Lattice Cryptography: an introduction

Daniele Micciancio

Department of Computer Science and Engineering University of California, San Diego

May 2015

Daniele Micciancio (UCSD)

Lattice Cryptography: an introduction

May 2015 1 / 32

()

Point Lattices

• The simplest example of lattice is $\mathbb{Z}^n = \{(x_1, \ldots, x_n) \colon x_i \in \mathbb{Z}\}$

Point Lattices

- The simplest example of lattice is $\mathbb{Z}^n = \{(x_1, \ldots, x_n) \colon x_i \in \mathbb{Z}\}$
- Other lattices are obtained by applying a linear transformation

$$\mathbf{B} \colon \mathbf{x} = (x_1, \ldots, x_n) \mapsto \mathbf{B} \mathbf{x} = x_1 \cdot \mathbf{b}_1 + \cdots + x_n \cdot \mathbf{b}_n$$

One-way Functions

Definition (One-Way Function (Informal))

An injective function $f: X \to Y$ is one-way if

- It is easy to compute, i.e., there is an efficient algorithm that on input x outputs f(x)
- It is hard to invert, i.e., there is no efficient algorithm that on input f(x) outputs x

Modern Lattice Cryptography:

- The Short Integer Solusion (SIS) Function
 - Properties
 - Cryptographic Applications
- The Learning With Errors (LWE) Function
 - Properties
 - Cryptographic Applications
- Efficiency Considerations

(3)

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_{a}^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$

• • = • • = •

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0,1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$

< ∃ ►

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$
- Output: $f_{A}(x) = Ax \mod q$

Theorem (A'96)

For $m > n \lg q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$ is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...

SIS: Properties and Applications

• Properties:

- Compression
- 2 Regularity
- Homomorphism

• Applications:

- Collision Resistant Hashing
- 2 Commitment Schemes
- Oigital Signatures

SIS Function

 $\mathsf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathsf{x} \in \{0,1\}^m$, $f_\mathsf{A}(\mathsf{x}) = \mathsf{A}\mathsf{x} modes \mathsf{mod} q \in \mathbb{Z}_q^n$

SIS Function

 $\mathsf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathsf{x} \in \{0,1\}^m$, $f_\mathsf{A}(\mathsf{x}) = \mathsf{A}\mathsf{x} modes \mathsf{mod} q \in \mathbb{Z}_q^n$

Main security parameter: n. (Security largely independent of m.)

• $f_{\mathbf{A}}$: *m* bits $\rightarrow n \lg q$ bits.

SIS Function

 $\mathsf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathsf{x} \in \{0,1\}^m$, $f_\mathsf{A}(\mathsf{x}) = \mathsf{A}\mathsf{x} mod mod q \in \mathbb{Z}_q^n$

- $f_{\mathbf{A}}$: *m* bits $\rightarrow n \lg q$ bits.
- When $(m > n \lg q)$, f_A is a compression function.

SIS Function

 $\mathsf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathsf{x} \in \{0,1\}^m$, $f_\mathsf{A}(\mathsf{x}) = \mathsf{A}\mathsf{x} mod mod q \in \mathbb{Z}_q^n$

- $f_{\mathbf{A}}$: *m* bits $\rightarrow n \lg q$ bits.
- When $(m > n \lg q)$, f_A is a compression function.
- E.g., $m = 2n \lg q$: $f_{\mathbf{A}}: \{0,1\}^m \to \{0,1\}^{m/2}.$

SIS Function

 $\mathsf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathsf{x} \in \{0,1\}^m$, $f_\mathsf{A}(\mathsf{x}) = \mathsf{A}\mathsf{x} mod mod q \in \mathbb{Z}_q^n$

- $f_{\mathbf{A}}$: *m* bits $\rightarrow n \lg q$ bits.
- When $(m > n \lg q)$, f_A is a compression function.
- E.g., $m = 2n \lg q$: $f_{\mathbf{A}} : \{0, 1\}^m \rightarrow \{0, 1\}^{m/2}$. Ajtai's theorem requires $(m > n \lg q)$

Collision Resistant Hashing

Keyed function family $f_A : X \to Y$ with |X| > |Y|(E.g., $X = Y^2$ and $f_A \colon Y^2 \to Y$.)

- 4 同 6 4 日 6 4 日 6

Collision Resistant Hashing

Keyed function family $f_A \colon X \to Y$ with |X| > |Y|(E.g., $X = Y^2$ and $f_A \colon Y^2 \to Y$.)

Definition (Collision Resistance)

Finding $x_1 \neq x_2 \in X$ such that $f_A(x_1) = f_A(x_2)$ is hard.

Collision Resistant Hashing

Keyed function family
$$f_A \colon X \to Y$$
 with $|X| > |Y|$
(E.g., $X = Y^2$ and $f_A \colon Y^2 \to Y$.)

