Lattice Cryptography: an introduction

Daniele Micciancio
Department of Computer Science and Engineering University of California, San Diego

May 2015

Point Lattices

- The simplest example of lattice is $\mathbb{Z}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{Z}\right\}$

Point Lattices

- The simplest example of lattice is $\mathbb{Z}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{Z}\right\}$
- Other lattices are obtained by applying a linear transformation

$$
\mathbf{B}: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mapsto \mathbf{B x}=x_{1} \cdot \mathbf{b}_{1}+\cdots+x_{n} \cdot \mathbf{b}_{n}
$$

One-way Functions

Definition (One-Way Function (Informal))
An injective function $f: X \rightarrow Y$ is one-way if

- It is easy to compute, i.e., there is an efficient algorithm that on input x outputs $f(x)$
- It is hard to invert, i.e., there is no efficient algorithm that on input $f(x)$ outputs x

Outline

Modern Lattice Cryptography:

- The Short Integer Solusion (SIS) Function
- Properties
- Cryptographic Applications
- The Learning With Errors (LWE) Function
- Properties
- Cryptographic Applications
- Efficiency Considerations

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$
- Input: $\mathbf{x} \in\{0,1\}^{m}$

Ax

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$
- Input: $\mathbf{x} \in\{0,1\}^{m}$
- Output: $f_{\mathrm{A}}(\mathbf{x})=\mathbf{A x} \bmod q$

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$
- Input: $\mathbf{x} \in\{0,1\}^{m}$
- Output: $f_{\mathrm{A}}(\mathbf{x})=\mathbf{A x} \bmod q$

Theorem (A'96)
For $m>n \lg q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x} \bmod q$ is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...

SIS: Properties and Applications

- Properties:
(1) Compression
(2) Regularity
(3) Homomorphism
- Applications:
(1) Collision Resistant Hashing
(2) Commitment Schemes
(3) Digital Signatures

SIS Property 1: Compression

SIS Function

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathbf{x})=\mathbf{A} \mathbf{x} \bmod q \in \mathbb{Z}_{q}^{n}
$$

Main security parameter: n. (Security largely independent of m.)

SIS Property 1: Compression

SIS Function

$\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}$,
$f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n}$

Main security parameter: n. (Security largely independent of m.)

- $f_{\mathrm{A}}: m$ bits $\rightarrow n \lg q$ bits.

SIS Property 1: Compression

SIS Function

$\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}$, $f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n}$

Main security parameter: n. (Security largely independent of m.)

- $f_{\mathrm{A}}: m$ bits $\rightarrow n \lg q$ bits.
- When $(m>n \lg q), f_{\mathrm{A}}$ is a compression function.

SIS Property 1: Compression

SIS Function

$\mathrm{A} \in \mathbb{Z}_{q}^{n \times m}$,
$\mathbf{x} \in\{0,1\}^{m}$,
$f_{A}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n}$

Main security parameter: n. (Security largely independent of m.)

- $f_{\mathrm{A}}: m$ bits $\rightarrow n \lg q$ bits.
- When $(m>n \lg q), f_{\mathrm{A}}$ is a compression function.
- E.g., $m=2 n \lg q$:

m bits
$n \log q$ bits

SIS Property 1: Compression

SIS Function

$\mathrm{A} \in \mathbb{Z}_{q}^{n \times m}$,
$\mathbf{x} \in\{0,1\}^{m}$,
$f_{A}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n}$

Main security parameter: n. (Security largely independent of m.)

- $f_{\mathrm{A}}: m$ bits $\rightarrow n \lg q$ bits.
- When $(m>n \lg q), f_{\mathrm{A}}$ is a compression function.
- E.g., $m=2 n \lg q$:

m bits
$n \log q$ bits $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow\{0,1\}^{m / 2}$.
Ajtai's theorem requires ($m>n \lg q$)

Collision Resistant Hashing

Keyed function family $f_{A}: X \rightarrow Y$ with $|X|>|Y|$ (E.g., $X=Y^{2}$ and $f_{A}: Y^{2} \rightarrow Y$.)

Collision Resistant Hashing

Keyed function family $f_{A}: X \rightarrow Y$ with $|X|>|Y|$
(E.g., $X=Y^{2}$ and $f_{A}: Y^{2} \rightarrow Y$.)

Definition (Collision Resistance)
Finding $x_{1} \neq x_{2} \in X$ such that $f_{A}\left(x_{1}\right)=f_{A}\left(x_{2}\right)$ is hard.

Collision Resistant Hashing

Keyed function family $f_{A}: X \rightarrow Y$ with $|X|>|Y|$
(E.g., $X=Y^{2}$ and $f_{A}: Y^{2} \rightarrow Y$.)

Definition (Collision Resistance)
Finding $x_{1} \neq x_{2} \in X$ such that $f_{A}\left(x_{1}\right)=f_{A}\left(x_{2}\right)$ is hard.
Classic application: Merkle Trees

- Leaves are user data
- Each internal node is the hash of its children
- Root r commits to all y_{1}, \ldots, y_{n}
- Each y_{i} can be shown to be consistent with r by revealing $\log (n)$ values

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

- Assume can find collisions to f_{A}

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

- Assume can find collisions to f_{A}
- Goal: Given random \mathbf{A} and \mathbf{y}, find $f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}$

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

- Assume can find collisions to f_{A}
- Goal: Given random \mathbf{A} and \mathbf{y}, find $f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}$
- Add \mathbf{y} to random column $\mathbf{a}_{\mathbf{i}}^{\prime}=\mathbf{a}_{\mathbf{i}}+\mathbf{y}$.

