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Nonreciprocal magnetic photonic crystals

A. Figotin and I. Vitebsky
University of California at Irvine, Irvine, California 92697-3875
(Received 9 January 2001; published 24 May 2001

We study band dispersion reIatiom(IZ) of a photonic crystal with at least one of the constitutive compo-
nents being a magnetically ordered material. It is shown that by proper spatial arrangement of magnetic and
dielectric components one can construct a magnetic photonic crystal with strong spectral asyimome&yi-
procity) w(lZ)#w(—IZ). The spectral asymmetry, in turn, results in a number of interesting phenomena, in
particular, one-way transparency when the magnetic photonic crystal, being perfectly transparent for a Bloch
wave of frequencyf), “freezes” the radiation of the same frequenQypropagating in the opposite direction.

The frozen radiation corresponds to a Bloch wave with zero group veléeitl)/ k=0 and, in addition, with
Pw(k)/ok?>=0.
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[. INTRODUCTION particularly important in the optical and infrared frequency
range, where the magnitudi of Faraday rotation in a uni-
Spatially periodic composite dielectric structures, knownform substance does not exceed iGleg per wavelength
as photonic crystals, have been a subject of extensive re«~1 um. According to[10], the effectiveness of such an
search for their remarkable spectral properties. As a cons@nhancement may reach?16r even 16.
quence of spatial periodicity, the frequency spectrum of a The Faraday rotation is the most known electromagnetic
photonic crystal has the band-gap structure. In every banBheénomenon that has an essentially magnetic origin. It is
there is a dispersion reIatiam(E) relating the wave vectdt prohibited by symmetry unless the substance has some sort

. . of long-range magnetic order, or if an external magnetic field
of the corresponding Bloch wave to its frequeney The . . duced h ; her i
spectral band structure of a typical photonic crystal is similar introduced 13,14, T ere exists another important prop-
P rty of the electromagnetic spectrum that is also unique to

to that of electronic energy spectra in semiconductors anfl,hetically ordered media. This phenomenon is referred to
metals. In particular, it may have complete spectral gaps alstspectral nonreciprocity

called forbidden frequency banfi]. The presence of spec-
tral gaps constitutes the basis for many existing practical w(K)# o(—K) 1)
applications of photonic crystals. For the last decade an ex- '

tensive literature has evolved on various theoretical, experirhis remarkable effect was theoretically predicted more than
stance,[2-6] and references therginAt the outset, the therein. It was shown to exist in a special class of magneti-
researchers dealt almost exclusively with photonic crystalgally ordered crystals callechagnetoelectricsThe funda-

composed of two isotropic dielectric materials. Then, themental property of magnetoelectric crystals is the existence
physical nature of the constitutive components was diversiof the linear magnetoelectric response

fied to include anisotropic media, conductors, and even su-

perconductors. Rather recently some publications have 2 3

) . . . . dD JB
emerged in which magnetic photonic crystals are considered. =—, X'=—, 2)
Let us take a brief look at some of them. oH oE

In [7] and [8] the authors study some two-dimensional
(2D) and three-dimension&BD) photonic crystals with one wherey is a time-odd tensor which in most cases is asym-
of the two constitutive components displaying, along withmetric
electric permittivitys, an appreciable magnetic permeability

. The main focus of these investigations is the effect of x#x"
magnetic permeability on the position and the width of elec-
tromagnetic band gaps. More information on magnetoelectric media can be found in

Reference§9—12] are devoted to the effect dfaraday [13,19,20,16,14,21,32A graphic example of the fundamen-
rotation of light polarization in dielectric composite media. tal relation between the linear magnetoelectric respgnsé
This phenomenon has essentially a magnetic nature. Indeeahisotropic media and the property) of the spectral non-
such an effect, being time-odd, does not exist in a nonmagreciprocity is presented in the Appendix. An extensive dis-
netic substance in the absence of an external magnetic fieldussion on this topic can be found [ih6].

One of the most important results of these publications is The overwhelming majority of known dielectric materials
that the magnetic composite media may exhibit the effect oflo not display linear magnetoelectric effects and have recip-
Faraday rotation, which is much stronger than that of theocal electromagnetic spectra. The simple reason for this is
magnetic constitutive components taken separately. This ithat if the medium supports space-inversion symmeiry
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and/or time-reversal symmetfy, then all nine components 0)(K)
of the tensoly are zero$13,14. Indeed, taking into account
that

> -

D=-1D, E=-7E, H=7H, B=1IB,
D=RD, E=RE, H=-RH, B=-RB,
we have from the definitio2)

Ix=—% RX=—X. )

Therefore, the linear magnetoelectric eff€2f is incompat-

ible with space-inversion and time-reversal symmetries.

All popular ferromagnets and ferrites, being magnetically or-
dered, do not support the time-reversal symm@inbut they

do support space inversiah and, therefore, have a zero
magnetoelectric responge On the other hand, numerous
dielectric materials, which do not have the space-inversion
symmetry (those comprise all ferroelectrics, piezoelectrics,
and optically active medja normally support the time-
reversal symmetr{R and, for this reason, have no magneto-
electric responsg either. Only a few ferrites and antiferro-
magnets have neither of the two symmetries and may support
linear magnetoelectric responge as well as spectral non- FIG. 1. Reciprocal electromagnetic spectrum of the three-
reciprocity (1). In addition to being extremely rare, the layered periodic stack in Fig. 6 with=0. The numerical set 1 from
known magnetoelectric crystals have poor quality and disEd- (82; F/A=1.

play a very low magnitude of linear magnetoelectric re-

sponse which normally is a small fraction of a percl]. w(K)=w(—K), (5)

For this reason, their remarkable electromagnetic properties,

featuring spectral nonreciprocity, have not found any signifi, hije a magnetic photonic crystal composed of such recip-

cant application in optics and microwave technology. The,c4| components may support an essentially nonreciprocal

effect appears to be too small to be of any serious praCtiC%pectrum(l). In other words, the propert{l) of spectral

Interest. nonreciprocity can be achieved in magnetic photonic crystals

_ Turning back to magnetic photonic crystals, let us con-gq ey by proper space arrangement of the constitutive com-
sider the possibility of achievingtrongspectral nonreciproc-

>IU8 e ; _ ponents
ity in @ composite dielectric media made up of nonmagneto-  he first problem addressed in this paper is how to design
electric components. As shown below, under certain, phoionic crystal with strong spectral nonreciproglty us-

conditions magnetic photonic crystals can support apprepy constitutive components, each of which has a perfectly

ciable spectra'l nonreciprocity even in the absence of th?eciprocal spectrun(5). It turns out that although such a
magnetoelectric effect2). Therefore, from now on we re- ,qqipjlity is unique to magnetic photonic crystals, the spec-
strict our consideration to periodic structures composed only, nonreciprocity(1) by no means occurs automatically as
of generic readily available dielectric componeffsrrites soon as photonic crystal includes some magnetic compo-
and .anisotropic dielectrigssatisfying generic constitutive nents. Quite the opposite, only rather special periodic arrays
relations of magnetic and dielectric components can produce the re-
s s s o sult. For example, none of the magnetic photonic crystals
D=¢eE, B=uH (4 considered in quoted publications meet the criteria we de-
. . - . . rived, and, hence, all of them have regular reciprocal spectra,
without any “exotic” magnetoelectric termé2). This im-  ginjjar 10 those shown in Figs. 1 and 2. In Secs. Il and IIl we
plies that each of the uniform constitutive components, if ity hsistently develop guidelines for the proper spatial array of
fills the entire space, has a perfectly reciprocal electromagy,e ¢onstitutive components that would yield nonreciprocal
netic spectrum spectra.
Sections IV, V, and VI are devoted to the spectral analysis
of several specific examples of one-dimensiofid)) mag-

Hereinafter, the symbolB, E, B, andH denote the alternating Netic photonic crystals. Those examples graphically demon-
components of the electromagnetic field. These components are asirate important features of nonreciprocal electromagnetic
sociated with linear electromagnetic waves. The static componenspectra, as well as their dependence on the key geometric
of the fields and polarizations, if they occur, will be supplied with and material parameters of magnetic photonic crystals. The
the subscript 0. For more on this see Secs. Il A and VI. spectral calculations also reveal some fundamental limita-
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N\

FIG. 3. Nonreciprocal electromagnetic spectrum of the three-
layered periodic stack in Fig. 6 witk=7/4. The numerical set 1
from Eq. (82); F/A=0.45. At frequency(), one of the spectral
tions of the analysis solely based on symmetry argument$ranches develops a stationary inflection point.

