SI (2.7).

2.4. Boundary condition. Our direct FEM-based angular discretization deals
with general boundary conditions at ease. For example, if there is a mismatch of
refraction index at the boundary, local mesh-based photon flux in one direction
can be reflected and refracted into other directions according to Fresnel formula
[5]. To discretize (1.3) at a boundary point ~x along an incoming direction ŝm,
which belongs to the angular mesh, there is an outgoing direction ŝ′ such that
φ(~x, ŝm) = R(~x, ŝm, ŝ′)Φ(~x, ŝ′), where (~x, ŝm) ∈ Γ−, (~x, ŝ′) ∈ Γ+. However, ŝ′

may not belong to the angular mesh, so we use linear interpolation of fluxes at
neighboring angular mesh points ŝm′ to approximate the flux in direction ŝ′. So
after angular discretization the reflection boundary condition becomes

(2.8) φm(~x) =
∑

m′
rmm′(~x)φm′(~x), (~x, ŝm) ∈ Γ−, (~x, ŝm′) ∈ Γ+.

Two neighboring directions whose interval encloses ŝ′ in 2D and three neighboring
directions whose triangle encloses ŝ′ in 3D are used for the linear interpolation. In
particular

∑
m′ rmm′ = R(~x, ŝm, ŝ′) ≤ 1.

When the incoming direction ŝm is almost tangential to the boundary at ~x, the
corresponding outgoing direction ŝ′ is also almost tangential to the boundary. Thus
some ŝm′ used in the interpolation may be a incoming direction. See Figure 3 for
a 2D example: ŝm′

1
is the reflection angle for ŝm1 , which is not on the angular

grid and is interpolated from ŝm1 and ŝm′ . In 2D it is easy to show that the
general form (2.8) is still valid. That is φm(~x) = r[αφm + (1 − α)φm′(~x)], where
r = R(~x, ŝm, ŝ′) ≤ 1 and the weight α > 0 in the linear interpolation. So

(2.9) φm(~x) =
r(1− α)
1− rα

φm′ ≤ rφm′ .

In 3D the situation is more complicated since three neighboring directions are in-
volved in the linear interpolation. Incoming directions that are almost tangential to
the boundary may not be explicitly represented in terms of outgoing directions, e.g.,
when two of the three directions used in the interpolation are incoming directions.

In summary, the general reflection boundary condition (2.8) can be regarded
just as some kind of scattering relation among different directions at boundary. So
our angular discretization plus linear interpolation for general boundary conditions
inherits those nice properties for approximating the scattering term in RTE, i.e.,
a true averaging operation among directions. When coupled with finite difference
scheme for spatial discretization, it can be easily shown that the fully discretized
linear system has a M-matrix even with general reflection boundary condition (see
the proof for Theorem 6).



ANALYSIS OF A NUMERICAL SOLVER FOR RADIATIVE TRANSPORT EQUATION 7
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Figure 3. Reflection at the boundary in 2D: only the solid lines
are on the angular grid.

3. Error Estimates and Convergence Analysis

3.1. Angular discretization. The main result in this section is to show that the
solution φ after angular discretization of (2.3) and RTE solution Φ to (1.1) satisfies

(3.1) ||φ− Φ|| =

√√√√
M∑

m=1

wm

∫

Ω

[φm(~x)− Φ(~x, ŝm)]2 = O(h2
a)

From now on we define the following weighted L2 norm

(3.2) ||φ||2 :=
M∑

m=1

wm

∫

Ω

φ2
m

In order to prove Theorem 1-3, we will first prove the following estimate in 2D
(Lemma 1) and 3D (Lemma 2)

(3.3) ||Iha − I||∞ = O(h2
a).

Here || · ||∞ is with respect to the angular variable. To simplify the notation, h is
used to represent the angular mesh size ha in this section from now on.

Lemma 1. Assuming f,Φ ∈ C2(S1), the aforementioned 2D angular dis-
cretization with Ih(ŝm) =

∑
m′ wmm′Φm′ has the second order convergence, i.e.,

|I(ŝm)− Ih(ŝm)| = O(h2), for all m.

Proof. |I − Ih| ≤ |I − Ĩ|+ |Ĩ − Ih|, where Ĩ is defined by (2.1). We estimate these
two terms separately.
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First,

|I − Ĩ| = |
∮

S1
(f − f̃)Φ + f̃(Φ− Φ̃)dθ| ≤ 2π(||f − f̃ ||∞||Φ||∞ + ||f̃ ||∞||Φ− Φ̃||∞).

Due to the piecewise linear approximation, ||f− f̃ ||∞ = O(h2), ||Φ−Φ̃||∞ = O(h2),
thus |I − Ĩ| = O(h2).

Next, observe that 1 − ∑
w0

mm′ =
∮

S1(f − f̃)dθ = O(h2) and w0
mm′ − wmm′

has the same sign for all m′ (because w0
mm′ ’s are all non-negative and wmm′ is the

normalized w0
mm′ , i.e.,wmm′ = w0

mm′/(
∑

m′ w0
mm′)),

|Ĩ − Ih| = |
∑

m′
(w0

mm′ − wmm′)Φm′ | ≤ ||Φ||∞|
∑

w0
mm′ − 1| = O(h2).

