FHEW: Homomorphic Encryption Bootstrapping in less than a Second ${ }^{1}$

Léo Ducas ${ }^{2}$ Daniele Micciancio
UC San Diego
May 2015

[^0]
Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since Gentry's first proposal:

- [Rivest,Adleman,Dertouzos'78]: Open problem
- [Gentry'09]: ideal lattices, sparse subset-sum, squashing, etc.
- [Gentry,Halevi'11],[Brakerski,Vaikuntanathan'11]: no squash
- [Brakerski,Vaikuntanathan'11]: Subexponential LWE
- [Brakerski'12],[Alperin-Sheriff,Peiert'14]: (Polynomial) LWE
- Many more works improving efficiency, etc.

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since Gentry's first proposal:

- [Rivest,Adleman,Dertouzos'78]: Open problem
- [Gentry'09]: ideal lattices, sparse subset-sum, squashing, etc.
- [Gentry,Halevi'11],[Brakerski,Vaikuntanathan'11]: no squash
- [Brakerski,Vaikuntanathan'11]: Subexponential LWE
- [Brakerski'12],[Alperin-Sheriff,Peiert'14]: (Polynomial) LWE
- Many more works improving efficiency, etc.

Still, all schemes have a common ingredient:

Key technique

Gentry's FHE bootstrapping

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

- Decryption is possible only when noise is sufficiently small.
- Noise grows when computing on ciphertexts.
- After a while, no more operations can be performed.

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

- Decryption is possible only when noise is sufficiently small.
- Noise grows when computing on ciphertexts.
- After a while, no more operations can be performed.

FHE Bootstrapping:

- Method to "reset" the noise level of a ciphertext
- Idea: homomorphically compute ciphertext decryption function on encrypted key

$$
\operatorname{Dec}_{(\cdot)}\left(E n c_{k}(m)\right)
$$

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

- Decryption is possible only when noise is sufficiently small.
- Noise grows when computing on ciphertexts.
- After a while, no more operations can be performed.

FHE Bootstrapping:

- Method to "reset" the noise level of a ciphertext
- Idea: homomorphically compute ciphertext decryption function on encrypted key

FHE Bootstrapping (cont.)

FHE Bootstrapping (cont.)

The quality/noise of the output c^{\prime} depends on

- the quality/noise of $\operatorname{Enc}(k)$, which is a fresh ciphertxt, and
- the complexity of $\operatorname{Dec}_{(\cdot)}(c)$,
- but not the quality/noise of c, as long as it decrypts

FHE Bootstrapping (cont.)

The quality/noise of the output c^{\prime} depends on

- the quality/noise of $\operatorname{Enc}(k)$, which is a fresh ciphertxt, and
- the complexity of $\operatorname{Dec}_{(\cdot)}(c)$,
- but not the quality/noise of c, as long as it decrypts

Lattice Cryptography

- Basic homomorphic properties
- Low-complexity decryption $\operatorname{Dec}_{(\cdot)}(c)$

FHE Bootstrapping (cont.)

The quality/noise of the output c^{\prime} depends on

- the quality/noise of $\operatorname{Enc}(k)$, which is a fresh ciphertxt, and
- the complexity of $\operatorname{Dec}_{(\cdot)}(c)$,
- but not the quality/noise of c, as long as it decrypts

Lattice Cryptography

- Basic homomorphic properties
- Low-complexity decryption $\operatorname{Dec}_{(\cdot)}(c)$

Still, even if $\operatorname{Dec}(\cdot)(c)$ is efficient, bootstrapping is very costly because $\operatorname{Dec}_{(\cdot)}(c)$ needs to be computed homomorphically on an encrypted Enc(k).

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

- [Halevi, Shoup'14,'15] HElib: 6-30 mins

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

- [Halevi, Shoup'14,'15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

- SIMD-FHE: Perform many refresh operations in parallel
- Noise control: allow more computation before refreshing
- HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

- [Halevi, Shoup'14,'15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

- SIMD-FHE: Perform many refresh operations in parallel
- Noise control: allow more computation before refreshing
- HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

Contributions

Question

How fast can we refresh for a single ciphertext ?