Indeed, group-theoretical considerations alone can provide

only necessary conditions for the desired spectral fedfyre
and they cannot substitute for the analysis of real physic
mechanisms responsible for the effésee more on this in

o(K) oK)
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FIG. 2. Reciprocal electromagnetic spectrum of the three-
layered periodic stack in Fig. 6 with=7/2. The numerical set 1
from Eq. (82); F/A=2.

hereb is a vector from the reciprocal space, will apply
egardless of spectral nonreciprocity.
Consider now a harmonic plane wave propagating along

[23)). he symmetry direction, sag, of a magnetic photonic crys-
One of the immediate consequences of spectral nonrec%— y y R 1. S 9 P y
tal, so that bothi andk are parallel toz. Suppose that the

procity relates to electromagnetic waves wkt 0 belong- spectrum is nonreciprocal, and one of the spectral branches

ing to the higher branches of electromagnetic spectrum foﬁ)(k) has a stationary inflection point &t=k; as shown in

which Fig. 5. By definition, at this point
w(0)#0. (6) Jw o Pw 0 g Pw £0. ©
_— =Vu, 7 =V, an L3 3
Ky, - W,

Indeed, in photonic crystals with reciprocal spectra, the

modes withk’ =0 are standing waves and have zero group . -
velocity, as seen in Figs. 1 and 2. For nonreciprocal magnetiy:\'herek_kz' The spectral branch in Fig. 5 has wo Bloch

: ) - , waves withw={); the corresponding wave numbers &ie
photonic crystals the eigenmodes Witk 0 are not standing andk,>k; . Obviously, only one of the two waves can trans-

waves, as one can clearly see in Figs. 3 and 4. For thosg, the energy: the one witk=k, and the group velocity
modes, in every spectral brantb the group velocity u(k,)>0. According to Eq(9), the backward wave witk
=k, has zero group velocity(k;)=0 and will not propa-
G(K) = dw(K)/ ok (7) gate ballistically through the crystal. At first sight, a periodic
array with this kind of spectrum will act like a common
. - = . ... microwave or optical isolatof24], transmitting radiation
does not vanish &t=0, and, consequently, there is a finite only in one of thg two oppositg d]irections. Butgin fact, there

ﬁgﬁ/rgnglrl::' dlgefscr:,o:hae V?rytc?Ot(I-:'c:ir:)gich;ars]?;rr]r?sza\tﬁ Snl)nnlrtes-is an important difference. An isolator simply eliminates the
. pply o p y wave propagating in the “wrong” direction whereas the
ciprocal spectrum. Of course, the property

nonreciprocal photonic crystal with stationary inflection
R o point, being transparent for the plane wave witk Q) and
w(k)=w(k+Db), (8) k=k,, “freezes” the radiation propagating in the opposite
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FIG. 5. Asymmetric spectral branch with a stationary inflection
FIG. 4. Nonreciprocal electromagnetic spectrum of the threePOINt atw=, k=k;. Plane waves wit=(} can only propagate

layered periodic stack in Fig. 6 with=m/4. The numerical set 2 In the positive direction along theaxis.

from Eq. (82); F/A=1.065. At frequency}, one of the spectral

X . . . non of ral nonreciproci nd i n nces.
branches develops a stationary inflection point. enon of spectral nonreciprocii) and its consequences

It is well known that eigenmodes associated with any kind
of linear waves or excitations in a spatially periodic medium

direction in the form of acoherent plane wavevith zero can be chosen in the Bloch for(r)

group velocityu=dw/dk and its derivativeiu/ k.
H@ gu(N) =yu(F—8) =exp—ik-B)yi(7), (10

II. SYMMETRY OF MAGNETIC PHOTONIC CRYSTALS )

F t tandpoint. photoni tals. bei wheret(Q) is the operator of translation by a lattice vecdor
rom a symmetry standpoint, pnotonic crystals, being . space inversion and the time-reversal operations be-

spatially periodic, can be viewed as artificial crystals. There—ing applied to a Bloch eigenmodg; change the sign of the

fore, the same symmetry considerations can be applied to -

electromagnetic waves propagating through photonic crystaP/0ch wave vectok

as it is done with electrons, phonons, and photons in crystal- N o

line solids (detailed consideration and numerous references L= Ri=y_g. 1D

can be found if25-27). Some examples of & symmetry- g first of the two relation&l1) immediately follows from
based analysis of electromagnetic spectra of nonmagneti€ (10). The derivation of the second one can be found, for
photonic crystals can be found [4,28,29, and references gy ample, if27]. An immediate consequence of the relations

therein. _ _ (11) is that if a periodic medium possesses the space-
The symmetry of a magnetic photonic crystal can be ad:

. X X : inversion and/or the time-reversal symmetries, then the
equately described by its magnetic space group, which alon - . L .
with rotations, reflections, and translations constituting th loch spectrgmu(k) of any linear waves and excitations in
space symmetry, may also include the time reversal opera{he meghum IS rec'pfoci'zﬂ- . .
tion R combined with some space transformations. Magnetic If neither R nor I IS presented n the magnetic symmetry
symmetry and its applications in physics of magnetically or-9oup of the ph(_)tonlc crystal, still it may be some other
dered media have been discussed in numerous textbooks apg"Mmety operations that ensure the spggtral remp_rgﬁﬁ]ty
monographs, includingl3], [14], and[19]. Although mag- ! what follows we will use a simple suf.f|C|ent condition for
netic symmetry plays an important role in our investigation,the spectral reciprocity introduced j8]: If the symmetry

we will not engage here in a mathematical analysis requiringgrOUpG of a periodic stru_cture includes a syrrjmetry opera-
the application of the theory of magnetic group representallon g that changes the sign of the Bloch veclorthen the
tions and corepresentatiof®5]. This will exclude from our  spectrumw(k) of Bloch eigenmodes supported by the sys-
consideration such important problems as spectral degefiem will be reciprocal for this particular direction &f

eracy and compatibility relations in 2D and 3D photonic
crystals. Instead, we will focus exclusively on the phenom- if gk=—Kk then {w,(K)}={0,(—K)}, (12
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wheren indexes spectral branches amQ(IZ) is the respec-
tive dispersion relation. In particular, iRe G and/or Z

e G, the reciprocity criterion12) is met automatically for
all directions of wave propagation, since as it follows from
Eqg. (11):

=
=
[\9)

Zk=—-Kk, Rk=-k (13)

[compare these relations with E@)].

