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Abstract: We consider electromagnetic waves in a medium described by a position
dependent dielectric constas(tc). We assume that(x) is a random perturbation of a
periodic functioreg(z) and that the periodic Maxwell operatigky = V* ED%I)VX has a

gap in the spectrum, whef@* W& = Vx W, We prove the existence of localized waves,
i.e., finite energy solutions of Maxwell's equations with the property that almost all of
the wave’s energy remains in a fixed bounded region of space at all times. Localization
of electromagnetic waves is a consequence of Anderson localization for the self-adjoint
operatordl = V* ?i)vx. We prove that, in the random medium describecd: (),

the random operatd exhibits Anderson localization inside the gap in the spectrum of
M. This is shown even in situations when the gap is totally filled by the spectrum of
the random operator; we can prescribe random environments that ensure localization in
almost the whole gap.
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1. Introduction

This is the second of a series of papers on the localization of classical waves. In the
first paper we discussed some general aspects of the localization of classical waves, and
proved the existence of localized acoustic waves in appropriate random media [FK3].
The present paper is concerned with the localization of electromagnetic waves. This
phenomenon arises from coherent multiple scattering and interference, when the scale
of the coherent multiple scattering reduces to the wavelength itself. It has numerous
potential applications (e.g., [DE, J1, J2, VP, JIMW]), for instance, the optical transistor,
which explain the recent interest in the localization of light.

Although the localization of light has a lot in common with the localization of
acoustic waves, the vector nature of electromagnetic waves poses additional problems for
the appropriate arguments, let alone their numerical implementation. (For a discussion
of the failure of standard arguments to work for classical waves see [An2].) In this
paper we develop adequate tools in order to prove the localization of electromagnetic
waves, in a randomly perturbed, lossless periodic dielectric medium with a gap in the
spectrum. These tools include interior estimates for the intensity of the electromagnetic
field components, properties of an electromagnetic analog of Dirichlet problems in finite
domains, bounds on traces of the Green'’s functions associated with the relevant Maxwell
operators, existence of polynomially bounded generalized eigenfunctions, exponential
decay of the Green'’s functions of the underlying periodic medium if the frequency falls
in a spectral gap, Wegner-type estimates of the density of states, and more. After all
these preparations the proof of localization goes along the same guidelines as in the case
of acoustic waves [FK3]. The multiscale analysis developed in [FK3], based on studies
of Anderson localization for random Sdutinger operators [FS, FMSS, DK, Sp, CH],
is extended to the case of electromagnetic waves, using the new technical tools. As far
as the essence of the localization phenomenon is concerned, it remains the same. As in
the case of electron waves, a strong enough single defect in a periodic dielectric medium
with a spectral gap generates exponentially localized eigenmodes [FK4]. If we have a
random array of such defects then, under some natural conditions, the electromagnetic
wave tunneling becomes inefficient (that is the main result of the multiscale analysis)
and, hence, Anderson localization of electromagnetic waves occurs in spectral gaps of
the underlying periodic medium.

To create an environment which would favor localization, one considers first a per-
fectly periodic dielectric medium (a “photonic crystal”, e.g., [JMW]), such that the
associated spectrum has band gap structure; the most significant manifestation of co-
herent multiple scattering is the rise of a gap in the spectrum (“photonic band gaps”). If
such a periodic medium with a gap in the spectrum is slightly randomized, eigenvalues
with exponentially localized eigenfunctions should arise in the gap. If the disorder is
increased further within some limits the localized states can fill the gap compiEtéedy.
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is exactly the medium in which we study electromagnetic waves; we assume an underly-
ing periodic dielectric medium with a gap in the spectriie will slightly randomize

such periodic media with a gap in the spectrum and show that, under pretty reasonable
hypotheses, Anderson localization occurs in a vicinity of the edges of the gap. (The
existence of periodic dielectric media exhibiting gaps in the spectrum has been proved
rigorously for 2D-periodic dielectric structures [FKul, FKu2].)

We previously considered these questions and mediain a lattice approximation, both
for classical waves [FK2] and for Saidinger operators [FK1]. The strategy of this paper
and of [FK3] is the same one we used in [FK2], the main differences are of technical
nature and due to working on the continuum instead of the lattice. Acoustic waves
were similarly treated in [FK3]. Localization created by (non-random) local defects was
studied in [FK4].

1.1. Maxwell’s equations and localizationln a linear, lossless dielectric medium
Maxwell’s equations are given by

piH = -V xE, V- uH =0, W
eJE=V xH, V-eE=0,

whereE = E(z, t) is the electric fieldH = H(z, t) is the magnetic fields = ¢(x) is the
position dependent dielectric constant, and p(z) is the magnetic permeability. We
use the Giorgi system of units.

The energy densit¥(x,t) = &x e(z, t) and the (conserved) energy= &y g of a
solution {H, E) of the Maxwell’s equations (1) are given by

E(z,t) = % [e(@)|E(x, )2 + p(@)|H(z, 1))?], €= /R35(z,t) de. 2)

Maxwell’s equations can be recast as a 8dirger-like equation (i.e., a first order
conservative linear equation):

e,
—Zg‘ljt :M\I’t7 (3)

H 0 iy
qjt:(EZ>eH7 M:[ivxuo :|’ (4)

whereH = S, @ S; is the Hilbert space of finite energy solutions; for a given
o = o(z) > 0, bounded from above and away from 0, we Sgto be the closure in
LA(R?; C®, o(x)dx) of the linear subset of functionswith o € CL(R?; C3), VoW =

0. The matrix operataV, whereV* denotes the operator given By*¥ =V x W =
curl &, has a natural definition as a self-adjoint operatdHbiThe solution to (3) is then
given by, = &™y, it has energy

with

1 1
&= EH‘I‘tH%{ = é”‘l’oHﬁ %)

A localized electromagnetic wave can be characterized as a finite energy solution of
Maxwell's equations with the property that almost all of the wave’s energy remains in a
fixed bounded region of space at all times, e.g.,
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1
lim inf = E(x,t)dxr =1 6
Jm g [ s ©)
If the operatorM has an eigenvalug with eigenmoded,,, i.e., My, = w¥,,,
with ¥, € H, ¥, # 0, then¥,,; = €W, is a localized electromagnetic wave,
i.e., it satisfies (3) and (6). Notice that in this case is also an eigenvalue ¥l
with eigenmodel,,, soV,, ; = e~**“ W, is also a localized wave, sincelfdenotes the
antiunitary involution corresponding to complex conjugatiofiihhe.,J¥ = ¥, we have
JMJ = —M. It also follows that the spectrum Bl is symmetric, i.e.g(M) = —o (M),
with IM.J = M_, M. being the positive and negative partshdf In addition, linear
combinations of eigenmodes Bf give raise to localized electromagnetic waves.

If W, is a solution of Eq. (3), it must satisfy the second order equagtzeﬂ/t =
—M?¥,, so the magnetic and electric fields satisfy the second order equations

0? 1_,1
gt = VIV HL Hees,, @
0? 1 1
@Et:—gVX;VXEt, Et ESE. (8)

The Maxwell operator®ly = %VX 1v* andMg = 1V~ %VX have natural defini-

tions as nonnegative self-adjoint operatorSorandS,, respectively. The two Maxwell
operators are unitarily equivalent, more precisely

Mg = UMuU*, )

whereU : S, — S. is the unitary operator given by
UH:?VXM;%H, H € RanM. (10)
Thusoe(M) = o(M é) U[—a(M |%)]. We obtain solutions of (3) by setting
W, = <eﬂtM3 Ho, Lyt H0> , Hoes,. (11)

Conversely, any solution of (3) can be written as a linear combination of at most four
solutions of this form.

It follows that to find all eigenvalues and eigenmodes¥fy it is necessary and
sufficient to find all eigenvalues and eigenmodesMgy. For if MyH 2 = w?H 2, with
w>0,H,. €S, H, 70, we have

UH,. = — V*H,. (12)
we
and ' .
M (sz, i_ZVXsz> = 40 (sz, i_ZVXsz) . (13)
we we

Conversely, iM(H+,,E+,) = w(H+,, E+y), withw > 0, H+w,E+,) € H, not 0,
it follows thatMH 1, = w?H,, andE4,, = £UH4,, = =2V Hy,,.
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Our strategy for proving the existence of localized electromagnetic waves is the fol-
lowing: first the operatoMy is shown to have pure point spectrum in some closed
interval I C (0, c0), with all the corresponding eigenfunctions being exponentially de-
caying (in the sense of having exponentially decaying l6éatorms). For this operator
we prove that the curl of an exponentially decaying eigenfunction is also exponentially
decaying, so it follows from (9) and (12) that the operakdg has also pure point
spectrum in the closed interva) with all the corresponding eigenfunctions being expo-
nentially decaying. In addition, it ensues from (13) that the operifidnas pure point
spectrum infw € R; w? € I}, with all the corresponding eigenfunctions being expo-
nentially decaying, so the energy densities of the corresponding solutions of (3) are also
exponentially decaying, uniformly in the tirhef x ; (M y) is the corresponding spectral
projection, then any solution of (3) given by (11), witly in the range ofy;(My),
satisfies (6).