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

- Assume can find collisions to f_{A}
- Goal: Given random \mathbf{A} and \mathbf{y}, find $f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}$
- Add \mathbf{y} to random column $\mathbf{a}_{\mathbf{i}}^{\prime}=\mathbf{a}_{\mathbf{i}}+\mathbf{y}$.
- Find collision $\left(x, x^{\prime}\right)$ for $\mathbf{A}^{\prime}: \mathbf{A}^{\prime} \mathbf{x}=\mathbf{A}^{\prime} \mathbf{x}^{\prime}$

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

$f_{A}: X \rightarrow Y$. No adversary, given a random A, can efficiently find $x \neq x^{\prime} \in X$ such that $f_{A}(x)=f_{A}\left(x^{\prime}\right)$

Theorem
If $f_{\mathbf{A}}:\{0, \pm 1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is one-way, then $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is collision resistant.

- Assume can find collisions to f_{A}
- Goal: Given random \mathbf{A} and \mathbf{y}, find $f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}$
- Add \mathbf{y} to random column $\mathbf{a}_{\mathbf{i}}^{\prime}=\mathbf{a}_{\mathbf{i}}+\mathbf{y}$.
- Find collision $\left(x, x^{\prime}\right)$ for $\mathbf{A}^{\prime}: \mathbf{A}^{\prime} \mathbf{x}=\mathbf{A}^{\prime} \mathbf{x}^{\prime}$
- If $x_{i}^{\prime}=1$ and $x_{i}=0$, then $\mathbf{A}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\mathbf{y}$

SIS Property 2: Regularity

$f: X \rightarrow Y$ is regular if all $y \in Y$ have same $\left|f^{-1}(y)\right|$.

SIS Property 2: Regularity

$f: X \rightarrow Y$ is regular if all $y \in Y$ have same $\left|f^{-1}(y)\right|$.
SIS Function

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathbf{x})=\mathbf{A} \mathbf{x} \bmod q \in \mathbb{Z}_{q}^{n}
$$

SIS Property 2: Regularity

$f: X \rightarrow Y$ is regular if all $y \in Y$ have same $\left|f^{-1}(y)\right|$.
SIS Function
$\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n}$
Pairwise independence:

- Fix $\mathbf{x}_{\mathbf{1}} \neq \mathbf{x}_{\mathbf{2}} \in\{0,1\}^{m}$,
- Random A
- $f_{\mathbf{A}}\left(\mathbf{x}_{1}\right)$ and $f_{\mathbf{A}}\left(\mathbf{x}_{2}\right)$ are independent.

SIS Property 2: Regularity

$f: X \rightarrow Y$ is regular if all $y \in Y$ have same $\left|f^{-1}(y)\right|$.
SIS Function

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathbf{x})=\mathbf{A} \mathbf{x} \bmod q \in \mathbb{Z}_{q}^{n}
$$

Pairwise independence:

- Fix $\mathbf{x}_{\mathbf{1}} \neq \mathbf{x}_{\mathbf{2}} \in\{0,1\}^{m}$,
- Random A
- $f_{\mathbf{A}}\left(\mathbf{x}_{1}\right)$ and $f_{\mathbf{A}}\left(\mathbf{x}_{2}\right)$ are independent.

Lemma (Leftover Hash Lemma)
Pairwise Indepencence + Compression \Longrightarrow Regular

SIS Property 2: Regularity

$f: X \rightarrow Y$ is regular if all $y \in Y$ have same $\left|f^{-1}(y)\right|$.
SIS Function
$\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n}$
Pairwise independence:

- Fix $\mathbf{x}_{1} \neq \mathbf{x}_{\mathbf{2}} \in\{0,1\}^{m}$,
- Random A
- $f_{\mathbf{A}}\left(\mathbf{x}_{1}\right)$ and $f_{\mathbf{A}}\left(\mathbf{x}_{2}\right)$ are independent.

Lemma (Leftover Hash Lemma)
Pairwise Indepencence + Compression \Longrightarrow Regular
$f_{\mathrm{A}}:\left(U\left(\{0,1\}^{n}\right)\right) \approx U\left(\mathbb{Z}_{q}^{n}\right)$ maps uniform to uniform.

Perfectly Hiding Commitments

Perfectly Hiding Commitments

- Analogy:
- Lock message in a box
- Give box, keep key
- Later: give key to open box

Perfectly Hiding Commitments

- Analogy:
- Lock message in a box
- Give box, keep key
- Later: give key to open box
- Implementation
- Randomized function $C(m ; r)$
- Commit (m) : give $c=C(m ; r)$ for random $r \leftarrow \$$
- Open: reveal m, r such that $C(m ; r)=c$.

Perfectly Hiding Commitments

- Analogy:
- Lock message in a box
- Give box, keep key
- Later: give key to open box
- Implementation
- Randomized function $C(m ; r)$
- Commit(m): give $c=C(m ; r)$ for random $r \leftarrow \$$
- Open: reveal m, r such that $C(m ; r)=c$.
- Security properties:
- Hiding: $c=C(m ; \$)$ is independent of m
- Binding: hard to find $m \neq m^{\prime}$ and r, r^{\prime} such that $C(m ; r)=C\left(m^{\prime} ; r^{\prime}\right)$.

