HOMEWORK 3: ITERATIVE METHODS

DUE DATE: NOV 13

- (1) The product of two symmetric matrices is not necessarily symmetric but will be in a different inner product.
 - (a) Suppose A and B are SPD, prove that BA is SPD with respect to the inner product $(\cdot, \cdot)_A$ or $(\cdot, \cdot)_{B^{-1}}$.
 - (b) Prove that

(1)

$$I - \bar{B}A = (I - BA)^*(I - BA)$$

(2) Prove that the convergence rate of Richardson, weighted Jacobi method, and Gauss-Seidal method for the 5-point stencil finite difference method of the Poisson equation on a uniform mesh with size h, is like

$$\rho \le 1 - Ch^2.$$

Thus when $h \to 0$, we will observe slow convergence of those classical iterative methods.

(3) Consider k-steps of Richardson methods with different parameters $\omega_1, \ldots, \omega_k$. Then the error equation is

$$e^k = (I - \omega_k A) \cdots (I - \omega_1 A) e^0.$$

Consider the optimization problem of choosing *k*-parameters:

$$\min_{\omega_i \in \mathbb{R}, i=1,\dots,k} \left\{ \max_{\lambda \in [\lambda_{\min}(A), \lambda_{\max}(A)]} \left| (I - \omega_k \lambda) \cdots (I - \omega_1 \lambda) \right| \right\}.$$

Find the solution of (1) and derive the rate. This trick is known Chebyshev acceleration.

(4) Let us consider the matrix equation

$$Au = f,$$

where A is an $N\times N$ SPD matrix. Let us take the trivial decomposition of $\mathbb{R}^N=$ $\sum_{i=1}^{N} \operatorname{span}\{e_i\}$, where $\{e_i, i = 1, \dots, N\}$ is the canonical basis of \mathbb{R}^N . Prove that

- for $R_i = \omega I$, PSC is Richardson method;
- for R_i = A_i⁻¹, PSC is Jacobi method;
 for R_i = A_i⁻¹, SSC is the Gauss-Seidal method.
- (5) Prove that PSC using local solvers $R_i = A_i^{-1}$ is equivalent to the Jacobi method for solving the large system $\tilde{A}\tilde{u} = \tilde{f}$.