The localization of electromagnetic waves is thus a consequence of Anderson local-
ization for operatorMy = %VX %VX onS,, i.e., the existence of closed intervals where
these operators have pure point spectrum with exponentially decaying eigenfunctions.

1.2. Statement of resultsln this article we study electromagnetic waves in a linear,
lossless dielectric medium described by a position dependent dielectric carrstaat).
For most dielectric materials of interest, the magnetic permealpiity is close to one

(e.g., [IMW]), so we seti(z) = 1.
We always assume thatr) is a measurable real valued function satisfying

O0<e_ <e(x) <er <oo a.e. forsome constants. and e.. (14)

Such general conditions arfx), particularly the lack of smoothness, are required on
physical grounds. In practice only a few materials are used in the fabrication of periodic
and disordered media, in which cage) takes just a finite number of values, s@)
is piecewise constant, hence discontinuous. The abrupt changes in the medium produce
discontinuities ire(z), which favor and enhance multiscattering and, hence, localization.

In such a medium electromagnetic waves are described by the formally self-adjoint
Maxwell operator

1
M =M(e) =My = V2V, (15)

acting on the Hilbert space

S={we L2R% C%; we CYR? C° with V- w=0}. (16)

For the rigorous definition, we start by defining the unrestricted Maxwell operator
1
M =M() =V*=V*, (17)
3

as the nonnegative self-adjoint operator/#R>; C), uniquely defined by the non-
negative quadratic form given as the closure of

MY, @) = (V x ¥, %v x @), W, d e CHR? C). (18)

By Weyl's decomposition (see [BS]), we have
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L}R3 CYH=SaG, (19)

whereG, the space of potential fields, is the cIosureLﬁﬁRs; (CS) of the linear subset
(W e CHR? C¥; w=vVyp with ¢ e CYR?}. The space$ andG are left
invariant by M, with G ¢ D (M) and M|, = 0. We defineM as the restriction oft/
toS,i.e,D(M)=D(M)NSandM = M|y, pys- Thus

M = PsMIs = MTs, (20)

with Ps the orthogonal projection on®® andIs : S — LA(R? C) the restriction of
the identity map. Notice that/ =M & Og and 0€ (M), so

o(M) = o(M). (1)

We can thus work with\/ to answer questions about the spectruriviof
In the special case of a homogeneous mediuma(ith= 1, we will use the notation

E= M(l) = (VX)27 E= M(l) = (VX)2|'D((V><)2)QS . (22)

In this article we consider electromagnetic waves in random media obtained by ran-
dom perturbations of a periodic medium. The properties of the medium are described by
the position dependent quantifr), which we will take to always satisfy the following
assumptions.

Assumption 1 (The Random Media).e,(x) = €4, (z) is a random function of the
form

€g.w(T) = €0(2)Vg,w(®) ,With v, u(z) =1+g Z wiui(z), (23)
i€z’
where

() eo(x) is ameasurable real valued function whiclyiperiodic for somg € N, i.e.,
eo(z) = eo(x + ¢i) for all z € R® andi € Z3, with

0 < eo_ < eolz) < eo+ < oo foraex e R (24)

for some constants, _ andeg +.

(i) w;(z) = u(z — i) for eachi € Z*, u being a nonnegative measurable real valued
function with compact support, sayz) = Oif ||z||» < r, for somer, < oo, such
that

0<U-<U@) =) uz) <Us<oo foraezeR’ (25)
i€Z®
for some constant§_ andU,.

(i) w={w;ice ZS} is a family of independent, identically distributed random vari-
ables taking values in the intervgl-1, 1], whose common probability distribution
1 has a bounded density> O a.e. in[—1, 1].

(iv) g, satisfying0 < g < U% is the disorder parameter.
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For electromagnetic waveg ., (x) is the random position dependent dielectric constant
of the medium. Notice that Assumption 1 implies that eagh satisfies (14) with

e+ Teg+ =eo+(1EgUs). (26)
For later use we set

Uy . 1
0 = th 0< —. 27
+(9) 170, With Osg < (27)
The periodic operators associated with the coefficig@t) will carry the subscript
0, i.e., My = M(gg), Mg = M(ggo). We will study the random operators (see [FK3,
Appendix A] for the definition)

Mg =My, =M(gw), Mg=Mg,=M(gw) (28)

It is a consequence of ergodicity (measurability follows from [FK3, Theorem 38])
that there exists a nonrandom g€, such thab(M, ) = (M, ) = X, with prob-
ability one. In addition, the decompositions ®fM, .,) ando (M, ) into pure point
spectrum, absolutely continuous spectrum and singular continuous spectrum are also
independent of the choice afwith probability one [KM1, PF].

In this article we are interested in the phenomenon of localization. According to the
philosophy of Anderson localization we will assume that the opefdiphas at least
one gap in the spectrum.

Assumption 2 (The gap in the spectrum).There is a gap in the spectrum of the oper-
ator M. More precisely, there exi®t< aa < b < b such that

a(Mo) (@, 0] = [a, a] |_JIb, 8],
so the intervala, b) is a gap ino(My).

The following theorem gives information on the locationXf, the (nonrandom)
spectrum of the random Maxwell operatdr,.

Theorem 3 (Location of the spectrum). Let the random operatavl , defined by (28)
satisfy Assumptions 1 and 2. There exigtswith

é(l(i)z)ggog(imin{l,<<2>w1)}, (29)

and strictly increasing, Lipschitz continuous real valued functiefiy and —b(g) on
the interval[O, U%), with a(0) = a, b(0) =b anda(g) < b(g), such that:

(i)
2y (i@, 81 = [a, a(e)] | lb(9), b1 - (30)
(i) For g < go, we havea(g) < b(g) and (a(g), b(g)) is a gap in the spectrum of

the random operatoM ,, located inside the gafu, b) of the unperturbed periodic
operatorMy. Moreover, we have

U_
a<a(l+gUs)™ <alg) < —— (31)
1- gU+
and

b1 gU2) < blg) < ———— <. (32)
(1+gUs)™
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(i) If go < U% we havea(g) = b(g) for all g € [go, U%), and the random operator

MgAhas no gap inside the gaf, b) of the unperturbed periodic operatoty, i.e.,
[a,0] C X,.

Definition 4 (Exponential localization). We say that the random operatir, exhibits
localizationinanintervall C X, if M, hasonly pure point spectrum ihwith probabil-
ity one. We havexponential localizatiom  if we have localization and, with probability
one, all the eigenfunctions corresponding to eigenvaluésie exponentially decaying
(in the sense of having exponentially decaying ldcahorms).

Remark 5.The curls of exponentially decaying eigenfunctionsvbf always have ex-
ponentially decaying local?>-norms (Corollary 14). Thus the corresponding energy
densities (see (2) ) also have exponentially decaying lbé&aiorms, uniformly in the
timet.

Our main results show that random perturbations create exponentially localized
eigenfunctions near the edges of the gap. Our method requires low probability of extremal
values for the random variables; the following two theorems achieve this in different
ways. The results are formulated for the left edge of the gap, with similar results holding
at the right edge.

Theorem 6 (Localization at the edge).Let the random operatoM , defined by (28)
satisfy Assumptions 1 and 2, with

p{(1—~,1]} < K47 for 0 <~ <1, (33)

whereK < oo andn > 3. For anyg < go there exist@(g) > 0, depending only on the
constantg, ¢, co,+, Uz, ry, K, n, an upper bound offp|| ., and ona, b, such that the
random operatoM , exhibits exponential localization in the interfalg) — 6(g), a(9)].

Theorem 7 (Localization in a specified interval). Let the random operatoM, de-
fined by (28) satisfy Assumptions 1 and 2. For any go, givena < a; < az < a(g),
with a(g) — a1 < b(g) — a(g), there existp; > 0, depending only on the constants;,
o+, U+, Ty, a, an upper bound ofip||. and on the givem,, a,, such that if

(2] <

whereg; is defined by:(g1) = a1, the random operatoM , exhibits exponential local-
ization in the intervala,, a(g)].

Theorems 6 and 7 can be extended to the situation when the gap is totally filled by the
spectrum of the random operator, we then establish the existence of an interval (inside
the original gap) where the random Maxwell operator exhibits exponential localization.
Notice that the extension of Theorem 7 says that we can arrange for localization in as
much of the gap as we want.

Theorem 8 (Localization at the meeting of the edges)Let the random operatdvi,
defined by (28) satisfy Assumptions 1 and 2, with

{1 =10}, {1, -1+9)} < K7 for 0 <y <1, (35)
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U+
where K < oo andn > 3. Supposep < # (e.g., if (2)*”~ < 2), so the random

operatorM , has no gap insidéz, b) for g € [go, U%). Then there exi€) < e < Ui — g0
andé > 0, depending only on the constantsso +, U+, ry, K, 7, an upper bound on
||plls, @and ona, b, such that the random operatdt , exhibits exponential localization
in the interval[a(go) — 6, a(go) + 6] forall go < g < go +e.