Definition (Collision Resistance)

Finding $x_1 \neq x_2 \in X$ such that $f_A(x_1) = f_A(x_2)$ is hard.

Classic application: Merkle Trees

- I eaves are user data
- Each internal node is the hash of its children
- Root r commits to all y_1, \ldots, y_n
- Each y; can be shown to be consistent with r by revealing log(n)values

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

• Assume can find collisions to f_A

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

- Assume can find collisions to f_A
- Goal: Given random **A** and **y**, find $f_{A}(\mathbf{x}) = \mathbf{y}$

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

- Assume can find collisions to f_A
- Goal: Given random **A** and **y**, find $f_{A}(\mathbf{x}) = \mathbf{y}$
- Add **y** to random column $\mathbf{a}'_{\mathbf{i}} = \mathbf{a}_{\mathbf{i}} + \mathbf{y}$.

A B A A B A

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

- Assume can find collisions to f_A
- Goal: Given random **A** and **y**, find $f_{A}(\mathbf{x}) = \mathbf{y}$
- Add **y** to random column $\mathbf{a}'_{\mathbf{i}} = \mathbf{a}_{\mathbf{i}} + \mathbf{y}$.
- Find collision (x, x') for \mathbf{A}' : $\mathbf{A}'\mathbf{x} = \mathbf{A}'\mathbf{x}'$

A B A A B A

Definition (Collision Resistance)

 $f_A \colon X \to Y$. No adversary, given a random A, can efficiently find $x \neq x' \in X$ such that $f_A(x) = f_A(x')$

Theorem

If $f_{\mathbf{A}} \colon \{0, \pm 1\}^m \to \mathbb{Z}_q^n$ is one-way, then $f_{\mathbf{A}} \colon \{0, 1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

- Assume can find collisions to f_A
- Goal: Given random **A** and **y**, find $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{y}$
- Add **y** to random column $\mathbf{a}'_{\mathbf{i}} = \mathbf{a}_{\mathbf{i}} + \mathbf{y}$.
- Find collision (x, x') for \mathbf{A}' : $\mathbf{A}'\mathbf{x} = \mathbf{A}'\mathbf{x}'$
- If $x'_i = 1$ and $x_i = 0$, then $\mathbf{A}(\mathbf{x} \mathbf{x}') = \mathbf{y}$

• • = • • = •

 $f: X \to Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

(日) (周) (三) (三)

 $f: X \to Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

 $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, $\mathbf{x} \in \{0, 1\}^{m}$, $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_{q}^{n}$

くほと くほと くほと

 $f: X \to Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

 $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^{m}, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_{q}^{n}$

Pairwise independence:

- Fix $\mathbf{x_1} \neq \mathbf{x_2} \in \{0, 1\}^m$,
- Random A
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.

★ 3 > < 3 >

 $f: X \to Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

 $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^{m}, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_{q}^{n}$

Pairwise independence:

- Fix $\mathbf{x_1} \neq \mathbf{x_2} \in \{0, 1\}^m$,
- Random A
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.

イロト 不得下 イヨト イヨト

Lemma (Leftover Hash Lemma)

Pairwise Independence + Compression \implies Regular

 $f: X \to Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

 $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^{m}, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_{q}^{n}$

Pairwise independence:

- Fix $\mathbf{x_1} \neq \mathbf{x_2} \in \{0, 1\}^m$,
- Random A
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.

Lemma (Leftover Hash Lemma)

Pairwise Independence + Compression \implies Regular

 $f_{\mathbf{A}}$: $(U(\{0,1\}^n)) \approx U(\mathbb{Z}_q^n)$ maps uniform to uniform.

A B A A B A

(日) (周) (三) (三)

• Analogy:

- Lock message in a box
- Give box, keep key
- Later: give key to open box

Analogy:

- Lock message in a box
- Give box, keep key
- Later: give key to open box
- Implementation
 - Randomized function C(m; r)
 - Commit(m): give c = C(m; r) for random $r \leftarrow$
 - Open: reveal m, r such that C(m; r) = c.

Analogy:

- Lock message in a box
- Give box, keep key
- Later: give key to open box
- Implementation
 - Randomized function C(m; r)
 - Commit(m): give c = C(m; r) for random $r \leftarrow$
 - Open: reveal m, r such that C(m; r) = c.
- Security properties:
 - Hiding: c = C(m; \$) is independent of m
 - Binding: hard to find $m \neq m'$ and r, r' such that C(m; r) = C(m'; r').

