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@ The simplest example of lattice is Z"

= {(Xl, ..

S Xn): X € L}

«O>» «F>r «=» «E)» Q>




Point Lattices

@ The simplest example of lattice is Z" = {(x1,...,xn): xi € Z}

@ Other lattices are obtained by applying a linear transformation

B: x=(x1,...,%,) = Bx=x3-by+--+x,-b,

(©,1) ‘ N/

(1,0)
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One-way Functions

Definition (One-Way Function (Informal))
An injective function f : X — Y is one-way if
o It is easy to compute, i.e., there is an efficient algorithm that on input
x outputs f(x)

@ It is hard to invert, i.e., there is no efficient algorithm that on input
f(x) outputs x

hard
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Outline

Modern Lattice Cryptography:
@ The Short Integer Solusion (SIS) Function

o Properties
o Cryptographic Applications

@ The Learning With Errors (LWE) Function

o Properties
o Cryptographic Applications

o Efficiency Considerations
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

Ajtai’s one-way function (SIS)

o Parameters: m,n,q € Z
o Key: A cZg ™
e Input: x € {0,1}"
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

Ajtai’s one-way function (SIS)

Parameters: m,n,q € Z
Key: A € Zg=™

Input: x € {0,1}"

Output: fa(x) = Ax mod g

—— 35—
>
>
X
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Ajtai’s one-way function (SIS)

Parameters: m,n,q € Z
Key: A € Zg*"

Input: x € {0,1}™

Output: fa(x) = Ax mod g

—— 35—
>
>
X

Theorem (A'96)

For m > nlg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID
schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS: Properties and Applications

@ Properties:
@ Compression
© Regularity
© Homomorphism
@ Applications:
© Collision Resistant Hashing
© Commitment Schemes
© Digital Signatures
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function
Aczym, xe{0,1}™, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function
Aczym, xe{0,1}™, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

(%)

m bits nlog g bits

@ fa: m bits — nlg g bits.
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function
Aczym, xe{0,1}™, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.
e When (m > nlgq), fa is a —fA @
compression function.

m bits nlog g bits
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function
AczZym, xe{0,1}7, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.

e When (m > nlgq), fa is a —fA @
compression function.
e E.g, m=2nlgq: m bits nlog g bits

fa: {0,1}™ — {0,1}™/2,
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Property 1: Compression

SIS Function
AczZym, xe{0,1}7, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.

e When (m > nlgq), fa is a —fA @
compression function.
e E.g, m=2nlgq: m bits nlog g bits

fa: {0,1}™ — {0,1}™/2,
Ajtai's theorem requires (m > nlgq)
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Collision Resistant Hashing

Keyed function family f4: X — Y with | X]| > |Y|
(Eg., X=Y?and f4: Y2 =Y.
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Collision Resistant Hashing

Keyed function family f4: X — Y with | X]| > |Y|
(Eg., X=Y?and f4: Y2 =Y.

Definition (Collision Resistance)
Finding x1 # x2 € X such that fa(x1) = fa(x2) is hard.

Classic application: Merkle Trees
@ Leaves are user data @

@ Each internal node is the hash of its

children a a

@ Root r commits to all y1,...,yn

@ Each y; can be shown to be

consistent with r by revealing log(n) e e @ 0

values
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)
fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.
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SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
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@ Assume can find collisions to fa
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa
@ Goal: Given random A and y, find fa(x) =y
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa
@ Goal: Given random A and y, find fa(x) =y

e Add y to random column a} = a; +y.
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

Assume can find collisions to fa

Add y to random column a; = a; +y.

°
@ Goal: Given random A and y, find fa(x) =y
°
e Find collision (x, x’) for A’: A’x = A’X/
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 1: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa

Goal: Given random A and y, find fa(x) =y
Add y to random column a; = a; +y.

