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H-polarized electromagnetic fields of the Bloch form. Vari-
ous theoretical methods for 2D photonic crystals were de-Using analytical methods we develop an accurate and efficient

algorithm for computation of the spectrum and eigenmodes for a veloped in [25] for sinusoidally and rectangularly modu-
2D photonic crystal which comprises a periodic array of parallel lated dielectric constants and in [16, 20] for a periodic array
rods of air of a square cross section embedded in a background of parallel dielectric rods of circular cross section whoselossless medium of higher dielectric constant. The numerical analy-

intersections with perpendicular planes form a triangularsis of dependence of the spectral bands on the parameters of the
or square lattice. Similar structures were studied theoreti-2D photonic crystal is carried out. It gives a reliable base for the

optimal design of 2D photonic crystals. Q 1997 Academic Press cally and experimentally in [17, 18]. All those results (see
also [5, 7, 15, 22]) suggest the possibility of a gap (or
pseudogap) regime for some two-component periodic di-

1. INTRODUCTION electrics. The common approach to the computations of
bands and gaps is based on the decomposition of the fieldsThe propagation of electromagnetic (EM) waves in peri-
into plane waves, i.e., standard Fourier series, with theodic and disordered dielectrics has attracted much atten-
consequent series truncation. The clear advantage of thistion in recent years (see [3, 25, 12–14, 21] and references
approach is that, at least theoretically, it works for anytherein). Periodic dielectric structures are often referred to
periodic dielectric structures. However, in practice, theas photonic crystals. The fundamental similarity between
truncation severely limits the accuracy of the plane-wavephotonic and solid crystals lies, of course, in the media
method [25, 23]. The reason for this can be briefly explainedperiodicity implying band structure of its spectrum and the
as follows. To enhance the multiple scattering which givesBloch eigenmodes [1]. In particular, if there exists a gap
rise to the gaps the high contrast dielectric structuresin the frequency spectrum of a photonic crystal, then EM
should be considered. The high contrast in the mediumwaves of those frequencies will fail to propagate in the
means strong discontinuities in the position-dependent di-medium. The latter phenomenon is of great theoretical and
electric constant «(x) and, hence, the series of plane wavespractical significance and can be used for the fabrication of
for «(x) converges to it very slowly. The latter necessitatesa variety of novel optical devices such as high efficiency
taking large numbers of plane waves, resulting in enormouslasers, laser diodes, highly efficient wave guides, optical
dimensions of the matrices to be handled [25, 23].transistors, high speed optical switches and more (see [3,

Another approach to the computation of the bandgap25] and references therein). The experimental results (see
structure is based on finite-difference approximation of[24, 4, 27]) for some periodic dielectric structures suggest
Maxwell’s equations. In the T-matrix method [19], a trans-that photonic gap regime can be achieved and fabrication
fer matrix is calculated by integration of the wavefield toof 2D photonic crystals in the nanoscale was reported in
find the change of the electric and magnetic fields in adja-[26].
cent layers of the dielectric. Unlike the T-matrix approach,The computation of bands and gaps and other spectral
the R-matrix method relates the electric field of adjacentattributes for 2D photonic crystals, not to mention 3D
layers to the magnetic field on both sides. A comparisonperiodic dielectrics, is a challenging numerical problem
of the two methods is discussed in [6].because of the high dimensions of the matrices involved.

An alternative to the plane-wave method we employThe theory of 2D photonic crystals reduces to the investiga-
here is based on the following simple observation. Thetion of two scalar equations for the so-called E- and
failure of the plane-wave series for a Bloch eigenmode,
say C, to converge well is caused by the discontinuities of1 The U.S. Government’s right to retain a nonexclusive royalty-free
C and its partial derivatives associated with the discontinu-license in and to the copyright covering this paper, for governmental

purposes, is acknowledged. ity of the dielectric constant «(x). A reasonable way to
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= 3 H 5
1
c

­D
­t

, = · B 5 0, B 5 eH, (2)

where E, D, H, and B are the electric field and induction
and the magnetic field and induction, respectively, and c
is the velocity of light. We assume that e ; 1 (the condition
that holds for many dielectric materials). The dielectric
constant « is supposed to be position-dependent and we
ignore its dependence on the frequency. Denoting by x1,
x2, x3 and e1, e2, e3 the space coordinates and the standard
basis vectors we assume that « 5 «(x1, x2) is a 2D-
periodic function,