Theorem 9 (Localization in a specified interval in the closed gap)Let the random
operatorM, defined by (28) satisfy Assumptions 1 and 2. Suppgse Ui (e.qg., if

U+
(9) - < 2), so the random operatdvl , has no gap insidéa, b) for g € [go, U%). Let

a < a1 < az < ago) = b(go) < b2 < b1 < b be given. For any € [go, U%) there exist
p1,p2 > 0, depending only on the constamtsy, co,+, U, 7y, a,b, an upper bound on
lo||cc @nd on the givems, ap, b1, bz, such that if

() o([25)on oo

whereg; andg; are defined byi(g1) = a; andb(g,) = b1 (notice0 < g1, g2 < go < 9g),
the random operatoM , exhibits exponential localization in the intervab, by].

Theorems 8 and 9 are proved exactly as Theorems 6 and 7, respectively, taking into
account both edges of the gap.

Remark 10.Theorems 6 and 8 should be true without the extra hypotheses (33) and (35).
They are used in conjunction with a Combes-Thomas argument to obtain the starting
hypothesis for the multiscale analysis, in the proof of localization. One may expect
estimates similar to Lifshitz tails (e.g., [PF]) for the density of states inside the gap,
which would replace (33) and (35) in the proofs. This is how the starting hypothesis is
obtained for random Scbdinger operators at the bottom of the spectrum [HM].

Combes and Hislop have announced an improved Combes-Thomas argument inside
a gap; they obtain a decay rate proportional to the square root of the product of the
distances to the edges of the gap. With this result we would onlymeeé in Theorem
6, but we would still need to requirg> 3 in Theorem 8.

Theorem 3 is proved in Sect. 4; the proof requires periodic operators and periodic
boundary condition, studied in Sect. 3. Theorems 6 and 7 are proved in Sect. 7 by
multiscale analyses. Dirichlet boundary condition, used in the proofs, is discussed in
Sect. 5. The required Wegner-type estimate is in Sect. 6. The starting hypotheses are
proved first for finite volume Maxwell operators with periodic boundary condition, using
a Combes-Thomas argument for operators with periodic boundary condition (Subsect.
3.2) and Theorem 3. We collect properties of Maxwell operators needed for the proof
of localization in Sect. 2, they include an interior estimate for curls and existence of
polynomially bounded generalized eigenfunctions.

1.3. Notation. We adopt the following definitions and notations:

— Forz = (z1,72,73) € R® we let|z|, = (2} + 25 +2§)Y/? for 1 < p < oo, and
2| = max<j<s|z;|. We setlz| = |z|, and||z|| = |z

— Ap@)={y e R® |y -2l < %} is the (open) cube of side centered a: € R?;
Ar(z) is the closed cube, andl, (z) = {y e R%; —L <y, —az; < £,i=1,2,3}
the half-open/half-closed cube.
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— x4 is the characteristic function of the sétwe write x, 1. = X4, («)-

— A function f onR? is calledg-periodic for somey > 0 if f(z + ¢i) = f(z) for all
z € R¥andi € Z2.

— A domain{? is an open connected subsef®f: its boundary is denoted hys?.

— LP(£2; C% is the space of? measurable functions : £ — C with the norm
lull, = lull,.o = [fq lu@)” dx] P \We will often use the spact?(:2; C%) and
in this case we will writg]|ul|, for [[ull, . If £ = R? we may omit it from the
subscript. We writd.?(£2) if d = 1.

- C"™(82; (Cd) is the linear space of-times continuously differentiable functions:

2 —CY, Co(e (Cd) is the subspace of functions with compact support. We write
cr()ifd=1.

— The domain, spectrum and adjoint of a linear operatare denoted bfp(A), o (A)
and A*, respectively .

— If Ais the quadratic form associated with an operatpits domain will be denoted
by eitherQ(A) or Q(A) . We also write4[¥] for A(Y, W).

— B(X,)) is the Banach space of bounded operators from the normed &ptcthe
normed spac®’; B(X) = B(X, X).

— For a complex number its conjugate is denoted by .

2. Properties of Maxwell Operators

2.1. An interior estimate. Let us consider the first order linear differential operator

.....

closed densely defined operatorb%(Rd; (Cl”), whose domainp(D), is the closure of
Cg°(R%;C") in the norm(||w|3 + || DW3)2.

Given an open seb C R?, we defineD,, as the closed densely defined operator on
L?(£2; C"), definedinthe obvious way far € C>°(£2; C")with {an.5-V}a =1, .,V €
L2(2;CY). If £2' C £2,itis easy to see that if € D(Dy), thenu|o € D(Dg/) with
Doulo = (Dgu) | o, S0 we will simply writeDu to denote the functio® g u.

Let ' = I'(z) be a measurable function @& whose values are x v complex
matrices with

0<TI'(x) <T4l, a.e.forsome constarf. < oo, (37)

1, being ther x v identity matrix. We say that a functiane D(Dy,) is a weak solution
for the equatiolD*I'Du = f in 2, wheref € L?(£2; C"), if

(DW,TDu)o = (¥, f)o forall we CX(2; C). (38)

Theorem 11. Let D andT" be as above. For any > 0 there exists a constaif =

&(d, v, {aa,g}a,p=1,..,0) < oo, depending only on the indicated parameters, such that
if u € D(Dy,) is a weak solution for the equatiad*I' Du = f in an open subse® of

RY, with f € L2(£2;C”), we have

1
(Du,TDu)er < & | [lullg + = 115 (39)
+

for any 2’ C 2 with dist(2’,042) > 4.
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Proof. We consider first the case whéhandJ?’ are open cubes, sdy = A1 (xo), 2 =
Ap_25(x0), for somezg € RY, L > 25. We fix ¢ € C’g°(]Rd) such that 0< ¢(z) < 1,
o) =1in 8, ¢(x) =0in Rd\AL_%(azo), and|(Vo)(x)| < 25@. (Such a function
always exists.) We sd?¢ = {D,, gd}a.p=1,... = {605 - VO}a p=1,...00-

Since¢?u € D(Dg,) with compact support, it follows from (38) that

(D¢?u, T Du)q = (%, f)o, (40)
so we have
0 < (Du, ¢’TDu)q = (¢°u, f) o — 2((DP)u, ¢T Du) o (41)
< Jullellflle + 20(D)u, D(DEu) b, (Du, 2T D)}y (42)
< (1l + 51518,
. <21"+C’5||u§2 ; ;(DU,QSZFDu)g) , (43)

where we used the elementary inequality< r2a? + 5?62, for anya,b > 0,7,5 > 0
with 2rs = 1, andCs = C(d, v, {aa.8}a,p=1.....,0) < o0 is @ constant depending only
on the indicated parameters.

Thus,

,,,,,

1
(Du, TDu)or < (Du, °TDu) o < L |If |G+ A+ AC)Teullly,  (44)
+

which implies (39) wher? is an open cube.
We now consider the general case: [etand {2’ be as in the theorem, with
dist({2’, 842) > 6 (we use the norm|..), and let

0 ={re 325 Ay 70}, (45)
Using (44), we get
(Du,TDu)r < 3 (Du,TDu) s, (o (46)
xEQg ’

1
<> <F|f||i5(m) * (1+4C§)F+||u||35(x)) (47

zEQg *

1

<(2d+1) <F+|f||§2+(1+4Ci)F+||u|§2> , (48)

from which (39) follows. O

Theorem 11 has the following immediate corollaries for Maxwell operators. In this
casev =3,D =V* (i.e.,D¥ =V x V), D* =D, D*D = g, andl" = %Ig. We write
VX |, for (V). If M on L4(R?; C3) be given by (17) with (14), we havel = D*T'D.



422 A. Figotin, A. Klein

Corollary 12. Let the operatotM on LZ(R3; (CS) be given by (17) with (14). For any
d > Othere exist®)s < oo, depending only on, such that ifr € D(V*|;) is a weak
solution for the equatiod/ W = F'in an open subse® of R? with F € L2(%2; <C3), we
have

1
IV x Wl < 8svEr | = 1¥la + vE=IFllq (49)
for any 2’ C 2 with dist(f2’, 042) > 6.

Corollary 13. Let the operator)! be given by (17) with (14). Lek € L2(R?; C3) be
such thatvV x Wis locally in L?, i.e.,¥|, € D(V*|g) for any bounded opef? C R3.
Then, if¥ is a weak solution for the equatidn ¥ = F in R®, with F € L2(R?; C3), we
have

IV % || < Ouo\/Zx

W[+ Ve IIFl (50)

\/E—
with O = infs=0 Os.

Corollary 12 gives exponential decay for the curl of an exponentially decaying eigen-
function of a Maxwell operator.