SIS Application 2: Commitment

- Choose $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ at random

SIS Application 2: Commitment

- Choose $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ at random
- message $\mathbf{m} \in\{0,1\}^{m}$ and randomness $\mathbf{r} \in\{0,1\}^{m}$

SIS Application 2: Commitment

- Choose $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ at random
- message $\mathbf{m} \in\{0,1\}^{m}$ and randomness $\mathbf{r} \in\{0,1\}^{m}$
- Commitment: $C(\mathbf{m}, \mathbf{r})=f_{\left[\mathbf{A}_{1}, \mathbf{A}_{2}\right]}(\mathbf{m}, \mathbf{r})=\mathbf{A}_{\mathbf{1}} \mathbf{m}+\mathbf{A}_{\mathbf{2}} \mathbf{r}$.

SIS Application 2: Commitment

- Choose $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ at random
- message $\mathbf{m} \in\{0,1\}^{m}$ and randomness $\mathbf{r} \in\{0,1\}^{m}$
- Commitment: $C(\mathbf{m}, \mathbf{r})=f_{\left[\mathbf{A}_{1}, \mathbf{A}_{2}\right]}(\mathbf{m}, \mathbf{r})=\mathbf{A}_{\mathbf{1}} \mathbf{m}+\mathbf{A}_{\mathbf{2}} \mathbf{r}$.
- Hiding Property: $C(\mathbf{m})$ hides the message because $\mathbf{A}_{2} \mathbf{r}=f_{\mathbf{A}_{2}}(\mathbf{r}) \approx U\left(\mathbb{Z}_{q}^{n}\right)$

SIS Application 2: Commitment

- Choose $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ at random
- message $\mathbf{m} \in\{0,1\}^{m}$ and randomness $\mathbf{r} \in\{0,1\}^{m}$
- Commitment: $C(\mathbf{m}, \mathbf{r})=f_{\left[\mathbf{A}_{1}, \mathbf{A}_{\mathbf{2}}\right]}(\mathbf{m}, \mathbf{r})=\mathbf{A}_{\mathbf{1}} \mathbf{m}+\mathbf{A}_{\mathbf{2}} \mathbf{r}$.
- Hiding Property: $C(\mathbf{m})$ hides the message because
$\mathbf{A}_{\mathbf{2}} \mathbf{r}=f_{\mathbf{A}_{2}}(\mathbf{r}) \approx U\left(\mathbb{Z}_{q}^{n}\right)$
- Binding Property: Finding $(m, r) \neq\left(m^{\prime}, r^{\prime}\right)$ such that $C(\mathbf{m}, \mathbf{r})=C\left(\mathbf{m}^{\prime}, \mathbf{r}^{\prime}\right)$ breaks the collision resistance of $f_{\left[\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}\right]}$

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathrm{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n}
$$

- The SIS function is linearly homomorphic:

$$
f_{\mathbf{A}}\left(\mathbf{x}_{1}\right)+f_{\mathbf{A}}\left(\mathbf{x}_{2}\right)=f_{\mathbf{A}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)
$$

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function

$A \in \mathbb{Z}_{q}^{n \times m}, \quad x \in\{0,1\}^{m}$,
$f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n}$

- The SIS function is linearly homomorphic:

$$
f_{\mathrm{A}}\left(\mathrm{x}_{1}\right)+f_{\mathrm{A}}\left(\mathrm{x}_{2}\right)=f_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)
$$

- Homomorphism is only approximate:
- If $\mathbf{x}_{1}, \mathbf{x}_{2}$ are small, then also $\mathbf{x}_{1}+\mathbf{x}_{2}$ is small
- However, $\mathbf{x}_{1}+\mathbf{x}_{2}$ can be slightly larger than $\mathbf{x}_{1}, \mathbf{x}_{2}$
- Domain of f_{A} is not closed under +

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function

$$
\mathrm{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathrm{x} \in\{0,1\}^{m}, \quad f_{\mathrm{A}}(\mathrm{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n}
$$

- The SIS function is linearly homomorphic:

$$
f_{\mathrm{A}}\left(\mathrm{x}_{1}\right)+f_{\mathrm{A}}\left(\mathrm{x}_{2}\right)=f_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)
$$

- Homomorphism is only approximate:
- If $\mathbf{x}_{1}, \mathbf{x}_{2}$ are small, then also $\mathbf{x}_{1}+\mathbf{x}_{2}$ is small
- However, $\mathbf{x}_{1}+\mathbf{x}_{2}$ can be slightly larger than $\mathbf{x}_{1}, \mathbf{x}_{2}$
- Domain of f_{A} is not closed under +
- f_{A} is also key-homomorphic:

$$
f_{\mathrm{A}_{1}}(\mathbf{x})+f_{\mathrm{A}_{2}}(\mathbf{x})=f_{\mathrm{A}_{1}+\mathbf{A}_{2}}(\mathbf{x})
$$

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: Sign(sk,m)= σ
- Verification Algorithm: Verify $(p k, m, \sigma)$

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: Sign(sk,m)= σ
- Verification Algorithm: Verify $(p k, m, \sigma)$
- (One-Time) Security:

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: $\operatorname{Sign}(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: $\operatorname{Sign}(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$
(2) Adversary $m \leftarrow \operatorname{Adv}(p k)$ chooses message query

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: Sign $(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$
(2) Adversary $m \leftarrow \operatorname{Adv}(p k)$ chooses message query
(3) ... receives signature $\sigma \leftarrow \operatorname{Sign}(s, m)$,

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: Sign $(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$
(2) Adversary $m \leftarrow \operatorname{Adv}(p k)$ chooses message query
(3) ... receives signature $\sigma \leftarrow \operatorname{Sign}(s, m)$,
(9) ... and outputs forgery $\left(m^{\prime}, \sigma^{\prime}\right) \leftarrow \operatorname{Adv}(\sigma)$.