Contributions

Question

How fast can we refresh for a single ciphertext ?
We give a proof of concept solution in 0.6 seconds: amortized cost comparable to [HElib], but without the delay... Two new techniques:

- a new, cheap NAND gate
- a simpler refreshing procedure using ring structure

The new NAND gate

Base: Start from LWE encryption with message space: $\mathbb{Z}_{t}, t \geqslant 2$.

Idea: Different message space for input $(t=4)$ and output ($t=2$).

The new NAND gate

Base: Start from LWE encryption with message space: $\mathbb{Z}_{t}, t \geqslant 2$.
Idea: Different message space for input $(t=4)$ and output $(t=2)$.

Advantages:

- Cost of computing Homomorphic NAND is negligible (similar to a single private key cryptographic operation.)
- Excellent noise growth: ϵ grows only by a small constant factor.
- Substantially simplifies the task faced by the Refreshing procedure.

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert'14] + Ring variant of [Gentry,Sahai,Waters'13] Homomorphic encryption.

Idea: Implement arithmetic $\bmod q$ in the exponent

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert'14] + Ring variant of [Gentry,Sahai,Waters'13] Homomorphic encryption.

Idea: Implement arithmetic $\bmod q$ in the exponent

Improvement over [AP14]:

- Theoretical speed-up of $\tilde{\Omega}\left(\log ^{3} q\right)$
- Smaller final error.

Combined with the problem simpification brought by our cheap NAND computation, this results in bootstrapping cost ≈ 0.6 second, at estimated ≈ 100-bit security level.

Outline

Introduction/Summary

The new NAND gate Simpler Refreshing

Conclusion

LWE and Symmetric Encryption

Definition (Learning with Errors)

- For a random secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- Given many sample $(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e)$ where $e \leftarrow \chi$, small
- Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}\left(m \in \mathbb{Z}_{2}\right) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

Sets of encryptions of m with error $e<E$ noted $\operatorname{LWE}_{\mathbf{s}}(m, E)$.
Correct decryption ensured if $(\mathbf{a}, b) \in \operatorname{LWE}_{\mathbf{s}}(\cdot, q / 4)$

LWE and Symmetric Encryption

Definition (Learning with Errors)

- For a random secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- Given many sample $(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e)$ where $e \leftarrow \chi$, small
- Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}\left(m \in \mathbb{Z}_{2}\right) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

Sets of encryptions of m with error $e<E$ noted $\operatorname{LWE}_{\mathbf{s}}(m, E)$.
Correct decryption ensured if $(\mathbf{a}, b) \in \operatorname{LWE}_{\mathbf{s}}(\cdot, q / 4)$

LWE and Symmetric Encryption

Definition (Learning with Errors)

- For a random secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- Given many sample $(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e)$ where $e \leftarrow \chi$, small
- Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}\left(m \in \mathbb{Z}_{2}\right) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

Sets of encryptions of m with error $e<E$ noted $\operatorname{LWE}_{\mathbf{s}}(m, E)$.
Correct decryption ensured if $(\mathbf{a}, b) \in \operatorname{LWE}_{\mathbf{s}}(\cdot, q / 4)$

Homomorphic Operation on LWE ciphertext

Addition/XOR operation as the sum of ciphertexts:

$$
\operatorname{LWE}_{\mathbf{s}}\left(m_{1}, e_{1}\right) \times \operatorname{LWE}_{\mathbf{s}}\left(m_{2}, e_{2}\right) \rightarrow \operatorname{LWE}_{\mathbf{s}}\left(m_{1} \oplus m_{2}, e_{1}+e_{2}\right)
$$