So, when looking for the spectral nonreciprodity, one
has to be sure that the magnetic symmetry gr@upf the
periodic structure does not include any operations that

change the sign of the wave vectof18],

N e—
L 13
L 41
L 48

gk#—k for any geG. (14)

4
4

Whether or not the criteriofil4) is met may depend on the

direction of the wave vectdk, unlessRe G and/orZe G.
The expressioiil4) is just a necessary condition for spectral =
asymmetry. Even if this condition is met, the corresponding
effect of spectral nonreciprocity may appear to be negligible
or even ruled out by some physical reasons different from
magnetic symmetry restrictions. Yet the criteridd) allows a) b)
us to substantially narrow down the search area. To find out FIG. 6. A f t of & three-| d periodi q
whether a periodic system satisfying this criterion does dis- - 0. Alragment ot & tree-layered periodic array compose
. . of the A and F layers. The arrows show the direction of the mag-
play the spectral nonreciprocity one has to go beyond the

symmetry consideration, which will be done in the Secs€li¢ polarizationMo of the 7 layers. L =2A+F—the primitive
IV—VI. translation; ¢, and ¢,—orientation angles of thed layers. The

If none of the constitutive components of a photonic Crys_fragmentsz(a) and(b) represent two different choices of a primitive

tal supports any kind of spontaneous magnetic order and "

there is no external magnetic field, then the photonic crystal (i) The A layers are made of a nonmagnetic dielectric
certaln!y possesses thg time-reversal symmgtand, there- material with anisotropy in they plane

fore, will support a reciprocal spectrum.

4
4 14

If, on the other hand, an external magnetic fidiig is [ ey exyy O
applied, and/or at least one of the constitutive components P N s 0
; ; EAT| Oxy  Cyy
supports a spontaneous magnetic order, then the medium
may not support the time-reversal symmeRy[13]. At the L0 0 &y
same time, if the space-inversion symmedris in place(as [ &+ 5c0S 2 5sin 2¢ 0

is the case in Fig. )7 the Bloch spectrumo(IZ) still will be .
reciprocal. To the best of our knowledge, this has been the =| Jsin2e e-dcos2p O
case with all magnetic photonic crystals considered in the 0 0 €77
literature.

. (19

. MAGNETIC SYMMETRY OF PERIODIC STACKS

In this section we apply the symmetry criterigi¥) to 1D
magnetic photonic crystalperiodic magnetic stackslt will
enable us to develop some important guidelines for design-
ing magnetic photonic crystals with spectral nonreciprocity.

4 &
4L 4
4 4
L 1

A. Choice of constitutive components

Our objective here is to find the simplest periodic arrays L
of dielectric layers satisfying the necessary conditibf) for
spectral nonreciprocity. With this in mind, let us restrict our  FIG. 7. A fragment of a four-layered periodic array with a par-
consideration to periodic stacks composed of just two differallel arrangement of the ferromagnetic layers. Each magnetic layer
ent sorts of layers, which will be referred to as tddayers  is sandwiched between two anisotropic ones, and vice versa. The
and theF layers. Some examples are presented in Figs. 6, #pagnetic symmetrym’'m’m ensures spectral reciprocity (k)
and 8. = w(—K) for an arbitrary directiork of wave propagation.
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¢1 q)z plane anisotropythe A layers to achieve an appreciable
spectral asymmetry. Hence, it seems to be impossible to fur-
ther simplify the composition of 1D magnetic photonic crys-
tals without losing the desirable electromagnetic properties.
At this point we would like to recall some basic facts
relating to the ferromagnetic media. For systematic consid-
= - 2 = eration see, for irlstaanS], [31], and£13].
Magnetic fieldH and magnetizatioM within the F lay-
ers are superpositions of two contributions

L L. L L L
A=Ho+H, M=Mg+M. (17)

4L 4
T T
4 4
T T

FIG. 8. A fragment of a four-layered periodic array with an - - . .
antiparallel arrangement of the ferromagnetic layers. Each mag‘,jnetﬂ_:'er_el_lO andM, are the static components of field and mag-

layer is sandwiched between two anisotropic ones and vice vers&€tization, whileH and M are the alternating components,

The magnetic symmetrynmni is compatible with spectral non- associated with the linear monochromatic electromagnetic

reciprocity o(K) # o(—K) unlessk. z. wave (see footnote )L Throughout this paper we deal with
linearized Maxwell equation@5) and linearized constitutive

- relations (4), written in terms of small harmonic variables

o= 1 > > > > >
Ha E,H,D,B. The role of the finite static fieltH, and magne-
All components of the tensoks, are presumed real. Pa- tization I\7Io reduces to the formation of the material tensors
rameter & describes the magnitude of in-plane anisotropy,(16) related to theF layers. In particular, the gyrotropic pa-
while the anglep defines the orientation of the principle axes ameterse and 8 in Eq. (16) essentially depend OH,, as

of tensorz 4 in the xy plane. The orientatiop may vary \ve|l as on the frequency. At the microwave frequency
from layer to layer. AllA layers are made up of the same yange; the dominant contribution to the Faraday rotation
dielectric material15) and have the same thickne&sThe  comes from the “magnetic” parametg which can become

only parameter that may differ in different layers is the  particularly large in the vicinity of ferromagnetic resonance.

angle ¢. . . . . -
. Lo .__.._The diagonal element in Eqg. (16) is also sensitive tdd,
(i) The F layers are ferromagnetic with magnetization ande. The substitution

l\7|0 parallel to thez direction; there is no in-plane anisotropy

in this case Ho——Ho and Mo——M, (18
e da O mo 1B 0 implies the following transformation of » and &+ in Eq.
g,=|—ia e 0|, pz=|—-1f n 0| (16):
0 0 0 0
822 lu’ZZ (16) e—e, Iu_>lu, a——a, B—)-B (19)

The real parameter@ andlg are responsib|e for the mag- which reduces to the Change of Sign of the Faraday rotation.
netic Faraday rotatiofi13,30. All F layers have the same  In magnetically soft ferrites and ferromagnets, the direc-
thicknessF. tion of static magnetizatioM, coincides with the direction

The anisotropic dielectric material of thélayers, as well  of static magnetic field,. Specifically, in the case of inter-
as the magnetically polarized material of tAdayers, both st
possess the space-inversion symmétriHence, each of the
two materials, if they fill the entire space, will support per- HollM | z. (20)
fectly reciprocal electromagnetic spectra. In such a case, the

spectral nonreciprocity of the periodic stack, if it occurs, will In such a case, afF |ayers of the periodic array are exact]y
be essentially related to the geometry of the periodic strucigentical.

ture. o _ o In the opposite case of ferromagnets with strong uniaxial
The restrictiong15) and(16) imposed on the constitutive anisotropy(see, for exampld31]), the orientatiorM ollz can

components of magnetic photonic crystals can be justified al%e sustained even without the external fillg|z. Therefore

follows. Firstly, dielectric materials with property tensors S . . )
(15) and (16) are readily available, their electromagnetic one can arrange a periodic magnetic stack with an antiparal-

properties are predictable and well established. Secondly, tHel orientation of magnetic polarizatiad, in the neighbor-
incorporation of dielectric materials with more complex or ing 7 layers, as shown in Fig. 8. Notice that the stability of
more diverse physical properties presumably will not rendethe antiparallel orientation of the magnetizatiavlg in dif-

any qualitatively new spectral features, compared to whaterent F layers requires a relatively strong uniaxial anisot-
one can achieve with just thd and F layers. On the other ropy of the ferromagnetic material. Besides, even a small
hand, as shown in Sec. Il B, we do need both the ferromagexternal magnetic field would cause the violation of interre-
netic layers(the F layers and the layers with alternate in- lations (19) for F layers with an antiparallel orientation of
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M,. Therefore, when dealing with an antiparallel arrange-Primitive cell: (i) the number of4 and 7 layers in a cell and

ment of the F layers we will automatically assume tHé’b their azrrangementcii) the relative orientations;; of the A
layers:
= 0. = . . .

