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Point Lattices

The simplest example of lattice is Zn = {(x1, . . . , xn) : xi ∈ Z}

Other lattices are obtained by applying a linear transformation

B : x = (x1, . . . , xn) 7→ Bx = x1 · b1 + · · ·+ xn · bn

B b1

b2
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One-way Functions

Definition (One-Way Function (Informal))

An injective function f : X → Y is one-way if

It is easy to compute, i.e., there is an efficient algorithm that on input
x outputs f (x)

It is hard to invert, i.e., there is no efficient algorithm that on input
f (x) outputs x

x f(x)

easy

hard
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Outline

Modern Lattice Cryptography:

The Short Integer Solusion (SIS) Function

Properties
Cryptographic Applications

The Learning With Errors (LWE) Function

Properties
Cryptographic Applications

Efficiency Considerations
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A

f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS: Properties and Applications

Properties:
1 Compression
2 Regularity
3 Homomorphism

Applications:
1 Collision Resistant Hashing
2 Commitment Schemes
3 Digital Signatures
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Main security parameter: n. (Security largely independent of m.)

fA: m bits → n lg q bits.

When (m > n lg q), fA is a
compression function.

E.g., m = 2n lg q:
fA : {0, 1}m → {0, 1}m/2.

{0, 1}m Zn
q

fA

m bits n log q bits

Ajtai’s theorem requires (m > n lg q)
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

Collision Resistant Hashing

Keyed function family fA : X → Y with |X | > |Y |
(E.g., X = Y 2 and fA : Y 2 → Y .)

Definition (Collision Resistance)

Finding x1 6= x2 ∈ X such that fA(x1) = fA(x2) is hard.

Classic application: Merkle Trees

Leaves are user data

Each internal node is the hash of its
children

Root r commits to all y1, . . . , yn

Each yi can be shown to be
consistent with r by revealing log(n)
values

fA

fA

y1 y2

fA

y3 y4
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fA : X → Y . No adversary, given a random A, can efficiently find
x 6= x ′ ∈ X such that fA(x) = fA(x ′)

Theorem

If fA : {0,±1}m → Zn
q is one-way, then fA : {0, 1}m → Zn

q is collision
resistant.

Assume can find collisions to fA

Goal: Given random A and y, find fA(x) = y

Add y to random column a′i = ai + y.

Find collision (x , x ′) for A′: A′x = A′x′

If x ′i = 1 and xi = 0, then A(x− x′) = y
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 6= x2 ∈ {0, 1}m,

Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

Perfectly Hiding Commitments

Analogy:

Lock message in a box
Give box, keep key
Later: give key to open box

Implementation

Randomized function C (m; r)
Commit(m): give c = C (m; r) for random r ← $
Open: reveal m, r such that C (m; r) = c .

Security properties:

Hiding: c = C (m; $) is independent of m
Binding: hard to find m 6= m′ and r , r ′ such that C (m; r) = C (m′; r ′).
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m + A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) 6= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

The SIS function is linearly homomorphic:

fA(x1) + fA(x2) = fA(x1 + x2)

Homomorphism is only approximate:

If x1, x2 are small, then also x1 + x2 is small
However, x1 + x2 can be slightly larger than x1, x2

Domain of fA is not closed under +

fA is also key-homomorphic:

fA1(x) + fA2(x) = fA1+A2(x)
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Homomorphism is only approximate:

If x1, x2 are small, then also x1 + x2 is small
However, x1 + x2 can be slightly larger than x1, x2

Domain of fA is not closed under +

fA is also key-homomorphic:

fA1(x) + fA2(x) = fA1+A2(x)
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

(One-Time) Digital Signatures

Digital Signature Scheme:

Key Generation Algorithm: (pk , sk)← KeyGen
Signing Algorithm: Sign(sk ,m) = σ
Verification Algorithm: Verify(pk ,m, σ)

(One-Time) Security:
1 Generate keys (pk , sk)← KeyGen
2 Adversary m← Adv(pk) chooses message query
3 . . . receives signature σ ← Sign(s,m),
4 . . . and outputs forgery (m′, σ′)← Adv(σ).
5 Adversary wins if Verify(m′, σ′) and m 6= m′.