Corollary 14. LetM be an operator of the form (15) satisfying the bounds (14), and let
W be an eigenfunction fo¥l. Supposel has exponentially decaying locaf-norms,

i.e., ||xz,¢¥||, decays exponentially as:|| — oo for some/ > 0. ThenV x W also has
exponentially decaying locdl?>-norms.

2.2. A Combes-Thomas argumeritet the operatod/ be given by (17). Iz ¢ (M),
we write R(z) = (M — z)~ L.

Lemma 15. Let the operatorM be given by (17) with (14). Then for aay¢ o(M),
n € Nand¢ > 0 we have

9 n
Xz, e R(2)" Xy, ell < <> V3B o—male—yl for gl T,y ERs, (51)
n

with
Ui

4[5:1+ |2 +7]] ’

my, =

(52)

wheren = dist(z, o(M)).

Proof. The lemma is proved in the same way as [FK3, Lemma 12], with the obvious
modifications to take into account that in this lemma we laurésinstead ofyradients
O

The next lemma gives an exponential estimate for the curl of the resolvent.

Lemma 16. Let the operatorM be given by (17) with (14), and let ¢ o(M) with
n, m, asinLemma 1. TheW* R(z) is a bounded operator oﬁz(Rs, <C3) with

IV*R(z)|| < O1y/Ex <\F+ \/17_) <(1+77|Z|)+1) , (53)
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where® is given in (49). Furthermore, for each> 0 we have
x 1 9 (8v3t/4),—m. |z
| Xae V¥ R(2)xy.e|| < O1vEr | VE= + 7= 1+ |Z|)H€ e (54)

forall z, y € R® with |z — y| > 2¢.

Proof. This lemma is proven in the same way as [FK3, Lemma 13], using Corollaries
12 and 13, and Lemma 15

2.3. Generalized eigenfunctionsLet M be an operator of the form (17) satisfying
the bounds (14). Given € C, a measurable functiow : R® — C3 will be called
a generalized eigenfunctidior z if both ¥ andV x W are locally inL?, i.e., ¥|, €

D(V*|p)forallopen bounded subsetsof R?, andW is a weak solution for the equation
MV =z0onR? ie.,

(V x @, %v < W) = 2(0, W) forall & e C(RS; ). (55)

Theorem 17. Let M be an operator of the form (17) satisfying the bounds (24J\)

its spectral measure. Let(z) = (2|7 + 1)71 with p > 3. Then, forp (d)\)-almost all
A > 0, M has a generalized eigenfunctidn, satisfying

oot de < . (56)
so for any? € N we have
X, eWall < C¢ (Jz[P + 1) forall x € (Z°, (57)

for some constar®’, < oo depending only o#, e and the LHS of (56).

Proof. Let
_f@+17t ift>o0;
F(t) = {0, if t <O. (58)

Fis a bounded measurable function on the real line, continuous, on)(Guch that
F(M)=M +Is) ™t & 0g (59)

with respect to Weyl's decomposition (19).

The operatorF(M)W% is Hilbert-Schmidt by Theorem 18 below{/ being the
operator given by multiplication by the functian(xz). The existence of generalized
eigenfunctions satisfying (56), far(d)\)-almost allA > 0, now follows from [B, Sub-
sects. V.4.1-V.4.2].

The estimate (57) is an immediate consequence of (Bb).

2.4. Estimates on traces.
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Theorem 18. Let M be an operator of the form (17) with (14), and létdenote the
bounded operator given by multiplication by the bounded measurable fungtion
with v(z) > 0 and

> Ixe1v? oo < oo (60)
z€Z3
Then the operator
Ps(M+1)"'V=[M+1Is) t&05] V (61)

is Hilbert-Schmidt.
Theorem 18 was used in the proof of Theorem 17 with) = [w(x)]? =
(|| +1) 2.

To prove the theorem we will introduce a modified Maxwell operdwahich is
elliptic. Formally,

M=M= M+Y, (62)
with Y = —V1iv. ie,Yw¥ = —V {1[V-¥]}. M is rigorously defined as the non-

negative self-adjoint operator dhz(]R3; <C3) given by the closure of the nonnegative
guadratic form

M[W] = M[V] + /R ?t) [V-W](2)* dz, W e CHR? C3. (63)

The operatont/ is diagonal with respect to Weyl's decomposition (19), with= M &Y
for the appropriate operatdt on G.
If e(z) = 1, we have .
E=MA)=-A® I, (64)

whereA is the Laplacian i.2(R®) andI; is the identity operator of°.
Since

—~ -2
M+I) 2006 < (M +Is) 20 (Y +1g) 2= (M+1) . (65)
Theorem 18 is an immediate consequence of the following theorem.

Theorem 19. Let M be as in (62) with (14), and let(z) andV be as in Theorem 18.
—~ -1
Then the operato(M + I) V is Hilbert-Schmidt.

Proof. We sety, = y,.1 for z € R* and

~ — -1 ~ ~ -1
R:(M+1) 7 S(u):(E+,u) for u > O; (66)
Roy = XaRxy, Sy = X2S(W)xy for o,y € R (67)
It follows from (14) and (75) that
e_S(e_) < R < £,5(cs). (68)
We let N _ N R
S =e+S(es), Sa:,y = Xxs(ﬂ)Xy~ (69)

We also sef, , = max{x, xy} forz,y € R?, noticexg’y = Xa,y aNdXz,2 = Xa-



Localization of Classical Waves II: Electromagnetic Waves 425

Lemma 20. Letp > % andp > 0. Then there exists a constant = ¢; (p, 1) < oo,
depending only on the indicated parameters, such that

T (e [500] o} < 0 (70)

forall z,y € R®.

Proof. It follows from (64) that it suffices to show that
Tr {X:c,y (_A + N)ip Xz,y} <c (71)

forallz,y € R?, the trace now being calculatedﬁﬁ(R3). But this is a consequence of
the fact that the operat¢r A + 1) 77 has a bounded kernel; itis taken into multiplication
by an integrable function by the Fourier transform.

We recall some general results. Given a compact opesatora Hilbert space, we set
5;(A) = X;(|A]), whereA; (JA]) > X2 (JA]) > ... are the strictly positive eigenvalues
of |A|, repeated according to their multiplicity. For sudtwe have (e.g., [GK]):

[AlE =Tr (JA]P) =) [s;(AIP, 1<p< oo (72)
J
sj (A) = s; (A7) foranyj, so [|All, = [A"],; (73)
sj (BA),s;j (AB) < ||B|| s; (A) for any bounded operatds. (74)

If AandB are self-adjoint operators amtl> B > 0, we have
Tra2>TrB% A 1<B™Y AP>BP 0<p<Ll (75)
We will also need the following general statement.

Lemma 21. Let A be a nonnegative bounded operator ah@n orthogonal projection
on a Hilbert spacé. For any~y > 1 we have

Tr[PAP]” < TrPA'P. (76)

Proof. Let B be a nonegative compact operatori@n By the mini-max principle, we
get

Aj(B) = (¢, By) . (77)

max min
{FCH;dim F=j} {@€F; ||o|=1}
If v > 1, it follows from Jensen’s inequality that for apye H with ||¢|| = 1 we have
(0, Bp)” < (0, B7¢). (78)
Without loss of generality we can assumePTAY P < oc. In this case we claim that
[Aj(PAP)]” < X\;(PAYP) foranyy, (79)

so (76) follows. Indeed, using (78) and (77) we obtain, Witk PH,
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~
MA(PAP)Y = max min B
[ ( ) {FCF dim F=j} {peF; |l]=1} Bl

(¢, Bp)”

= max min
{FCF dimF=j} {peF; |¢l=1}

< max min
{FcF;dimF=5} {pF; |l¢|=1}

= \;(PAYP).

(¢, B7p)

O

Lemma 22. There exists a constan = ¢ (¢+) < oo, depending only oa,, such that

~ 2 ~ ~
Tr ’RM =TrR: Ry, <c forall z,y € R®. (80)

In particular, the operatorsl?x’y are compact.