Homomorphic Operation on LWE ciphertext

Addition/XOR operation as the sum of ciphertexts:

$$
\operatorname{LWE}_{\mathbf{s}}\left(m_{1}, e_{1}\right) \times \operatorname{LWE}_{\mathbf{s}}\left(m_{2}, e_{2}\right) \rightarrow \operatorname{LWE}_{\mathbf{s}}\left(m_{1} \oplus m_{2}, e_{1}+e_{2}\right)
$$

(Traditional) (N)AND operation as the tensor of ciphertexts:
$\operatorname{LWE}_{\mathbf{s}_{1}}\left(m_{1}, e_{1}\right) \times \operatorname{LWE}_{\mathbf{s}_{2}}\left(m_{2}, e_{2}\right) \rightarrow \operatorname{LWE}_{\mathbf{s}_{1} \otimes \mathbf{s}_{2}}\left(m_{1} \wedge m_{2}, e_{1} \cdot e_{2}\right)$
\Rightarrow FHE boostrapping requires strong Refreshing :

$$
\operatorname{LWE}_{\mathbf{s}}(m, e) \rightarrow \operatorname{LWE}_{\mathbf{s}}\left(m, e^{\prime}\right), \quad e^{\prime} \ll e
$$

Techniques: Key Switching, Mod Switching, and Homomorphic Decryption.

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}(m) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

binary messages

$$
\operatorname{LWE}_{s}^{2}(m, q / 4)
$$

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}(m) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

binary messages
$\operatorname{LWE}_{\mathrm{s}}^{2}(m, q / 4)$

Messages in \mathbb{Z}_{4}
$\operatorname{LWE}_{\mathrm{s}}^{4}(m, q / 8)$

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

$$
\begin{aligned}
\operatorname{Enc}_{\mathbf{s}}(m) & =(\mathbf{a}, b=\langle\mathbf{a}, \mathbf{s}\rangle+e+m \cdot q / 2) \\
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b) & =\lfloor 2(b-\langle\mathbf{a}, \mathbf{s}\rangle) / q\rceil
\end{aligned}
$$

binary messages $\operatorname{LWE}_{\mathrm{s}}^{2}(m, q / 4)$

Messages in \mathbb{Z}_{4} $\operatorname{LWE}_{\mathrm{s}}^{4}(m, q / 8)$
$m \cdot \frac{q}{4}+e$

Smaller error
$\mathrm{LWE}_{\mathrm{s}}^{4}(m, q / 16)$

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

Consider it as a ciphertext for $t=2$ and rotate.

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

Consider it as a ciphertext for $t=2$ and rotate.

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

Consider it as a ciphertext for $t=2$ and rotate.

A Cheap NAND gate

Idea, use: $m_{1} \wedge m_{2} \Leftrightarrow m_{1}+m_{2}=2 \bmod 4$.
Consider binary messages $\{\mathbf{0}, \mathbf{1}\}$ encrypted with $t=4$:

Consider it as a ciphertext for $t=2$ and rotate.
HomNAND:
$\operatorname{LWE}_{\mathbf{s}}^{4}\left(m_{1}, \frac{q}{16}\right) \times \operatorname{LWE}_{\mathbf{s}}^{4}\left(m_{2}, \frac{q}{16}\right) \rightarrow \operatorname{LWE}_{\mathbf{s}}^{2}\left(m_{1} \bar{\wedge} m_{2}, \frac{q}{4}\right)$
$\left(\mathbf{a}_{1}, b_{1}\right)$
$\left(\mathbf{a}_{2}, b_{2}\right)$
$\mapsto\left(\mathbf{a}_{1}+\mathbf{a}_{2}, b_{1}+b_{2}+\frac{5 q}{8}\right)$

Lightweight Refreshing

We have HomNAND:

$$
\operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{1}, \frac{q}{16}\right) \times \operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{2}, \frac{q}{16}\right) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{2}\left(m_{1} \bar{\wedge} m_{2}, \frac{q}{4}\right)
$$