«(x1 1 Ln1, x2 1 Ln2) 5 «(x1, x2), (3)

FIG. 1. A slab of 2D photonic crystal composed of lossless dielectric
where L is the linear dimension of the square primitivematerial embedded in air background. Only the waves propagating in

the horizontal plane are considered. cell L[0, 1]2 and nj are any integers. The space distribution
of the dielectric within one cell of period, scaled by the
factor L21, is shown in Fig. 2a. Note that dL is the distance

overcome that kind of problem is to take, instead of plane between the air columns and 0 , d , 1.
waves, a set of orthogonal functions W̊n, called in the sequel We will consider the waves propagating along the plane
the basis waves, that have appropriate discontinuities asso- ke1, e2l. Then the magnetic and electric fields H and E will
ciated with «(x). Moreover, if one chooses the basis waves depend only on x1, x2:
W̊n which take into account more features of the medium,
then the numerical implementation can be even more

H 5 H(x1, x2), = · H 50; E 5 E(x1, x2), = · «E 5 0.efficient.
(4)The construction of the basis waves W̊n employs eigen-

functions of auxiliary 1D Schrödinger equations that are
similar to 1D equations for classical waves. For those 1D Proceeding in the standard fashion we plug into the Max-
eigenproblems we develop an efficient analytical approach well equations (1)–(2) the harmonic in time fields
using a phase function allowing fast and precise computa-
tion of a large number of the 1D eigenfunctions and eigen-

H(x, t) 5 H(x1 , x2)e2igt, E(x, t) 5 E(x1 , x2)e2igt, (5)values. Since such 1D eigenvalue problems arise naturally
in the theory of 1D periodic Schrödinger equations with
periodic potentials [1] and in problems of diffraction by

H 5 3
H1

H2

H3

4, E 5 3
E1

E2

E3

4 (6)lamellar dielectric grating [2], we believe that the phase
method we apply here is of interest in its own right.

We consider a lossless dielectric medium shown in Fig.
1 consisting of air columns embedded in an optically dense

and arrive at the following eigenvalue problem:background of dielectric constant « . 1. Such a type of
medium was thoroughly studied in [8–9]. Based on the
analytical results for the spectrum and the Bloch eigen-

= 3 E(x1 , x2) 5
ig
c

H(x1 , x2),modes from [8–9] we construct the basis hFnj as described
below and then use it in the Rayleigh–Ritz procedure for
numerical analysis of the spectral attributes of the medium. = 3 H(x1 , x2) 5 2

ig
c

«E(x1 , x2), (7)
Computation of the spectra of some 2D photonic crystals
based on [8–9] was carried out in [10] by a somewhat = · «E(x1 , x2) 5 0, = · H(x1 , x2) 5 0. (8)
different approach.

Our treatment of dielectric media is based on Max-
From now on we will denote the two component quantitieswell’s equations,
(x1, x2), (y1, y2), ... by the vectors x, y, ..., respectively. It
is convenient at this point to scale the space and other

= 3 E 5 2
1
c

­B
­t

, = · D 5 0, D 5 «E, (1)
quantities of interest as
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a b

FIG. 2. Distribution of the dielectric in the cell of period (cross sections) for (a) the main problem and (b) for the auxiliary exactly solvable model.

Since «(y) is a periodic function we take E3 and H3 in the
yj 5 xj L21, V 5

Lg
c

, «(y) 5 «(x). (9) Bloch form,

E3(y) 5 eik?yE(k, y), H3(y) 5 eik?yH(k, y),Then Eqs. (7)–(8) take the form

where E(y) and H(y) are periodic functions satisfying
=y 3 E(y) 5 iVH(y), =y 3 H(y) 5 2iV«(y)E(y) (10)

equalities similar to (12). Then plugging them into (13)
=y · «(y)E(y) 5 0, =y · H(y) 5 0. (11) and (14) we obtain

2(­2
1,k1

1 ­2
2,k2

)E 5 V2«E, ­j,k 5 ­j 1 ik, 0 # y1 , y2 # 1, (15)The periodicity condition (3) now reads