A B A A B A

(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Application 2: Commitment

• Choose A_1, A_2 at random

< ロ > < 同 > < 三 > < 三

SIS Application 2: Commitment

- Choose A_1, A_2 at random
- message $\mathbf{m} \in \{0,1\}^m$ and randomness $\mathbf{r} \in \{0,1\}^m$

SIS Application 2: Commitment

- Choose A_1, A_2 at random
- $\bullet\,$ message $\mathbf{m}\in\{0,1\}^m$ and randomness $\mathbf{r}\in\{0,1\}^m$
- Commitment: $C(\mathbf{m},\mathbf{r}) = f_{[\mathbf{A}_1,\mathbf{A}_2]}(\mathbf{m},\mathbf{r}) = \mathbf{A}_1\mathbf{m} + \mathbf{A}_2\mathbf{r}.$

A B F A B F
SIS Application 2: Commitment

- \bullet Choose $\textbf{A_1}, \textbf{A_2}$ at random
- $\bullet\,$ message $\mathbf{m}\in\{0,1\}^m$ and randomness $\mathbf{r}\in\{0,1\}^m$
- Commitment: $C(\mathbf{m}, \mathbf{r}) = f_{[\mathbf{A}_1, \mathbf{A}_2]}(\mathbf{m}, \mathbf{r}) = \mathbf{A}_1 \mathbf{m} + \mathbf{A}_2 \mathbf{r}.$
- Hiding Property: $C(\mathbf{m})$ hides the message because $\mathbf{A_2r} = f_{\mathbf{A}_2}(\mathbf{r}) \approx U(\mathbb{Z}_q^n)$

SIS Application 2: Commitment

- \bullet Choose $\textbf{A_1}, \textbf{A_2}$ at random
- message $\mathbf{m} \in \{0,1\}^m$ and randomness $\mathbf{r} \in \{0,1\}^m$
- Commitment: $C(\mathbf{m},\mathbf{r}) = f_{[\mathbf{A}_1,\mathbf{A}_2]}(\mathbf{m},\mathbf{r}) = \mathbf{A}_1\mathbf{m} + \mathbf{A}_2\mathbf{r}.$
- Hiding Property: $C(\mathbf{m})$ hides the message because $\mathbf{A_2r} = f_{\mathbf{A_2}}(\mathbf{r}) \approx U(\mathbb{Z}_q^n)$
- Binding Property: Finding $(m, r) \neq (m', r')$ such that $C(\mathbf{m}, \mathbf{r}) = C(\mathbf{m}', \mathbf{r}')$ breaks the collision resistance of $f_{[\mathbf{A}_1, \mathbf{A}_2]}$

(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

 $\begin{array}{l} \mathsf{SIS} \ \mathsf{Function} \\ \mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0,1\}^m, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathsf{A}\mathbf{x} \ \mathsf{mod} \ q \in \mathbb{Z}_q^n \end{array}$

• The SIS function is linearly homomorphic:

$$f_{\mathbf{A}}(\mathbf{x}_1) + f_{\mathbf{A}}(\mathbf{x}_2) = f_{\mathbf{A}}(\mathbf{x}_1 + \mathbf{x}_2)$$

(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

 $\begin{array}{l} \mathsf{SIS} \ \mathsf{Function} \\ \mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0,1\}^m, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \ \mathsf{mod} \ q \in \mathbb{Z}_q^n \end{array}$

• The SIS function is linearly homomorphic:

$$f_{\mathsf{A}}(\mathsf{x}_1) + f_{\mathsf{A}}(\mathsf{x}_2) = f_{\mathsf{A}}(\mathsf{x}_1 + \mathsf{x}_2)$$

- Homomorphism is only approximate:
 - If $\mathbf{x}_1, \mathbf{x}_2$ are small, then also $\mathbf{x}_1 + \mathbf{x}_2$ is small
 - However, $\mathbf{x}_1 + \mathbf{x}_2$ can be slightly larger than $\mathbf{x}_1, \mathbf{x}_2$
 - Domain of f_A is not closed under +

(Lattice) Cryptography The Short Integer Solution (SIS) Problem

SIS Property 3: (Approximate) Linear Homomorphism

 $\begin{array}{l} \mathsf{SIS} \ \mathsf{Function} \\ \mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0,1\}^m, \qquad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \ \mathsf{mod} \ q \in \mathbb{Z}_q^n \end{array}$

• The SIS function is linearly homomorphic:

$$f_{\mathsf{A}}(\mathsf{x}_1) + f_{\mathsf{A}}(\mathsf{x}_2) = f_{\mathsf{A}}(\mathsf{x}_1 + \mathsf{x}_2)$$

- Homomorphism is only approximate:
 - If $\mathbf{x}_1, \mathbf{x}_2$ are small, then also $\mathbf{x}_1 + \mathbf{x}_2$ is small
 - However, $\mathbf{x}_1 + \mathbf{x}_2$ can be slightly larger than $\mathbf{x}_1, \mathbf{x}_2$
 - Domain of f_A is not closed under +
- *f*_A is also key-homomorphic:

$$f_{\mathbf{A}_1}(\mathbf{x}) + f_{\mathbf{A}_2}(\mathbf{x}) = f_{\mathbf{A}_1 + \mathbf{A}_2}(\mathbf{x})$$