General Signatures: Adversary is allowed an arbitrary number of
signature queries
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(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Application 3: One-Time Signatures

Extend fA to matrices X = [x1, . . . , xl ]:

fA(X) = [fA(x1), . . . , fA(xl)] = AX (mod q)

Key Generation:

Public Parameter: SIS function key A
Secret Key: sk = (X, x) two (small) inputs to fA
Public Key: pk = (Y = fA(X), y = fA(x)) image of sk under fA

Message: short vector m ∈ {0, 1}l

Sign(sk ,m) = Xm + x, linear combination of secret key

Verify(pk,m, σ) uses homomoprhic properties to check that

fA(σ) = fA(Xm + x) = fA(X)m + fA(x) = Ym + y
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

Learning with errors (LWE)

A ∈ Zm×n
q , s ∈ Zn

q, e ∈ Em.

gA(s

; e

) = As

+ e

mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (Regev’05)

The function gA(s, e) is hard to
invert on the average, assuming
SIVP is hard to approximate in the
worst-case even for quantum
computers.

n

sT

×

m A

+ e

g
b
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE: Properties and Applications

Properties
1 Injectivity
2 Pseudorandomness
3 Homomorphism

Applications
1 Symmetric Key Encryption
2 Public Key Encryption

Daniele Micciancio (UCSD) Lattice Cryptography: an introduction May 2015 17 / 32



(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Property 1: Injectivity

LWE Function

A ∈ Zm×n
q , s ∈ Zn

q, x← Em, gA(s, x) = As + x mod q ∈ Zm
q

Main security parameter: n. (Security largely independent of m.)

Zn
q × Em Zm

q

gA

n lg q + m log |E| bits m log q bits

Regev’s theorem requires error |E| >
√
n and follow a certain

nonuniform (Gaussian) distribution

gA: n lg q + m lg |E| bits → m lg q bits.

gA expands the input roughly by a factor log q/ log |E|, and is
injective with high probability
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE: Learning Formulation

LWE Function

A ∈ Zm×n
q , s ∈ Zn

q, x← Em, gA(s, x) = As + x mod q ∈ Zm
q

Each row of A and x gives a pair (ai , ais + xi )

Definition (Learning With Errors (search version))

Given samples (ai , ais + xi ) for fixed s, and random ai ∈ Zn
q, xi ← E , learn

s.
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

Pseudorandoness

One-wayness is not usually enough for cryptographic security.
Typically, one expects f (x) to “look” random.

f : X → Y

g : X → Y × Y

g(x) = (f (x), f (x))

If f is one-way, then g is also one-way

The output of g(x) does not look random at all!

Definition (Pseudorandom Generator (PRG))

A function f : X → Y is a pseudorandom generator if for every efficient
algorithm D, Prx∈X{D(f (x)) = 1} ≈ Pry∈Y {D(y) = 1}.
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then gA(s, x) is pseudorandomn.

Easy proof using learning formulation:

Assume small prime q, and very large m. Fix secret s ∈ Zn
q.

Assume D can distinguish (ai , ais + xi ) from random

Task: given many (ai , bi = ai · s + xi ), find s

Recover s one piece at a time:

1 Pick random r ∈ Zn
q, and guess v

?
= r · s ∈ Zq

2 Call D(ai + r, bi + v) to check if guess v = r · s was correct
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

Symmetric Encryption

Definition

Key Generation: sk ← KeyGen
(Randomized) Encryption Algorithm: c ← Enc(sk ,m)
Decryption Algorithm: m← Dec(sk ,m)

Security
1 Pick secret key sk ← KeyGen
2 Adversary makes encryption queries m1,m2, . . .← A
3 Adversary cannot distinguish Enc(sk ,mi ) from Enc(sk , 0)
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Application 1: Symmetric Encryption

Secret Key: s ∈ Zn
q. Assume m ∈ {0, 1}.

Encryption: Enc(s,m) = (ai , bi = gai (s, xi ) + E (m)) where
E (m) = q

2m

Decryption: Dec(s, (ai , bi )) computes

bi − ai · s = xi + E (m)

and rounds to 0 or q/2.