Proof. We have
Tr R;yﬁry =Tr XyEXzEXy <Tr XyEXz,yé)(y (81)
~ ~ ~ ~ ~ 2
=Tr Xz, y RXy RBXa,y < T0 Xa,yRXzyRXzy = TF (xxﬁnyz,y) :

On the other hand using (75), (68), (69) and (70) we obtain

~ 2 —~ 2 Y Y
Tr (Xx,yRX:c,y) <Tr (Xm,ySXx,y) =Tr Xa,ySXa,ySXay (82)
<Tr Xm,ygzxz_yy < 6301(2, €4).
The inequalities (81) and (82) imply (80)]

Lemma 23. There exists a constant = c3 (si) < o0, depending only oa., such
that
Tr xo R?xe < c3 forall z e R, (83)

Proof. We have
2

Tr Xxfizxx = Z Tr XxényfXx = Z Tr ‘ﬁ,y (84)
y€eZ3 y€ezZ3
In addition, if 0< o < 1, we also have
~ 2 ~ 1—% ~ Q| o~ 1—% ~ « ~ 2—«
Tr ’Rx,y =Tr {’vay’ Roy| Ry } < HRx,y Tr ’RW’ , (85)
SO
~ ~ « ~ 2—«
TeRG < 3 || e T |Re|
y€eZ3d
~ 2—« ~ o
< lSUpTr ’Rx,y Z Hny (86)
yez? y€ezZd
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From Lemma 15, which holds exactly as stated withsubstituted fod\/, we get

that N
5 e

yeZ®

for some constarti(s_, a) < oo, which depends only oa_ and«. To estimate the
other term, notice that using (73), (74), (75), (68) and (69), we obtain

5 (o)) =5 (|

=s; (Xyﬁxx-ﬁ)(y) <sj (XyﬁXz,yEXy)

(“ <be_,a) 87)

=55 (Xer,yéXw:yEXLyXy) < 55 (Xr,yﬁxfr’yéxay) =55 <[Xry§X:vy} 2)

= [Sj (xx,yﬁxx,y)r < [Sj (xm,ygxm,y)]z =5j <[xz,y§xm,y] 2)

=5 (Xx,y‘/S’\Xx,ngx,y) = {Sj (Xx,y§Xx,y)]2~ (88)
Takinga € (O, 1/2) S02—a > % we use (76) and (70) to get

o (7)< 5 o (i)

2—a

=Tr [Xx,yS\Xz,y} ' <Tr Xz’y§2—axx7y
<ec1(2—-a,e4). (89)

~ 2—a
T |Rey

The lemma is proved, since (83) follows from (86), (87) and (89).
We can now finish the proof of Theorem 19. Using (83) and (60), we get

TIVRV =TrRVZR =Y TrRX.VPR < Y [xat®[o T Rxo R

z€Z® P
~2
= Z ”Xx’Uz”ooTrX:cR Xz < C3 Z HXJCUZHOO < 00, (90)
PIYA x€Z83

so RV is a Hilbert-Schmidt operator]

3. Periodic Maxwell Operators and Periodic Boundary Condition

The (non-random) spectrum of a random Maxwell operator can be represented as the
union of the spectra of relevant periodic Maxwell operators, which in turn are given
as the union of the spectra of finite volume Maxwell operators with periodic boundary
condition. This is analogous to the situation for random 8dimger operators [KM2]
and random acoustic operators [FK3].

In this section we study Maxwell operators in periodic media. We say that the
operatorsM, M, given by (15), (17) with (14), arg-periodic for someg > 0, if
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e(x) is ag-periodic function. In this section we work with a given peripd> 0 and
g-periodic operatorm and M.

3.1. Periodic boundary condition.We start by defining the restriction of sudh to a
cube with periodic boundary condition. Given a cube= Ay(x), wherex € R? and

¢ > 0, we will denote byjl the torus we obtain by identifying the edges of the closed
cubeA in the usual way. We introduce the usual distance in the torus:

o _ 3¢ =
d (z,y) = min |xfy+m|§£forallx,y€/l. (91)
meez® 2

We will identify functions onjl with their /-periodic extensions t&3; for example,
ct (;1 <C3) will be identified with the space of continuously differentialflgyeriodic,

C3-valued functions ofR>. We definely’ 12 (;1 <C3) as the closure of™* (})1 C3) in
w2 (/1; (C3).

We will always takel € ¢N and defina\c}[ 4, the restriction of\/ to A with periodic
boundary condition, as the unique nonnegative self-adjoint operatbf éﬁ Cg) >

L? (/1; (C3), defined by the nonnegative densely defined closed quadratic form
Ma (W, ®) = (V x 0, %v x @), with W, d ¢ W2 (/01;@3)A . (92)

the inner product being if2 (A; (CS).
We also have a corresponding Weyl's decomposition in the tdv&{yl; (C?’) =

Si @ Gy, where

§A:{qJeL2 (4,C%); weor (4,C°) with v-w=0},  (93)

(OGA:{\I/eLZ (A;<C3); W=V with ¢ e CL (A)} (94)

o = 0-
Ga

We definel\7|A as the restriction of\j[A toS,, ie.,D (1\7| A) =D (]\j[A) NS, and

The spaceS 4 andG 4 are leftinvariant by\om, withG, € D (]\04,,> and ]\04/1

|\7|A = J\}A‘ o o . Thus|\7|A =P J\(}[A I, :]&A I, ,with P, the orthogonal
D(MA)WSA Sa Sa Sa Sa

projection ontoS, and Ié Sy — L2 (/1; (Ca) the restriction of the identity map.
A

Notice thatz\},l: |\7|A &) Of; , and 0 is easily seen to be an eigenvalue&m with
A

multiplicity three, so

o ('\7|A> =0 (]\04/1) . (95)
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R (o] o] o o . i o
If e(z) = 1 we write E4, E,4 for M 4, M 4, respectively. Sinc& 4, has compact
. . . . . - o
resolvent (its eigenvalues and eigenfunctions can be explicitly computedp and
(o] ]
E% E 4 by (14), we can conclude thit 4 has compact resolvent.

3.2. ACombes-Thomas argument for the torlfs: ¢ 0(1\04/1), we writesz (z) = (1\04/1
—2)~L.

Lemma 24. Let the operatorM given by (17) with (14) be-periodic, and letA =
Ag(xo) for somexg € R®and ¢ € gN, ¢ > 2r + 8, wherer > 0. Then for any

z ¢ U(]\o“) andn € N we have

[e]
||X30,T Ra (Z)”Xy,r =

9 n ﬁr%z,n © O,.
| < (n) e T e mered@y) forall z,yed,  (96)

with
o n

mz,r,E: )
4 (13‘{% + 1) [6:1 + 2| + 1]

(97)

wheren = dist(z, (M 1)).

Proof. The lemma is proved in the same way as [FK3, Lemma 18], with the obvious
modifications to take into account that in this lemma we lawrésinstead ofyradients
O

3.3. Floquet theory and the spectrum of periodic operatolsk, n € N, we say that
k <nif n € kN and thatt < nif k¥ < n andk # n. The main result of this section is
the following theorem.

Theorem 25. Suppose the operatavl given by (15) with (14) isy-periodic. Let
{n; n =0,1,2,...} be a sequence il¥ such thatly = ¢ and¥¢,, < ¢,+; for each
n=0,1,2,.... Then

o (I\C/)I Agn(o)) Co (I\jl Aznﬂ(o)) Co(M) forall n=0,1,2,..., (98)
and
oM = J o (Ma,0)- (99)
n>1

Related results for periodic Sd@dinger operators can be found in [Ea], where Flo-
guet theory is used. For the nonsmooth coefficients we are interested in some aspects of
the Floquet theory have to be revised. Periodic acoustic operators are treated in [FK3,
Theorem 14], with a proof that does not use Floquet theory. In this subsection we will
develop an appropriate Floquet theory for our Maxwell operators, and use it to prove
Theorem 25. We refer to [RS4, Sect. XIlII.6] for the definitions and notations of direct
integrals of Hilbert spaces.

Let Q = A,(0) be the basic period cetf) = /LTW(O) the dual basic cell. We define

the Floquet transform
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F L2 (RS; <C3) - /® 12 (Q;<C3) dk = L2 (Q;L2 (Q;<C3)) (100)
Q
by

(FW)(k,z) = (7) 3 €Y —m), zeQ ke, (101)

meqz®

if W has compact support; it extends by continuity to a unitary operator.
The ¢-periodic operatoil! is decomposable in this direct integral representation,
more precisely,

@ [e]
FMF* = / Mo (k) dk, (102)
Q

where for eactk € R® we define]\}Q (k) to be the operato\[ — ik)* %(V — ik)*
on L2 (Q; (C3> with periodic boundary conditiorm(;[Q (k) is rigorously defined as a

self-adjoint operator by the appropriate quadratic foémag (k) as in (92). As before
(V — ik)* denotes the operato¥/(— ik)*® = (V — ik) x ®. We also have Weyl's

decompositions for eadhe R?: 1.2 (Q; ((33) = éQ(k;) @ éQ(k), where

So(k) = {w €12 (Q;©3) L We Ot (Eg; <c3> with (V — ik) - W = o}, (103)

Go(k) = {\p € L2 (Q; ((:3) LW = (V — ik)p with o € C1 (Q> } (104)

The spaceSQ(k:) andGQ(k) are leftinvariant b)M o (k), with GQ(k) cD ( Mo (k:))

=0. We deflneM o(k) as the restriction OMQ (k) to SQ(k:) ie.,

(MQ(k)) = (MQ k) N So(k) andMo(k) = Mo (k )] ( . Thus

D qu(k)>m§Q(k)
|\7| k) =P, ]\04 k)lo :]\04 k)l ,with P the orthogonal projection
o) Sq(k) @ (k) Sq(k) @ () Sq(k) Sq(k) g prol
onto S (k) and Ig » : So(k) — L? (Q; (CS) the restriction of the identity map.
Q
Notice i7q (K) = Mo(k) &0, 00 (MQ(k)) =g (MQ (k)). EachM (k) has
Q
compact resolvent. We have