Daniele Micciancio (UCSD)

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:

• Generate keys $(pk, sk) \leftarrow KeyGen$

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:
 - **1** Generate keys $(pk, sk) \leftarrow KeyGen$
 - 2 Adversary $m \leftarrow Adv(pk)$ chooses message query

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:
 - **1** Generate keys $(pk, sk) \leftarrow KeyGen$
 - 2 Adversary $m \leftarrow Adv(pk)$ chooses message query
 - **3** ... receives signature $\sigma \leftarrow Sign(s, m)$,

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:
 - Generate keys $(pk, sk) \leftarrow KeyGen$
 - 2 Adversary $m \leftarrow Adv(pk)$ chooses message query
 - **3** ... receives signature $\sigma \leftarrow Sign(s, m)$,
 - ... and outputs forgery $(m', \sigma') \leftarrow Adv(\sigma)$.

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:
 - Generate keys $(pk, sk) \leftarrow KeyGen$
 - 2 Adversary $m \leftarrow Adv(pk)$ chooses message query
 - **3** ... receives signature $\sigma \leftarrow Sign(s, m)$,
 - ... and outputs forgery $(m', \sigma') \leftarrow Adv(\sigma)$.
 - Adversary wins if $Verify(m', \sigma')$ and $m \neq m'$.

- Digital Signature Scheme:
 - Key Generation Algorithm: $(pk, sk) \leftarrow KeyGen$
 - Signing Algorithm: $Sign(sk, m) = \sigma$
 - Verification Algorithm: $Verify(pk, m, \sigma)$
- (One-Time) Security:
 - Generate keys $(pk, sk) \leftarrow KeyGen$
 - 2 Adversary $m \leftarrow Adv(pk)$ chooses message query
 - ... receives signature $\sigma \leftarrow Sign(s, m)$,
 - ... and outputs forgery $(m', \sigma') \leftarrow Adv(\sigma)$.
 - Solution Adversary wins if $Verify(m', \sigma')$ and $m \neq m'$.
- General Signatures: Adversary is allowed an arbitrary number of signature queries

• • = • • = •

• Extend
$$f_A$$
 to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

< ロ > < 同 > < 三 > < 三

• Extend
$$f_A$$
 to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

• Key Generation:

- Public Parameter: SIS function key A
- Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
- Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of *sk* under $f_{\mathbf{A}}$

• Extend
$$f_A$$
 to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

- Key Generation:
 - Public Parameter: SIS function key A
 - Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
 - Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of *sk* under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in \{0,1\}^{I}$
- Sign(sk, m) = Xm + x, linear combination of secret key

• Extend
$$f_{\mathbf{A}}$$
 to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

• Key Generation:

- Public Parameter: SIS function key A
- Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
- Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of sk under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in \{0,1\}^{I}$
- Sign(sk, m) = Xm + x, linear combination of secret key
- Verify(pk, m, σ) uses homomoprhic properties to check that

$$f_{A}(\sigma) = f_{A}(Xm + x) = f_{A}(X)m + f_{A}(x) = Ym + y$$

(Lattice) Cryptography The Learning With Errors (LWE) Problem

Learning with errors (LWE)

	 I 	• • •	⊐" ▶	< E	•	< ₹ >	Ξ.	*) Q (*
Daniele Micciancio (UCSD)	Lattice Cryptography: an introduction					May 2015		16 / 32

(Lattice) Cryptography

The Learning With Errors (LWE) Problem

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q$
- Learning with Errors: Given **A** and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover **s**.

(Lattice) Cryptography

The Learning With Errors (LWE) Problem

Learning with errors (LWE)

•
$$\mathbf{A} \in \mathbb{Z}_q^{m \times n}$$
, $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \mathcal{E}^m$.

- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q$
- Learning with Errors: Given **A** and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover **s**.

Theorem (Regev'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case even for quantum computers.

LWE: Properties and Applications

Properties

- Injectivity
- Pseudorandomness
- Homomorphism

Applications

- Symmetric Key Encryption
- Public Key Encryption

Main security parameter: n. (Security largely independent of m.)

Main security parameter: n. (Security largely independent of m.)

• Regev's theorem requires error $|\mathcal{E}| > \sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution

Main security parameter: n. (Security largely independent of m.)

- Regev's theorem requires error $|\mathcal{E}| > \sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution
- $g_{\mathbf{A}}$: $n \lg q + m \lg |\mathcal{E}|$ bits $\rightarrow m \lg q$ bits.

• • = • • = • = •

Main security parameter: n. (Security largely independent of m.)