«(y 1 n) 5 «(y) (12) 2 F­1,k1

1
«

­1,k1
1 ­2,k2

1
«

­2,k2GH 5 V2H, 0 # y1 y2 # 1. (16)

for any integer n 5 (n1, n2).
The properties of the eigenvalue problems (15) and (16)It is well known [11] that the spectral analysis of the
were thoroughly analyzed in [8]–[9] by analytical methods.problem (7)–(8) can be reduced to two scalar equations
Based on them we will proceed as follows. Let us considerassociated with two polarizations: (i) E-polarized fields (or
first the problem (15). Following [9] we introduce the auxil-TM modes) when H3 5 0 and E1 5 E2 5 0; and (ii)
iary periodic distribution of the dielectricH-polarized fields (or TE modes) when E3 5 0 and H1 5

H2 5 0. Namely, for E-polarized fields the equation

«8(y) 5 r(y1) 1 r(y2), r(y) 5 H« 2 As, 0 # y # d,

As, d , y , 1,
(17)2(­2

1 1 ­2
2)E3(y) 5 V2«(y)E3(y), ­j 5

­

­yj
(13)

r(y 1 n) 5 r(y).

holds, while for H polarization we have and the corresponding eigenvalue problem,

2(­2
1,k1

1 ­2
2,k2

)E 5 V2«8(y)E, ­j,k 5 ­j 1 ik, 0 # y1 , y2 # 1.
2 F­1

1
«(y)

­1 1 ­2
1

«(y)
­2GH3(y) 5 V2H3(y). (14)

(18)
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A cross section of the medium with the dielectric constant
H(k, y) 5 ON

n1,n250
HnW̊H,n(k, y) 5 ON

n
HnW̊H,n(k, y), (23)

«8 is shown in Fig. 2b. Note that the two dielectric functions
«(y) and «8(y) differ only in the smaller square [0, d]2.

Since in (18) we can separate the variables, the set of
and then we find the extreme values of the ratio of qua-eigenvalues and eigenfunctions for the problem (18) can
dratic forms,be parameterized by two nonnegative indices n1 and n2,

namely, V̊E,n1n2
(k1, k2) and W̊E,n1n2

(k1, y1; k2, y2), and they
can be efficiently found in terms of the eigenvalues and
eigenfunctions of some auxiliary eigenvalue problems (see

E
[0,1]2 «21(y)u=yH(k, y)u2 dy

E
[0,1]2 uH(k, y)u2 dy (24)[9] and the next sections).

Having found V̊E,n(k) and W̊E,n(k, y), we represent the
eigenmode E(k, y) of Eq. (15) in terms of the waves
W̊E,n(k, y), 5

E
[0,1]2 «21(y) u=y oN

n HnW̊H,n(k, y)u2 dy

E
[0,1]2 uoN

n HnW̊H,n(k, y)u2 dy
,

E(k, y) 5 ON
n1,n250

EnW̊E,n(k, y) 5 ON
n

EnW̊E,n(k, y), (19)
as well as the vectors for which the extreme values are at-
tained.

Thus, instead of plane wave decomposition we use de-where N is the truncation parameter. Then using the
compositions (19) and (23) for the electric and magneticRayleigh–Ritz method we seek the eigenvalues as the ex-
fields into the waves W̊E,n(k, y) and W̊H,n(k, y), respectively,treme values of the ratio of quadratic forms
which will be referred to as the basis waves.

2. EIGENMODE DECOMPOSITION INTOE
[0,1]2 u=yE(k, y)u2 dy

E
[0,1]2 «(y)uE(k, y)u2 dy (20)

BASIS WAVES

Here we describe how we find decomposition of the
eigenmodes WE,n(k, y) and WH,n(k, y) of the main eigen-

5
E

[0,1]2 u=y oN
n EnW̊E,n(k, y)u2 dy

E
[0,1]2 «(y) uoN

n EnW̊E,n(k, y)u2 dy
value problems (15) and (16), respectively, on the basis
waves W̊E,n(k, y) and W̊H,n(k, y). Let us start from the
E-polarized waves. The waves W̊E,n(k, y) are the eigen-
modes of the problem (18), i.e.,for the vectors with coordinates hEn, 0 # n1, n2 # Nj. The

eigenfunctions will be the vectors for which the extreme
2[­2

1 1 ­2
2]W̊E,n(k, y) 5 «8(y)V̊2

E,n(k)W̊E,n(k, y). (25)values are attained.
The eigenvalues and eigenmodes for the problem (16)

are found in a similar manner in terms of the eigenvalues This implies that the waves W̊E,n(k, y) are orthogonal with
V̊H, n(k) and eigenmodes W̊H,n(k, y) for the next problem, the weight «8(y),