® o & .
FS= / So(k)dk, FMF* = / M (k) dk. (105)
Q Q

Inaddition, if foreachy € %”Za we letU,, denote the unitary operator @A (Q; ((33)

given by multiplication by the function €, then for allk ¢ R? andp € 2°Z° we
have
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Mq (k+p)=U, Mq (K)Up, (106)

and, sincd/,Sq(k + p) = Sq(k), we can also think of/, as a unitary operator from
Sq(k + p) to Sg(k), with

Mo (k+p) = U Mg ()T, (107)
Lemma 26. (i) The mapping
keR® v Ro (k)= (J\}Q (k) +1) Ter (L2 (Q;(C3>) (108)

is operator norm continuous.
(i) We have

()= o (J\}Q (k)) and o(M)=|J o (KhQ (k)). (109)

ke@ keQ
Proof. Letk,h € R3, W € L2 (Q; (C3>, we have
Mg (k+R)[Y]— Mg (K)[VY] = (110)
(h x ¥, %h X Wg +i(h x ¥, %(V —ik) x W)g —i((V — ik) x U, %h X Wyg.

Using the Cauchy-Schwarz inequality and (14) we get (see [FK3, Proof of Lemma 12]
for a similar argument)

e (4 WIVI= Mo (V| < 1] Ko (01 + bl (1+1A) T w3 (111)
If |h| < 1 we have
(A1 + D=+ 1] Ao () ko ()]

< |h| ((1+|h) %_ +2> <2 (i_ + 1) |h|. (112)

If we now require 2(%_ + 1) |h| < %, we can use [Ka, Theorem VI1.3.9] to conclude
that

| Ro (k+h)= Ro ()] < 32 (i + 1) ] (113)

Part (i) of the lemma is proved; part (ii) follows from (i) by standard argumeints.

If ¢ e qZ3, similar considerations apply to the operat@c;_fsle(o) and|\7| A,(0), Which
areqg-periodic on the toruglg (0). The Floquet transform

Foo P(aOiC’) - P 1*(ac) (114)

k€22 730Q
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is a unitary operator now defined by

(Fow)(k, ) = (%) Y Ry —m), (115)

meqZ3NAy(0)

wherez € Q, k € 2777%3 NQ,v e L2 (;15 (0y; Cs), W(z — m) being properly

interpreted in the toruﬁg (0). We also have

FeMaoFi= P Mq k) (116)
k€22 730Q
and
FeSan0) = @ Sq(k), FeMayo Fe* = @ Mg (k). (117)
k€22 73nQ k€22 730Q

Thus we have

c0ine)= U o(Me®) and oMae= |J o(Mo@®).
k€22 730Q ke2Z73nQ
(118)
Theorem 25 is an immediate consequence of (118) and Lemma 26.

4. Location of the Spectrum of Random Operators

In this section we prove Theorem 3. Since we already proved Theorem 25, the proof
proceeds almost exactly as in [FK3, Sect. 4], so we will only outline the key steps.

In order to investigate the samples of the random quasygity(x), for a fixedg, we
set

T,={r:7={n,ieZ%, —g <7 <g}, (119)
T ={r €T riy; =7 forall i,j € Z°}, neN, (120)

and
7;(00) = U 7;(71). (121)

nrq
ForT € 7, we let
er(@) =eo(w) |1+ u(z — i) (122)
i€Z?

and

M(r) = M(e;), M(7)=M(e;). (123)

We recall (21).
To approximate Maxwell operators by periodic operators, givenZ,, n € N and
x € R®, we specifyry, ) € 7™ by requiring (7, ), = 7 forall i € A,(z) N Z°,
and define
Mp,@)(7) = M(7,(@))- (124)
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The following lemma shows that the (nonrandom) spectrum of the random Maxwell
operator}M, is determined by the spectra of the periodic Maxwell operaldis),
7 € T(). The analogous result for random Satlinger operators was proven by
Kirsch and Martinelli [KM2, Theorem 4].

Lemma 27. Let the random operatak/,, defined by (28) satisfy Assumption 1, and let
= | o). (125)
TET_q(OO)
Theno (M) = X, with probability one.
Proof. Same proof as [FK3, Lemma 19[]

Given a real numbel; |h| < F, let
M(h) = M(ep) ,M(h) =M(ep) with e(z) = eo(z) [ +RU(z)] . (126)

If |h] < g, and we define(h) € 7, by 7(h); = hforall i € 73, we haves), = e-(n) and
M(h) = M(r(h)), M(h) = M(7(h)).

Lemma 28. Let M (h), |h| < U% be given by (126), withy andU given in Assumption
1. Let A = Ay(zp) for somezy € R and ¢ = g. The positive self-adjoint operator

M (h) » has compact resolvent aridas an eigenvalue, so 18t< pi(h) < po(h) < ...
be its nonzero eigenvalues, repeated according to their (finite) multiplicity. Then each
w;i(h), 7 =1,2,...,is aLipschitz continuous, strictly decreasing functior pfvith

wi(ha) — pj(h2)
2—h

6—(9) ggf}g{uj(hl)} <=

< 0+(9) {glig{uj(hl)} (127)

for anyhs, ha € (—g,9), 0 < g < ¢, wheres_.(g) are given in (27).

Proof. Same proof as [FK3, Lemma 20[.

The following corollary follows immediately from Theorem 25, Lemmas 27 and 28,
and the min-max principle.

Corollary 29. Let the random operatol/, defined by (28) satisfy Assumption 1, and
let {¢,,; n=0,1,2,...} be a sequence iN such that/; = ¢ and¢,, < ¢,+1 for each
n=0,12,....Then

Xy = m = U Ue (Mcih) A[n(o)) (128)

h€[—g,9] h€[—g,gln>1
In particular, X, is increasing ing.

Theorem 3 is now proven as in [FK3, Subsect. 4.2], using Theorem 25, Lemma 28
and Corollary 29, and taking (21) and (95) into account.
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5. Dirichlet Boundary Condition for Maxwell Operators

Given an open cubd in R? and M as in (17), we will denote by, the restriction

of M to A with Dirichlet boundary condition, i.e}M 4 is the nonnegative self-adjoint
operator on.2(A; (C3), uniquely defined by the nonnegative quadratic form given as the
closure of

Ma(W, ®) = (V x W, gv < @), W, b e C(A CY), (129)

the inner product being in?(4; C3).

If e(z) = 1, we writeE 4 for M (1)4. E 4 has an operator core consisting of functions
which areC? up tod/ and whose tangential component vanishe® dn(For a discus-
sion of boundary conditions for Maxwell operators in bounded domains see [BS].) We
will need this last description to find all eigenvalues By. This is all given in the next
theorem. _

Some notation. IV € C(4; (Cg), we useV,, andW¥, to denote its (outer) normal
and tangential components oul.

Theorem 30. Let A be an open cube of sidein R3.

(i) The dense linear subset
Db = {w c C2(4; C¥; w, = o} (130)

is an operator core fo€ 4, with E,¥ =V x V x W for & € DY.
(i) The operatore 4 has an orthogonal basis of eigenfunctions

V= {\IJW» eDY;pe %(Ng’u {{O} X NZ} U

(131)

[N x {0} x N] U [NZ X {O}D, j= o,1,2},

with
VX W,0=0, W,0=Vp,o With ¢, 0€ C5(A); (132)
VXxVxXW,;=uPV,;, V-¥,;=0 j=12 (133)
More precisely, ifA = Ay (xg), we can take
L

v, (@)=, ; (x —xo+ E(l’ 1, 1)> , (134)

al?) cos(uyz1) Sin(uax2) Sin(uses)
q)mj(x) - a(zu’j) sin(u1x1) COS(uaxo) Sin(usxs) |
ag“’j) sin(u1xy) Sin(ugx2) coSuzxs)

where for eachy € = (N3 U [{0} X Nﬂ U [N x {0} x N] U [Nz X {0}}) we set

a9 = 1 and picka®, a2 ¢ R® such that{a); j = 0,1,2} is an orthogonal
basis forR>.
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Proof. Let the operatof 4 be defined by ¥ =V x V x W for ve Df. To see that
it is a symmetric operator on its domain, notice thatdor € C1(A; C*) we have

(VX &) — (O, V x ¥) = / V(@ x W)d®z :/ (@ x W), dsS, (135)
A oA

where the inner products are it (/1; (C3>, dS is the surface measure, and we used

Gauss’ Theorem. b, = 0, we must have® x W), = 0, so we can conclude that the
surface integral in (135) equals 0.