In future consideration we, for the most part, will be deal- Suppose thakiiz. Let m denote the reflection in a mirror
ing with the parallel orientatiof20) of the F layers. In such ~ Plane containing the axis, and letm" denote the reflection
a case, allF layers of the periodic stack are identical regard-m accompanied by the time-reversal operation
less of the magnitude of the static magnetic fiellgl|z.

Let us introduce the following notations for thé and
layers, as well as for the periodic stacks made up of these

m'=Rm=mR.

layers. The symbol The operatiorm does not changk=k,, whereasm’ trans-
formsk into —k [see formula13)]. The following statement
A determines the minimal complexity of a periodic stack, nec-
90} (21)  essary for spectral nonreciprocity.

Let ¢jj=¢i—¢; be the misalignment angle between a
denotes an individual layer with the orientation angle. ~ Pair of A layersi andj. If eachgj; in a primitive cell is a
The symbols multiple of 7/2 then the mag'net|c group of.the gtack in-
cludes the symmetry operatian’ transformingk into —k
and, thereby, implying spectral reciprocity.
(22 The above statement implies that a 1D photonic crystal
may support a nonreciprocal electromagnetic spectrum only
if its primitive cell includes at least on& layer and at least
two A layers with the misalignment angle ,= ¢ — ¢, dif-

f‘
4+

].'

and

denote individualF layers with two opposite directions of

magn.etizatiori\7|o|\z'. o ferent from 0 andm/2.
Using the notations21) and(22), a primitive cell of the Note that periodic stacks with just two layers in a primi-

three-layered periodic stack in Fig. 6 can be represented agye cell will always support the reciprocal electromagnetic

AT AT F spectrumregardless of the direction of the wave vector k

} (23 Indeed, in this latter case a 1D photonic crystal certainly
P1ll¢2 possesses the space inversion symmeétriyor more on the
case of an off-axis wave propagation see Sec. llIC.

+

A 1. Periodic stacks with a three-layered cell

.t (24

or, equivalently,
Al F|| A _|F|lA
ool o] |+ @1 Let us consider the case of a three-layered primitive cell
in more detail. There is only one essentially different peri-
The expressions(23) and (24) correspond to different odic array of thed andF layers with three layers in a primi-

choices of a primitive cell of the same periodic array. tive cell. It can be chosen as presented in @) and Fig. 6.
For two four-layered periodic stacks shown in Figs. 7 andA primitive cell is comprised of oneF layer and twoA
8 we, respectively, have layers with different orientationg; and ¢,. The most criti-
cal parameter of this periodic structure is the misalignment
[A Fll Al F 25 angle
Q1| T L@zl T
P=@2— P
and
between the adjacem layers. The angleo must not be a
{A FliA 7} (26  multiple of 72
Q1) Tl e2)| —
The expression$23)—(26) define the layers’ arrangement ¢=¢2—¢1#0, /2 (27)
within a single primitive cell and, thereby, define the entire
periodic arrays. (see the previously made rem&rklf the condition(27) is

met, the magnetic symmetry gro@of the periodic array is
B. Space arrangement of the layers

Recall that a 1D photonic crystal is a periodic array of G=2'2'2 for ¢#0,m/2. (28)
identical fragmentgprimitive cell§. Each primitive cell in-
cludes severall and F layers. The choice of a primitive cell
for a given periodic stack is not unique. The magnetic Sym- 2The orientationsp and ¢+ 7 are identical. Hence, there is no
metry of the entire 1D magnetic photonic crystal is deter-difference between, for instance=0 and ¢=, or between
mined by the following geometric factors relating to a given ¢=+/2 and o=—n/2.
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None of the four symmetry operations frorf22 transforms C. Off-axis wave propagation

k— —k for Kiiz, therefore, the configuratio(27) meets the Let us now consider a situation when the magnetic sym-

necessary cor'u.j|t|oftL4)'of spectral nonreciprocity. . metry groupG of a periodic stack includes neither the space
If the condition(27) is not met, then the magnetic sym- inyersionZ nor the time-reversal operatiofi®. At the same

metry groupG of the periodic array23) raises up to time, suppose that the criterigh?) of the spectral reciproc-

ity is satisfied at least fokliz. This implies that for the par-

G=4m'm’ for ¢=m/2 29 ficular directionkiz of the wave propagation, the electro-
magnetic spectrum must be reciprocal, i.e.,
or
if kKiz then w(k)=w(—K). (33
G=m'm’'m for ¢=0. (30

A simple example of the kind is provided by the three-
layered configuration depicted in Fig. 6 with= /2. In-
deed, the magnetic symmetry gro(®9) of this array does
include the elements

The symmetry(29) implies spectral reciprocity foiliz,
while the symmetry grouf30) ensures the spectral reciproc-
ity w(§)= w(—IZ) for arbitrarylz.

In further consideration we assume that the condit®f
is met, unless otherwise specified. The computation of elec-
tromagnetic spectra carried out in the following sections
shows that strong spectral nonreciprocity does occur in the
periodic stacks when the necessary conditi@n) is satis-
fied.

4=4,m, and m=mR,

each of which transformk,— —k, and thereby ensures the
2. Periodic stacks with four-layered cell spectral reciprocity33). On the other hand, iz then it is
First, let us consider a simple augmentati@s) to the possible that none of the symmetry operations from(28).

three-layered structuré23). Each magnetic layer now is changek— —k and, therefore, the electromagnetic spectrum
sandwiched between two anisotropic ones, and vice vers&ay not be reciprocal. Thus, in some cases, the spectral non-

The magnetic symmetry reciprocity can occur only when the wave veckodeviates
from the distinguished direction Of course, it may occur
G=m'm'm (31) only if the magnetic symmetry grou@ of photonic crystal

includes neither the space inversion nor the time reversal.

. - , For example, this cannot be the case with the three-layered
of this periodic array appears to be higher than that of th%onfiguration in Fig. 6 withy=02 or with the four-layered

three-layered structur¢23). In fact, the magnetic group qndiguration(25) in Fig. 7 regardless of the value f
m’m’m even includes the space inversidrand, therefore,
ensures the spectral reciprocity regardless of the diretion
of the light propagation, and regardless of the value of the |\, TRANSFER MATRIX OF A MAGNETIC STACK
misalignment anglep.

Consider now the four-layered periodic std2k) with an This and the following two sections are devoted to the
antiparallel arrangement of the neighboring ferromagnetigjuantitative analysis of electromagnetic spectra of different
layers. If the condition27) is met, the magnetic symmetry 1D magnetic periodic arrays composed of theand theF

group of the four-layered stack in Fig. 8 is layers. In Secs. IV and V we reformulate the transfer matrix
formalism for the case of magnetic stratified media with the
G=mmmni (32) possibility of spectral nonreciprocity. Then, in Sec. VI we

consider several specific numerical examples, which will

- prove the existence of strong spectral nonreciprocity in the
which is compatible with spectral nonreciprocity(k)  situations predicted by the symmetry analysis of the preced-
#w(—K), unlesskL z. The periodic array26) in Fig. 8 has  ing two sections.
zero bulk magnetic polarization, because the contributions of Let us consider a plane monochromatic wave propagating
the individual ferromagnetic layers to the bulk magnetizationalong thez direction in a 1D periodic stack with the consti-
cancel out within each primitive cell. The absence of bulktutive components defined in Eg€l5) and (16). For this
magnetization results in the absence of the related nonunggeometry all the alternating components of the electromag-
form demagnetization fields within the staf®2]. This fea-  netic wave are perpendicular to thelirection
ture may be of great advantage when the magnetic field uni-
formity within a stack is critical. On the other hand, such an
array cannot be stabilized by an external magnetic field 3, o casap=0, the three-layered configuratié23) reduces to a