Find collision (x, x’) for A”: A’x = A’X/

If x' =1and x; =0, then A(x —x') =y
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
AecZg™ xe{0,1}7, fa(x) = Ax mod q € Zg
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
A e ZZXI‘Hv X € {07 1}my fA(x) = Ax mod qe ZZ J

Pairwise independence:

e Fix x3 # x2 € {0,1}7, f

@ Random A —@

@ fa(x1) and fa(x2) are : _
independent. m bits nlog q bits
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
AczZg™ xe {0,1}™, fa(x) = Ax mod g € Zg

Pairwise independence:

o Fix x3 #£xg9 € {O, l}m, fa
@ Random A @

o fA(Xl) and fA(Xg) are

independent. m bits nlog g bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression —> Regular
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 2: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
A e ngm' X € {07 1}"7’ fA(x) = Ax mod qe ZZ J

Pairwise independence:

e Fix x3 # x2 € {0,1}7, f

@ Random A —@

@ fa(x1) and fa(x2) are : _
independent. m bits nlog q bits

Lemma (Leftover Hash Lemma)
Pairwise Indepencence + Compression —> Regular J

a: (U({0,1}")) = (Z”) maps uniform to uniform.

May 2015 10 / 32

Daniele Micciancio (UCSD) Lattice Cryptography: an introduction



DA

|
i
it



(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Perfectly Hiding Commitments

o Analogy:

e Lock message in a box
o Give box, keep key
o Later: give key to open box
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Perfectly Hiding Commitments

o Analogy:
e Lock message in a box
o Give box, keep key
o Later: give key to open box
@ Implementation
o Randomized function C(m; r)
o Commit(m): give c = C(m; r) for random r < $
e Open: reveal m,r such that C(m;r) = c.
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

Perfectly Hiding Commitments

o Analogy:
e Lock message in a box
o Give box, keep key
o Later: give key to open box
@ Implementation
o Randomized function C(m; r)
o Commit(m): give c = C(m; r) for random r < $
e Open: reveal m,r such that C(m;r) = c.
@ Security properties:
o Hiding: ¢ = C(m;$) is independent of m
e Binding: hard to find m # m’ and r,r" such that C(m; r) = C(m’; r").
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

@ Choose A1, Ay at random
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

@ Choose A1, Ay at random
@ message m € {0,1}" and randomness r € {0,1}"

o Commitment: C(m,r) = fia, a,)(M,r) = Aym + Ayr.
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

Choose A1, Ay at random
message m € {0,1}" and randomness r € {0,1}"

Commitment: C(m,r) = fia, a,)(M,r) = Aym + Ayr.

e 6 o ¢

Hiding Property: C(m) hides the message because
Asr = fa,(r) = U(Zg)
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

Choose A1, Ay at random
message m € {0,1}" and randomness r € {0,1}"

Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.

e 6 o ¢

Hiding Property: C(m) hides the message because

Aar = fp,(r) = U(Zg)

e Binding Property: Finding (m,r) # (m’, r') such that
C(m,r) = C(m’,r") breaks the collision resistance of fia; a,]
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(Lattice) Cryptography  The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function
Aczim  xe{0,1}",  fa(x)=Axmodq € Zl J

@ The SIS function is linearly homomorphic:

fA(Xl) + fA(Xz) = fA(Xl + X2)
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function
Aczim  xe{0,1}",  fa(x)=Axmod g€ Z! J

@ The SIS function is linearly homomorphic:

fA(Xl) + fA(Xz) = fA(Xl + X2)

@ Homomorphism is only approximate:

o If x1, x5 are small, then also x; + x5 is small
e However, x; 4+ x2 can be slightly larger than x1, x>
e Domain of fa is not closed under +
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

SIS Function
Aczim  xe{0,1}",  fa(x)=Axmod g€ Z! J

@ The SIS function is linearly homomorphic:

fA(Xl) + fA(Xz) = fA(Xl + X2)

@ Homomorphism is only approximate:

o If x1, x5 are small, then also x; + x5 is small
e However, x; 4+ x2 can be slightly larger than x1, x>
e Domain of fa is not closed under +

@ fp is also key-homomorphic:

fa, (%) + fa, (x) = fa,+a,(x)
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

(One-Time) Digital Signatures

o Digital Signature Scheme:

o Key Generation Algorithm: (pk, sk) < KeyGen
e Signing Algorithm: Sign(sk, m) = o
o Verification Algorithm: Verify(pk, m, o)
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e Signing Algorithm: Sign(sk, m) = o
o Verification Algorithm: Verify(pk, m, o)

o (One-Time) Security:
@ Generate keys (pk, sk) < KeyGen
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e Signing Algorithm: Sign(sk, m) = o
o Verification Algorithm: Verify(pk, m, o)
o (One-Time) Security:
@ Generate keys (pk, sk) < KeyGen
@ Adversary m < Adv(pk) chooses message query
© ...receives signature o + Sign(s, m),
@ ...and outputs forgery (m’,o’) < Adv(o).
© Adversary wins if Verify(m’,o') and m # m’.
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