- Regev's theorem requires error $|\mathcal{E}| > \sqrt{n}$ and follow a certain nonuniform (Gaussian) distribution
- $g_{\mathbf{A}}$: $n \lg q + m \lg |\mathcal{E}|$ bits $\rightarrow m \lg q$ bits.
- g_A expands the input roughly by a factor $\log q / \log |\mathcal{E}|$, and is injective with high probability

LWE: Learning Formulation

IWE Function

 $A \in \mathbb{Z}_a^{m imes n}$, $\mathbf{s} \in \mathbb{Z}_a^n$, $\mathbf{x} \leftarrow \mathcal{E}^m$, $g_A(\mathbf{s}, \mathbf{x}) = A\mathbf{s} + \mathbf{x} \mod q \in \mathbb{Z}_a^m$

Each row of **A** and **x** gives a pair $(\mathbf{a}_i, \mathbf{a}_i\mathbf{s} + x_i)$

LWE: Learning Formulation

LWE Function

 $\mathbf{A} \in \mathbb{Z}_q^{m \times n}, \ \mathbf{s} \in \mathbb{Z}_q^n, \ \mathbf{x} \leftarrow \mathcal{E}^m, \quad g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{A}\mathbf{s} + \mathbf{x} \bmod q \in \mathbb{Z}_q^m$

Each row of **A** and **x** gives a pair $(\mathbf{a}_i, \mathbf{a}_i\mathbf{s} + x_i)$

Definition (Learning With Errors (search version))

Given samples $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ for fixed \mathbf{s} , and random $\mathbf{a}_i \in \mathbf{Z}_q^n$, $\mathbf{x}_i \leftarrow \mathcal{E}$, learn \mathbf{s} .

• One-wayness is not usually enough for cryptographic security. Typically, one expects f(x) to "look" random.

3 🕨 🖌 3

• One-wayness is not usually enough for cryptographic security. Typically, one expects f(x) to "look" random.

> $f: X \to Y$ $g: X \to Y imes Y$ g(x) = (f(x), f(x))

• One-wayness is not usually enough for cryptographic security. Typically, one expects f(x) to "look" random.

 $f: X \to Y$ $g: X \to Y \times Y$ g(x) = (f(x), f(x))

• If f is one-way, then g is also one-way

• One-wayness is not usually enough for cryptographic security. Typically, one expects f(x) to "look" random.

```
f: X \to Y
g: X \to Y 	imes Y
g(x) = (f(x), f(x))
```

- If f is one-way, then g is also one-way
- The output of g(x) does not look random at all!

• One-wayness is not usually enough for cryptographic security. Typically, one expects f(x) to "look" random.

```
f: X \to Y
g: X \to Y 	imes Y
g(x) = (f(x), f(x))
```

- If f is one-way, then g is also one-way
- The output of g(x) does not look random at all!

Definition (Pseudorandom Generator (PRG))

A function $f: X \to Y$ is a pseudorandom generator if for every efficient algorithm \mathcal{D} , $\Pr_{x \in X} \{ \mathcal{D}(f(x)) = 1 \} \approx \Pr_{y \in Y} \{ \mathcal{D}(y) = 1 \}.$

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_{A}(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

• Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.
- Assume D can distinguish $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ from random

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.
- Assume D can distinguish $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ from random
- Task: given many $(\mathbf{a}_i, b_i = \mathbf{a}_i \cdot \mathbf{s} + x_i)$, find \mathbf{s}
LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.
- Assume D can distinguish $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ from random
- Task: given many $(\mathbf{a}_i, b_i = \mathbf{a}_i \cdot \mathbf{s} + x_i)$, find \mathbf{s}
- Recover **s** one piece at a time:

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.
- Assume D can distinguish $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ from random
- Task: given many $(\mathbf{a}_i, b_i = \mathbf{a}_i \cdot \mathbf{s} + x_i)$, find \mathbf{s}
- Recover **s** one piece at a time:
 - Pick random $\mathbf{r} \in \mathbb{Z}_q^n$, and guess $\mathbf{v} \stackrel{?}{=} \mathbf{r} \cdot \mathbf{s} \in \mathbb{Z}_q$

LWE Property 2: Pseudorandomness

Theorem (Pseudorandomness of LWE)

If (search) LWE is hard, then $g_A(s, x)$ is pseudorandomn.