Lightweight Refreshing

We have HomNAND:

$$
\operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{1}, \frac{q}{16}\right) \times \operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{2}, \frac{q}{16}\right) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{2}\left(m_{1} \bar{\wedge} m_{2}, \frac{q}{4}\right)
$$

To build an FHE we require a relaxed function LightRefresh:
LightRefresh : $\operatorname{LWE}_{\mathrm{s}}^{2}(m, q / 4) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{4}(m, q / 16)$

Lightweight Refreshing

We have HomNAND:

$$
\operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{1}, \frac{q}{16}\right) \times \operatorname{LWE}_{\mathrm{s}}^{4}\left(m_{2}, \frac{q}{16}\right) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{2}\left(m_{1} \bar{\wedge} m_{2}, \frac{q}{4}\right)
$$

To build an FHE we require a relaxed function LightRefresh:
LightRefresh : $\operatorname{LWE}_{\mathrm{s}}^{2}(m, q / 4) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{4}(m, q / 16)$
whereas previous works required:
Refresh: $\operatorname{LWE}_{\mathrm{s}}^{2}(m, q / 4) \rightarrow \operatorname{LWE}_{\mathrm{s}}^{2}(m, E), E \ll q$.
As usual, we will use Key Switching, Mod Switching, and Homomorphic Decryption.

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

Decryption using an Accumulator

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b)=\operatorname{msb}(b-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q)=\operatorname{msb}\left(b-\sum_{i} a_{i} \cdot s_{i} \bmod q\right)
$$

$\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b):$

$$
\begin{aligned}
& \begin{array}{l}
\text { acc } \leftarrow b \\
\text { for } i=1 \text { to } n: \\
\quad a c c \leftarrow a c c-a_{i} \cdot s_{i} \bmod q \\
\text { Return } \operatorname{msb}(a c c)
\end{array}
\end{aligned}
$$

Decryption using an Accumulator

$\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b)=\operatorname{msb}(b-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q)=\operatorname{msb}\left(b-\sum_{i} a_{i} \cdot s_{i} \bmod q\right)$
Homomorphic decryption given $E^{\prime}(\mathbf{s})=\left[E\left(a \cdot s_{i}\right) \mid i, a\right]$:

$$
\begin{aligned}
& E(a c c) \leftarrow b \\
& \text { for } i=1 \text { to } n: \\
& \quad E(a c c) \leftarrow E(a c c)-E\left(a_{i} \cdot s_{i}\right) \bmod q
\end{aligned}
$$

Return LWE (msb(acc))
$A C C=E(a c c)$ holds an encrypted integer acc $\in \mathbb{Z}_{q}$ The accumulator ACC should support the following operations:

Decryption using an Accumulator

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b)=\operatorname{msb}(b-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q)=\operatorname{msb}\left(b-\sum_{i} a_{i} \cdot s_{i} \bmod q\right)
$$

Homomorphic decryption given $E^{\prime}(\mathbf{s})=\left[E\left(a \cdot s_{i}\right) \mid i, a\right]$:

$$
\begin{aligned}
& E(a c c) \leftarrow b \\
& \text { for } i=1 \text { to } n: \\
& \quad E(a c c) \leftarrow E(a c c)-E\left(a_{i} \cdot s_{i}\right) \bmod q
\end{aligned}
$$

Return LWE(msb(acc))
$A C C=E(a c c)$ holds an encrypted integer $a c c \in \mathbb{Z}_{q}$
The accumulator ACC should support the following operations:

- Initialization: $A C C \leftarrow b$
- Addition $A C C \leftarrow A C C+c$ of a fresh ciphertext $c=E\left(a \cdot s_{i}\right)$
- Extract encrypted MSB: ACC $\rightarrow \operatorname{LWE}(m s b(a c c))$

Implementing the Accumulator

The framework of [AP14] based on [GSW13] $(E,+, \cdot)$:

- ACC $=\left[E\left(a_{q-1}\right), \ldots, E\left(a_{1}\right), E\left(a_{0}\right)\right]$ with $a_{i}=\delta_{i=a c c} \in\{0,1\}$

Implementing the Accumulator

The framework of [AP14] based on [GSW13] $(E,+, \cdot)$:

- $A C C=\left[E\left(a_{q-1}\right), \ldots, E\left(a_{1}\right), E\left(a_{0}\right)\right]$ with $a_{i}=\delta_{i=a c c} \in\{0,1\}$
- Increment $A C C \leftarrow A C C+\operatorname{Enc}(b), b \in\{0,1\}$: $A C C[i] \leftarrow A C C[i] \cdot(1-E(b))+A C C[i-1] \cdot E(b)$

Implementing the Accumulator

The framework of [AP14] based on [GSW13] $(E,+, \cdot)$:

- $A C C=\left[E\left(a_{q-1}\right), \ldots, E\left(a_{1}\right), E\left(a_{0}\right)\right]$ with $a_{i}=\delta_{i=a c c} \in\{0,1\}$
- Increment $A C C \leftarrow A C C+\operatorname{Enc}(b), b \in\{0,1\}$: $A C C[i] \leftarrow A C C[i] \cdot(1-E(b))+A C C[i-1] \cdot E(b)$
- MSB extraction: $\operatorname{MSB}(A C C)=\sum_{q / 2}^{q-1} \operatorname{Enc}\left(a_{i}\right)$.

Implementing the Accumulator

The framework of [AP14] based on [GSW13] $(E,+, \cdot)$:

- $A C C=\left[E\left(a_{q-1}\right), \ldots, E\left(a_{1}\right), E\left(a_{0}\right)\right]$ with $a_{i}=\delta_{i=a c c} \in\{0,1\}$
- Increment $A C C \leftarrow A C C+\operatorname{Enc}(b), b \in\{0,1\}$: $A C C[i] \leftarrow A C C[i] \cdot(1-E(b))+A C C[i-1] \cdot E(b)$
- MSB extraction: $\operatorname{MSB}(A C C)=\sum_{q / 2}^{q-1} \operatorname{Enc}\left(a_{i}\right)$.
- Optimized using CRT and product of many small cyclic rings.

Implementing the Accumulator

The framework of [AP14] based on [GSW13] $(E,+, \cdot)$:

- $A C C=\left[E\left(a_{q-1}\right), \ldots, E\left(a_{1}\right), E\left(a_{0}\right)\right]$ with $a_{i}=\delta_{i=a c c} \in\{0,1\}$
- Increment $A C C \leftarrow A C C+\operatorname{Enc}(b), b \in\{0,1\}$:

$$
A C C[i] \leftarrow A C C[i] \cdot(1-E(b))+A C C[i-1] \cdot E(b)
$$

- MSB extraction: $\operatorname{MSB}(A C C)=\sum_{q / 2}^{q-1} \operatorname{Enc}\left(a_{i}\right)$.
- Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

$$
\mathcal{R}=\mathbb{Z}[X] /\left(X^{N}+1\right) .
$$

- Embed \mathbb{Z}_{q} in the group $\left(\left\{X^{i}\right\}_{i}, \cdot\right)$, of roots of unity, $q=2 N$.
- ACC uses only a single ciphertext $E\left(X^{a c c}\right)$.

Ring version of [GSW13]

$Q=2^{k}$, Gadget matrix: $\mathbf{G}=\left[\mathbf{I}, 2 \mathbf{I}, 4 \mathbf{I} \ldots 2^{k-1} \mathbf{I}\right]^{t} \in \mathbb{Z}_{Q}^{n+1 \times(n+1) k}$.

$$
\mathrm{E}_{\mathbf{s}}(m)=[\mathbf{A}, \mathbf{A} \mathbf{s}+\mathbf{e}]+m \cdot \mathbf{G}
$$

$\mathrm{Dec}_{\mathrm{s}}$: extract an $\mathrm{LWE}_{\mathrm{s}}$ ciphertext (last row) and decrypt. Supports Add. and Mult. for small messages $m \in\{-1,0,1\}$.