Correctness: if |xi | < q/4, decryption is correct

Notice: if gai (s, xi ) were unformly random, bi would also be random
and independent of m

Security: If can distinguish E (sk ,m) from E (sk, 0), then can
distinguish gai (s, xi ) from random.
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Property 3: Homomorphism

The LWE function is linearly homomorphic

gA1(s, x1) + gA2(s, x2) = gA1+A2(s, x1 + x2)

LWE encryption inherits omomorphic property:

Enc(sk,m1) + Enc(sk,m2) ≈ Enc(sk,m1 + m2)

(a1, ga1(s, x1) +
q

2
m1) + (a2, ga2(s, x2) +

q

2
m2)

= (a1 + a2, ga1+a2(s, x1 + x2) +
q

2
(m1 + m2))

The errors xi add up. Still, if initial xi are small, and few ciphertexts
are added, result is decryptable.
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(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

Use homomorphic properties to transform symmetric Enc into public
key encryption scheme

Key Generation:
1 Pick secret key sk ← KeyGen for Enc
2 Public key pk = (p1, . . . , pn) equals pi = Enc(sk , 0)

Encryption of m: pick small random ri and output∑
i

ri · pi + m =
∑
i

ri · Enc(sk , 0) + m

= Enc(sk,
∑
i

ri · 0 + m) = Enc(sk ,m)

Decryption: same as before

if pi has error xi , then E (pk,m) has error
∑

i rixi
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(Lattice) Cryptography Efficiency

Efficiency of Ajtai’s function

q = nO(1), m = O(n log n) > n log2 q

E.g., n = 64, q = 28, m = 1024

fA maps 1024 bits to 512.

Key size:
nm log q = O(n2 log2 n) = 219 = 64KB

Runtime: nm = O(n2 log n) = 216

arithmetic operations

Usable, but inefficient

m

n

0/1

1 . . . q

Source of inefficiency: quadratic dependency in n

Problem

Can we do better than O(n2) complexity?
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(Lattice) Cryptography Efficiency

Efficient lattice based hashing

Idea

Use structured matrix

A = [A(1) | . . . | A(m/n)]

where A(i) ∈ Zn×n
q is circulant

A(i) =


a

(i)
1 a

(i)
n · · · a

(i)
2

a
(i)
2 a

(i)
1 · · · a

(i)
3

...
...

. . .
...

a
(i)
n a

(i)
n−1 · · · a

(i)
1



Proposed by [M02], where it is proved that fA is one-way under
plausible complexity assumptions

Similar idea first used by NTRU public key cryptosystem (1998), but
with no proof of security

Wishful thinking: finding short vectors in Λ⊥q (A) is hard, and
therefore fA is collision resistant
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(Lattice) Cryptography Efficiency

Can you find a collision?

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3
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1 0 0 -1 -1 1 1 0 0 0 1 1 1 0 -1 0
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5
4
8
6
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6
6
6
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9
9
9
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7
7
7
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3
3
3
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(Lattice) Cryptography Efficiency

Remarks about proofs of security

This function is essentially the compression function of hash function
LASH, modeled after NTRU

You can still “prove” security based on average case assumption:
Breaking the above hash function is as hard as finding short vectors in
a random lattice Λ([A(1)| . . . |A(m/n)])

. . . but we know the function is broken: The underlying random
lattice distribution is weak!

Conclusion: Assuming that a problem is hard on average-case is a
really tricky business!
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(Lattice) Cryptography Efficiency

Can you find a collision now?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 -4 -3 -8 6 -4 -9 -0 2 -6 -4 -5 3 -2 -7 -1

8 1 -4 -3 0 6 -4 -9 5 2 -6 -4 1 3 -2 -7

3 8 1 -4 9 0 6 -4 4 5 2 -6 7 1 3 -2

4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

Theorem (Lyubashevsky&Micciancio)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.
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(Lattice) Cryptography Efficiency

Efficiency of anti-cyclic hashing

Key size: (m/n) · n log q = m · log q = Õ(n) bits

Anti-cyclic matrix-vector multiplication can be computed in
quasi-linear time Õ(n) using FFT

The resulting hash function can also be computed in Õ(n) time

For approximate choice of parameters, this can be very practical
(SWIFFT [LMPR])

The hash function is linear: A(x + y) = Ax + Ay

This can be a feature rather than a weakness
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(Lattice) Cryptography Efficiency

Conclusion

Simple SIS/LWE functions

Useful homomorphic properties ⇒ Cryptographic applications

Cyclic/Anticycic matrices (RingSIS/RingLWE):

key to efficiency in practice
technique pervasively used by all practical instantiations of lattice
cryptography

Question: Are these functions secure?

We think so, and that’s where lattices come into the picture
... but that’s another story
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