¤
We have proved (3.3) in 2D. In 3D, the angular discretization (Figure 2) is

similar except that the weight w0
mm′ is computed on the flat element of the trian-

gulation of the sphere with piecewise linear approximation. Then the weight wmm′

is normalized from w0
mm′ .

Lemma 2. Assuming f,Φ ∈ C2(S2), the 3D angular discretization as described
above with Ih(ŝm) =

∑
m′ wmm′Φm′ has the second order convergence, i.e., |I(ŝm)−

Ih(ŝm)| = O(h2), for all m.

Proof. Consider an triangle element of the triangulation of S2 as depicted in Figure
2. Let ~x be a point on the triangle denoted by 4 and let ~xr = ~x/|~x| be the
corresponding projection onto the sphere. The map is one-to-one, onto and smooth
on each triangular element. In particular, ~xr−~x = ~xr(1−|~x|) with 1−|~x| = O(h2).
The change of variable ~xr(~x) is smooth and

∇~x~xr =
1
|~x| (I −

~x

|~x| ⊗
~x

|~x| )

It can be easily seen that I − ~x
|~x| ⊗ ~x

|~x| is almost the projection to the triangle plane
up to a O(h) perturbation. So the corresponding surface area on the sphere and
the surface area on each triangle element satisfies ds(~xr) = ds(~x)(1 + O(h2)). Also
the piecewise-linear approximation f̃(~x) of any function f(~xr(~x)) ∈ C2(4) on each
triangle satisfies ||f − f̃ ||∞ = O(h2).

Therefore,

I =
∮

S2
fΦ ds(~xr) =

∑

i

∫

4i

[f̃ + O(h2)][Φ̃ + O(h2)][1 + O(h2)] ds(~x) = Ĩ + O(h2),

where Ĩ =
∑

i

∫
4i

f̃Φ̃ds(~x). In particular Ĩ(ŝm) =
∑

m′ w0
mm′Φm′ . Use the same

argument as in Lemma 1, |Ĩ(ŝm)− Ih(ŝm)| = O(h2). ¤
Remark 3.1. H-G function (1.2) belongs to C2 for g < 1. When g = 1, f is a
Delta function in angle. So there is no scattering among different directions and
I(ŝ) = Φ(ŝ). As a result, the system (2.3) is reduced to a set of uncoupled first-
order transport equations, which can be solved easily and the analysis is the same
as that for a single transport equation.

Next we will use Lemma 1 and 2 to prove the second-order convergence (3.3) for
the angular discretization in Theorem 1. However, due to no rotation invariance for
the triangulation on the angular sphere, we need the following lemma in order to
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proceed in 3D. For comparison, the grid is uniform and rotationally invariant on the
circle in 2D. As a result, wm’s are equal in 2D, while they are not in 3D. For the same
reason, the angular weight wmm′ ’s are symmetric in 2D, i.e., wmm′ = wm′m which
is not true in 3D either. However, this broken symmetry in 3D can be remedied
in the proof of Theorem 3 using the following lemma between wmm′ and wm′m.
Notice that although the lemma is for the normalized weight wmm′ ’s, it also holds
for w0

mm′ ’s since wmm′ has the same dilation from w0
mm′ and wmm′

w0
mm′

= 1+O(h2) for

all m′.
Lemma 3.wmm′

wm′
− wm′m

wm
= O(h) for angular discretization in 3D.

Proof. We have

w0
mm′ =

∮

S2
f̃(ŝm·ŝ)Lm′(ŝ)dŝ=

∮

S2
(f̃(ŝm·ŝm′)+O(h))Lm′(ŝ)dŝ = (f̃(ŝm·ŝm′)+O(h))wm′ .

Similarly, w0
m′m = (f̃(ŝm′ · ŝm)+O(h))wm. Therefore, w0

mm′
wm′

− w0
m′m
wm

= O(h). From
the fact wmm′

w0
mm′

= 1 + O(h2) for each m′, the claim follows. ¤

Theorem 1. With the angular discretization (2.3), the approximate solution φ
satisfies

(3.4) max
~x,m

|φm(~x)− Φ(~x, ŝm)| = O(h2).

if the solution Φ(~x, ŝ) to the RTE is C2(S).

Proof. For the simplicity of notation, let Φm denote Φ(~x, ŝm).

(3.5)
M∑

m′=1

wmm′φm′ −
∮

f(ŝm, ŝ′)Φ(ŝ′)dŝ′ =
M∑

m′=1

wmm′(φm′ − Φm′) + Dm

with

(3.6) Dm :=
∑

m′
wmm′Φm′ −

∮
f(ŝm, ŝ′)Φ(ŝ′)dŝ′.

Let εm = φm − Φm, and then εm satisfies

(3.7) ŝm · ∇εm + µtεm = µs

M∑

m′=1

wmm′εm′ + Dm.

Since Ω is a bounded closed domain, assume that max~x,m |φm(~x)−Φ(~x, ŝm)| = e∞
is obtained for for some m̃ at some point ~̃x.

(1) If ~̃x is in the interior of Ω, ∇εm̃(~̃x) = 0 and because wmm′ ≥ 0,
∑

m′ wmm′ =
1, from (3.7) we have

µte∞ ≤ µs

∑

m′
wm̃m′e∞ + |Dm̃| ⇒ µae∞ ≤ ||D||∞ ⇒ e∞ = O(h2).

