
FHEW: Homomorphic Encryption Bootstrapping
in less than a Second1

Léo Ducas2 Daniele Micciancio

UC San Diego

May 2015

1Eurocrypt 2015
2Now at CWI

1 / 27

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

2 / 27

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

3 / 27

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry’s first proposal:

I [Rivest,Adleman,Dertouzos’78]: Open problem

I [Gentry’09]: ideal lattices, sparse subset-sum, squashing, etc.

I [Gentry,Halevi’11],[Brakerski,Vaikuntanathan’11]: no squash

I [Brakerski,Vaikuntanathan’11]: Subexponential LWE

I [Brakerski’12],[Alperin-Sheriff,Peiert’14]: (Polynomial) LWE

I Many more works improving efficiency, etc.

Still, all schemes have a common ingredient:

Key technique

Gentry’s FHE bootstrapping

4 / 27

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry’s first proposal:

I [Rivest,Adleman,Dertouzos’78]: Open problem

I [Gentry’09]: ideal lattices, sparse subset-sum, squashing, etc.

I [Gentry,Halevi’11],[Brakerski,Vaikuntanathan’11]: no squash

I [Brakerski,Vaikuntanathan’11]: Subexponential LWE

I [Brakerski’12],[Alperin-Sheriff,Peiert’14]: (Polynomial) LWE

I Many more works improving efficiency, etc.

Still, all schemes have a common ingredient:

Key technique

Gentry’s FHE bootstrapping

4 / 27

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

I Decryption is possible only when noise is sufficiently small.

I Noise grows when computing on ciphertexts.

I After a while, no more operations can be performed.

FHE Bootstrapping:

I Method to “reset” the noise level of a ciphertext

I Idea: homomorphically compute ciphertext decryption
function on encrypted key

k
Dec(·)(Enck(m))

m

Enc(k)
Dec(·)(Enck(m))

Enc(m)

5 / 27

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

I Decryption is possible only when noise is sufficiently small.

I Noise grows when computing on ciphertexts.

I After a while, no more operations can be performed.

FHE Bootstrapping:

I Method to “reset” the noise level of a ciphertext

I Idea: homomorphically compute ciphertext decryption
function on encrypted key

k
Dec(·)(Enck(m))

m

Enc(k)
Dec(·)(Enck(m))

Enc(m)

5 / 27

FHE Bootstrapping

All known FHE schemes are based on noisy encryption schemes:

I Decryption is possible only when noise is sufficiently small.

I Noise grows when computing on ciphertexts.

I After a while, no more operations can be performed.

FHE Bootstrapping:

I Method to “reset” the noise level of a ciphertext

I Idea: homomorphically compute ciphertext decryption
function on encrypted key

k
Dec(·)(Enck(m))

m

Enc(k)
Dec(·)(Enck(m))

Enc(m)

5 / 27

FHE Bootstrapping (cont.)

k
Dec(·)(c = Enck(m))

m

Enc(k)
Dec(·)(c = Enck(m))

c ′ = Enc(m)

The quality/noise of the output c ′ depends on

I the quality/noise of Enc(k), which is a fresh ciphertxt, and

I the complexity of Dec(·)(c),

I but not the quality/noise of c , as long as it decrypts

Lattice Cryptography

I Basic homomorphic properties

I Low-complexity decryption Dec(·)(c)

Still, even if Dec(·)(c) is efficient, bootstrapping is very costly
because Dec(·)(c) needs to be computed homomorphically on an
encrypted Enc(k).

6 / 27

FHE Bootstrapping (cont.)

k
Dec(·)(c = Enck(m))

m

Enc(k)
Dec(·)(c = Enck(m))

c ′ = Enc(m)

The quality/noise of the output c ′ depends on

I the quality/noise of Enc(k), which is a fresh ciphertxt, and

I the complexity of Dec(·)(c),

I but not the quality/noise of c , as long as it decrypts

Lattice Cryptography

I Basic homomorphic properties

I Low-complexity decryption Dec(·)(c)

Still, even if Dec(·)(c) is efficient, bootstrapping is very costly
because Dec(·)(c) needs to be computed homomorphically on an
encrypted Enc(k).