E
[0,1]2 «8(y)[W̊E,n(k, y)]*W̊E,m(k, y) dy 5 0, n ? m, (26)2 F­1,k1

1
«1

­1,k1
1 ­2,k2

1
«2

­2,k2GH

(21)
5 V2H, 0 # y1 , y2 # 1, where * stands for complex conjugation. After normal-

ization
where

E
[0,1]2 «8(y)uW̊E,n(k, y)u2 dy 5 1, (27)

«j 5 q(yj), q(y) 5 H«, 0 # y , d,

1, d # y # 1.
(22)

condition (26) becomes

Since the variables in (21) can be separated, we can effi- E
[0,1]2 «8(y)[W̊E,n(k, y)]*W̊E,m(k, y) dy 5 dnm . (28)

ciently find V̊H,n(k) and W̊H,n(k, y) in terms of some auxil-
iary 1D problems (see the next sections). After that we
decompose H(k, y) into the waves W̊H,n(k, y), In addition to that, in view of (25) and (28) we get
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E
[0,1]2 [=yW̊E,n(k, y)]*=yW̊E,m(k, y) dy 5 V̊2

E,n(k)dnm . (29) WH,n(k, y) 5 ON
m1,m250

Hn;m(k)W̊H,m(k, y). (37)

Hence, the ratio (20) takes the form
3. CONSTRUCTION OF THE BASIS WAVES

Let us describe the basis waves W̊E,n(k, y) andoN
n V̊2

E,n(k)uEnu2

oN
n uEnu2 2 oN

n,m BnmE*n Em

, (30)
W̊H,n(k, y) using the analytical methods developed in [8–9].

For E-polarized waves we introduce the 2D Schrödinger
operator with a periodic potential,where

Sgc(y1 , y2) 5 [2(­2
1 1 ­2

2) 2 g(r(y1) 1 r(y2) 2 1)]c(y1 , y2),Bnm 5 E
[0,1]2 [«8(y) 2 «(y)][W̊E,n(k, y)]*W̊E,m(k, y) dy

(38)
(31)

with a parameter g and 1D Schrödinger operator,
and we arrive at the eigenvalue problem

sD,kc(y) 5 2c0(y) 2 qD,d(y)c(y), 0 # y # 1, (39)
AEC 5 V2(I 2 B)C, AE,nm 5 V̊2

E,n(k)dnm . (32)
c(1) 5 eikc(0), c9(1) 5 eikc9(0), (40)

Solving the eigenvalue problem (32) we find the eigenval-
whereues VE,n(k) which approximate the eigenvalues of the main

problem (15) and the corresponding eigenvectors hEn;m(k),
0 # m1, m2 # Nj, 0 # n1, n2 # N. They both depend, in

qD,d(y) 5 HDd21, 0 # y , d

0, d # y # 1.
(41)particular, on the truncation parameter N. The eigenmodes

WE,n(k, y) of the problem (15) by virtue of (19) are repre-
sented now as

If jn(k, D) and fn(k, D; y), n 5 0, 1, ..., are respectively
the eigenvalues and the eigenfunctions of sD,k then the

WE,n(k, y) 5 ON
m1,m250

En;m(k)W̊E,m(k, y). (33) eigenvalues jn(k, g) and the eigenfunctions Fn(k, g, y1,
y2) of Sg can be easily found through its one-dimensional
counterparts as

In the case of H-polarized waves, we recall that the
waves W̊H,n(k, y) are the eigenmodes of the problem (21) jn(k, g) 5 jn1

(k1 , gd(« 2 1)) 1 jn2
(k2 , gd(« 2 1)), (42)

and it is easy to see that the ratio (24) takes the form
Fn(k, g; y) 5 e2i(k1y11k2y2)fn1

(k1 , gd(« 2 1); y1)
oN

n AH;nm(k)uHnu2

oN
n uHnu2

, (34) fn2
(k2 , gd(« 2 1); y2). (43)

Now the eigenvalues V̊E,n(k) are obtained as solutions Vwhere the elements AH;n,m of the matrix AH(k) are de-
of the transcendental equationfined by

jn(k, V2) 5 V2 (44)
AH;nm(k) 5 E

[0,1]2 «21(y)[=yW̊E,n(k, y)]*=yW̊E,m(k, y) dy.