We proceed as in [RS4, Proof of Proposition 1 in Sect. XIIl.15]. To show that
the symmetric operatdr , is essentially self-adjoint, it suffices to exhibit an orthogo-
nal basis of eigenfunctions in its domair; . Since{cos@x); ne F({0}u N)} and

{sin(rz); n € ZN} are both orthogonal bases fof((0, L)), it follows that¥ = {W,, ;},
given in (134), is an orthogonal basis bf(; ((33). Since

CD;L,O = V[Sin(mxl) Sin(pzxz) Sin(,ugl‘3)], (136)

we clearly have (132). It is straightforward to check that. DY andV also satisfies
(133), so it is an orthogonal basis of eigenfunctions for the operator

To finish the proof of the theorem, it suffices to show tRat is the closurd” 4
of I'4. To do that, notice that2(A; C%) c DY c Q(T,), where for a self-adjoint
operatord we useQ(A) to denote the domain of the corresponding quadratic form. As
quadratic forms, we clearly haw&,[W] = T 4[¥] for ¥ € C3(; C®), which is a form
core forE, as a quadratic form, hen&(€,) C Q(T 4). SinceD¥ is a form core for
T4 as a quadratic form, to finish the proof of the theorem, it is enough to show that
DY € Q(E4), s0Q(T4) C Q(E).

Thus, given¥ € DY, it suffices to findy,, € C3(4; C®) such that

o — W, || + ||V x (¥—¥,)| — 0. (137)

Translating and scaling, if necessary, we can assumefttrati,(0) = (-1, 1)%. For

eachn = 1,2,... we select a functiom,, € C?([—1,1]), 0 < n,(¢t) < 1, such that
+1 _

nn(t) = 1 for |t| < -Ig andn,(t) = 0 for % < [t < 1. We setd,,(x) = 0, (x)On (),

Wherenn (33) =Mn (xl)nn(a:Z)nn(xS) and

(), if [z1], |22|, |23 < s
‘*I’({El,l’z, i1)> if |x1|7 |.’172| S %a % < :tm3 S 1:
671(3:) = "p(xla :t17 .’173), if |1’1|7 |$3| < ﬁ: % < Fwp < 1 (138)
W(EL, 22, 23), if |22, |23| < 3, g < F21 < 1
0, otherwise

We haved,, € Co(4; ((33), and®,, is piecewise_'! with bounded partial derivatives, so
V x ®,, € L2(A; C3). In addition,

V x @ =1 (V X On) + (Vi) X On =1 (V X On), (139)

since ¥7,) x ©,, = 0 by our construction a¥, = 0. If each®,, was aC*-function,
instead of only piecewis€, we would be done, sincg,, = ®,, clearly satisfies (137).
To repair that we se®,, = v, * ®,,, where{v,} is a suitably chosen approximate
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identity, i.e.,y,(z) = n®y(nx) for some positives> function~y on R? with support on
A1(0) and [ v(z)dz = 1, so¥,, € C3(4; ((33), V X ¥, =, x(V x ¥,), and (137) is
satisfied.

The Weyl decomposition corresponding to Dirichlet boundary condition is given by
L2(A; (Cg) =S1 @ G, whereG 4 andS 4 are the closed subspaces spannediby}
and{¥, ;, j = 1,2}, respectively, wherg¢ ¥, ;, j = 0,1,2} is the orthogonal basis
given in (131). It is easy to see that

Ga={We CYA; C%; W=V with ¢ € CLA)}, (140)
Sa={We L*4;C%; V-w=0 weakly} (141)

The space§, andG 4 are left invariant byM 4, with G4 C D (M) and My|g, = 0.
We defineM 4 as the restriction oM 4 t0 Sy, i.e.,D(M4) =D (M,) NS, andM 4 =
MA|D(MA)OSA' Notice M, =M, & O(GA! 0 ¢ J(M A), SOO’(M A) = O’(MA)\{O}

M 4 and M, will be called Dirichlet Maxwell operators. We writ& 4 for M 4(1).
Notice thatE 4 is a strictly positive operator with discrete spectrum; the same being true
of M 4 in view of (14).

Corollary 31. Let M be as in (17) with (14), and let be an open cube iR3. Then

(i) M 4 has compact resolvent; in fagt {(M 4 + I)~P} < oo for anyp > %

(i) Forany E > O let n. 4(£) denote the number of eigenvalueshdf; less than
E, each eigenvalue counted as many times as its multiplicity. There exists a finite
constantCy, independent oft ande, such that

ne.a(E) < Cosi |A|E2. (142)

Proof. We clearly haveM 4 > Ei E 4, so it suffices to prove the corollary f& 4.
Itfollows from Theorem 30(ii) that the spectrum®f, consists of eigenvalues whose
multiplicity can be read from (131), so an explicit calculation give$(B + 1) P} <

oo for anyp > 3. A similar calculation gives (142)0

Remark 32.n. 4(E) is also equal to the number sirictly positiveeigenvalues ofif 4
less thanF, each eigenvalue counted as many times as its multiplicity.

6. A Wegner-Type Estimate

Given an open cubel in R®, we will denote byM, 4, = M, 4 the restriction of
the random operataV/, ., to /A with Dirichlet boundary condition. Notice that, ., 1

is a random operator oh?(A), measurability follows from [FK3, Theorem 38]. Each
M. 4 has compact resolvent by Corollary 31(i). For diy> 0 we definen, 4(E) =
ng.w,A(F) as the number dtrictly positiveeigenvalues of/, ., 4 less thanZ. Notice
thatn, ., 4(F) is the distribution function of the measung ., 1(dE) on (0, c0) given

by
/ ME)ng w,a(dE) = Tr(h(My o, 1)) = Tr(h(M g, 4)) (143)

for positive continuous functions with compact support in (@).



Localization of Classical Waves II: Electromagnetic Waves 437

We will say that the random operatdf, defined by (28) satisfies Assumptiof) it
it satisfies all of Assumption 1 with the exception of the requirementdg(ad be ag
-periodic function.

We have the following “a priori” estimate, which is an immediate consequence of
Corollary 31(ii), (26) and Assumption 1(iv) .

Lemma 33. Let the random operatak/, defined by (28) satisfy Assumption There
exists a finite constarnit;, depending only ong ., such that we have

ngwA(E) < C1|A|E? (144)

forall w € [-1, 1]Z3, for all E > 0and all open cubed in Z>.

Theorem 34 (Wegner-type estimate)Let the random operaton/, defined by (28)
satisfy Assumptionf 1There exists a constafit < co, depending only on the constants
r,, andeg +, such that

U_ +2U,

1
T guor Pl EFnl Al (145)

P{dist(c(Mg.w,4), E) <n} <Q

for all E > 0, open cubesl in R?, and alln € [0, E).

Proof. The proof is exactly the same as the proof of [FK3, Theorem 23], with the
proviso that we only integrate, ., 1(E) against positive continuous functions with
compact support in (@c). O

7. Localization

Theorems 6 and 7 are proved exactly as in [FK3], applying a multiscale analysis appro-
priate for random perturbations of periodic operatorRSmFKS, Theorems 29 and 35]
to operatorsi/, as in (28).
Let the operato be as in (17) with (14). Given an open culden R®, M, is
the restriction ofM to A with Dirichlet boundary condition (see Sect. 5). Eatfy
is a nonnegative self-adjoint operator HA(A; (C?’) with compact resolven 4(z) =
(Ma — 2)71 If A= Ap(x), we will write M, 1, = M4, ) and Ry .(2) = Ra, (2)(2)-
The norm inL?(4; (C3) and also the corresponding operator norm will both be denoted
by|| |lo,z- If A1 C Az are open cubes;}? : L2(Ay; C% — L2(A3; C?)is the canonical

injection. If A; = Ap,(x;), i = 1,2, we write || H;‘f:fi for the (operator) norm in
T Ar(x 00
B (L3(Apa(e); €, L2(AL(a2); ©)) and J72f2 = J3207 I o € Lo(A), we

also usep to denote the operator ab?(/; CB) given by multiplication byy; if ® €
L>°(A; C% we write ®* for the operatod x, i.e., ® W = & x V.

7.1. The basic technical toolsThe results of [FK3, Subsects. 6.1 and 6.3] are valid for
the Maxwell operatoM/, with the obvious modifications. We state the key results for
completeness. We start with temooth resolvent identi{sRI), which is used to relate
resolvents in different scales.
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Lemma 35 (SRI). Let the operatoM/ be given by (17) with (14), let; C A, be open
cubes inR?, and letp; € C3(A1). Then, for any: ¢ o(Ma,) U o(M,,) we have

R ()T 101 = (146)
1 1
TaterRa,(2) + B (2) (—Jﬁf(wl)x SV Jﬁfs(wl)*) Ra,(2)

as quadratic forms o2(Ay; C3) x L2(Ay; C3).