6 / 27

FHE Bootstrapping (cont.)

k
Dec(·)(c = Enck(m))

m

Enc(k)
Dec(·)(c = Enck(m))

c ′ = Enc(m)

The quality/noise of the output c ′ depends on

I the quality/noise of Enc(k), which is a fresh ciphertxt, and

I the complexity of Dec(·)(c),

I but not the quality/noise of c , as long as it decrypts

Lattice Cryptography

I Basic homomorphic properties

I Low-complexity decryption Dec(·)(c)

Still, even if Dec(·)(c) is efficient, bootstrapping is very costly
because Dec(·)(c) needs to be computed homomorphically on an
encrypted Enc(k).

6 / 27

FHE Bootstrapping (cont.)

k
Dec(·)(c = Enck(m))

m

Enc(k)
Dec(·)(c = Enck(m))

c ′ = Enc(m)

The quality/noise of the output c ′ depends on

I the quality/noise of Enc(k), which is a fresh ciphertxt, and

I the complexity of Dec(·)(c),

I but not the quality/noise of c , as long as it decrypts

Lattice Cryptography

I Basic homomorphic properties

I Low-complexity decryption Dec(·)(c)

Still, even if Dec(·)(c) is efficient, bootstrapping is very costly
because Dec(·)(c) needs to be computed homomorphically on an
encrypted Enc(k).

6 / 27

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

7 / 27

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

7 / 27

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

7 / 27

Contributions

Question

How fast can we refresh for a single ciphertext ?

We give a proof of concept solution in 0.6 seconds:
amortized cost comparable to [HElib], but without the delay...
Two new techniques:

I a new, cheap NAND gate

I a simpler refreshing procedure using ring structure

8 / 27

Contributions

Question

How fast can we refresh for a single ciphertext ?

We give a proof of concept solution in 0.6 seconds:
amortized cost comparable to [HElib], but without the delay...
Two new techniques:

I a new, cheap NAND gate

I a simpler refreshing procedure using ring structure

8 / 27

The new NAND gate

Base: Start from LWE encryption with message space: Zt , t > 2.

Idea: Different message space for input (t = 4) and output
(t = 2).

Advantages:

I Cost of computing Homomorphic NAND is negligible (similar
to a single private key cryptographic operation.)

I Excellent noise growth: ε grows only by a small constant
factor.

I Substantially simplifies the task faced by the Refreshing
procedure.

9 / 27

The new NAND gate

Base: Start from LWE encryption with message space: Zt , t > 2.

Idea: Different message space for input (t = 4) and output
(t = 2).

Advantages:

I Cost of computing Homomorphic NAND is negligible (similar
to a single private key cryptographic operation.)

I Excellent noise growth: ε grows only by a small constant
factor.

I Substantially simplifies the task faced by the Refreshing
procedure.

9 / 27

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert’14] + Ring
variant of [Gentry,Sahai,Waters’13] Homomorphic encryption.

Idea: Implement arithmetic modq in the exponent

Improvement over [AP14]:

I Theoretical speed-up of Ω̃(log3 q)

I Smaller final error.

Combined with the problem simpification brought by our cheap
NAND computation, this results in bootstrapping cost ≈ 0.6
second, at estimated ≈100-bit security level.

10 / 27

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert’14] + Ring
variant of [Gentry,Sahai,Waters’13] Homomorphic encryption.

Idea: Implement arithmetic modq in the exponent

Improvement over [AP14]:

I Theoretical speed-up of Ω̃(log3 q)

I Smaller final error.

Combined with the problem simpification brought by our cheap
NAND computation, this results in bootstrapping cost ≈ 0.6
second, at estimated ≈100-bit security level.