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: Sign $(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$
(2) Adversary $m \leftarrow \operatorname{Adv}(p k)$ chooses message query
(3) ... receives signature $\sigma \leftarrow \operatorname{Sign}(s, m)$,
(9) \ldots and outputs forgery $\left(m^{\prime}, \sigma^{\prime}\right) \leftarrow \operatorname{Adv}(\sigma)$.
(5) Adversary wins if $\operatorname{Verify}\left(m^{\prime}, \sigma^{\prime}\right)$ and $m \neq m^{\prime}$.

(One-Time) Digital Signatures

- Digital Signature Scheme:
- Key Generation Algorithm: $(p k, s k) \leftarrow K e y G e n$
- Signing Algorithm: $\operatorname{Sign}(s k, m)=\sigma$
- Verification Algorithm: Verify (pk, m, σ)
- (One-Time) Security:
(1) Generate keys $(p k, s k) \leftarrow K e y G e n$
(2) Adversary $m \leftarrow \operatorname{Adv}(p k)$ chooses message query
(3) ... receives signature $\sigma \leftarrow \operatorname{Sign}(s, m)$,
(9) \ldots and outputs forgery $\left(m^{\prime}, \sigma^{\prime}\right) \leftarrow \operatorname{Adv}(\sigma)$.
(5) Adversary wins if $\operatorname{Verify}\left(m^{\prime}, \sigma^{\prime}\right)$ and $m \neq m^{\prime}$.
- General Signatures: Adversary is allowed an arbitrary number of signature queries

SIS Application 3: One-Time Signatures

- Extend f_{A} to matrices $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right]$:

$$
f_{\mathbf{A}}(\mathbf{X})=\left[f_{\mathbf{A}}\left(\mathbf{x}_{1}\right), \ldots, f_{\mathbf{A}}\left(\mathbf{x}_{l}\right)\right]=\mathbf{A} \mathbf{X} \quad(\bmod q)
$$

SIS Application 3: One-Time Signatures

- Extend f_{A} to matrices $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right]$:

$$
f_{\mathbf{A}}(\mathbf{X})=\left[f_{\mathbf{A}}\left(\mathbf{x}_{1}\right), \ldots, f_{\mathbf{A}}\left(\mathbf{x}_{1}\right)\right]=\mathbf{A} \mathbf{X} \quad(\bmod q)
$$

- Key Generation:
- Public Parameter: SIS function key A
- Secret Key: sk $=(\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
- Public Key: $p k=\left(\mathbf{Y}=f_{\mathbf{A}}(\mathbf{X}), \mathbf{y}=f_{\mathbf{A}}(\mathbf{x})\right)$ image of sk under $f_{\mathbf{A}}$

SIS Application 3: One-Time Signatures

- Extend f_{A} to matrices $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right]$:

$$
f_{\mathbf{A}}(\mathbf{X})=\left[f_{\mathbf{A}}\left(\mathbf{x}_{1}\right), \ldots, f_{\mathbf{A}}\left(\mathbf{x}_{l}\right)\right]=\mathbf{A} \mathbf{X} \quad(\bmod q)
$$

- Key Generation:
- Public Parameter: SIS function key \mathbf{A}
- Secret Key: sk $=(\mathbf{X}, \mathbf{x})$ two (small) inputs to f_{A}
- Public Key: $p k=\left(\mathbf{Y}=f_{\mathbf{A}}(\mathbf{X}), \mathbf{y}=f_{\mathbf{A}}(\mathbf{x})\right)$ image of sk under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in\{0,1\}^{\prime}$
- $\operatorname{Sign}(s k, \mathbf{m})=\mathbf{X m}+\mathbf{x}$, linear combination of secret key

SIS Application 3: One-Time Signatures

- Extend f_{A} to matrices $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right]$:

$$
f_{\mathbf{A}}(\mathbf{X})=\left[f_{\mathbf{A}}\left(\mathbf{x}_{1}\right), \ldots, f_{\mathbf{A}}\left(\mathbf{x}_{l}\right)\right]=\mathbf{A} \mathbf{X} \quad(\bmod q)
$$

- Key Generation:
- Public Parameter: SIS function key A
- Secret Key: sk $=(\mathbf{X}, \mathbf{x})$ two (small) inputs to f_{A}
- Public Key: $p k=\left(\mathbf{Y}=f_{\mathbf{A}}(\mathbf{X}), \mathbf{y}=f_{\mathbf{A}}(\mathbf{x})\right)$ image of sk under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in\{0,1\}^{\prime}$
- $\operatorname{Sign}(s k, \mathbf{m})=\mathbf{X m}+\mathbf{x}$, linear combination of secret key
- Verify $(p k, \mathbf{m}, \sigma)$ uses homomoprhic properties to check that

$$
f_{\mathbf{A}}(\sigma)=f_{\mathbf{A}}(\mathbf{X} \mathbf{m}+\mathbf{x})=f_{\mathbf{A}}(\mathbf{X}) \mathbf{m}+f_{\mathbf{A}}(\mathbf{x})=\mathbf{Y} \mathbf{m}+\mathbf{y}
$$

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in \mathcal{E}^{m}$.
- $g_{\mathbf{A}}(\mathbf{s})=A \mathbf{s} \quad \bmod q$

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in \mathcal{E}^{m}$.
- $g_{\mathbf{A}}(\mathbf{s} ; \mathbf{e})=\mathbf{A s}+\mathbf{e} \bmod q$
- Learning with Errors: Given A and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s}.

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in \mathcal{E}^{m}$.
- $g_{\mathbf{A}}(\mathbf{s} ; \mathbf{e})=\mathbf{A s}+\mathbf{e} \bmod q$
- Learning with Errors: Given A and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s}.

Theorem (Regev'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case even for quantum computers.