(2) If ~̃x belongs the boundary ∂Ω,
(a) If (~̃x, ŝm̃) ∈ Γ+, i.e., ŝm̃ · n̂ > 0, we have ŝm̃ · ∇εm̃(~̃x) ≥ 0, Again from
(3.7) we have e∞ = O(h2).
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(b) Else if (~̃x, ŝm̃) ∈ Γ−, for the general reflection boundary condition with
discretization (2.8) we have

εm̃(~̃x) =
∑

m′
rm̃m′εm′(~x) + D̄, (~̃x, ŝm̃) ∈ Γ−, (~̃x, ŝm′) ∈ Γ+,

where D̄ is the truncation error due to linear interpolation of the real reflec-
tion condition for at the boundary and is of order O(h2). Also rm̃m′ ≥ 0 and∑

m′ rm̃m′ ≤ 1. Combined with the argument for (a) we have e∞ = O(h2).
Hence we complete the proof for (3.4). ¤

Theorem 2 (Vacuum Boundary Condition). Assume the solution Φ(~x, ŝ)
to the RTE is C2(S). With vacuum boundary condition and sufficiently fine angular
mesh

(3.8) ||φ− Φ|| =

√√√√
M∑

m=1

wm

∫

Ω

[φm(~x)− Φ(~x, ŝm)]2 d~x = O(h2).

Proof. Multiplying both sides of (3.7) with wmεm, integrating over the spatial
domain and summing over all angular directions, we have

(3.9)

1
2

∑M
m=1 wm

∫
∂Ω

ŝm · n̂ε2
m +

∑M
m=1 wm

∫
Ω

µtε
2
m

=
∑M

m=1

∑M
m′=1

∫
Ω

µswmwmm′εm′εm +
∑M

m=1

∫
Ω

wmDmεm.

With vacuum boundary condition, εm = 0 for ŝm · n̂ < 0, so the boundary integral
becomes

(3.10)
1
2

M∑
m=1

wm

∫

∂Ω

ŝm · n̂ε2
m =

1
2

∫

∂Ω

∑

m:ŝm·n̂≥0

wmŝm · n̂ε2
m ≥ 0.

Next we analyze the first term on the right hand side of (3.9),

(3.11)
M∑

m,m′=1

∫

Ω

µswmwmm′εm′εm ≤ 1
2

M∑

m,m′=1

∫

Ω

µswmwmm′(ε2
m′ + ε2

m)

On one hand,
∑

m,m′ wmwmm′ε2
m =

∑
m wmε2

m since
∑

m′ wmm′ = 1 from our
angular normalization; on the other hand, using Lemma 3,
∑

m,m′
wmwmm′ε2

m′ =
∑

m′

∑
m

[(wm′wm′m+wmwm′O(h))]ε2
m′ =

∑

m′
wm′(1+O(h))ε2

m′ .

Therefore, when h is small enough, we have
∑

m,m′ wmwmm′ε2
m′ ≤ (1+2δ)

∑
m′ wm′ε2

m′

with δ ∼ O(h). Notice that δ = 0 in 2D due to rotational invariance.
Therefore, from (3.9) and (3.11) we have

(3.12)
M∑

m=1

wm

∫

Ω

(µa − δµs)ε2
m ≤

M∑
m=1

wm

∫

Ω

Dmεm.

Since µa is bounded below with a positive constant Cµ, we have µa − δµs ≥ Cµ

in 2D with δ = 0, while µa − δµs ≥ C in 3D for some positive constant C when h
is small enough. Then we apply Holder’s inequality to the right hand side of (3.12)
such that

∑
m wm

∫
Ω

Dmεm ≤ ||D|| · ||ε||.
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As a result, we have

(3.13) ||ε|| ≤ C||D||
for some positive constant C. Moreover, from Lemma 1 and 2, we have ‖D‖∞ =
O(h2). Thus, ||φ− Φ|| = O(h2). ¤

The boundary term
∑M

m=1 wm

∫
∂Ω

ŝm · n̂ε2
m becomes more complicated for re-

flection boundary condition (1.3). For simplicity, let us first assume that for each
incoming direction ŝm on the angular mesh there is a corresponding outgoing di-
rection ŝm′ on the angular mesh with the following reflection condition

(3.14) ŝm · n̂ = −ŝm′ · n̂, φm = rmm′φm′ , Φm = rmm′Φm′ , 0 ≤ rmm′ ≤ 1.

Then

(3.15)
M∑

m=1

wm

∫

∂Ω

ŝm · n̂ε2
m =

∫

∂Ω

∑

m:ŝm·n̂≥0

(wm − wm′r2
m′m)ŝm · n̂ε2

m,

which is analogous to the continuous case. In 2D, each term on the righthand side is
non-negative since wm = wm′ and 1− r2

mm′ ≥ 0. In general the above assumption
(3.14) is not true. However, if we assume a no perfect reflection condition, i.e.,
R(~x, ŝ, ŝ′) < 1 in (1.3), we can prove the following lemma which will be enough for
error estimate for general reflection boundary condition in 2D.