Holz, and therefore, requires a ferromagnetic material withwo-layered one with the doubled effective thickness of theay-
sufficient uniaxial magnetic anisotropy. ers.
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E,H,D,BLZ (34  where a &4 matrix T(z,,z,) is called atransfer matrix
The coordinateg, andz; may include an external boundary
and are independent of tieandy coordinates. The Maxwell (or boundariesof the dielectric slab, as well as layers’ in-

equations terfaces. According to Eq38), both vector quantitie& ()
. . andﬁ(z) are continuous functions afeven at the points of
VXE= '?w(g), VxXH=— 'F‘"([j), (35)  the property tensors discontinuity. Therefore, the matrix

'f'(zz,zl) is also a continuous function @, andz; .
The following basic property of the transfer matrix is a

then can be recast as direct consequence of its definitigA0)

Jd. lo . . lw - . . . .
25 ¢ #H), G H=—-——(¢E), (30 T(22:20)=T(2,20T H2z:20)=T Yz152,). (41
where In the case of a stratified medium, one can introduce the
transfer matrix'f'm for every individual layem. By defini-
- E.(2) - H,(2) tion, a single-layer transfer matrik,, relates the electromag-
E@D=g(»] H@=|h (2] netic field components at two faces of the layer at the same
Y g point in time
[0 -1 -
Tloelt o E(Zm+1) E(zy)
z R z
{ (2 T{ (2 } -
At layers’ interfaces, where the tensa¥s=£(z) and/or H(Zm+1) H(zp)

= 1(z) are discontinuous, the following four interface con-
ditions must be satisfied: The coordinates,,, andz,,, ; correspond to the left and right
faces of themth layer. We note thaﬁ(z) and H(z) are

E(zm—O) _ E(zm+ 0) continuous at the layer interfaces. The transfer méﬁg’mf a
H(z,—0)| |H(z,+0)| (38 stack of layers is the sequential product of all one-layer ma-
trices T,
Here z=z,, is the position of the interface between tha (
—1)th andmth layers. - -
) y =11 1o 43)

A. The transfer matrix

Various modifications of the transfer matrix formalism Different matricesT, of the product may not commute. The
have been widely used for the analysis of electromagnetigypjicit expressions for the single-layer transfer matritgs
properties of stratified medi@ee, for instancg30,9,11,3). Wil be obtained in the next section.

We will use similar formalisms to analyze periodic stacks
with spectral nonreciprocity. _ _

Notice that the reduced 1D Maxwell equatiof®6) con- B. Single-layer transfer matrices

stitute a system of four ordinary linear differential equations  Within a single uniform layer, the monochromatic solu-

of the first order. Its general monochromatic solution in-tions for the Maxwell equation$36) are harmonic plane
volves four arbitrary coefficients that can be uniquely relatedyaves
to the four quantities

. I?(z)zl?exp(iqz), ﬁ(z):ﬁ expiqz), (44
E(zy)

R 39
H(zy) (39

whereq is the in-layer wave vector. The eigenvect&rsind

which are the transverse field components at a fixed fzgint H are defined by the equation

The monochromatic electromagnetic field at an arbitrary
pointz, can be related to its value at z; at the same point

- - - - c
in time by the following linear relation: noE—uH=0, gE+noH=0 wheren= _q (45)
w
%(22)} ='T'(Zz,21)[ Ié(zl)}, (400  The system(45) of the four linear equations describes four
H(z,) H(zy) electromagnetic eigenmodes within the layer
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E,(2) B E,(2) . = Let us turn to the transfer matrix within a uniform layer.
! —gldzl | ! —e iz L | From the definition(40) one can see that the four in-layer
Hi(2) Hy Hi(2) —H; solutions(46) for the Maxwell equations are the eigenvectors
) ) ) ) (48)  of the in-layer transfer matrit (2)=T(z,0),
IEl(z) _ aigyz |§2 , |§1(Z) —e 22 E , C . R -
Hi(2) ol [Hi(@) —H T(2) Ea|_ga E1| T(z)| L |=eiag] 1|
N [Hil 7 [Hy | —H] | —H.]
where (49)
w w [} w F o Fs . oL
= — = — = — = — ~ E . E A B E
Qi=g M= NETH c M= V72 (47) T(2) 22|=el92q 22|, T(z)| 2 |=e7l0q 2|
| H2) L Ha) | —H2] | —Ha]
and », and 7, are the eigenvalues of the tensor R
Using Eq.(49) one can express the transfer maffigz) in
N=—Ou0E. (48)  terms of the eigenvectoi&, andH, from Eq. (46),
In general, if th(Aa_I-|er[‘nA|t|:3u:1 .matnces an'd',u do not com- 'T'(z)=f(22—21)=W(22)W‘1(21), (50)
mute, the tensof)= — g o¢ is not Hermitian and the com-
plex vectorsE; andE, may not be orthogonal. where the matrix

E1€97  Eje 9?7 E,e9?  E,e 922
Elvyeiqlz El‘ye_iqlz Ezyyeiqzz Ezvye_iqzz
W(Z)_ Hl)(eiqlz _ Hl‘xe—iqlz szxeiqzz _ Hz,xe—iqzz (51)

iq,z —iqqz i,z —igoz
Hqype'9? —H; e 91 H,e'9%? —H,e "9

is composed of the Cartesian components of the eigenvectogge explicit expressions for the eigenvectds, H;, E,,

E, andH; from Eq. (46). andH,. Those eigenvectors, in turn, are the solutions for the

_ Along with the basic property41), the transfer matrix  system(45), into which the corresponding property tensérs

T(z) from Eq.(50) displays the following important symme- and & should be plugged in.

try: In the case of4 layers, the property tensors are defined in
Eqg. (15). The substitution of Eq(15) into Eq. (45) yields

T(2)=T(z-2)=T (-2, (52)

which is an immediate consequence of the substance unifor- El: C(.)S(P , lenl —sine ,
mity. Another general consequence of the uniformity is that sine coSe
the eigenvectors of the transfer matfigz) coincide with the (54
solutions(46) for the Maxwell equations within the layer. ,

. - . . . . |—sing - —COoS¢p

According to EQ.(49), T(z) is equivalent to a unitar = = .
g q.(49), T(2) q y Eo=| cose |© H2=M2 _ging |

matrix and, in particular,

de{T(2)]=1. (53)  where

Notice that the property53) does not apply to dielectric
materials with linear magnetoelectric respoii@e This and ni=ve+d8, nN,=\e—4. (55)
related questions are discussed in the Appendix.

1. Transfer matrix for a single.A layer This gives us the following explicit expression for the trans-

The explicit expression for a single-layer transfer matrixfer matrix Ta(e) of the A layer of the thicknes# and ori-
can be obtained from Eq$50) and (51) by substitution of entatione,

066609-10



NONRECIPROCAL MAGNETIC PHOTONIC CRYSTALS PHYSICAL REVIEW E3 066609

i _ _ - -
IlUvvy IUvVV, UV 1V7D)
u?u; +v2u, UvU; —UoUy — + +
ng ny ng Ny
. UoUs — UL 200+ u2U ivZvy; iu?v, iuvv; iuvv,
T = vu;—Uuvlup v-Uy 2 - , 56
Al®) n n, n n, (56)
—inuvv,+inyuov, —ingw?v,—in,u?u, v2u;+u?u, —UvUjy+UvUy
inuv;+in,w?v,  ingUvuy—in,Uvv,  —UvUy+UvU, u?u; +v2u,

where
u;=cogq;A)=cogn;a), vi=sin(g;A)=sin(n;a),

Up=Cog(A) =CcogNya), vp=SiN(gzA)=sin(nza),
(57)

u=cosep, v=sine.