10 / 27

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

11 / 27

LWE and Symmetric Encryption

Definition (Learning with Errors)

I For a random secret s ∈ Zn
q

I Given many sample (a, b = 〈a , s〉+ e) where e ← χ, small

I Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

Encs(m ∈ Z2) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

Sets of encryptions of m with error e < E noted LWEs(m,E).
Correct decryption ensured if (a, b) ∈ LWEs(· , q/4)

12 / 27

LWE and Symmetric Encryption

Definition (Learning with Errors)

I For a random secret s ∈ Zn
q

I Given many sample (a, b = 〈a , s〉+ e) where e ← χ, small

I Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

Encs(m ∈ Z2) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

Sets of encryptions of m with error e < E noted LWEs(m,E).
Correct decryption ensured if (a, b) ∈ LWEs(· , q/4)

12 / 27

LWE and Symmetric Encryption

Definition (Learning with Errors)

I For a random secret s ∈ Zn
q

I Given many sample (a, b = 〈a , s〉+ e) where e ← χ, small

I Distinguish the samples from uniformly random

LWE is as hard as worst-case lattice problems

Encs(m ∈ Z2) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

Sets of encryptions of m with error e < E noted LWEs(m,E).
Correct decryption ensured if (a, b) ∈ LWEs(· , q/4)

12 / 27

Homomorphic Operation on LWE ciphertext

Addition/XOR operation as the sum of ciphertexts:

LWEs(m1, e1)× LWEs(m2, e2)→ LWEs(m1 ⊕m2, e1 + e2)

(Traditional) (N)AND operation as the tensor of ciphertexts:

LWEs1(m1, e1)× LWEs2(m2, e2)→ LWEs1⊗s2(m1 ∧m2, e1 · e2)

⇒ FHE boostrapping requires strong Refreshing :

LWEs(m, e)→ LWEs(m, e
′), e ′ � e.

Techniques: Key Switching, Mod Switching, and Homomorphic
Decryption.

13 / 27

Homomorphic Operation on LWE ciphertext

Addition/XOR operation as the sum of ciphertexts:

LWEs(m1, e1)× LWEs(m2, e2)→ LWEs(m1 ⊕m2, e1 + e2)

(Traditional) (N)AND operation as the tensor of ciphertexts:

LWEs1(m1, e1)× LWEs2(m2, e2)→ LWEs1⊗s2(m1 ∧m2, e1 · e2)

⇒ FHE boostrapping requires strong Refreshing :

LWEs(m, e)→ LWEs(m, e
′), e ′ � e.

Techniques: Key Switching, Mod Switching, and Homomorphic
Decryption.

13 / 27

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e

m · q4 + e m · q4 + e

1

0

1
2

3
0

1
2

3
0

binary messages

Messages in Z4 Smaller error

LWE2
s (m, q/4)

LWE4
s (m, q/8) LWE4

s (m, q/16)

14 / 27

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e m · q4 + e

m · q4 + e

1

0
1

2
3
0

1
2

3
0

binary messages Messages in Z4

Smaller error

LWE2
s (m, q/4) LWE4

s (m, q/8)

LWE4
s (m, q/16)

14 / 27

LWE encryption with different message spaces

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e m · q4 + e m · q4 + e

1

0
1

2
3
0

1
2

3
0

binary messages Messages in Z4 Smaller error
LWE2

s (m, q/4) LWE4
s (m, q/8) LWE4

s (m, q/16)

14 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

= 1
2

3
0

0

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

= 1
2

3
0

0

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
0

0

1

1

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

1

1

0

q
8

0

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

A Cheap NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

11

0

q
8

0

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

15 / 27

Lightweight Refreshing

We have HomNAND:

LWE4
s

(
m1,

q

16

)
× LWE4

s

(
m2,

q

16

)
→ LWE2

s

(
m1 ∧̄ m2,

q

4

)

To build an FHE we require a relaxed function LightRefresh:

LightRefresh : LWE2
s (m, q/4)→ LWE4

s (m, q/16)

whereas previous works required:

Refresh : LWE2
s (m, q/4)→ LWE2

s (m,E) ,E � q.