Easy proof using learning formulation:

- Assume small prime q, and very large m. Fix secret $\mathbf{s} \in \mathbb{Z}_q^n$.
- Assume D can distinguish $(\mathbf{a}_i, \mathbf{a}_i \mathbf{s} + x_i)$ from random
- Task: given many $(\mathbf{a}_i, b_i = \mathbf{a}_i \cdot \mathbf{s} + x_i)$, find \mathbf{s}
- Recover **s** one piece at a time:
 - Pick random $\mathbf{r} \in \mathbb{Z}_q^n$, and guess $v \stackrel{?}{=} \mathbf{r} \cdot \mathbf{s} \in \mathbb{Z}_q$
 - 2 Call $\mathcal{D}(\mathbf{a}_i + \mathbf{r}, b_i + \mathbf{v})$ to check if guess $\mathbf{v} = \mathbf{r} \cdot \mathbf{s}$ was correct

Symmetric Encryption

Definition

- Key Generation: sk ← KeyGen
- (Randomized) Encryption Algorithm: $c \leftarrow Enc(sk, m)$
- Decryption Algorithm: $m \leftarrow Dec(sk, m)$

3 🕨 🖌 3

Symmetric Encryption

Definition

- Key Generation: sk ← KeyGen
- (Randomized) Encryption Algorithm: $c \leftarrow Enc(sk, m)$
- Decryption Algorithm: $m \leftarrow Dec(sk, m)$

Security

- **1** Pick secret key $sk \leftarrow KeyGen$
- Adversary makes encryption queries $m_1, m_2, \ldots \leftarrow A$
- Adversary cannot distinguish $Enc(sk, m_i)$ from Enc(sk, 0)

• Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.

.

- Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.
- Encryption: $Enc(\mathbf{s}, m) = (\mathbf{a}_i, b_i = g_{\mathbf{a}_i}(\mathbf{s}, x_i) + E(m))$ where $E(m) = \frac{q}{2}m$

- Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.
- Encryption: $Enc(\mathbf{s}, m) = (\mathbf{a}_i, b_i = g_{\mathbf{a}_i}(\mathbf{s}, x_i) + E(m))$ where $E(m) = \frac{q}{2}m$
- Decryption: $Dec(\mathbf{s}, (\mathbf{a}_i, b_i))$ computes

$$b_i - \mathbf{a}_i \cdot s = x_i + E(m)$$

and rounds to 0 or q/2.

- Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.
- Encryption: $Enc(\mathbf{s}, m) = (\mathbf{a}_i, b_i = g_{\mathbf{a}_i}(\mathbf{s}, x_i) + E(m))$ where $E(m) = \frac{q}{2}m$
- Decryption: $Dec(\mathbf{s}, (\mathbf{a}_i, b_i))$ computes

$$b_i - \mathbf{a}_i \cdot s = x_i + E(m)$$

and rounds to 0 or q/2.

• Correctness: if $|x_i| < q/4$, decryption is correct

- Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.
- Encryption: $Enc(\mathbf{s}, m) = (\mathbf{a}_i, b_i = g_{\mathbf{a}_i}(\mathbf{s}, x_i) + E(m))$ where $E(m) = \frac{q}{2}m$
- Decryption: $Dec(\mathbf{s}, (\mathbf{a}_i, b_i))$ computes

$$b_i - \mathbf{a}_i \cdot s = x_i + E(m)$$

and rounds to 0 or q/2.

- Correctness: if $|x_i| < q/4$, decryption is correct
- Notice: if $g_{\mathbf{a}_i}(\mathbf{s}, x_i)$ were unformly random, b_i would also be random and independent of m

< 回 ト < 三 ト < 三 ト

- Secret Key: $\mathbf{s} \in \mathbb{Z}_q^n$. Assume $m \in \{0, 1\}$.
- Encryption: $Enc(\mathbf{s}, m) = (\mathbf{a}_i, b_i = g_{\mathbf{a}_i}(\mathbf{s}, x_i) + E(m))$ where $E(m) = \frac{q}{2}m$
- Decryption: $Dec(\mathbf{s}, (\mathbf{a}_i, b_i))$ computes

$$b_i - \mathbf{a}_i \cdot \mathbf{s} = x_i + E(m)$$

and rounds to 0 or q/2.

- Correctness: if $|x_i| < q/4$, decryption is correct
- Notice: if $g_{\mathbf{a}_i}(\mathbf{s}, x_i)$ were unformly random, b_i would also be random and independent of m
- Security: If can distinguish E(sk, m) from E(sk, 0), then can distinguish g_{a_i}(s, x_i) from random.