Notice that the dependence of the transfer makiike) in Eq. (57) on the wave frequency and the layer thickness comes
through a single dimensionless parameter

w
a=—A.
c

There are three more independent dimensionless physical parameters in the expreij\«@rp)fntwo refractive indices,
andn, defined in Eq(55), and the anglep of the layer orientation defined in E(L5). Evidently

Tal@)=Tale+m). (59

2. Transfer matrix for a singleF layer

The derivation of the transfer matrix for aflayer is similar to that for amd layer. Instead of Eq(54), within an F layer
we have the following expressions for the eigenveci®rs H,, E,, andH,:

1

- -1
: H2:72[_i}: (59

where

y=Vet+ta)(u+pB) L yv=Jle—a)u—-p)1 (60)

The substitution of Eq(59) into Egs.(51) and(50) produces the following expression for the transfer mafrjxof a uniaxial
ferromagnetic layer of the thickness

U;+U; i(U;—Upy) Y1 Vim v Vo iy Vit TV,
2 1 SiUmUy Us+U, —iy Vi, Vo v Vim WV, -
F=5 i ; i
2l =yiVit vV —iviVi—iyeV, U;+U; i(Up—Uy)
fyiVitiyaVo = yiVityaVs —i(U;—Uy) U;+U;
|
where To avoid confusion of symbols, in the case of théayer we

use the capital symboldJ;,U,,V;,V5,N1,N5,Q4,Q5.
Similarly to the A layers, the dependence of the transfer
matrix T in Eq. (62) on the frequencyw and the layer
thickness= comes through a single dimensionless parameter

U;=cogQ1F)=cogN;f), V;=sin(Q.F)=sin(N,f),
(62

Uy=cogQyF)=cogN,f), V,=sin(Q,F)=sin(N,f),

w
Ni=\(e+a)(u+B), No=\(e—a)(u—p). (63 =<k
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>

In addition tof, there are four more independent dimension-

less physical parameters in- which are material constants [T(L)—Te™]
defined in Egs(60) and (63).

In accordance with Eq$18) and(19), the transfer matri-
ces'f'f of F layers with two opposite magnetic polarizations

=0, (70)

E
=

whereK is a dimensionless form of the wave vector

M, are related by the transposition of the indices 1 and 2 in K=KkL.
Eqg. (61), .
In view of Eq.(43), the transfer matriX (L) is expressed in
f . o . -
[ ﬁ[_ is equivalent tof>2. (64) terms of the transfer matricek,, of the related individual
+ layers
Note in passing that depending on the specific magnetic . .
material and the frequency range, there might be two distinc- T =11 T, (72)
~ m
tive limiting cases. Fofx=1
where the indexn runs over all layers in the primitive cell.
n1=Ni=v(e+a), g5 e note that matrice$,, may not commute.
yo=Ny= (e —a) (€9 According to Egs.(67) and (70), the Bloch eigenmodes
2 coincide with the eigenmodes of the transfer maﬁ'bL).
and fore=1 The corresponding eigenvalues
_ — _ ikl _ 4iK
=Ny =T B) 7, Z=elt=e 72
(66)  are the roots of the characteristic polynomial
N e Pov
T _711— —_ 74 3 2
Our spectral calculations show that the “dielectric” lim- delT(L)=ZI]=F(2)=Z"+ Pz + Po2"+ Plz+1’(73)
iting case(65), compared to the general case, produces a
slightly different spectral asymptotic &t-0 for the lowest |\ here
spectral branches withw(0)=0. Otherwise, there is no
gualitative difference between the general case and the two P,=P%, P,=P}. (74)
limiting cases.
Using the substitutions
V. CHARACTERISTIC EQUATION _2 o
AND SPECTRAL NONRECIPROCITY M(2)=Z2"°F(Z), Z=cosK+isinK,
Consider now an infinite periodic stack forming a 1D one can recast the characteristic equation
magnetic photonic crystal, and denote Ibyhe length of its
primitive cell. The Bloch eigenmodes of the crystal satisfy F(2)=Z%+P3Z%+P,Z°+P,Z+1=0 (75
[27]
as
E(z+L E(z)]| .
Q(Z ) ={ a(z)}e'“. (67) M(K)=—2+P,+ 2R cosK + 2P sinK + 4(cosK)?=0,
H(z+L)| [H(2) (76)
Using the transfer matrizd0) we recast the Bloch condition \where all coefficients are real
(67) as
R R=ReP;, P=ImP;.
- ~ikiq| E(2) ] _ _ . .
[T(z+L,2)—1e""] H(2) =0, (68 Equations(76) or (75) determine the electromagnetic spec-
trum (k) of the 1D magnetic photonic crystal. Indeed, in
where line with Egs.(70), (71), (56), and(61), the coefficient®, R,
R and P, in Eq. (76) are functions of the matri (L) and,
T(z+L,2) (69 thereby, functions of the frequenay. Real solutionsk; for
. _ o . Eq. (76) [or, equivalently, the roots of Eq75) with |Z;]
is the transfer matrix of the primitive cell. Differemts cor- ~ =1] correspond to propagating Bloch waves. Compiex

respond to different choices of the primitive cell. Notice that[or, equivalently, the roots of Eq75) with |Z|#1] corre-
although the matri (z+L,z) depends o, its eigenvalues spond to the band gaps.

do not. In further consideration we set0 and place the If all the coefficients in Eq(75) are realor, equivalently,
reference poing=0 at one of layers’ interfaces. In this case if P in Eq.(76) is zerd, the corresponding spectrua(k) is
Eq. (67) reduces to reciprocal
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o(k)=w(—k). layer taken separately supports a reciprocal spectay)
=w(—q). This is always the case, unless some of the layers
The appearance of complex coefficients in Ef3) is an  display a linear magnetoelectric effect.

indication of the spectral nonreciprocity Consider now an important consequence of the relation
(79): regardless of whether the condition (12) is met, the
w(k)# o(=k). spectrumw(Kk) of a periodic stack must be reciprocal if it

upports the polarization degeneracy

Indeed, let thez direction be the optical axis of the stack,
so that both wave polarizations 1 and 2 for evéty are
nEiegenerate. The polarization degeneracy implies that for a
fixed frequencyw,

An advantage of the transfer matrix approach lies in theS

fact that based on the set of the matrié'e]$ for individual
constitutive layers one can immediately obtain the spectru
of an arbitrarily complex stacksee, alsd30,9,3). We find
the transfer matrix formalism particularly efficient in the
spectral analysis of nonreciprocal magnetic stacks. _ _

Based on the characteristic equati@it) we have com- ki(@)=ka (@), Ku(w)=ka(w), (80)
puted and analyzed the electromagnetic spectra of numeroygere 1 and 2 denote the wave polarizations while the indi-
reciprocal and nonreciprocal magnetic stacks. The results aggsr and| stand for the right and the left directions of wave
summarized in Sec. VI. propagation, respectively. The comparison of Bf) with

Eq. (79) yields
Polarization degeneracy

Up to this point the only restriction on the constitutive k(@)= —Ky(@) =Kz ()= —ky(w) (81)

components of the stack we actually used was that tieds
coincides with a distinguished symmetric direction for every
single layer. This restriction ensures the transverse(8bs

of the plane electromagnetic waves propagating inztkée

which implies the spectral reciprocity along with the twofold
polarization degeneradyO0).