As usual, we will use Key Switching, Mod Switching, and
Homomorphic Decryption.

16 / 27

Lightweight Refreshing

We have HomNAND:

LWE4
s

(
m1,

q

16

)
× LWE4

s

(
m2,

q

16

)
→ LWE2

s

(
m1 ∧̄ m2,

q

4

)
To build an FHE we require a relaxed function LightRefresh:

LightRefresh : LWE2
s (m, q/4)→ LWE4

s (m, q/16)

whereas previous works required:

Refresh : LWE2
s (m, q/4)→ LWE2

s (m,E) ,E � q.

As usual, we will use Key Switching, Mod Switching, and
Homomorphic Decryption.

16 / 27

Lightweight Refreshing

We have HomNAND:

LWE4
s

(
m1,

q

16

)
× LWE4

s

(
m2,

q

16

)
→ LWE2

s

(
m1 ∧̄ m2,

q

4

)
To build an FHE we require a relaxed function LightRefresh:

LightRefresh : LWE2
s (m, q/4)→ LWE4

s (m, q/16)

whereas previous works required:

Refresh : LWE2
s (m, q/4)→ LWE2

s (m,E) ,E � q.

As usual, we will use Key Switching, Mod Switching, and
Homomorphic Decryption.

16 / 27

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

17 / 27

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q) = msb

(
b −

∑
i

ai · si mod q

)

Decs(a, b):

acc ← b

for i = 1 to n:

acc ← acc − ai · si mod q

Return msb(acc)

18 / 27

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q) = msb

(
b −

∑
i

ai · si mod q

)

Homomorphic decryption given E ′(s) = [E (a · si) | i , a]:

E (acc)← b

for i = 1 to n:

E (acc)← E (acc)− E (ai · si) mod q

Return LWE(msb(acc))

ACC = E (acc) holds an encrypted integer acc ∈ Zq

The accumulator ACC should support the following operations:

I Initialization: ACC ← b
I Addition ACC ← ACC + c of a fresh ciphertext c = E (a · si)
I Extract encrypted MSB: ACC → LWE (msb(acc))

18 / 27

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q) = msb

(
b −

∑
i

ai · si mod q

)

Homomorphic decryption given E ′(s) = [E (a · si) | i , a]:

E (acc)← b

for i = 1 to n:

E (acc)← E (acc)− E (ai · si) mod q

Return LWE(msb(acc))

ACC = E (acc) holds an encrypted integer acc ∈ Zq

The accumulator ACC should support the following operations:
I Initialization: ACC ← b
I Addition ACC ← ACC + c of a fresh ciphertext c = E (a · si)
I Extract encrypted MSB: ACC → LWE (msb(acc))

18 / 27

Implementing the Accumulator

The framework of [AP14] based on [GSW13] (E ,+, ·):

I ACC = [E (aq−1), . . . ,E (a1),E (a0)] with ai = δi=acc ∈ {0, 1}

I Increment ACC ← ACC + Enc(b), b ∈ {0, 1}:
ACC [i]← ACC [i] · (1− E (b)) + ACC [i − 1] · E (b)

I MSB extraction: MSB(ACC) =
∑q−1

q/2 Enc(ai).

I Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

R = Z[X]/(XN + 1).

I Embed Zq in the group ({X i}i , ·), of roots of unity, q = 2N.

I ACC uses only a single ciphertext E (X acc).