Ring version of [GSW13]

$Q=2^{k}$, Gadget matrix: $\mathbf{G}=\left[\mathbf{I}, 2 \mathbf{I}, 4 \mathbf{I} \ldots 2^{k-1} \mathbf{I}\right]^{t} \in \mathbb{Z}_{Q}^{n+1 \times(n+1) k}$.

$$
\mathrm{E}_{\mathbf{s}}(m)=[\mathbf{A}, \mathbf{A} \mathbf{s}+\mathbf{e}]+m \cdot \mathbf{G}
$$

$\mathrm{Dec}_{\mathrm{s}}$: extract an $\mathrm{LWE}_{\mathrm{s}}$ ciphertext (last row) and decrypt. Supports Add. and Mult. for small messages $m \in\{-1,0,1\}$.

Cyclotomic ring $\mathcal{R}=\mathbb{Z}[X] /\left(X^{N}+1\right), \quad 2 N=q$ is a power of 2 .
Generalized Gadget matrix: $\mathbf{G}=u \cdot\left[\mathbf{I}, b \mathbf{l}, b^{2} \mathbf{I} \ldots b^{k-1} \mathbf{I}\right]^{t} \in \mathcal{R}_{Q}^{2 \times 2 k}$.

$$
\mathrm{E}_{\mathbf{s}}\left(m \in \mathbb{Z}_{q}\right)=[\mathbf{a}, \mathbf{a} \cdot s+\mathbf{e}]+X^{m} \cdot \mathbf{G}
$$

Supports addition for all message $m \in \mathbb{Z}_{q}$.

The group of roots of unity and msb

$$
\begin{array}{r|cccc|cccc}
m & 0 & 1 & \ldots & \frac{q}{2}-1 & \frac{q}{2} & \frac{q}{2}+1 & \ldots & q-1 \\
X^{m} & 1 & X & \ldots & X^{N-1} & -1 & -X & \ldots & -X^{N-1}
\end{array}
$$

Take the vector representation of X^{m}

$$
\mathbf{x}_{m} \left\lvert\,\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \ddots \quad\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-1 \\
\vdots \\
0
\end{array}\right] \quad \ddots \quad\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
-1
\end{array}\right]\right.
$$

Sum all the coordinates

\[

\]

Extracting $\operatorname{LWE}_{\mathrm{s}}^{4}(\operatorname{msb}(m))$

Recall: $\mathbf{G}=u \cdot\left[\mathbf{I}, b \mathbf{l}, b^{2} \mathbf{I} \ldots b^{k-1} \mathbf{I}\right]^{t} \in \mathcal{R}_{Q}^{2 \times 2 k}$ and

$$
\mathrm{E}_{\mathbf{s}}\left(m \in \mathbb{Z}_{q}\right)=[\mathbf{a}, \mathbf{a} \cdot s+\mathbf{e}]+X^{m} \cdot \mathbf{G}
$$

Extracting $\operatorname{LWE}_{\mathrm{s}}^{4}(\operatorname{msb}(m))$

Recall: $\mathbf{G}=u \cdot\left[\mathbf{l}, b \mathbf{l}, b^{2} \mathbf{I} \ldots b^{k-1} \mathbf{I}\right]^{t} \in \mathcal{R}_{Q}^{2 \times 2 k}$ and

$$
\mathrm{E}_{\mathbf{s}}\left(m \in \mathbb{Z}_{q}\right)=[\mathbf{a}, \mathbf{a} \cdot s+\mathbf{e}]+X^{m} \cdot \mathbf{G}
$$