We can conclude that the polarization degeneracy on its
own ensures the spectral reciprocity, unless a periodic stack

rec:gnaiggi;meafmal'g?tk;':::ysoLgfeict;zgifiie%iﬂggg?:}ael'Zr:r'_includes components with linear magnetoelectric response.
P P In contrast, as we show in the Appendix, the spectral non-

lier assumption _that dn‘feren.t Iayerg are made of dlelecmcreciprocity can coexist with polarization degeneracy in a uni-
components(ferrites and anisotropic dielectricseach of form magnetoelectric medium

which can be described by generic constitutive relati@hs '

without exotic magnetoelectric ternf®). This implies that

each of the layers, if it fills the entire space, supports per- VI. CONCLUSION

fectly the reciprocal electromagnetic ~spectrum(q) As we have seen in the preceding section, having the
=w(—0q). At the same time, we expect that the proper pe-

it - ransfer matriced , for the individual layers we can imme-
gt?glr?g Zg:)c/trgr nsouncrgcirsrccl)girgc(il) ;ZTE?S?MS can prOduc‘%jiately obtain the explicit expressioirl) for the transfer

In view of Eq. (53), in the absence of the linear magne- Matrix T(L) of a primitive cell of 1D magnetic photonic

toelectric response), a single-layer transfer matrik,, al-  crystal. Then, having (L) and using Eqs(70) and (76) we
ways satisfies can find the eigenmodes and the spectmifk). The transfer
R matricesT 4 and T~ for the individual .4 and F layers are

detT,,=1. (77) defined in Eqs(56) and (61), respectively. Thus, we have

R everything we need to calculate the electromagnetic spec-
The same property applies to the transfer matifk) of the  trum of an arbitrarily complex periodic array of tbeand F

primitive cell layers.
. The transfer matrixi (L) from Eq. (71) depends orN,
detT(L)=2,Z,Z374=1 (78 —1 misalignment angles, whel, is the number of4 lay-
) ers in a primitive cell. In addition to that, there are eight
or, equivalently, more independent dimensionless parameters, three of which
kit+kat+ks+ks=0, wherek;=—il -1 In(z;). (79 originate fromT’A (these are, n,, anda= wA/c) and the

remaining five originate frorﬁf (these ardNy, N,, v1, V2,
In the case of a reciprocal spectrum, the relatié®) is sat- and f=wF/c). Of those eight parameters, six
isfied automatically, since for every(k;) there is the recip-  (n1,n,,N;,N5,v1,7,) are material constants relating to
rocal solutionw(—k;). Importantly, the relation79) still electric permittivity and magnetic permeability. In common
holds in the nonreciprocal situation, when four wave vectorsnaterials they typically range between 0 and @ 1 and
in (79) may have four different absolute values. Although the1(?. Physically, the degree of spectral nonreciprocity can be
equality(79) may appear as a symmetry restriction, in fact itlimited by the largest of the two contributiorrsand 8 from
is not at all related to the magnetic symmeByof the stack. Eg.(16) to the Faraday rotation. As soon as either of them is
Indeed, the restrictiori79) stems solely from the equality of the order of magnitude or greater than unity, the degree of
(77 which, in turn, holds automatically if every individual spectral nonreciprocity can be substantial, as shown in Figs.
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3 and 4. In the microwave frequency range, the dominanhonreciprocity that can neither be found in uniform mag-
contribution to the Faraday rotation comes frgén[33], netic and nonmagnetic media nor in nonmagnetic composite
while « is negligible. In the infrared and optical range the media.
situation is different. By contrast, the dimensionless param-
etersa= wA/c andf = wF/c are not restricted at all, because

there is no physical limitation on layer thickness. Therefore,

when analyzing the electromagnetic spectra, we assign some In the Introduction we briefly discussed the possibility of
reasonable physical values to the above six material corPne-way transparency of magnetic photonic crydtsé® Eq.
stants, while keeping andf arbitrary. For instance, the spec- (9) and comments thereaffent is particularly remarkable,

tra presented in Figs. 1—4 correspond to one of the followinghat being transparent for a certain plane wave, a magnetic
two sets of numerical values of the material paraméters: ~ photonic crystal can trap the radiation propagating in the

A. The frozen mode

Numerical set n; n, N, Y1 N, Y2 opposite direction in the form of a coherent plane wave with
dwl k=0 and dw?/k*=0 (here k=k,). Clearly, such a

1 93 11 89 35 13 23 sjtation is unique to magnetic photonic crystals with strong
2 19 1.1 8.9 3.5 1.3 23 spectral nonreciprocity. If the frequendy relates to just a

(82) single pair of the wave vectof¥, ,k,] (as shown in Fig. b
the magnetic stack displays a one-way transparency for this

i particular frequency? andkliz. In the course of a numerical

We have analyzed the electromagnetic spectra of numelnayysis of electromagnetic spectra we tried to understand
ous periodic magnetic stacks with three and more layers in fo realistic it is to arrange a magnetic periodic stack with
primitive cell. Based on the numerical results, we have comgy,q spectrumo (k) displaying such a property. We have
to the conclusion that the general picture of the electromagry ,nd that for a given set of property tensérand z from
netic spectrum appears not to be particularly sensitive to qs.(15) and(16), it is always possible to choose the layer
specific composition of the primitive cell. For instance, thehicknessed\ andF and/or the misalignment angleso that
spectrum does not qualitatively change if we switch fromg; ome frequenc§ one of the spectral branches develops a
three-layered to four- or six-layered periodic arrays, providedsiaiionary inflection point9). In both numerical examples
that the_ criterion(14) for the spe(itral nonreciprocity hplds. presented in Figs. 3 and 4, one can find the corresponding
For a given set of property tensags from Eq. (15 andéx  cparacteristic frequenc on one of the spectral branches;
and i from Eq. (16), it is always possible to pick the opti- he respective stationary inflection points are designated with
mal layer thicknesse& andF and misalignment anglesto 4 gircle. In either case the frequen@yrelates to just a single
achieve the desired spectral features. Since there is no aPPYair [k, ,k,] of the wave vectors, one of which corresponds
ent qualitative difference between nonreciprocal spectra iRy 5 frozen wave. We think that the case of one-way trans-
stacks with different numbers of layers in a primitive cell, we parency with a frozen backward wave, as well as its possible

consider the simplest case of the three-layered periodic arrgymifications, warrants further investigation, which will be
(23) in Fig. 6 in more detail, keeping in mind that all the yone elsewhere.

spectral features described below are common for all nonre-
ciprocal periodic stacks.

In the case when the misalignment angl@pproaches 0
or m/2, as well as in the case when one of the thicknesses  The role of the static magnetic field, is particularly

or F vanishes, the electromagnetic spectrum degenerates inf@portant when the ferromagneti€layers are made of mag-
a perfectly reciprocal one, as shown in Figs. 1 andf@ netically soft material. In such a case the external magnetic
explanations, see Sec. Il B.10therwise the spectrum dis- %ield ﬁollz aligns the magnetizatioriﬁo of the individual £

lays quite appreciable nonreciprocity, as shown in Figs. . L L=
plays g bp P y 9 ers with thez direction. By changindH, one can substan-

and 4. This fact confirms the important conclusion that mag—ay

netic photonic crystals develop strong spectral nonreciproci@lly alter the electromagnetic spectrum of a magnetic pho-

. - - . tonic crystal. Let us consider several possibilities.

ity w(k)#w(—k) even when each constitutive component . jiqa \yith Eqgs.(20), (18), and(19), switching the direc-
supports perfectly the reciprocal electromagnetic spectrum = . —
() = w(—q). As we mentioned before, all known uniform tion of the extemal fieldHllz to the opposite direction
dielectric materials, both magnetic and nonmagnetic, are effAUSes the following transformation:

ther perfectly reciprocalthe overwhelming majority or
support extremely small spectral nonreciprocitye magne-
toelectrics. Thus, magnetic photonic crystals can develop

some remarkable spectral featurés.g., strong spectral In the case(9) of the frozen backward mode, this provides
the way to easily reverse the direction of one-way transpar-

ency of a magnetic stack.
Consider now a particular case

B. The role of the static magnetic fieIdI—TO. Tunability

|\7|0—>—|\7|0, w(K)— w(—K).