LWE: Properties and Applications

- Properties
(1) Injectivity
(2) Pseudorandomness
(3) Homomorphism
- Applications
(1) Symmetric Key Encryption
(2) Public Key Encryption

LWE Property 1: Injectivity

LWE Function
$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Main security parameter: n. (Security largely independent of m.)

LWE Property 1: Injectivity

LWE Function

$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Main security parameter: n. (Security largely independent of m.)

$$
n \lg q+m \log |\mathcal{E}| \text { bits }
$$

$m \log q$ bits

- Regev's theorem requires error $|\mathcal{E}|>\sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution

LWE Property 1: Injectivity

LWE Function
$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Main security parameter: n. (Security largely independent of m.)

$$
n \lg q+m \log |\mathcal{E}| \text { bits }
$$

$m \log q$ bits

- Regev's theorem requires error $|\mathcal{E}|>\sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution
- $g_{\mathrm{A}}: n \lg q+m \lg |\mathcal{E}|$ bits $\rightarrow m \lg q$ bits.

LWE Property 1: Injectivity

LWE Function
$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Main security parameter: n. (Security largely independent of m.)

$$
n \lg q+m \log |\mathcal{E}| \text { bits }
$$

$m \log q$ bits

- Regev's theorem requires error $|\mathcal{E}|>\sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution
- $g_{\mathrm{A}}: n \lg q+m \lg |\mathcal{E}|$ bits $\rightarrow m \lg q$ bits.
- $g_{\text {A }}$ expands the input roughly by a factor $\log q / \log |\mathcal{E}|$, and is injective with high probability

LWE: Learning Formulation

LWE Function
$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Each row of \mathbf{A} and \mathbf{x} gives a pair $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$

LWE: Learning Formulation

LWE Function

$\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \leftarrow \mathcal{E}^{m}, \quad g_{\mathrm{A}}(\mathbf{s}, \mathbf{x})=\mathbf{A s}+\mathbf{x} \bmod q \in \mathbb{Z}_{q}^{m}$
Each row of \mathbf{A} and \mathbf{x} gives a pair $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$
Definition (Learning With Errors (search version))
Given samples $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ for fixed \mathbf{s}, and random $\mathbf{a}_{i} \in \mathbf{Z}_{q}^{n}, \mathbf{x}_{i} \leftarrow \mathcal{E}$, learn S.

Pseudorandoness

- One-wayness is not usually enough for cryptographic security. Typically, one expects $f(x)$ to "look" random.

Pseudorandoness

- One-wayness is not usually enough for cryptographic security. Typically, one expects $f(x)$ to "look" random.

$$
\begin{gathered}
f: X \rightarrow Y \\
g: X \rightarrow Y \times Y \\
g(x)=(f(x), f(x))
\end{gathered}
$$

Pseudorandoness

- One-wayness is not usually enough for cryptographic security. Typically, one expects $f(x)$ to "look" random.

$$
\begin{gathered}
f: X \rightarrow Y \\
g: X \rightarrow Y \times Y \\
g(x)=(f(x), f(x))
\end{gathered}
$$

- If f is one-way, then g is also one-way

Pseudorandoness

- One-wayness is not usually enough for cryptographic security. Typically, one expects $f(x)$ to "look" random.

$$
\begin{gathered}
f: X \rightarrow Y \\
g: X \rightarrow Y \times Y \\
g(x)=(f(x), f(x))
\end{gathered}
$$

- If f is one-way, then g is also one-way
- The output of $g(x)$ does not look random at all!

Pseudorandoness

- One-wayness is not usually enough for cryptographic security. Typically, one expects $f(x)$ to "look" random.

$$
\begin{gathered}
f: X \rightarrow Y \\
g: X \rightarrow Y \times Y \\
g(x)=(f(x), f(x))
\end{gathered}
$$

- If f is one-way, then g is also one-way
- The output of $g(x)$ does not look random at all!

Definition (Pseudorandom Generator (PRG))

A function $f: X \rightarrow Y$ is a pseudorandom generator if for every efficient algorithm $\mathcal{D}, \operatorname{Pr}_{x \in X}\{\mathcal{D}(f(x))=1\} \approx \operatorname{Pr}_{y \in Y}\{\mathcal{D}(y)=1\}$.

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Assume \mathcal{D} can distinguish $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ from random

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Assume \mathcal{D} can distinguish $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ from random
- Task: given many $\left(\mathbf{a}_{i}, b_{i}=\mathbf{a}_{i} \cdot \mathbf{s}+x_{i}\right)$, find \mathbf{s}

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Assume \mathcal{D} can distinguish $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ from random
- Task: given many ($\left.\mathbf{a}_{i}, b_{i}=\mathbf{a}_{i} \cdot \mathbf{s}+x_{i}\right)$, find \mathbf{s}
- Recover s one piece at a time:

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Assume \mathcal{D} can distinguish $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ from random
- Task: given many ($\left.\mathbf{a}_{i}, b_{i}=\mathbf{a}_{i} \cdot \mathbf{s}+x_{i}\right)$, find \mathbf{s}
- Recover s one piece at a time:
(1) Pick random $\mathbf{r} \in \mathbb{Z}_{q}^{n}$, and guess $v \stackrel{?}{=} \mathbf{r} \cdot \mathbf{s} \in \mathbb{Z}_{\boldsymbol{q}}$