Set $u=q / 8$, take the $2^{\text {nd }}$ row, in vector representation:

$$
\mathbf{C}=\left[\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \cdot \mathbf{s}+\mathbf{e}+\frac{Q}{8} \cdot \mathbf{x}_{m}\right]
$$

Extracting $\operatorname{LWE}_{\mathrm{s}}^{4}(\operatorname{msb}(m))$

Recall: $\mathbf{G}=u \cdot\left[\mathbf{I}, b \mathbf{l}, b^{2} \mathbf{I} \ldots b^{k-1} \mathbf{I}\right]^{t} \in \mathcal{R}_{Q}^{2 \times 2 k}$ and

$$
\mathrm{E}_{\mathbf{s}}\left(m \in \mathbb{Z}_{q}\right)=[\mathbf{a}, \mathbf{a} \cdot s+\mathbf{e}]+X^{m} \cdot \mathbf{G}
$$

Set $u=q / 8$, take the $2^{\text {nd }}$ row, in vector representation:

$$
\mathbf{C}=\left[\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \cdot \mathbf{s}+\mathbf{e}+\frac{Q}{8} \cdot \mathbf{x}_{m}\right]
$$

Sum all rows and add $q / 8$:

$$
\begin{aligned}
\mathbf{1}^{t} \cdot \mathbf{C} & =\mathbf{1}^{t} \cdot\left[\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \cdot \mathbf{s}+\mathbf{e}+\frac{Q}{8} \cdot \mathbf{x}_{m}+\frac{Q}{8}\right] \\
& =\left[\mathbf{a}^{\prime}, \mathbf{a}^{\prime} \cdot \mathbf{s}+e^{\prime}+\frac{Q}{4} \cdot \operatorname{msb}(m)\right]
\end{aligned}
$$

Obtain an LWE encryption of $\operatorname{msb}(m)$ with message space \mathbb{Z}_{4}.

Improvements

Improvement over the bootstrapping of [AP14]:

- Generic $\tilde{\Omega}(n)$ speed-up from Ring structure
- An extra $\tilde{\Omega}\left(\log ^{3} q\right)$ speed-up by embedding
- Error after bootstrapping reduced by $O(\sqrt{n} \log n)$.

In addition to our new NAND gate, implementation becomes reasonable.

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

The ciphertext cycle

Parameter Proposal

Parameters.
LWE parameters: $\quad n=410 \quad q=512$.
Ring-GSW parameters: $\quad N=1024 \quad Q=2^{32}$.
Gadget Matrix: $\quad Q / 8 \cdot\left[\mathbf{I}, 2^{11} \cdot \mathbf{I}, 2^{22} \cdot \mathbf{I}\right]$
Key Size.
$\left.\begin{array}{lr}\text { Bootstrapping Key Size } & 846 \text { MB } \\ \text { Key Switching Key Size: } & +135 \mathrm{MB}\end{array}\right\} \leqslant 1 \mathrm{~GB}$
Running time.
Per NAND gate: $\quad 39,360$ FFTs $\approx 0.4 \mathrm{sec}$

Security.

Security of the LWE scheme $\quad \delta_{1}=1.0060$
Security of the Ring-GSW scheme $\delta_{2}=1.0060$

Proof of Concept Implementation

- Coded in 4 days•man
room for implementation level optimization.
- Reasonably concise: $\leqslant 600$ lines of C++ code [HElib]: $\approx 20,000$ lines
- Using FFT^{3} over \mathbb{C} at double precision in dimension 2048 to obtain negacyclic-FFT. potentially slower than 32-bits NTT in dimension 1024.

Result: Homomorphic NAND \& refreshing in 0.61 seconds on a single standard 64 -bit core at 3 Ghz .

Comparable to the amortized cost of bootstrapping in [HElib].
${ }^{3}$ FFTW library: The Fastest Fourier Transform in the West

[^0]: ${ }^{1}$ Eurocrypt 2015
 ${ }^{2}$ Now at CWI