(One-Time) Digital Signatures

o Digital Signature Scheme:
o Key Generation Algorithm: (pk, sk) < KeyGen
e Signing Algorithm: Sign(sk, m) = o
o Verification Algorithm: Verify(pk, m, o)
o (One-Time) Security:
@ Generate keys (pk, sk) < KeyGen
@ Adversary m < Adv(pk) chooses message query
© ...receives signature o + Sign(s, m),
@ ...and outputs forgery (m’,o’) < Adv(o).
© Adversary wins if Verify(m’,o') and m # m’.
@ General Signatures: Adversary is allowed an arbitrary number of
signature queries
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Application 3: One-Time Signatures

o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)
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(Lattice) Cryptography = The Short Integer Solution (SIS) Problem

SIS Application 3: One-Time Signatures

o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)

@ Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
e Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa
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o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)

@ Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
e Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa

Message: short vector m € {0,1}/

Sign(sk, m) = Xm + x, linear combination of secret key
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SIS Application 3: One-Time Signatures

o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)

@ Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
e Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa

Message: short vector m € {0,1}/

Sign(sk, m) = Xm + x, linear combination of secret key

Verify(pk, m, o) uses homomoprhic properties to check that

fA(U) = fA(Xm + X) = fA(X)m -+ fA(X) =Ym -+ y
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Learning with errors (LWE)

o AcZI" se Ll ecEm

o ga(s )=As mod g
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Learning with errors (LWE)

o AcZI" se Ll ecEm

o ga(s;e) =As+emod g
=
@ Learning with Errors: Given A

and ga(s,e), recover s.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Learning with errors (LWE)

o AcZI" se Ll ecEm

e ga(s;e) =As+emod g ,Zr
@ Learning with Errors: Given A

and ga(s,e), recover s.

Theorem (Regev'05)

The function ga(s,e) is hard to m A + e [=/b
invert on the average, assuming

SIVP is hard to approximate in the
worst-case even for quantum N
computers.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE: Properties and Applications

@ Properties
© Injectivity
@ Pseudorandomness
© Homomorphism

@ Applications

© Symmetric Key Encryption
@ Public Key Encryption
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 1: Injectivity

LWE Function
A€ DM s CZD x ¢ EM,  ga(s,x) = As+xmod g € 2

Main security parameter: n. (Security largely independent of m.)
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 1: Injectivity

LWE Function
A €TINS D X EM,  ga(s,x) = As+xmod g €

Main security parameter: n. (Security largely independent of m.)
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@ Regev's theorem requires error |E| > /n and follow a certain
nonuniform (Gaussian) distribution
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LWE Property 1: Injectivity

LWE Function
A€ LI, s €Ll x — E™,  ga(s,x) = As+xmod g € Z

Main security parameter: n. (Security largely independent of m.)

8A
ngé”"} N Zg"

nlg g+ mlog || bits mlog q bits

@ Regev's theorem requires error |E| > /n and follow a certain
nonuniform (Gaussian) distribution

@ ga: nlgq+ mlgl|&| bits — mlg q bits.

@ ga expands the input roughly by a factor log g/ log |€
injective with high probability

, and is
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE: Learning Formulation

LWE Function
AcZg*" s€Lg x+ &M  ga(s,x) =As+xmod q € ZJ

Each row of A and x gives a pair (a;,a;s + x;)
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE: Learning Formulation

LWE Function
AEZZ’X”,SEZg,X%gm, gA(S,X):AS+medq€qu J

Each row of A and x gives a pair (a;,a;s + x;)

Definition (Learning With Errors (search version))
Given samples (aj,a;s + x;) for fixed s, and random a; € ZZ, x; + &, learn
s.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Pseudorandoness

@ One-wayness is not usually enough for cryptographic security.
Typically, one expects f(x) to “look” random.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Pseudorandoness

@ One-wayness is not usually enough for cryptographic security.
Typically, one expects f(x) to “look” random.

f: X=Y

g: X—=>YXxY
g(x) = (f(x), f(x))

o If f is one-way, then g is also one-way

@ The output of g(x) does not look random at all!