Proof. The lemma follows immediately from [FK3, Lemma 24] and the definition of
Dirichlet boundary condition[]

To take into account the periodicity of the background medigym, N being the
period (see Assumption 1), we work with boXegx) with x € qZ3 and L € 2gN, so
the background is the same in all boxes in a given s€akor such boxes (witlh > 4q)
we set

To@) =y € 2%y~ 2l =5 —a) (147)
and . B ~ B
Ti(z) = Ap—g(@)\AL_34(2), Tr(z) = ALf%q(af)\ALf%q(m) (148)
We also set R
Xz = Xw,q and Fx,L = XfL(1)7 Fx,L = XTL(w) (149)
Notice
Fen= Y Xy ae (150)
yETL ()
and
T1(x)| < 3(L — 2¢+ 1. (151)

In addition eachiz (z) will be equipped with a functiord,, ;, constructed in the
following way: we fix an even functiog € C3(R) with 0 < ¢(t) < 1 forallt € R,
such that(t) = 1 for |t| < %, £(t) = O for [t| > 37’7, and&’'(t)| < gfor allt € R. (Such
a function always exists.) We define

=] fi<s -3 (152)
t) = . ’
O el - (5-%)). > (5-%)
and set
3
@, L(y) = Puly —x) for y € R®, with o(y) = [[érlw).  (153)
=1
We haved, ; € C}(AL(z)),0< @, 1 <1,
Xo 50 Pal = Xg £ 505 Xg_3Pur =Pur, (154)
and /3
A 3v3
Fw,L (VQ.L,L) = VCDJL‘,La |VCDJ:,L < T (155)

We can now state &imon-Lieb-type inequali§sLI); it is used to obtain decay in a
larger scale from decay in a given scale.
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Lemma 36 (SLI). Let the operatoM be given by (17) with (14). Then for afyL €
2qNwithdq < ¢ < L —3q, z,y € qZ°> with 2|jy — z|| < L — £ — 3¢ (50 Ay(y) C
Ap_34(x)), andz ¢ o(M, 1) U o(M, ), we have

ITe,2 R, L(2)Xy |2z < 'ngz‘lry,fRy,f(z)Xy

for somey’ € 1, ¢, with

|y,€||F$,LRz,L(Z)Xy’ ”JJ,L (156)

18\f

ge—

7= 20 e (Ve + r> (L+]2]). (157)

wheree% is the constant given in Corollary 12.

Proof. The lemma is proved as [FK3, Lemma 26], using Lemma 35 and Corollary 12.
O

The eigenfunction decay inequalitEDI) is used to obtain decay for generalized
eigenfunctions from decay of local resolvents.

Lemma 37 (EDI). Let the operatorM be given by (17) with (14), and leb be a

generalized eigenfunction for a givene C. For anyz € ¢Z° and/ € 2N with
¢ > 4q, such that: ¢ o(M, (), we have

HX;er < ’YZEZHF'J:,KRJC,Z(Z*)XQC 0

for somey € 7, ¢, with, as in (157).

(158)

Proof. Same proof as [FK3, Lemma 27

The starting hypothesis for the multiscale analysis [FK3, (P1) in Theorem 29 and
(H1) in Theorem 35] is formulated for operators with Dirichlet boundary condition. But
under the hypotheses of Theorems 6 and 7 the natural starting hypothesis is the analogue
of either (P1) or (H1) foperiodicboundary condition. The following lemma enable us
to go from periodic boundary condition to Dirichlet boundary condition.

For M, be as in (28) satisfying Assumptiond ¢ qu andL € 2gN, we set (with
the notation of (124))

M gw,z, .= (M (99) AL @) AL () (159)
which is a random operator by [FK3, Theorem 38]. We wfige,w,xl (z) for its resol-
vent.

Lemma 38. Let M, be as in (28) satisfying Assumption 1. lEet> 0,z € qZ3 andL €
2N, L > 4q; setl = L+[2r,]2,+2¢. If wis suchthat? ¢ o(M, . LUa(Mg v L)
then
IlFZ,LRg w,T, L(E)XwHw,L S (160)
3V3 o
(1 +— (1 +2(1 +E)||Rg w,zT, L(E)Hw L)) HFJE,L Rg,u.;,a:,ﬁ (E)Xai":c,i/'
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Proof. Same proof as [FK3, Lemma 37

7.2. The proofs of localization. Theorems 6 and 7 can now be proved exactly as in
[FK3], using Theorems 3, 25, 34, and Lemmas 24, 27, 36, 37, 38, so we refer the reader
to [FK3, Subsects. 6.4 and 6.5].

AcknowledgementEffort sponsored by the Air Force Office of Scientific Research, Air Force Materials
Command, USAF, under grant F49620-94-1-0172, and by the Division of Mathematical Sciences of the
National Science Foundation, under grant DMS-9500720. The US Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research,
the National Science Foundation, or the US Government.

References

[An2]  Anderson, P. W.A Question of Classical Localization. A Theory of White Pdhftilos. MagB 53,
505-509 (1958)

[B] Berezanskii, lu. M.:Expansions in Eigenfuncions of Selfadjoint Operat®t Providence, AMS,
1968

[BS] Birman, M. Sh. and Solomyak, M. ZL.2-Theory of the Maxwell Operator in Arbitrary Domains.
Russ. Math. Sur42:6, 75-96 (1987)

[CH] Combes, J., Hislop, PLocalization for some Continuous, Random Hamiltoniang-dimensions
J. Funct. Anal124, 149-180 (1994)

[DE] Development and Applications of Materials Exhibiting Photonic Band Gap3ptical Soc. of Am.
B 10, 280-413 (1993)

[DK] Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding mo@dmmun.
Math. Phys124, 285-299 (1989)

[Ea] Eastham, M.The Spectral Theory of Periodic Differential EquatioBslinburgh: Scottish Academic
Press, 1973

[FK1]  Figotin, A., Klein, A.: Localization Phenomenon in Gaps of the Spectrum of Random Lattice Oper-
ators J. Stat. Physz5, 997-1021 (1994)

[FK2]  Figotin, A., Klein, A.: Localization of Electromagnetic and Acoustic Waves in Random Media.
Lattice Model J. Stat. Physz6, 985-1003 (1994)

[FK3] Figotin, A., Klein, A.: Localization of Classical Waves I: Acoustic Wav€smmun. Math. Phys.
180, 439-487 (1996)

[FK4]  Figotin, A., Klein, A.: Localized Classical Waves Created by DefedtsStat. Phys86, 165-177
(1997)

[FKul] Figotin, A., Kuchment, PBand-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media.
|. Scalar Model SIAM J. Appl. Math.56, 68—88 (1996)

[FKu2] Figotin, A. Kuchment, PBand-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media.
II. 2D Photonic CrystalsSIAM J. Appl. Math.,56, 1561-1670 (1996)

[FMSS] Fmhlich, J., Martinelli, F., Scoppola, E.: Spencer, Canstructive proof of localization in the An-
derson tight binding modeCommun. Math. Phy<4.01, 21-46 (1985)

[FS] Frohlich, J., Spencer, TAbsence of diffusion in the Anderson tight binding model for large disorder
or low energy Commun. Math. Phy$8, 151-184 (1983)

[GK]  Gohberg, I. C., Krein, M. G.Introduction to the Theory of Nonselfadjoint OperatdpPsovidence,
RI: AMS, 1969

[HM]  Holden, H., Martinelli, F.:On Absence of Diffusion near the Bottom of the Spectrum for a Random
Schibdinger Operator omz(RU). Commun. Math. Phy®3, 197-217 (1984)

[IMW] Joannopoulos, J., Meade, R., WinnPhotonic CrystalsPrinceton, NJ: Princeton University Press,
1995

[91] John, S.Localization of Light Phys. Today, May 1991

[92] John, S.The Localization of Lightin “Photonic Band Gaps and Localization”, NATO ASI Series
B: Physical308 1993



Localization of Classical Waves II: Electromagnetic Waves 441

[Ka] Kato, T.: Perturbation Theory for Linear OperatarBerlin—Heidelberg—New York: Springer-Verlag,
1976

[KM1] Kirsch, W., Martinelli, F.:On the Ergodic Properties of the Spectrum of General Random Operators
J. Reine Angew. Matt334, 141-156 (1982)

[KM2] Kirsch, W., Martinelli, F.: On the Spectrum of Sabdinger Operators with a Random Potential
Commun. Math. Phys85, 329-350 (1982)

[Ku] Kuchment, P.Floquet Theory for Partial Differential EquationBasel: Birktauser Verlag, 1993

[PF] Pastur, L., Figotin, A.Spectra of Random and Almost-periodic OperatBerlin—Heidelberg—New
York: Springer-Verlag, 1991

[RS4] Reed, M., Simon, BMethods of Modern Mathematical Physics, Vol.lV, Analysis of Operatsa
York: Academic Press, 1978

[Sp] Spencer, T.Localization for Random and Quasiperiodic PotentialsStat. Phys51, 1009-1019
(1988)

[VP] Villeneuve, P. R., Pick, M.: Photonic Band Gaps in Periodic Dielectric Structurésog. Quant.
Electr.18, 153—-200 (1994)

Communicated by A. Kupiainen