(35) and the corresponding eigenfunctions W̊E,n(k, y) then
become

Consequently, we obtain the eigenvalue problem
W̊E,n(k, y) 5 Fn(k, V̊2

E,n(k); y). (45)
AHC 5 V2C, (36)

For H polarization we introduce the auxiliary 1D op-
Similar to (32), the eigenvalues VH,n(k), approximating the erator
eigenvalues of the main problem (16), and the correspond-
ing eigenvectors hHn;m(k), 0 # m1, m2 # Nj, 0 # n1, pkc(y) 5 2(q21(y)c9)9(y), 0 # y # 1, (46)
n2 # N, are found from (36) by truncation. Then the eigen-
modes WH,n(k, y) of (16) can be found from (23) as c(1) 5 eikc(0), c9(1) 5 eikc9(0), (47)
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where u is defined by (22). If zn(k) and hn(k; y), n 5 0, sD,kc(y) 5 jc(y), 0 # y # 1. (52)
1, ..., are respectively the eigenvalues and the eigenfunc-
tions of pk then the eigenvalues V̊2

H,n(k) and the eigenfunc- The eigenvalues jn(k, D) of the problem (52) can be found
tions W̊H,n(k, y) of Sg can be represented as as the solutions for j of the discriminant equation

cos T cos (Ïj(1 2 d))

(53)
V̊2

H,n(k) 5 zn1
(k1) 1 zn2

(k2), (48)

W̊H,n(k, y) 5 e2i(k1y11k2y2)hn1
(k1; y1)hn2

(k2; y2). (49)
2 SD

2
1 jdD sin T

T
sin(Ïj(1 2 d))

Sj
5 cos k,

We remind that W̊E,n(k, y) and W̊H,n(k, y) are periodic T 5 dÏDd21 1 j.
functions of y, i.e.,

Then the eigenfunctions fn(k, D; y) of (52) are repre-
W̊E,n(k, y 1 m) 5 W̊E,n(k, y) (50) sented as

W̊H,n(k, y 1 m) 5 W̊H,n(k, y) (51)
f(k, D; jn; y)

for all m with integer-valued components.
5 H a11 cos(P1y) 1 a12 sin(P1y), 0 # y , d,

a21 cos(P2(y 2 d)) 1 a22 sin(P2(y 2 d)), d # y , 1,4. AUXILIARY 1D PROBLEMS: THE PHASE METHOD
(54)

In this section we develop a phase method for the effi-
withcient computation of the eigenvalues of the auxiliary 1D

operators (39)–(40) and (46)–(47). These eigenvalue prob-
a11 5 P21

2 cos(P1d) sin(P2(1 2 d))lems are similar to those arising in 1D periodic solids [1],
wave propagation in two component layered media, and 1 P21

1 cos(P2(1 2 d)) sin(P1d), (55)
diffraction by lamellar dielectric grating (see [2] and refer-

a12 5 (P1P2)21[0.5Dd21 sin(P1d)ences therein).

sin(P2(1 2 d)) 1 iP1P2 sin k], (56)
4.1. E–Polarized Wave

a21 5 P21
2 sin(P2(1 2 d)) 1 P21

1 sin(P1d)eik, (57)
Consider the Schrödinger operator sD,k defined by (39)–

a22 5 P21
2 [eik cos(P1d) 2 cos(P2(1 2 d))], (58)(40) and the corresponding eigenvalue problem

ba

FIG. 3. A typical graph (a) of the discriminant equation (53). Intersection points of the curve with the straight lines 61 (corresponding to
k 5 0, f) are solutions of Eq. (53). Their separation becomes a challenging problem for large j. After representation (64)–(65) the phase curve
CE has only one intersection with the horizontal curves in the given interval. Bold points in (b) correspond to intersections of the discriminant
curve with the line 11.
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ba

FIG. 4. A typical graph (a) of the discriminant equation (67). Intersection points of the curve with the lines 61 (corresponding to k 5 0, f)
are solutions of Eq. (67). Their computation becomes a challenging problem for closely-spaced zn. After representation (77)–(78) the phase curve
CH has only one intersection with the horizontal curves in the given interval. Bold points in (b) correspond to intersections of the discriminant
curve with the line 11.