Definition (Pseudorandom Generator (PRG))

A function f : X — Y is a pseudorandom generator if for every efficient
algorithm D, Pryex{D(f(x)) = 1} = Pryey{D(y) = 1}.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then ga(s,x) is pseudorandomn.

Easy proof using learning formulation:
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LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then ga(s,x) is pseudorandomn.

Easy proof using learning formulation:
@ Assume small prime q, and very large m. Fix secret s € Zg.
@ Assume D can distinguish (a;, a;s + x;) from random

e Task: given many (a;, bj = a; - s + x;), find s
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Theorem (Pseudorandomness of LWE)
If (search) LWE is hard, then ga(s,x) is pseudorandomn. J

Easy proof using learning formulation:
@ Assume small prime q, and very large m. Fix secret s € Zg.
@ Assume D can distinguish (a;, a;s + x;) from random
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Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then ga(s,x) is pseudorandomn.

Easy proof using learning formulation:
@ Assume small prime q, and very large m. Fix secret s € Zg.
@ Assume D can distinguish (a;, a;s + x;) from random
e Task: given many (a;, bj = a; - s + x;), find s
@ Recover s one piece at a time:

@ Pick random r € Z7, and guess v 2 r-scZg
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then ga(s,x) is pseudorandomn.

Easy proof using learning formulation:
@ Assume small prime q, and very large m. Fix secret s € Zg.
@ Assume D can distinguish (a;, a;s + x;) from random
e Task: given many (a;, bj = a; - s + x;), find s
@ Recover s one piece at a time:

@ Pick random r € Zg, and guess v 2 r-scZg
@ Call D(a; +r, b; + v) to check if guess v = r - s was correct

Daniele Micciancio (UCSD) Lattice Cryptography: an introduction May 2015

21/ 32



(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Symmetric Encryption

@ Definition

o Key Generation: sk < KeyGen
o (Randomized) Encryption Algorithm: ¢ < Enc(sk, m)
o Decryption Algorithm: m <— Dec(sk, m)
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

Symmetric Encryption

@ Definition
o Key Generation: sk < KeyGen
o (Randomized) Encryption Algorithm: ¢ < Enc(sk, m)
o Decryption Algorithm: m <— Dec(sk, m)
@ Security
@ Pick secret key sk <+ KeyGen
@ Adversary makes encryption queries my, mp, ...+ A
© Adversary cannot distinguish Enc(sk, m;) from Enc(sk,0)
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Application 1: Symmetric Encryption

o Secret Key: s € Zj. Assume m € {0,1}.
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e Encryption: Enc(s, m) = (aj, bj = ga;(s, xi) + E(m)) where

E(m)=32m

e Decryption: Dec(s, (aj, b;)) computes

b,-—a,-'s:X;—FE(m)

and rounds to 0 or q/2.
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Secret Key: s € Zj. Assume m € {0, 1}.

Encryption: Enc(s, m) = (aj, bj = ga,(s, x;) + E(m)) where
E(m)=32m

Decryption: Dec(s, (aj, b;)) computes

b,-—a,-'s:X;—FE(m)

and rounds to 0 or q/2.

Correctness: if |x;| < g/4, decryption is correct
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LWE Application 1: Symmetric Encryption

o Secret Key: s € Zj. Assume m € {0,1}.

e Encryption: Enc(s, m) = (aj, bj = ga;(s, xi) + E(m)) where
E(m)=32m

e Decryption: Dec(s, (aj, b;)) computes
bi —aj-s=x;+ E(m)

and rounds to 0 or q/2.
o Correctness: if |x;| < g/4, decryption is correct

o Notice: if ga.(s, x;) were unformly random, b; would also be random
and independent of m
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Application 1: Symmetric Encryption

o Secret Key: s € Zj. Assume m € {0,1}.
e Encryption: Enc(s, m) = (aj, bj = ga;(s, xi) + E(m)) where
E(m)=32m

e Decryption: Dec(s, (aj, b;)) computes
bi —aj-s=x;+ E(m)

and rounds to 0 or q/2.
o Correctness: if |x;| < g/4, decryption is correct

o Notice: if ga.(s, x;) were unformly random, b; would also be random
and independent of m

e Security: If can distinguish E(sk, m) from E(sk,0), then can
distinguish ga, (s, x;) from random.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 3: Homomorphism