- 本間 と えき と えき とうき

LWE Property 3: Homomorphism

• The LWE function is linearly homomorphic

$$g_{\mathsf{A}_1}(\mathsf{s},\mathsf{x}_1) + g_{\mathsf{A}_2}(\mathsf{s},\mathsf{x}_2) = g_{\mathsf{A}_1+\mathsf{A}_2}(\mathsf{s},\mathsf{x}_1+\mathsf{x}_2)$$

.⊒ . ►

LWE Property 3: Homomorphism

• The LWE function is linearly homomorphic

$$g_{\mathsf{A}_1}(\mathsf{s},\mathsf{x}_1) + g_{\mathsf{A}_2}(\mathsf{s},\mathsf{x}_2) = g_{\mathsf{A}_1+\mathsf{A}_2}(\mathsf{s},\mathsf{x}_1+\mathsf{x}_2)$$

• LWE encryption inherits omomorphic property:

$$Enc(sk, m_1) + Enc(sk, m_2) \approx Enc(sk, m_1 + m_2)$$
$$(\mathbf{a}_1, g_{\mathbf{a}_1}(\mathbf{s}, x_1) + \frac{q}{2}m_1) + (\mathbf{a}_2, g_{\mathbf{a}_2}(\mathbf{s}, x_2) + \frac{q}{2}m_2)$$
$$= (\mathbf{a}_1 + \mathbf{a}_2, g_{\mathbf{a}_1 + \mathbf{a}_2}(\mathbf{s}, x_1 + x_2) + \frac{q}{2}(m_1 + m_2))$$

LWE Property 3: Homomorphism

• The LWE function is linearly homomorphic

$$g_{\mathsf{A}_1}(\mathsf{s},\mathsf{x}_1) + g_{\mathsf{A}_2}(\mathsf{s},\mathsf{x}_2) = g_{\mathsf{A}_1+\mathsf{A}_2}(\mathsf{s},\mathsf{x}_1+\mathsf{x}_2)$$

• LWE encryption inherits omomorphic property:

$$Enc(sk, m_1) + Enc(sk, m_2) \approx Enc(sk, m_1 + m_2)$$
$$(\mathbf{a}_1, g_{\mathbf{a}_1}(\mathbf{s}, \mathbf{x}_1) + \frac{q}{2}m_1) + (\mathbf{a}_2, g_{\mathbf{a}_2}(\mathbf{s}, \mathbf{x}_2) + \frac{q}{2}m_2)$$
$$= (\mathbf{a}_1 + \mathbf{a}_2, g_{\mathbf{a}_1 + \mathbf{a}_2}(\mathbf{s}, \mathbf{x}_1 + \mathbf{x}_2) + \frac{q}{2}(m_1 + m_2))$$

• The errors x_i add up. Still, if initial x_i are small, and few ciphertexts are added, result is decryptable.

LWE Application 2: Public Key Encryption

• Use homomorphic properties to transform symmetric *Enc* into public key encryption scheme

(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric *Enc* into public key encryption scheme
- Key Generation:
 - **1** Pick secret key $sk \leftarrow KeyGen$ for *Enc*
 - 2 Public key $pk = (p_1, \ldots, p_n)$ equals $p_i = Enc(sk, 0)$

(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric *Enc* into public key encryption scheme
- Key Generation:
 - **1** Pick secret key $sk \leftarrow KeyGen$ for *Enc*
 - 2 Public key $pk = (p_1, \ldots, p_n)$ equals $p_i = Enc(sk, 0)$
- Encryption of m: pick small random r_i and output

$$\sum_{i} \mathbf{r}_{i} \cdot \mathbf{p}_{i} + m = \sum_{i} \mathbf{r}_{i} \cdot Enc(sk, 0) + m$$
$$= Enc(sk, \sum_{i} \mathbf{r}_{i} \cdot 0 + m) = Enc(sk, m)$$

(Lattice) Cryptography The Learning With Errors (LWE) Problem

LWE Application 2: Public Key Encryption

- Use homomorphic properties to transform symmetric *Enc* into public key encryption scheme
- Key Generation:
 - **1** Pick secret key $sk \leftarrow KeyGen$ for *Enc*
 - 2 Public key $pk = (p_1, \ldots, p_n)$ equals $p_i = Enc(sk, 0)$
- Encryption of *m*: pick small random *r_i* and output

$$\sum_{i} r_{i} \cdot p_{i} + m = \sum_{i} r_{i} \cdot Enc(sk, 0) + m$$
$$= Enc(sk, \sum_{i} r_{i} \cdot 0 + m) = Enc(sk, m)$$

- Decryption: same as before
- if p_i has error x_i , then E(pk, m) has error $\sum_i r_i x_i$

Efficiency

Efficiency of Ajtai's function

•
$$q = n^{O(1)}, m = O(n \log n) > n \log_2 q$$

• E.g.,
$$n = 64$$
, $q = 2^8$, $m = 1024$

• *f*_A maps 1024 bits to 512.