AE(D, d, T) cos CE(D, d, T) 5 cos k, (60)P1 5 ÏDd21 1 jn , P2 5 Ïjn . (59)

where
From a typical graph of (53) for k 5 0, f shown in Fig.

3a one can see that numerical separation of neighboring AE(D, d, T)
jn becomes a challenging problem as j increases. To rem-
edy this, let us rewrite (53) in the phase form

5HÏ1 1 n sinh2 a, 0 # T # Ïd,

Ï1 2 n sin2 a, T $ Ïd,
(61)

CE(D, d, T)

5 5
T 1 arctan (n1 tanh a), 0 # T # Ïd,

T 1 a 1 arctan Sq
sin 2a

1 2 q cos 2aD, T $ Ïd,

(62)

d 5 Dd, a 5
(1 2 d)Ïud 2 T 2u

d
, (63)

n 5
d 2

4T 2 (d 2 T 2)
, n1 5

1
2

2T 2 2 d

TÏuT 2 2 du
, q 5

n1 2 1
n1 1 1

.

Observe that the phase CE(D,d, T) is an increasing func-
tion of T and the amplitude AE(D, d, T) $ 1. Now the
solution of (60) is reduced to the transcendental equation
for T,

CE(D, d, T) 5 5 H2fn 1 h

2fn 2 h
, n 5 0, 1, ..., (64)

FIG. 5. Pattern for enumeration of two-dimensional integer points h 5 arc cos S cos k

AE(D, d; T)D, 0 # h # f. (65)
n 5 (n1, n2) by integer numbers according to their proximity to the origin.
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a

b

FIG. 6. Profile of the spectral surfaces (dispersion relations) fn(k1, k2) 5 gn(k1, k2)/2f for (a) E and (b) H polarization. The plane kk1, k2l is
perpendicular to paper. The views show gaps in both spectra. Due to the symmetry one quarter of each Brillouin zone is shown. « 5 20, d 5 0.1,
L 5 1 cm.

Since the phase CE(D, d; T) is an increasing function of 4.2. H–Polarized Waves
T and AE(D, d; T) $ 1 then for any integer n and nonnega-

Consider the operator pk defined by (46)–(49) and the
tive D Eqs. (64)–(65) clearly have a unique solution for

corresponding eigenvalue problem
T. Its graphical representation is given in Fig. 3b. Note
that near the point j 5 596 in Figs. 3a and 3b there are
two closely spaced eigenvalues (which can even merge into pkh(y) 5 zh(y), 0 # y # 1. (66)
one of multiplicity two for some values of « and d) lying
on the straight line 11. However, in Fig. 3b, after the phase
transformation, there is always exactly one intersection The eigenvalues zn(k) of the problem (66) can be found

from the discriminant equationpoint of the phase curve with each of the horizontal lines.
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TABLE I
b12 5

Ï« cos n cos t 2 Ï«eik 2 sin n sin t

Ïzn «
, (70)

Spectrum Bands of E and H-Polarized
Waves for « 5 20, d 5 0.1, L 5 1 cm

b21 5
sin n 2 Ï«eik sin t

Ïzn«
, b22 5 2

cos n 2 eik cos t

Ïzn«
, (71)

Zone E-band, GHz H-band, GHz

n 5 Ïzn(1 2 d), t 5 Ïzn«d. (72)1 [0.00, 7.10] [0.00, 9.21]
2 [7.76, 10.8] [13.9, 17.7]
3 [8.85, 11.3] [15.8, 19.5] Similar to Eq. (53), solutions zn of (67) may be closely
4 [12.7, 14.9] [17.8, 24.0] spaced (Fig. 4a) that makes the computation difficult. The
5 [12.7, 15.7] [24.1, 28.1]

form of (67) which is convenient for computation of eigen-6 [16.4, 18.6] [25.3, 28.7]
values may be taken as

Note. Numbering of zones does not take into account their multiplicity.
An absolute band gap occurs in the interval [11.3 2 12.7] GHz. AH(d, «; z) cos CH(d, «; z) 5 cos k, (73)

where
cos(Ïz(1 2 d)) cos(Ïz«d)

(67) AH(d, «, z) 5 Ï1 1 ( f 2 1) sin2 t, t 5 Ïz«d, (74)
2

«1/2 1 «21/2

2
sin(Ïz(1 2 d)) sin(Ï«d) 5 cos k.