@ The LWE function is linearly homomorphic

gAl(s7 X].) + gA2 (S, X2) - gA1+A2 (57 X1 + X2)
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LWE Property 3: Homomorphism

@ The LWE function is linearly homomorphic

gAl(s7 X].) + gA2 (57 X2) = gA1+A2 (57 X1 + X2)

@ LWE encryption inherits omomorphic property:

Enc(sk, m1) + Enc(sk, my) =~ Enc(sk, my + my)

(alaga1(s7xl) + gml) + (a27g62(SJX2) + ng)

= (a1 + a2, Gay 1, (8, X1 + x2) + g(ml + my))
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Property 3: Homomorphism

@ The LWE function is linearly homomorphic

gAl(s7 X].) + gA2 (57 X2) = gA1+A2 (57 X1 + X2)

@ LWE encryption inherits omomorphic property:

Enc(sk, m1) + Enc(sk, my) =~ Enc(sk, my + my)

(a1, gay (s, x1) + gm1) + (a2, gay (s, x2) + gmz)

= (a1 + 32, gayraa(8, 51 + ) + 2 (1 + m2))

@ The errors x; add up. Still, if initial x; are small, and few ciphertexts
are added, result is decryptable.
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

@ Use homomorphic properties to transform symmetric Enc into public
key encryption scheme
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key encryption scheme
o Key Generation:

@ Pick secret key sk < KeyGen for Enc
@ Public key pk = (p1,- .., pn) equals p; = Enc(sk,0)
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

@ Use homomorphic properties to transform symmetric Enc into public

key encryption scheme
o Key Generation:

@ Pick secret key sk < KeyGen for Enc
@ Public key pk = (p1,- .., pn) equals p; = Enc(sk,0)

@ Encryption of m: pick small random r; and output

Zr;-p;+m = Zr,-~Enc(sk,O)+m

= Enc(sk, Z ri - 0+ m) = Enc(sk, m)

I
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(Lattice) Cryptography = The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

@ Use homomorphic properties to transform symmetric Enc into public
key encryption scheme

o Key Generation:

@ Pick secret key sk < KeyGen for Enc

@ Public key pk = (p1,- .., pn) equals p; = Enc(sk,0)
@ Encryption of m: pick small random r; and output

Zr;-p;+m = Zr,-~Enc(sk,O)+m
i i
= Enc(sk, Z ri - 0+ m) = Enc(sk, m)
i

@ Decryption: same as before
e if p; has error x;, then E(pk, m) has error ). rix;
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(Lattice) Cryptography  Efficiency

Efficiency of Ajtai's function

o g =n°D, m=0(nlogn) > nlog,q
e Eg,n=064 g=28% m=1024 071 |
o fa maps 1024 bits to 512. m
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e Eg,n=064 g=28% m=1024 | o/1 |

o fa maps 1024 bits to 512. m

o Key size: I
nmlog g = O(n?log? n) = 21° = 64KB l...q n

e Runtime: nm = O(n?log n) = 21° J

arithmetic operations
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(Lattice) Cryptography  Efficiency

Efficiency of Ajtai's function

o g =n°D, m=0(nlogn) > nlog,q
e Eg,n=064 g=28% m=1024 | o/1 |
o fa maps 1024 bits to 512. m
o Key size: I
nmlog g = O(n?log? n) = 21° = 64KB l...q n
e Runtime: nm = O(n?log n) = 21° J
arithmetic operations
o Usable, but inefficient
@ Source of inefficiency: quadratic dependency in n
Problem
Can we do better than O(n?) complexity? J
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(Lattice) Cryptography  Efficiency

Efficient lattice based hashing

Idea .
_ RONENO)
Use structured matrix 1 n
0 S ag')
Al =
A=[AD | | AlmM) :
where A() ¢ ng” is circulant agi) 351’21
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(Lattice) Cryptography  Efficiency

Efficient lattice based hashing

\dea _ ROREO NG
Use structured matrix 1 n 2.
BONEAO) S\

Al — 2 1 3

A=[AD | | AlmM) : : S
where A() ¢ ZZX” is circulant agi) 351’21 T agi)

@ Proposed by [MO02], where it is proved that fa is one-way under
plausible complexity assumptions

@ Similar idea first used by NTRU public key cryptosystem (1998), but
with no proof of security

e Wishful thinking: finding short vectors in /\é(A) is hard, and
therefore fp is collision resistant
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(Lattice) Cryptography Efficiency

Can you find a collision?