Lemma 4. If there is no perfect reflection at the boundary, i.e., R(~x, ŝ, ŝ′) < 1,∑
m rmm′ < 1 is true in 2D.

Proof. In 2D, since the angular mesh is uniform, the corresponding reflected angles
are also uniform. Moreover, we use linear interpolation between two neighboring
angles to interpolate the reflection condition (Figure 3), so at the boundary ∂Ω, we
have

(3.16)
∑
m

rmm′ = αm′
1m′R(ŝm1 , ŝm′

1
)+ αm′

2m′R(ŝm2 , ŝm′
2
), αm′

1m′ +αm′
2m′ = 1,

where ŝm′ is an outgoing direction that contributes to both incoming directions ŝm1

and ŝm2 in the linear interpolation and αm′
1m′ , αm′

2m′ are the linear weights. From
non perfect reflection condition, we have

∑
m rmm′ < σ < 1. ¤

Next we prove the similar L2 error estimate for general reflection boundary
condition in 2D.

Theorem 3 (Reflection Boundary Condition). In 2D, assume the solution
Φ(~x, ŝ) to the RTE is C2(S1). With no perfect reflection at the boundary, i.e.,
R(~x, ŝ, ŝ′) < σ < 1 in (1.3), and if the angular mesh is fine enough,

(3.17) ||φ− Φ|| = O(h2).

Proof. The key is to control the boundary term
∑M

m=1 wm

∫
ŝm ·n̂ε2

mdΓ in (3.9). For
the general reflection boundary condition (1.3) approximated by linear interpolation
(2.8), we have

εm(~x) =
∑

m′
rmm′(~x)εm′(~x) + D̄m(~x), (~x, ŝm) ∈ Γ−, (~x, ŝm′) ∈ Γ+,
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where D̄m(~x) is the truncation error due to linear interpolation of the real reflection
condition for at the boundary and is of order O(h2).
∑M

m=1 wm

∫
∂Ω

ŝm · n̂ε2
m =

∑
ŝm·n̂≥0 wm

∫
∂Ω
|ŝm · n̂|ε2

m −∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|ε2

m

=
∑

ŝm·n̂≥0 wm

∫
∂Ω
|ŝm · n̂|ε2

m −∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|(∑ŝm′ ·n̂≥0 rmm′εm′ + D̄m)2

Now let us estimate the second term in the above expression
∑

ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|(∑ŝm′ ·n̂≥0 rmm′εm′ + D̄m)2

≤ ∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|

[
1
σ (

∑
ŝm′ ·n̂≥0 rmm′εm′)2 + 1

1−σ D̄2
m

]

≤ ∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|

[∑
ŝm′ ·n̂≥0 rmm′ε2

m′ + 1
1−σ D̄2

m

]

≤ ∑
ŝm′ ·n̂≥0 wm′

∫
∂Ω

ε2
m′(

∑
ŝm·n̂≤0 rmm′ |ŝm · n̂|) + 1

1−σ

∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|D̄2

m

=
∑

ŝm′ ·n̂≥0 wm′
∫

∂Ω
ε2

m′(αm′
1m′Rm1m′

1
|ŝm′

1
· n̂|+ αm′

2m′Rm2m′
2
|ŝm′

2
· n̂|)

+ 1
1−σ

∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|D̄2

m

=
∑

ŝm′ ·n̂≥0 wm′
∫

∂Ω
ε2

m′(O(h2) + Rmm′ |ŝm′ · n̂|) + 1
1−σ

∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|D̄2

m

≤ ∑
ŝm′ ·n̂≥0 wm′

∫
∂Ω

(1 + O(h))σ|ŝm′ · n̂|ε2
m′ + 1

1−σ

∑
ŝm·n̂≤0 wm

∫
∂Ω
|ŝm · n̂|D̄2

m,

where Rmm′ := R(~x, ŝm, ŝm′), the first and second inequalities are from Jensen’s
inequality due to the convexity of the function f(x) = x2, the second equality is due
to linear interpolation of the smooth function, i.e., αm′

1m′ +αm′
2m′ = 1 as shown in

Figure 3, wm’s are all equal, and
∑

m rmm′ < σ from Lemma 4. When h is small
enough we can find σ < σ′ < 1 such that
M∑

m=1

wm

∫

∂Ω

ŝm·n̂ε2
m ≥ (1−σ′)

∑

ŝm·n̂≥0

wm

∫

∂Ω

|ŝm·n̂|ε2
m−

1
1− σ

∑

ŝm·n̂≤0

wm

∫

∂Ω

|ŝm·n̂|D̄2
m

From (3.12) we have
C

2
‖ε‖2 ≤ 1

2C
‖D‖2

Combining the above results we get

(1−σ′)
∑

ŝm·n̂≥0

wm

∫

∂Ω

|ŝm·n̂|ε2
m+C‖ε‖2 ≤ 1

1− σ

∑

ŝm·n̂≤0

wm

∫

∂Ω

|ŝm·n̂|D̄2
m+

1
C
‖D‖2

Since both truncation errors in angular discretization for boundary condition and
scattering operator are of order O(h2), we have proved the result. ¤

The complication for reflection boundary condition in 3D mainly comes from (1)
the difficulty for obtaining the similar inequality as (2.9) in some pathological case
when ŝm is almost tangential to the boundary at ~x, and (2) the non-uniformity of
the angular mesh, i.e., the failure for establishing the similar claim in Lemma 4.