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x})$ is pseudorandomn.
Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Assume \mathcal{D} can distinguish $\left(\mathbf{a}_{i}, \mathbf{a}_{i} \mathbf{s}+x_{i}\right)$ from random
- Task: given many ($\left.\mathbf{a}_{i}, b_{i}=\mathbf{a}_{i} \cdot \mathbf{s}+x_{i}\right)$, find \mathbf{s}
- Recover s one piece at a time:
(1) Pick random $\mathbf{r} \in \mathbb{Z}_{q}^{n}$, and guess $v \stackrel{?}{=} \mathbf{r} \cdot \mathbf{s} \in \mathbb{Z}_{\boldsymbol{q}}$
(2) Call $\mathcal{D}\left(\mathbf{a}_{i}+\mathbf{r}, b_{i}+v\right)$ to check if guess $v=\mathbf{r} \cdot \mathbf{s}$ was correct

Symmetric Encryption

- Definition
- Key Generation: sk \leftarrow KeyGen
- (Randomized) Encryption Algorithm: $c \leftarrow E n c(s k, m)$
- Decryption Algorithm: $m \leftarrow \operatorname{Dec}(s k, m)$

Symmetric Encryption

- Definition
- Key Generation: sk \leftarrow KeyGen
- (Randomized) Encryption Algorithm: $c \leftarrow \operatorname{Enc}(s k, m)$
- Decryption Algorithm: $m \leftarrow \operatorname{Dec}(s k, m)$
- Security
(1) Pick secret key $s k \leftarrow K e y G e n$
(2) Adversary makes encryption queries $m_{1}, m_{2}, \ldots \leftarrow \mathcal{A}$
(3) Adversary cannot distinguish $\operatorname{Enc}\left(s k, m_{i}\right)$ from $\operatorname{Enc}(s k, 0)$

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.
- Encryption: $\operatorname{Enc}(\mathbf{s}, m)=\left(\mathbf{a}_{i}, b_{i}=g_{\mathbf{a}_{i}}\left(\mathbf{s}, x_{i}\right)+E(m)\right)$ where $E(m)=\frac{q}{2} m$

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.
- Encryption: $\operatorname{Enc}(\mathbf{s}, m)=\left(\mathbf{a}_{i}, b_{i}=g_{\mathbf{a}_{i}}\left(\mathbf{s}, x_{i}\right)+E(m)\right)$ where $E(m)=\frac{q}{2} m$
- Decryption: $\operatorname{Dec}\left(\mathbf{s},\left(\mathbf{a}_{i}, b_{i}\right)\right)$ computes

$$
b_{i}-\mathbf{a}_{i} \cdot s=x_{i}+E(m)
$$

and rounds to 0 or $q / 2$.

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.
- Encryption: $\operatorname{Enc}(\mathbf{s}, m)=\left(\mathbf{a}_{i}, b_{i}=g_{\mathbf{a}_{i}}\left(\mathbf{s}, x_{i}\right)+E(m)\right)$ where $E(m)=\frac{q}{2} m$
- Decryption: $\operatorname{Dec}\left(\mathbf{s},\left(\mathbf{a}_{i}, b_{i}\right)\right)$ computes

$$
b_{i}-\mathbf{a}_{i} \cdot s=x_{i}+E(m)
$$

and rounds to 0 or $q / 2$.

- Correctness: if $\left|x_{i}\right|<q / 4$, decryption is correct

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.
- Encryption: $\operatorname{Enc}(\mathbf{s}, m)=\left(\mathbf{a}_{i}, b_{i}=g_{\mathbf{a}_{i}}\left(\mathbf{s}, x_{i}\right)+E(m)\right)$ where $E(m)=\frac{q}{2} m$
- Decryption: $\operatorname{Dec}\left(\mathbf{s},\left(\mathbf{a}_{i}, b_{i}\right)\right)$ computes

$$
b_{i}-\mathbf{a}_{i} \cdot s=x_{i}+E(m)
$$

and rounds to 0 or $q / 2$.

- Correctness: if $\left|x_{i}\right|<q / 4$, decryption is correct
- Notice: if $g_{\mathrm{a}_{i}}\left(\mathbf{s}, x_{i}\right)$ were unformly random, b_{i} would also be random and independent of m

LWE Application 1: Symmetric Encryption

- Secret Key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Assume $m \in\{0,1\}$.
- Encryption: $\operatorname{Enc}(\mathbf{s}, m)=\left(\mathbf{a}_{i}, b_{i}=g_{\mathbf{a}_{i}}\left(\mathbf{s}, x_{i}\right)+E(m)\right)$ where $E(m)=\frac{q}{2} m$
- Decryption: $\operatorname{Dec}\left(\mathbf{s},\left(\mathbf{a}_{i}, b_{i}\right)\right)$ computes

$$
b_{i}-\mathbf{a}_{i} \cdot s=x_{i}+E(m)
$$

and rounds to 0 or $q / 2$.

- Correctness: if $\left|x_{i}\right|<q / 4$, decryption is correct
- Notice: if $g_{a_{i}}\left(\mathbf{s}, x_{i}\right)$ were unformly random, b_{i} would also be random and independent of m
- Security: If can distinguish $E(s k, m)$ from $E(s k, 0)$, then can distinguish $g_{a_{i}}\left(\mathbf{s}, x_{i}\right)$ from random.