1 43 86 49 0|26 453 271
8 1 4 3/06 409|526 4|13 217
38149 06 445 2 6|7 13 2
4 38 1/4 9 0¢6(6 4522713
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(Lattice) Cryptography Efficiency

Can you find a collision?

100-1j-1 110|001 1f1 0 -10

1 43 8|6 49 0|26 45|32 71 5
8 1 4 3|0 6 4 9|5 26 4|1 3 2 7 4
381 4|19 06 4(45 26|71 3 2 8
4 38 1|4 9 06|6 45 2|27 1 3 6
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(Lattice) Cryptography Efficiency

Can you find a collision?

L S Y O Y S A O I S S S O I A A

1 4 3 8(6 49 026 453 271 0
8 1 4 3/06 409|526 4|13 27 0
3814906 445267132 0
4 38 1/490¢6|6 4522713 0
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(Lattice) Cryptography  Efficiency

Can you find a collision?

11117111141 1111111
1 43 86 49 0|26 453 271
8 1 4 3/06 409|526 4|13 217
38149 06 445 2 6|7 13 2
4 38 1/4 9 0¢6(6 4522713
6 9 7 3
6 9 7 3
6 9 7 3
6 9 7 3
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(Lattice) Cryptography  Efficiency

Can you find a collision?

1 1114-1 -1 -1 -1/0 0 O O0O|1 1 1 1
1 4 3 8/6 4 9 0|26 453 271 0
81 4 3|0 6 4 9|52 6 4|1 3 27 0
381 4/9 0 6 4|45 2 6|71 3 2 0
4 3814 9 0 6|6 45 2|2 7 1 3 0
6 9 7 3
6 9 7 3
+1x 6 —1x 9 +0 x 7 +1x 3
6 9 7 3

Daniele Micciancio (UCSD) Lattice Cryptography: an introduction May 2015 28 / 32



(Lattice) Cryptography Efficiency

Remarks about proofs of security

@ This function is essentially the compression function of hash function
LASH, modeled after NTRU

@ You can still “prove” security based on average case assumption:
Breaking the above hash function is as hard as finding short vectors in
a random lattice A(JAM)] .. |A(™/M))

@ ...but we know the function is broken: The underlying random
lattice distribution is weak!

@ Conclusion: Assuming that a problem is hard on average-case is a
really tricky business!
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(Lattice) Cryptography  Efficiency

Can you find a collision now?

2 07?2 0?20?77 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/4 5 2 6|7 1 3 =2
4 3 1/4 9 0 6/6 4 5 2(2 7 1 3
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(Lattice) Cryptography  Efficiency

Can you find a collision now?

2 07?2 0?20?77 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/4 5 2 6|7 1 3 =2
4 3 8 1|49 0 6[6 4 5 22 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices
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(Lattice) Cryptography  Efficiency

Can you find a collision now?

2 07?2 0?20?77 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/4 5 2 6|7 1 3 =2
4 3 8 1|49 0 6[6 4 5 22 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

V.

Theorem (Lyubashevsky&Micciancio)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.
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(Lattice) Cryptography Efficiency

Efficiency of anti-cyclic hashing

Key size: (m/n) - nlogq = m-logq = O(n) bits

Anti-cyclic matrix-vector multiplication can be computed in
quasi-linear time O(n) using FFT

The resulting hash function can also be computed in O(n) time

(]

For approximate choice of parameters, this can be very practical
(SWIFFT [LMPR])

The hash function is linear: A(x +y) = Ax + Ay

This can be a feature rather than a weakness
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(Lattice) Cryptography Efficiency

Conclusion
e Simple SIS/LWE functions
@ Useful homomorphic properties = Cryptographic applications
@ Cyclic/Anticycic matrices (RingSIS/RingLWE):
o key to efficiency in practice
e technique pervasively used by all practical instantiations of lattice
cryptography
@ Question: Are these functions secure?

e We think so, and that's where lattices come into the picture
e ... but that's another story
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