3.2. Spatial discretization by DG. In this section, we give an error estimate for
the spatial DG discretization of coupled transport equations (2.3). First we give
a brief summary on DG method and its analysis on the following single transport
equation on a bounded domain Ω with boundary condition on inflow part of the
boundary ∂Ω− = {~x ∈ ∂Ω : n̂(~x) · ŝ < 0}

(3.18)
{

ŝ · ∇u(~x) + c(~x)u(~x) = f(~x) in Ω
u = g on ∂Ω−

,

where n̂(~x) is the outward unit normal to ∂Ω at ~x.
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People have been studying the DG method for the convection equation (3.18)
since 1974 with the first error estimate on general meshes [7], i.e.,

(3.19) ||u− uh||2 ≤ Chk|u|Hk+1 ,

followed by the improved convergence result [2] in 1986 with

(3.20) ||u− uh||2 ≤ Chk+1/2|u|Hk+1 ,

where k is the degree of polynomial approximation in each element.
Actually the result was proved with a stronger norm than L2 norm. Besides,

Lp stability and error estimates for p 6= 2 were analyzed for piecewise linear DG
on uniform or piecewise uniform triangulation [2]. However, since the sign of c(~x)
is undetermined, a special auxiliary function has to be introduced to control the
possible exponential growth and get the error estimate. The construction of such an
auxiliary function requires convexity of the domain Ω. Two years later, assuming
the conforming triangulations that are obtained with slabs of parallelograms divided
into two triangles, [3] showed an optimal convergence estimate

(3.21) ||u− uh||2 ≤ Chk+1|u|Hk+2 .

Recently, [1] proved a similar result

(3.22) ||u− uh||2 ≤ Chk+1|u|Hk+1 .

for meshes that are not necessarily conforming or subject to any uniformity condi-
tion, however made of simplexes of a unique outflow face.

Although we need to deal with a system of coupled transport equations (2.3), the
coupling is not very strong. In particular due to the absorption, µt − µs = µa > 0,
which is also a crucial condition for the stability of the original RTE (1.1), our proof
is relatively simple.

For the notation convenience, we use h(ha) to represent the spatial (angular)
mesh size hereafter. Let us start with the DG formulation of RTE (2.3) with vacuum
boundary condition. Given a triangulation Th with h = supK∈Th

diam(K) and the
finite-dimensional space V k

h which is composed of functions that are polynomials of
at most k degrees on each K ∈ Th, let (u, v)K =

∫
K

uv and < u, v >B=
∫

B
uv|ŝ · n̂|

with ||u||2K = (u, u)K and << u >>2
B=< u, u >B , where B ⊂ Γh

⋃
∂Ω with

Γh = (
⋃

k∈Th
∂K)\∂Ω. For each angular direction m, let ∂Ωm

−(+) = {~x ∈ ∂Ω :
n̂(~x) · ŝm ≤ (>)0}. Then DG approximation φh ∈ (V k

h )M of the solution of (2.3)
satisfies

(3.23) Am(φh
m, v) = (q, v)+ < qb, v >∂Ωm

− , for all v ∈ V k
h , for each m,

where
(3.24)
Am(φh

m, v) =
∑

K

(ŝm·∇φh
m+µtφ

h
m−µs

∑

m′
wmm′φh

m′ , v)K+ < φh
m

+−φh
m

−
, v+ >Γm

h
+ < φh

m, v >∂Ωm
−

with φh
m
± = limε→0±φh

m(~x± εŝm) and < u, v >Γm
h

=
∫
Γh

uv|ŝm · n̂|. Here q and qb

represents the internal and boundary source respectively. Note that we can replace
φh by the exact solution φ in (3.23). That is we have the following consistency
relation

(3.25) Am(φm − φh
m, v) = 0, for all v ∈ V k

h , for each m,
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Notice that (3.23) can be regarded as a system of (3.18) coupled by the scattering
term. Therefore, (3.23) can be analyzed similarly as the vector form of (3.18) with
non-negative c, once we can control the scattering term. This is exactly how it will
be carried out in the proof for Theorem 4. Here we assume the shape-regularity
condition on the mesh, i.e., there is a constant σ > 0 such that hK/ρK ≥ σ for each
simplex K ∈ Th, where hK is the diameter of the simplex K and ρk is the diameter
of the largest ball included in K.

Theorem 4 (Vacuum Boundary Condition). With vacuum boundary con-
dition, when the triangulation Th satisfies the shape-regularity condition and h, ha

is small enough, the error between DG solution φh via (3.23) and the exact solution
φ of (2.3) with inflow boundary condition satisfies

(3.26) ||φ− φh|| ≤ Chk+1/2|φ|k+1,

where the norm || · || is defined by (3.2) and |φ|2k+1 :=
∑M

m=1 wm|φm|2Hk+1 .

Proof. Let φ̃m be the L2 projection of φm into Vh, i.e.,

(3.27) (φm − φ̃m, v)K = 0, v ∈ V k
h .