LWE Property 3: Homomorphism

- The LWE function is linearly homomorphic

$$
g_{\mathbf{A}_{1}}\left(\mathbf{s}, \mathbf{x}_{1}\right)+g_{\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{2}\right)=g_{\mathbf{A}_{1}+\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{1}+\mathbf{x}_{2}\right)
$$

LWE Property 3: Homomorphism

- The LWE function is linearly homomorphic

$$
g_{\mathbf{A}_{1}}\left(\mathbf{s}, \mathbf{x}_{1}\right)+g_{\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{2}\right)=g_{\mathbf{A}_{1}+\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{1}+\mathbf{x}_{2}\right)
$$

- LWE encryption inherits omomorphic property:

$$
\begin{aligned}
& E n c\left(s k, m_{1}\right)+\operatorname{Enc}\left(s k, m_{2}\right) \approx \operatorname{Enc}\left(s k, m_{1}+m_{2}\right) \\
& \left(\mathbf{a}_{1}, g_{\mathbf{a}_{1}}\left(\mathbf{s}, x_{1}\right)+\frac{q}{2} m_{1}\right)+\left(\mathbf{a}_{2}, g_{\mathbf{a}_{2}}\left(\mathbf{s}, x_{2}\right)+\frac{q}{2} m_{2}\right) \\
& =\left(\mathbf{a}_{1}+\mathbf{a}_{2}, g_{\mathbf{a}_{1}+\mathbf{a}_{2}}\left(\mathbf{s}, x_{1}+x_{2}\right)+\frac{q}{2}\left(m_{1}+m_{2}\right)\right)
\end{aligned}
$$

LWE Property 3: Homomorphism

- The LWE function is linearly homomorphic

$$
g_{\mathbf{A}_{1}}\left(\mathbf{s}, \mathbf{x}_{1}\right)+g_{\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{2}\right)=g_{\mathbf{A}_{1}+\mathbf{A}_{2}}\left(\mathbf{s}, \mathbf{x}_{1}+\mathbf{x}_{2}\right)
$$

- LWE encryption inherits omomorphic property:

$$
\begin{aligned}
& E n c\left(s k, m_{1}\right)+E n c\left(s k, m_{2}\right) \approx E n c\left(s k, m_{1}+m_{2}\right) \\
& \left(\mathbf{a}_{1}, g_{\mathbf{a}_{1}}\left(\mathbf{s}, x_{1}\right)+\frac{q}{2} m_{1}\right)+\left(\mathbf{a}_{2}, g_{\mathbf{a}_{2}}\left(\mathbf{s}, x_{2}\right)+\frac{q}{2} m_{2}\right) \\
& =\left(\mathbf{a}_{1}+\mathbf{a}_{2}, g_{\mathbf{a}_{1}+\mathbf{a}_{2}}\left(\mathbf{s}, x_{1}+x_{2}\right)+\frac{q}{2}\left(m_{1}+m_{2}\right)\right)
\end{aligned}
$$

- The errors x_{i} add up. Still, if initial x_{i} are small, and few ciphertexts are added, result is decryptable.

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric Enc into public key encryption scheme

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric Enc into public key encryption scheme
- Key Generation:
(1) Pick secret key $s k \leftarrow K e y G e n$ for Enc
(2) Public key $p k=\left(p_{1}, \ldots, p_{n}\right)$ equals $p_{i}=\operatorname{Enc}(s k, 0)$

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric Enc into public key encryption scheme
- Key Generation:
(1) Pick secret key $s k \leftarrow K e y G e n$ for Enc
(2) Public key $p k=\left(p_{1}, \ldots, p_{n}\right)$ equals $p_{i}=\operatorname{Enc}(s k, 0)$
- Encryption of m : pick small random r_{i} and output

$$
\begin{aligned}
\sum_{i} r_{i} \cdot p_{i}+m & =\sum_{i} r_{i} \cdot \operatorname{Enc}(s k, 0)+m \\
& =E n c\left(s k, \sum_{i} r_{i} \cdot 0+m\right)=E n c(s k, m)
\end{aligned}
$$

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric Enc into public key encryption scheme
- Key Generation:
(1) Pick secret key $s k \leftarrow K e y G e n$ for Enc
(2) Public key $p k=\left(p_{1}, \ldots, p_{n}\right)$ equals $p_{i}=\operatorname{Enc}(s k, 0)$
- Encryption of m : pick small random r_{i} and output

$$
\begin{aligned}
\sum_{i} r_{i} \cdot p_{i}+m & =\sum_{i} r_{i} \cdot \operatorname{Enc}(s k, 0)+m \\
& =E n c\left(s k, \sum_{i} r_{i} \cdot 0+m\right)=E n c(s k, m)
\end{aligned}
$$

- Decryption: same as before
- if p_{i} has error x_{i}, then $E(p k, m)$ has error $\sum_{i} r_{i} x_{i}$

Efficiency of Ajtai's function

- $q=n^{O(1)}, m=O(n \log n)>n \log _{2} q$
- E.g., $n=64, q=2^{8}, m=1024$
- f_{A} maps 1024 bits to 512 .

Efficiency of Ajtai's function

- $q=n^{O(1)}, m=O(n \log n)>n \log _{2} q$
- E.g., $n=64, q=2^{8}, m=1024$
- f_{A} maps 1024 bits to 512 .
- Key size:
$n m \log q=O\left(n^{2} \log ^{2} n\right)=2^{19}=64 K B$
- Runtime: $n m=O\left(n^{2} \log n\right)=2^{16}$ arithmetic operations

Efficiency of Ajtai's function

- $q=n^{O(1)}, m=O(n \log n)>n \log _{2} q$
- E.g., $n=64, q=2^{8}, m=1024$
- f_{A} maps 1024 bits to 512 .
- Key size:
$n m \log q=O\left(n^{2} \log ^{2} n\right)=2^{19}=64 K B$
- Runtime: $n m=O\left(n^{2} \log n\right)=2^{16}$ arithmetic operations
- Usable, but inefficient
- Source of inefficiency: quadratic dependency in n

Problem

Can we do better than $O\left(n^{2}\right)$ complexity?