19 / 27

Implementing the Accumulator

The framework of [AP14] based on [GSW13] (E ,+, ·):

I ACC = [E (aq−1), . . . ,E (a1),E (a0)] with ai = δi=acc ∈ {0, 1}
I Increment ACC ← ACC + Enc(b), b ∈ {0, 1}:

ACC [i]← ACC [i] · (1− E (b)) + ACC [i − 1] · E (b)

I MSB extraction: MSB(ACC) =
∑q−1

q/2 Enc(ai).

I Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

R = Z[X]/(XN + 1).

I Embed Zq in the group ({X i}i , ·), of roots of unity, q = 2N.

I ACC uses only a single ciphertext E (X acc).

19 / 27

Implementing the Accumulator

The framework of [AP14] based on [GSW13] (E ,+, ·):

I ACC = [E (aq−1), . . . ,E (a1),E (a0)] with ai = δi=acc ∈ {0, 1}
I Increment ACC ← ACC + Enc(b), b ∈ {0, 1}:

ACC [i]← ACC [i] · (1− E (b)) + ACC [i − 1] · E (b)

I MSB extraction: MSB(ACC) =
∑q−1

q/2 Enc(ai).

I Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

R = Z[X]/(XN + 1).

I Embed Zq in the group ({X i}i , ·), of roots of unity, q = 2N.

I ACC uses only a single ciphertext E (X acc).

19 / 27

Implementing the Accumulator

The framework of [AP14] based on [GSW13] (E ,+, ·):

I ACC = [E (aq−1), . . . ,E (a1),E (a0)] with ai = δi=acc ∈ {0, 1}
I Increment ACC ← ACC + Enc(b), b ∈ {0, 1}:

ACC [i]← ACC [i] · (1− E (b)) + ACC [i − 1] · E (b)

I MSB extraction: MSB(ACC) =
∑q−1

q/2 Enc(ai).

I Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

R = Z[X]/(XN + 1).

I Embed Zq in the group ({X i}i , ·), of roots of unity, q = 2N.

I ACC uses only a single ciphertext E (X acc).

19 / 27

Implementing the Accumulator

The framework of [AP14] based on [GSW13] (E ,+, ·):

I ACC = [E (aq−1), . . . ,E (a1),E (a0)] with ai = δi=acc ∈ {0, 1}
I Increment ACC ← ACC + Enc(b), b ∈ {0, 1}:

ACC [i]← ACC [i] · (1− E (b)) + ACC [i − 1] · E (b)

I MSB extraction: MSB(ACC) =
∑q−1

q/2 Enc(ai).

I Optimized using CRT and product of many small cyclic rings.

We optimize this construction using the cyclotomic ring

R = Z[X]/(XN + 1).

I Embed Zq in the group ({X i}i , ·), of roots of unity, q = 2N.

I ACC uses only a single ciphertext E (X acc).

19 / 27

Ring version of [GSW13]

Q = 2k , Gadget matrix: G = [I, 2I, 4I . . . 2k−1I]t ∈ Zn+1×(n+1)k
Q .

Es(m) = [A,As + e] + m · G

Decs: extract an LWEs ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m ∈ {−1, 0, 1}.

Cyclotomic ring R = Z[X]/(XN + 1), 2N = q is a power of 2.

Generalized Gadget matrix: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q .

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Supports addition for all message m ∈ Zq.

20 / 27

Ring version of [GSW13]

Q = 2k , Gadget matrix: G = [I, 2I, 4I . . . 2k−1I]t ∈ Zn+1×(n+1)k
Q .

Es(m) = [A,As + e] + m · G

Decs: extract an LWEs ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m ∈ {−1, 0, 1}.

Cyclotomic ring R = Z[X]/(XN + 1), 2N = q is a power of 2.

Generalized Gadget matrix: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q .

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Supports addition for all message m ∈ Zq.

20 / 27

The group of roots of unity and msb

m 0 1 . . . q
2 − 1 q

2
q
2 + 1 . . . q − 1

Xm 1 X . . . XN−1 −1 −X . . . −XN−1

xm

1
0
...
0

0
1
...
0

 . . .