C(d, «; z) 5 n 1 t 1 arctan Sq
sin 2t

1 2 q cos 2t
D,

The eigenfunctions hn(k; y) then have the representation
n 5 Ïz(1 2 d), (75)

h(k; zn; y)
f 5

« 1 «21 1 2
4

, q 5
f1 2 1
f1 1 1

,

5 H b11 cosÏzc«y 1 b12 sin(Ïzn«y), 0 # y , d,

b21 cos(Ïzn(y 2 d)) 1 b22 sin(Ïzn(y 2 d)), d # y , 1,
f1 5

«1/2 1 «21/2

2
. (76)

(68)

where Note that as in the case of E polarization the phase
CH( d, «; z) is an increasing function of z and the amplitude
AH(d, «; z) $ 1. Now the eigenvalues zn(k) of problemb11 5 2

sin n cos t 1 Ï« cos n sin t

Ïz «
, (69)

(67) can be found as the solutions of the problem

ba

FIG. 7. Density of states for (a) E-polarization and (b) H-polarization for « 5 20, d 5 0.1, L 5 1 cm. The solid lines correspond to the main
problems (15)–(16) with the distribution of the dielectric shown in Fig. 2a. The dashed curves refer to the auxiliary separable model whose distribution
of the dielectric is shown in Fig. 2b for E-polarization (a) and is given by (22) in the case (b) of H-polarization.
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ba

FIG. 8. Density of states for (a) E-polarization and (b) H-polarization for « 5 50, d 5 0.04, L 5 1 cm. The solid lines correspond to the main
problems (15)–(16) with the distribution of the dielectric shown in Fig. 2a. The dashed curves refer to the auxiliary separable model whose distribution
of the dielectric is shown in Fig. 2b for E-polarization (a) and is given by (22) in the case (b) of H-polarization.

5.1. Band and Gap Computation
CH(d, «; z) 5 H2fn 1 h

2fn 2 h
, n 5 0, 1, ..., (77)

Calculations confirm the initial assumption of the faster
convergence of the method over Fourier transform ap-
proach (the plane-wave method). To obtain the first fourh 5 arc cos S cos k

AH(d, «; z)D, 0 # h # f. (78)
photonic bands of E- and H-polarized waves within 1%
accuracy it is required N 5 26 basis functions in the Ray-
leigh–Ritz method. As in the 1D case, band boundariesSince the phase CH(d, «; z) is an increasing function of z
correspond to k1,2 5 0 or k1,2 5 f. For every wave vectorand AH(d, «; z) $ 1 the problem (77)–(78) clearly has a
k 5 (k1, k2) we calculate N eigenvalues of Eqs. (15) andunique solution. Its graphical representation is given in
(16). When k runs over the square (0, f) 3 (0, f) (oneFig. 4b. In this case, as in Fig. 3a, after the phase representa-
quarter of the Brillouin zone) the eigenvalues of the prob-tion two closely spaced points near z 5 196 in Fig. 4a now
lems (15) and (16) sweep the dispersion surfaces. Figurelie on different curves in Fig. 4b.
6 shows profiles of several first dispersion surfaces for E-
and H-polarized waves for « 5 20 and d 5 0.1. The clear-5. SPECTRAL ATTRIBUTES COMPUTATION
ance between the surfaces indicates the existence of gaps.

In this section we compute the spectra, dispersion rela- All results of the computation given below are obtained
tions, and eigenmodes for some values of « and d. The for the cell length of 1 cm.
computation of the eigenvalues VE,n(k), VH,n(k), VE,n(k), For those data there exist three gaps for E-polarization,
and V̊H,n(k) and the eigenfunctions WE,n(k, y), WH,n(k, y), and one gap for H-polarization above which all dispersion
W̊E,n(k, y) and W̊H,n(k,y) is based on the formulas described surfaces are overlapped.
in the previous sections. We recall that the actual spectral Both E and H spectra reveal the existence of an absolute
band for an index n and, say E polarization, is an interval band gap in the interval [11.3–12.7] GHz shown in Table I.
run by the quantity VE,n(k) as k1 and k2 run over the Figure 7a shows the density of states for E-polarization
interval [2f ,f]. when « 5 20 and d 5 0.1, computed with 1681 uniformly