“In real situations, all material parameters, especially the gyrotro-
pic ones, may depend on the frequeney This will not qualita-
tively change the general spectral picture of a magnetic photonic All A || F
crystal. O|| =/2|| +
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of the three-layered periodic arrég?) in Fig. 6. If Holiz, the APPENDIX

magnetic symmetry29) of*this array ensures spectral reci- 1. The transfer matrix for magnetoelectric media

procity “’(k):“’(,_k)_ for kiiz, as shown in Fig. 2'_ The ap- In dielectric materials with linear magnetoelectric re-
plication of the criterion14) shows that the deviation of the sponse the generic constitutive relatiof should be re-
static magnetic field:|0 from the z direction will cause the placed with more general ones

violation of spectral reciprocity, unlesﬁ;o remains confined . . - . R R

to thexz or yz plane. So, here we can turn the spectral non- D=8E+%H, B=aH+X'E, (A1)
reciprocity on and off by changing the direction of the exter-
nal magnetic field. Another effect of magnetic field deviation
will be the loss of the transversene@®l) of plane electro-

where the asymmetric tens@r describes the linear magne-

toelectric response).

) - In line with our initial assumptiori34), let the directiorz

magnetic waves with|z. of wave propagation coincide with one of the symmetry axes
Finally, as we have already mentioned, the material tensagf the magnetoelectric medium. According to E6®5) and

s in Eg. (16) strongly depends orﬁo. Therefore, by (Al), the monochromatic plane waves

changing the magnitude &,z one can effectively control N - + idz
the dispersion relations. In the case of reciprocal magnetic E(z)=Ee'¥, H(z)=He'"

photonic crystals, this question has been addressed, for in- . . . :
stance, in[7], [8], [34], and[32] in a uniform magnetoelectric medium are determined by the

system of four linear equations,

C. Multidimensional photonic crystals (n6—xNE—aH=0, EE+(nd+%H=0, n= ﬁ
w
Let us now make a few comments on 2D and 3D mag- (A2)

netic photonic crystals. All considerations of Sec. Il, includ-
. " . : Here
ing the symmetry conditions for spectral reciprocity and non-
reciprocity, are equally applicable to the case of . [E, - [H,
multidimensional magnetic photonic crystals. Generally, E:[E ; ITE

y y

when dealing with given constitutive componefgsy., non-
magnetic dielectrics and ferritgst is much easier to arrange The systen(A2) is a generalization of E¢45). The corre-

a 2D or 3D magnetic photonic crystal, which would comply sponding characteristic equation

with the symmetry conditiofiL4) for spectral nonreciprocity,

than it is in the case of 1D periodic arrays. For instance, in def(no—x")+a(no+%) &]=0 (A3)

two or three dimensions, the presence of dielectric anisot-

ropy & in Eq. (15) may not be a requirement any more. But, may have, instead of E¢47), four solutionsny, ny, n3, and
when it comes to the spectral calculations, the difficultieshs with different absolute values. The corresponding electro-
emerging in multidimensional magnetic photonic crystals arénagnetic spectrunw(q) does not reduce to two pairs of
much greater. In addition to well-known problems with non-brancheg46) with equal frequencies and equal and oppo-
magnetic structure&see, for instancd/l]), the case of mul- Site wave vector§*+q; and *q,). In other words, such a
tidimensional magnetic photonic crystals can bring anothemedium may display the property(q) # o(—q) of spectral
serious problem involving the magnetic field uniformity. nonreciprocity.

This problem is caused by the inevitable presence of rela-

tively strong inhomogeneous demagnetization fields within 2. Examples

the photonic crystal. For more details, 982] and refer- _
ences therein. a. Orthogonal magnetic symmetry

Let us consider an antiferromagnetic crystal with ortho-

rhombic magnetic symmetry
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0 Xx,y
x=|xyx 0 0f. (A5)
0 0 O

The tensory of the linear magnetoelectric response is real
and asymmetric

Xy,xiXx,y -

The substitution of A5) into (A2) yields the following solu-
tions for two possible polarizations 1 and 2:

1 0
- 0 - 1
Bl 0 i I (AB)
Fi]_ a , ﬁZ - - Xy,x .
N—Xxy Mox,x
Hyy 0

As to the refractive index=qc/w, it takes on one of the
following four values[35]:

Ny = st,x:“x,x'l')(x,y!
Ny =—VeyxMxxt Xxy, Polarization 1,
Nor = Ve&y yMy y™ Xy,x»

Na=— ey yiyy— Xyx, Polarization 2,

where the indices andl stand for the right ¢>0) and the
left (q<<0) directions of wave propagation, respectively. The
explicit expressions for all four eigenmodes are

(A7)

PHYSICAL REVIEW E 63 066609

_ 1 -
R 0
Iél(z) — glauz 0 ,
H1(2)
Ex,x
L Myy
_ 0 -
R 1
E,(z )
T ey | (A8)
Ha(2) N
X,X
e 0 —
- 0 -
R 1
E.(z :
? M
X, X
. 0

All four wave vectorsq=nw/c in Eq. (A7) have different
absolute values.

In the limiting case of zero magnetoelectric response
when y— 0, we have instead of E4A7) the following:

Ny = =Ny =N1=Vex xMxxs Nor= Ny =N2=Vey yMy v,

ur=—du=d1, CQz2r=—02=02,

which is consistent with Eqg46) and (47).
Let us find the transfer matriX(z) in a uniform magne-

1 toelectric medium with constitutive relation@\5). Using
- 0 Egs.(50) and(A6) we get
%l(z) :eiqlrz 0
H1(2) \/T T(2)=W(2)W~%0),
X, X
L My,y J where
|
gldirz elduz 0 0 ]
0 0 gldarz g2
W(z)= 0 0 mei%rz \/mei%z )
Mox x Mx, x
\ ’%eichrz — 1\ '%eiqllz 0 0
L " Myy Hyy J

Notice that the determinant df(z) is not unity anymore but b. Tetragonal magnetic symmetry

The above expression®5) through(A9) can be easily
rewritten for the case of tetragonal magnetic symmetry

#1L 4/m’mm. Indeed, according tp14], the material tensors,

(A9)

~ LW
detT(z)= exp{2| E(Xx,y_Xy,x)Z
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NONRECIPROCAL MAGNETIC PHOTONIC CRYSTALS

o, and y for the magnetic symmetry of @' mm can be
obtained from those for the symmetry grompmni by
simple substitution

Exx—Eyy=8&, HMxx= MHyy= M,

Xx,y= ~ Xyx=

=X
(A10)
in (A5) through(A9). In particular, we have instead QA7)

PHYSICAL REVIEW E3 066609

Ni=np=Veu+x, Ny=nzy=—eu+yx, (AlD)

which describes a nonreciprocal spectrum with polarization
degeneracy. By contragtee Sec. V A polarization degen-
eracy in periodic magnetic stacks would ensure the spectral
reciprocity.
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