0
0
...
1

−1
0
...
0

0
−1

...
0

 . . .

0
0
...
−1

〈1 , xm〉 1 1 . . . 1 −1 −1 . . . −1

Take the vector representation of Xm

Sum all the coordinates

〈1 , xm〉+ 1

2
=

(−1)msb(m) + 1

2
= msb(m).

21 / 27

Extracting LWE4
s(msb(m))

Recall: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q and

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Set u = q/8, take the 2nd row, in vector representation:

C =

[
A′,A′ · s + e +

Q

8
· xm

]
Sum all rows and add q/8:

1t · C = 1t ·
[
A′,A′ · s + e +

Q

8
· xm +

Q

8

]
=

[
a′, a′ · s + e ′ +

Q

4
·msb(m)

]
Obtain an LWE encryption of msb(m) with message space Z4.

22 / 27

Extracting LWE4
s(msb(m))

Recall: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q and

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Set u = q/8, take the 2nd row, in vector representation:

C =

[
A′,A′ · s + e +

Q

8
· xm

]

Sum all rows and add q/8:

1t · C = 1t ·
[
A′,A′ · s + e +

Q

8
· xm +

Q

8

]
=

[
a′, a′ · s + e ′ +

Q

4
·msb(m)

]
Obtain an LWE encryption of msb(m) with message space Z4.

22 / 27

Extracting LWE4
s(msb(m))

Recall: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q and

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Set u = q/8, take the 2nd row, in vector representation:

C =

[
A′,A′ · s + e +

Q

8
· xm

]
Sum all rows and add q/8:

1t · C = 1t ·
[
A′,A′ · s + e +

Q

8
· xm +

Q

8

]
=

[
a′, a′ · s + e ′ +

Q

4
·msb(m)

]
Obtain an LWE encryption of msb(m) with message space Z4.

22 / 27

Improvements

Improvement over the bootstrapping of [AP14]:

I Generic Ω̃(n) speed-up from Ring structure

I An extra Ω̃(log3 q) speed-up by embedding

I Error after bootstrapping reduced by O(
√
n log n).

In addition to our new NAND gate, implementation becomes
reasonable.

23 / 27

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

24 / 27

The ciphertext cycle

LWE
4/q
n (m1, q/16)

LWE
4/q
n (m2, q/16)

NAND LWE
2/q
n (m, q/4)

LWE
4/Q
N

(
m, σÕ(N3/2)

)
ACC operations

and msbTest

LWE
4/Q
n

(
m, σÕ(N3/2)

)
Key Switch

LWE
4/q
s1 (m, q/16)

Modulus Switch

25 / 27

Parameter Proposal

Parameters.
LWE parameters: n = 410 q = 512.
Ring-GSW parameters: N = 1024 Q = 232 .
Gadget Matrix: Q/8 · [I, 211 · I, 222 · I]

Key Size.
Bootstrapping Key Size 846 MB
Key Switching Key Size: +135 MB

}
6 1GB

Running time.
Per NAND gate: 39, 360 FFTs ≈ 0.4 sec

Security.
Security of the LWE scheme δ1 = 1.0060
Security of the Ring-GSW scheme δ2 = 1.0060

26 / 27

Proof of Concept Implementation

I Coded in 4 days·man
room for implementation level optimization.

I Reasonably concise: 6 600 lines of C++ code
[HElib]: ≈ 20, 000 lines

I Using FFT3 over C at double precision
in dimension 2048 to obtain negacyclic-FFT.

potentially slower than 32-bits NTT in dimension 1024.

Result: Homomorphic NAND & refreshing in 0.61 seconds
on a single standard 64-bit core at 3Ghz.

Comparable to the amortized cost of bootstrapping in [HElib].

3FFTW library: The Fastest Fourier Transform in the West
27 / 27

	Introduction/Summary
	The new NAND gate
	Simpler Refreshing
	Conclusion