Then let’s consider (3.23) for e = φ− φh. Using the consistency relation (3.25), we
have the following with ẽ = φ− φ̃,

(3.28) Am(em, em) = Am(em, ẽm).

We first estimate Am(em, em). Since

(ŝm · ∇em, em)K = −(em, ŝm · ∇em)K +
∫

∂K

ŝm · n̂e2
m,

we have
∑

K

(ŝm·∇em, em)K = −1
2

< e+
m+e−m, e+

m−e−m >Γm
h
−1

2
<< em >>2

∂Ωm
−

+
1
2

<< em >>2
∂Ωm

+
.

As a result,
(3.29)∑

K

(ŝm·∇em, em)K+ < e+
m−e−m, e+

m >Γm
h

+ << em >>2
∂Ωm

−
=

1
2

<< e+
m−e−m >>2

Γm
h

+
1
2

<< em >>2
∂Ωm ,

where < u, v >∂Ωm=
∫

∂Ω
uv|ŝm · n̂|.

The scattering term can be estimated as follow.

(3.30)
J :=

∑
m wm

∑
K(µtem − µs

∑
m′ wmm′em′ , em)K

≥ ∑
m wm[

∫
Ω

µte
2
m − 1

2

∑
m′ wmm′

∫
Ω

µs(e2
m′ + e2

m)]

On one hand,

(3.31)
∑
m

wm

∑

m′
wmm′

∫

Ω

µse
2
m =

∑
m

wm

∫

Ω

µse
2
m.

On the other hand, using Lemma 3,

(3.32)
T :=

∑
m wm

∑
m′ wmm′

∫
Ω

µse
2
m′

=
∑

m

∑
m′(wm′wm′m + wm′wmO(ha))

∫
Ω

µse
2
m′

≤ ∑
m′ wm′

∫
Ω

µse
2
m′(1 + O(ha))
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For any ha, there exists a constant δ = O(ha) such that

(3.33) T ≤ (1 + 2δ)
∑
m

wm

∫

Ω

µse
2
m

Combining (3.30) to (3.33), we have

(3.34) J ≥ C||e||2

where C = Cµ − δ||µs||∞ with lower bound Cµ of µa, and is nonnegative when ha

is small enough in 3D. Notice that C = Cµ in 2D due to rotation invariance of
angular mesh. Therefore,
(3.35)
∑
m

wmAm(em, em) ≥ D

[
||e||2 +

∑
m

wm(<< e+
m − e−m >>2

Γm
h

+ << em >>2
∂Ωm)

]
,

where D = min(C, 1
2 ).

Next, let’s estimate Am(em, ẽm) and it goes as follow. For the boundary term,
we have
(3.36)
< e+

m − e−m, ẽ+
m >Γm

h
+ < em, ẽm >∂Ωm

−≤
D
4 (<< e+

m − e−m >>2
Γm

h
+ << em >>2

∂Ωm) + 1
D (<< ẽ+

m >>2
Γm

h
+ << ẽm >>2

∂Ωm).

For the convection term, using the property (3.27) for L2 projection,

(3.37) (ŝm · ∇em, ẽm)K = (ŝm · ∇ẽm, ẽm)K =
1
2

∫

∂K

ŝm · n̂ẽ2
m

Similarly as before, the scattering term can be estimated as follow,
(3.38)∑

m wm

∑
K(µtem − µs

∑
m′ wmm′em′ , ẽm)K

≤ ∑
m wm[

∑
K(D

8 ||em||2K + 2||µt||2∞
D ||ẽm||2K)] +

∑
m′ wm′ [

∑
K(D

8 ||em′ ||2K + 2||µs||2∞
D ||∑m wm′mẽm||2K)]

≤ D
4 ||e||2 + C||ẽ||2

Last, from the standard estimates for L2 projection, we have

(3.39)
||ẽm||K ≤ Chk+1

K |φm|Hk+1(K)
||ẽm||∂K ≤ Ch

k+1/2
K |φm|Hk+1(K)

With the shape-regularity assumption, from (3.36) to (3.39), we have
(3.40)
∑
m

wmAm(em, ẽm) ≤ D

4

[
||e||2 +

∑
m

wm(<< e+
m − e−m >>2

Γm
h

+ << em >>2
∂Ωm)

]
+Ch2k+1|φ|2k+1.

Combining (3.28), (3.35) and (3.40), we have shown that

(3.41) ||e|| ≤ Chk+1/2|φ|k+1.

In the proof C always denotes some constant. ¤

Remark 3.2. Combining estimate (3.1) for angular discretization and (3.26) with
k = 1 for our piecewise-linear DG spatial discretization, we have the following
estimate for our scheme

(3.42) ||Φ− φh|| = O(h2
a) + O(h3/2).
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However second order accuracy is observed in both angle and space in the numerical
tests in [4].

Remark 3.3. The proofs with O(hk+1) convergence in [1, 3] do not apply here since
the required property on the spatial mesh in general is not satisfied for RTE with
all possible angular directions.