For numerical solution of the eigenvalue problems we spaced values of (k1, k2) inside one-quarter of the Brillouin
need to enumerate the eigenvalues and eigenfunctions in- zone. The solid line corresponds to the main problem (15)
volved by one-dimensional indices. To this end, let us enu- with the distribution of the dielectric shown in Fig. 2a. The
merate two-dimensional integer points by integer numbers dashed curve refers to the auxiliary separable model (18)
according to their proximity to the origin and in the coun- with the dielectric distribution presented in Fig. 2b. In Fig.
terclockwise direction. The correspondence between posi- 7b we present the density of states for H polarization for

« 5 20 and d 5 0.1. The solid line represents the maintive integer index n and indices n is shown in Fig. 5.
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a

b

FIG. 9. Typical distributions of E (a) and H polarized (b) Bloch eigenfunctions for one cell of period: « 5 20, d 5 0.1, L 5 1 cm.

problem (16) corresponding to the distribution of the di- the two problems is. Figure 8 shows the distribution of the
density of states for « 5 50 and d 5 0.04. For these dataelectric in Fig. 2a while the dashed line is obtained for

the auxiliary separable model (21) having the dielectric conditions (79) is more pronounced and, as a result, the
first two bands for E- and H-polarized waves are in gooddistribution (22). Although conditions
agreement with the auxiliary model.

«d @ 1 and «d3/2 ! 1 (79)
5.2. Eigenmode Computation

The computation of eigenmodes for E-polarization iswhich guarantee (see [8–9]) proximity of the results of the
main and auxiliary problems do not hold, the first bands of based on the Rayleigh–Ritz method (relations (32), (33));

for H-polarization it is based on (36) and (37). Typicalthe two problems correspond closely. The better condition
(79) holds the more pronounced the agreement between distributions of E- and H-polarized normalized eigenfunc-
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a

b

FIG. 10. Typical distributions of the energy associated with E (a) and H polarized (b) Bloch eigenfunctions for the eigenmodes shown in Fig.
9 in a specimen containing 4 3 4 primitive cells: « 5 20, d 5 0.1, L 5 1 cm.

tions for the frequencies 27.6 GHz and 49.2 GHz, respec- investigating the spectrum distribution on the dielectric
parameter of the lattice for a given geometry. Figure 11tively, are presented in Fig. 9. It shows that the electric

field propagates mainly in the dielectric while the major shows the dependence of photonic bands and gaps for E-
(a) and H-polarized (b) waves for d 5 0.1. The secondpart of the energy of H-polarized waves is concentrated

in the air columns. This statement is clearly illustrated in gap is the widest out of three gaps of E-polarized waves,
whereas H-polarized waves have only one wide gap in theFig. 10 by the energy distribution of the eigenmodes plotted

in Fig. 9, in a specimen containing 4 3 4 primitive cells. given range of «.
The energy of E-polarized waves is almost entirely concen-

7. ACCURACY ANALYSIStrated in the dielectric walls, whereas the energy of
H-polarized waves is distributed uniformly, in the average,

Results of the computations were checked in differentover the primitive cell.
ways. The spectra of E- and H-polarized waves completely
agree with those in the asymptotic case (79) for which6. SPECTRUM DEPENDENCE ON THE MEDIUM
exact estimates were obtained in [8–9]. Truncation analysis
shows that for « 5 20 and d 5 0.1 it requires 146 basisFast performance of the program makes it possible to

plot the band-gap diagram for a wide range of «, thus functions in the Rayleigh–Ritz method to get the 10 first
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ba

FIG. 11. Dependence of photonic bands and gaps on the dielectric constant « for E (a) and H polarized (b) waves for d 5 0.1 and L 5 1 cm.
The hatched regions correspond to the spectral bands. Unshaded regions represent spectral gaps.

spectral bands of E- and H-polarized waves with an accu- performance of the code makes it very practical for the
optimal design of 2D photonic crystals.racy of four significant digits.

A peculiarity of the roots of the discriminant equations
(53) and (67) which was revealed in its solution should ACKNOWLEDGMENT AND DISCLAIMER
also be mentioned. It turned out that for some pairs of « and
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