(Lattice) Cryptography E

Efficiency

Efficiency of Ajtai's function

•
$$q = n^{O(1)}, m = O(n \log n) > n \log_2 q$$

• E.g.,
$$n = 64$$
, $q = 2^8$, $m = 1024$

- f_A maps 1024 bits to 512.
- Key size: $nm \log q = O(n^2 \log^2 n) = 2^{19} = 64KB$
- Runtime: nm = O(n² log n) = 2¹⁶ arithmetic operations

Efficiency

Efficiency of Ajtai's function

•
$$q = n^{O(1)}, m = O(n \log n) > n \log_2 q$$

• E.g.,
$$n = 64$$
, $q = 2^8$, $m = 1024$

- f_A maps 1024 bits to 512.
- Key size: $nm \log q = O(n^2 \log^2 n) = 2^{19} = 64KB$
- Runtime: nm = O(n² log n) = 2¹⁶ arithmetic operations
- Usable, but inefficient
 - Source of inefficiency: quadratic dependency in n

Problem

Can we do better than $O(n^2)$ complexity?

Efficient lattice based hashing

Idea

Use structured matrix

$$\mathbf{A} = [\mathbf{A}^{(1)} \mid \ldots \mid \mathbf{A}^{(m/n)}]$$

where $\mathbf{A}^{(i)} \in \mathbb{Z}_q^{n \times n}$ is circulant

$$\mathbf{A}^{(i)} = \begin{bmatrix} a_1^{(i)} & a_n^{(i)} & \cdots & a_2^{(i)} \\ a_2^{(i)} & a_1^{(i)} & \cdots & a_3^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n^{(i)} & a_{n-1}^{(i)} & \cdots & a_1^{(i)} \end{bmatrix}$$

Efficient lattice based hashing

Idea

Use structured matrix

$$\mathbf{A} = [\mathbf{A}^{(1)} \mid \ldots \mid \mathbf{A}^{(m/n)}]$$

where $\mathbf{A}^{(i)} \in \mathbb{Z}_q^{n imes n}$ is circulant

$$\mathbf{A}^{(i)} = \begin{bmatrix} a_1^{(i)} & a_n^{(i)} & \cdots & a_2^{(i)} \\ a_2^{(i)} & a_1^{(i)} & \cdots & a_3^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n^{(i)} & a_{n-1}^{(i)} & \cdots & a_1^{(i)} \end{bmatrix}$$

- Proposed by [M02], where it is proved that f_A is one-way under plausible complexity assumptions
- Similar idea first used by NTRU public key cryptosystem (1998), but with no proof of security
- Wishful thinking: finding short vectors in $\Lambda_q^{\perp}(\mathbf{A})$ is hard, and therefore $f_{\mathbf{A}}$ is collision resistant

(Lattice) Cryptography

Efficiency

Can you find a collision?

1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Daniele Micciancio (UCSD)

▲ 重 ト 重 少 ९ ペ May 2015 28 / 32

(日) (同) (三) (三)

(Lattice) Cryptography

Efficiency

Can you find a collision?

э May 2015 28 / 32

-

A (1) > A (2) > A

Efficiency

Can you find a collision?

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1	0
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7	0
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2	0
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3	0

・ロト ・聞ト ・ヨト ・ヨト

Efficiency

Can you find a collision?

э

(Lattice) Cryptography

Efficiency

Can you find a collision?

< 🗇 🕨 < 🖃 🕨

Remarks about proofs of security

- This function is essentially the compression function of hash function LASH, modeled after NTRU
- You can still "prove" security based on average case assumption: Breaking the above hash function is as hard as finding short vectors in a random lattice $\Lambda([\mathbf{A}^{(1)}| \dots |\mathbf{A}^{(m/n)}])$
- ... but we know the function is broken: The underlying random lattice distribution is weak!
- Conclusion: Assuming that a problem is hard on average-case is a really tricky business!

Can you find a collision now?

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Efficiency

Can you find a collision now?

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Efficiency

Can you find a collision now?

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Theorem (Lyubashevsky&Micciancio)

Provably collision resistant, assuming the worst case hardness of approximating SVP and SIVP over anti-cyclic lattices.

Daniele Micciancio (UCSD)

< □ > < ---->

May 2015 30 / 32

Efficiency of anti-cyclic hashing

- Key size: $(m/n) \cdot n \log q = m \cdot \log q = \tilde{O}(n)$ bits
- Anti-cyclic matrix-vector multiplication can be computed in quasi-linear time $\tilde{O}(n)$ using FFT
- The resulting hash function can also be computed in $\tilde{O}(n)$ time
- For approximate choice of parameters, this can be very practical (SWIFFT [LMPR])
- The hash function is linear: A(x + y) = Ax + Ay
- This can be a feature rather than a weakness

- Simple SIS/LWE functions
- Useful homomorphic properties \Rightarrow Cryptographic applications
- Cyclic/Anticycic matrices (RingSIS/RingLWE):
 - key to efficiency in practice
 - technique pervasively used by all practical instantiations of lattice cryptography
- Question: Are these functions secure?
 - We think so, and that's where lattices come into the picture
 - ... but that's another story