Efficient lattice based hashing

Idea
Use structured matrix

$$
\mathbf{A}=\left[\mathbf{A}^{(1)}|\ldots| \mathbf{A}^{(m / n)}\right]
$$

where $\mathbf{A}^{(i)} \in \mathbb{Z}_{q}^{n \times n}$ is circulant

$$
\mathbf{A}^{(i)}=\left[\begin{array}{cccc}
a_{1}^{(i)} & a_{n}^{(i)} & \cdots & a_{2}^{(i)} \\
a_{2}^{(i)} & a_{1}^{(i)} & \cdots & a_{3}^{(i)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{(i)} & a_{n-1}^{(i)} & \cdots & a_{1}^{(i)}
\end{array}\right]
$$

Efficient lattice based hashing

Idea
Use structured matrix

$$
\mathbf{A}=\left[\mathbf{A}^{(1)}|\ldots| \mathbf{A}^{(m / n)}\right]
$$

where $\mathbf{A}^{(i)} \in \mathbb{Z}_{q}^{n \times n}$ is circulant

$$
\mathbf{A}^{(i)}=\left[\begin{array}{cccc}
a_{1}^{(i)} & a_{n}^{(i)} & \cdots & a_{2}^{(i)} \\
a_{2}^{(i)} & a_{1}^{(i)} & \cdots & a_{3}^{(i)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{(i)} & a_{n-1}^{(i)} & \cdots & a_{1}^{(i)}
\end{array}\right]
$$

- Proposed by [M02], where it is proved that f_{A} is one-way under plausible complexity assumptions
- Similar idea first used by NTRU public key cryptosystem (1998), but with no proof of security
- Wishful thinking: finding short vectors in $\Lambda_{q}^{\perp}(\mathbf{A})$ is hard, and therefore f_{A} is collision resistant

Can you find a collision?

Can you find a collision?

$\left.$| 1 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | -1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 3 | 8 | 6 | 4 | 9 | 0 | 2 | 6 | 4 | 5 | 3 | 2 | 7 | 1 |
| 8 | 1 | 4 | 3 | 0 | 6 | 4 | 9 | 5 | 2 | 6 | 4 | 1 | 3 | 2 | 7 |
| 3 | 8 | 1 | 4 | 9 | 0 | 6 | 4 | 4 | 5 | 2 | 6 | 7 | 1 | 3 | 2 |
| 4 | 3 | 8 | 1 | 4 | 9 | 0 | 6 | 6 | 4 | 5 | 2 | 2 | 7 | 1 | 3 |$\quad \right\rvert\,$| |
| :--- |
| 5 |
| 4 |
| 8 |
| 6 |

Can you find a collision?

$\left.$| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 3 | 8 | 6 | 4 | 9 | 0 | 2 | 6 | 4 | 5 | 3 | 2 | 7 | 1 |
| 8 | 1 | 4 | 3 | 0 | 6 | 4 | 9 | 5 | 2 | 6 | 4 | 1 | 3 | 2 | 7 |
| 3 | 8 | 1 | 4 | 9 | 0 | 6 | 4 | 4 | 5 | 2 | 6 | 7 | 1 | 3 | 2 |
| 4 | 3 | 8 | 1 | 4 | 9 | 0 | 6 | 6 | 4 | 5 | 2 | 2 | 7 | 1 | 3 |$\quad \right\rvert\,$| |
| :--- | :--- |
| 0 |
| 0 |
| 0 |
| 0 |

Can you find a collision?

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

| 6 |
| :--- | :--- | :--- |
| 6 |
| 6 |
| 6 |\quad| 9 |
| :--- | :--- |
| 9 |
| 9 |
| 9 |\quad| 7 |
| :--- | :--- |
| 7 |
| 7 |
| 7 |\quad| 3 |
| :--- |
| 3 |
| 3 |

Can you find a collision?

Remarks about proofs of security

- This function is essentially the compression function of hash function LASH, modeled after NTRU
- You can still "prove" security based on average case assumption: Breaking the above hash function is as hard as finding short vectors in a random lattice $\Lambda\left(\left[\mathbf{A}^{(1)}|\ldots| \mathbf{A}^{(m / n)}\right]\right)$
- ... but we know the function is broken: The underlying random lattice distribution is weak!
- Conclusion: Assuming that a problem is hard on average-case is a really tricky business!

Can you find a collision now?

$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Can you find a collision now?

$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Theorem (trivial)
Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Can you find a collision now?

$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Theorem (trivial)
Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Theorem (Lyubashevsky\&Micciancio)

Provably collision resistant, assuming the worst case hardness of approximating SVP and SIVP over anti-cyclic lattices.

Efficiency of anti-cyclic hashing

- Key size: $(m / n) \cdot n \log q=m \cdot \log q=\tilde{O}(n)$ bits
- Anti-cyclic matrix-vector multiplication can be computed in quasi-linear time $\tilde{O}(n)$ using FFT
- The resulting hash function can also be computed in $\tilde{O}(n)$ time
- For approximate choice of parameters, this can be very practical (SWIFFT [LMPR])
- The hash function is linear: $\mathbf{A}(\mathbf{x}+\mathbf{y})=\mathbf{A x}+\mathbf{A y}$
- This can be a feature rather than a weakness

Conclusion

- Simple SIS/LWE functions
- Useful homomorphic properties \Rightarrow Cryptographic applications
- Cyclic/Anticycic matrices (RingSIS/RingLWE):
- key to efficiency in practice
- technique pervasively used by all practical instantiations of lattice cryptography
- Question: Are these functions secure?
- We think so, and that's where lattices come into the picture
- ... but that's another story