For general reflection boundary condition (2.8), the DG formulation (3.24) be-
comes

(3.43)
Am(φh

m, v) =
∑

K(ŝm · ∇φh
m + µtφ

h
m − µs

∑
m′ wmm′φh

m′ , v)K

+ < φh
m

+ − φh
m
−

, v+ >Γm
h

+ < φh
m −∑

m′ rmm′φm′ , v >∂Ωm
− ,

where
∑

m′ rmm′ = R(ŝm, ŝ′) ≤ 1 and ŝm′ ’s are the neighboring directions used in
the linear approximation to approximate the outgoing direction ŝ′ that is reflected
into the incoming direction ŝm. Now let’s prove the same result as in Theorem 4
for general reflection boundary condition in 2D.

Theorem 5 (Reflection Boundary Condition). In 2D, assume that the
triangulation Th satisfies the shape-regularity condition and h, ha is small enough,
the error between DG solution φh via (3.23) and the exact solution φ of (2.3) with
reflection boundary condition (2.8) satisfies

(3.44) ||φ− φh|| ≤ Chk+1/2|φ|k+1,

if R(~x, ŝ, ŝ′) < σ < 1 (no perfect reflection), where the norm || · || is defined by (3.2)
and |φ|2k+1 :=

∑M
m=1 wm|φm|2Hk+1 .

Proof. Following the same computation, (3.29) becomes
(3.45)∑

K(ŝm · ∇em, em)K+ < e+
m − e−m, e+

m >Γm
h

+ < em −∑
m′ rmm′em′ , em >∂Ωm

−
= 1

2 << e+
m − e−m >>2

Γm
h

+ 1
2 << em >>2

∂Ωm − <
∑

m′ rmm′em′ , em >∂Ωm
−

Now we estimate the last term in the above expression.

<
∑

m′
rmm′em′ , em >∂Ωm

−≤
1
2

∫

∂Ωm
−

(∑

m′
rmm′e2

m′ +
∑

m′
rmm′e2

m

)
|ŝm · n̂|

Following the same argument in the proof of Theorem 3, when ha is small enough,
there exists a constant σ < σ′ < 1 such that

∑
m

rmm′ |ŝm · n̂| ≤ σ′|ŝm′ · n̂|.

At a point of the boundary where n̂ is well defined, if we sum up all angles that
satisfy ŝm · n̂ ≤ 0 in the above expression, ŝm′ will go over all angles ŝm′ · n̂ ≥ 0.
We have

∑
m:ŝm·n̂≤0 wm

(∑
m′ rmm′e2

m′ +
∑

m′ rmm′e2
m

) |ŝm · n̂|
≤ σ′

∑
m′:ŝm′ ·n̂≥0 wm′e2

m′ |ŝm′ · n̂|+ σ
∑

m:ŝm·n̂≤0 wme2
m|ŝm · n̂|

≤ σ′
∑

m wme2
m|ŝm · n̂|

Therefore,
∑

m wm <
∑

m′ rmm′em′ , em >∂Ωm
−≤ 1

2σ′
∑

m wm << em >>2
∂Ωm .
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Hence we get an estimate similar to (3.35).
(3.46)
∑
m

wmAm(em, em) ≥ D

[
||e||2 +

∑
m

wm(<< e+
m − e−m >>2

Γm
h

+
1− σ′

2
<< em >>2

∂Ωm)

]
,

Now we estimate for Am(em, ẽm). Again the only complication comes from the
boundary term. We have

< em −
∑

m′
rmm′em′ , ẽm >∂Ωm

−=< em, ẽm >∂Ωm
− − <

∑

m′
rmm′em′ , ẽm >∂Ωm

−

For the first term, we have

< em, ẽm >∂Ωm
−≤

D(1− σ′)
16

<< em >>2
∂Ωm +

4
D(1− σ′)

<< ẽm >>2
∂Ωm .

To estimate the second term, we first estimate point-wisely with respect to the
angular variable

∑
m:ŝm·n̂≤0 wm

(∑
m′:ŝm′ ·n̂≥0 rmm′em′

)
ẽm|ŝm · n̂|

≤ ∑
m wm|ŝm · n̂|∑m′ rmm′

(
D(1−σ′)

32 e2
m′ + 8

D(1−σ′) ẽ
2
m

)

≤ D(1−σ′)
16

∑
m′:ŝm′ ·n̂≥0 wm′ |ŝm′ · n̂|e2

m′ + 8
D(1−σ′)

∑
m:ŝm·n̂≤0 wm|ŝm · n̂|ẽ2

m,

when the angular mesh is fine enough.
Therefore,

∑
m wm <

∑
m′ rmm′em′ , ẽm >∂Ωm

−≤
D(1−σ′)

16

∑
m wm << em >>2

∂Ωm + 8
D(1−σ′)

∑
m wm << ẽm >>2

∂Ωm

Use the same estimate as in Theorem 4 for all other terms, we get
(3.47)
∑
m

wmAm(em, ẽm) ≤ D

4

[
||e||2 +

∑
m

wm(<< e+
m − e−m >>2

Γm
h

+
1− σ′

2
<< em >>2

∂Ωm)

]
+Ch2k+1|φ|2k+1.

Combine (3.46) and (3.47) we have

(3.48) ||e|| ≤ Chk+1/2|φ|k+1.

Again C always denote some generic constant in the proof. ¤

Similar as before, the main difficulty to extend the above proof for the reflection
boundary condition in 3D is due to (1) the difficulty for obtaining the similar
inequality as (2.9) in some pathological case when ŝm is almost tangential to the
boundary at ~x, and (2) the non-uniformity of the angular mesh on the sphere, i.e.,
the failure for establishing the similar claim in Lemma 4.

3.3. Spatial discretization by FDM. Here we only consider 2D FDM (2.4) with
θm ∈ [0, π

2 ), which can be easily extended to other 2D cases or 3D cases. Here, let
‖f‖∞ := maxi,j,m|fi,j,m|, the max norm with respect to both angular and spatial
variables. Without loss of generality, assume 4x = 4y = h. Then we have the
following result on the error estimate of FDM (2.4) for (1.1).

Theorem 6. Assume the solution to (1.1) Φ(~x, ŝ) is C2(Ω × S) and denote
ei,j,m := φh

i,j,m − Φ(xi, yj , ŝm), where φh
i,j,m is the numerical solution from (2.4),

then

(3.49) ‖e‖∞ = O(h) + O(h2
a).
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Proof. For non-boundary nodes, ei,j,m satisfies

(3.50) (a + b + µt)ei,j,m − (aei−1,j,m + bei,j−1,m)− µs

∑

m′
wmm′ei,j,m′ = Ti,j,m

where the local truncation error Ti,j,m = O(h) + O(h2
a) due to first order upwind

difference in space and piecewise linear approximation in angle (Theorem 1).
Let ei,j,m = ||e||∞. Since a + b + µt, a, b and µswmm′ are all non-negative, and

(a + b + µt)− (a + b + µs

∑
m′ wmm′) = µa > 0, at (i, j, m), the linear system has

an M-matrix and we have

(3.51) (a + b + µt)||e||∞ ≤ a||e||∞ + b||e||∞ + µs

∑

m′
wmm′ ||e||∞ + |Ti,j,m|.

Since
∑

m′ wmm′ = 1, we have

(3.52) µa||e||∞ ≤ ||T ||∞.

Let C be the positive lower bound of µa, thus we have proved the statement that

(3.53) ‖e‖∞ ≤ 1
C
‖T‖∞ = O(h) + O(h2

a).

For boundary nodes with general discretized reflection boundary condition (2.8),
• if ŝm · n̂ > 0, i.e., (xi, yj , ŝm) ∈ Γ+, after we use relation (2.8) to substitute

all ei,j,m′ with ŝm′ · n̂ ≤ 0, we have

(a + b + µt)ei,j,m − (aei−1,j,m + bei,j−1,m)

−µs(
∑

m′:ŝm′ ·n̂>0 wmm′ei,j,m′ +
∑

m′:ŝm′ ·n̂≤0 wmm′
∑

m′′:ŝm′′ ·n̂>0 rm′m′′ei,j,m′′)

= Ti,j,m

Here Ti,j,m may include the error due to linear interpolation of the exact
reflection boundary condition, which is of order O(h2

a). Since rm′m′′ ≥ 0
and

∑
m′′ rm′m′′ ≤ 1, the M-matrix system is preserved by our angular

discretization at the boundary. The same argument used above shows
‖e‖∞ = O(h) + O(h2

a).
• if ŝm · n̂ ≤ 0, from boundary condition (2.8) we have

ei,j,m =
∑

m′:ŝm′ ·n̂>0

rmm′ei,j,m′ + Ti,j,m

Again Ti,j,m may include the error due to linear interpolation of the exact
reflection boundary condition.

Combining the above cases, we see that ‖e‖∞ = O(h) + O(h2
a) is also true for

boundary nodes. ¤

Since the fully discretized linear system has a M-matrix structure, the ISI (2.6),
which is a Gauss-Seidel iteration, converges and converges faster than the standard
SI (2.7). Here is a simple argument.

Let En := ||φn
i,j,m − φh

i,j,m||∞, by the similar argument in Theorem 3, for ISI
(2.6), we have

(3.54) En ≤ r
∑M

m′=m+1 wmm′

1 + r
∑M

m′=m+1 wmm′
En−1 = (1− ρm)En−1,
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where r = ||µs/µa||∞ and ρm = 1
1+r

∑M
m′=m+1 wmm′

.

Similarly, for SI (2.7), we have

(3.55) En ≤ r
∑M

m′=1 wmm′

1 + r
∑M

m′=1 wmm′
En−1 = (1− ρJ)En−1.

with ρJ = 1
1+r . Obviously, ISI converges faster than SI since ρm > ρJ .

When scattering is weak, e.g., r = ||µs/µa||∞ ¿ 1, or in the case of forward-
peaking regime, which is usually the case in optical imaging, e.g., g ∼ 1 in H-G,
1−wmm ¿ 1, it can be seen easily from the above argument that the improvement
of ISI over SI is significant. In the extreme case with g = 1, wmm′ = 0 for m 6= m′,
ISI takes only one iteration when the spatial ordering is along the characteristic for
each transport direction. When scattering is dominant (r >> 1) and f is isotropic,
or the domain is optical thick, even ISI may converge quite slow. Since ISI captures
transport effectively and is a smoothing operation, it is used as a natural relaxation
scheme for a multigrid algorithm in both space and angle [4], which can deal with
RTE in different regimes effectively.
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