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1. Curves in Rn

1.1. Parametrized curves.

A map α : [a, b]→ Rn, α(t) = (x1(t), . . . , xn(t)), is smooth if all derivatives of xj
exist and are continuous for all 1 ≤ j ≤ n. We use α′(t) to denote the derivative:

α′(t) =
dα

dt
=
(
dx1

dt
, . . . ,

dxn
dt

)
.

A parametrized curve in Rn is a smooth map α : [a, b] → Rn such that α′(t) 6= 0
for all t ∈ [a, b], and α′(t), is called its tangent vector at the point α(t).

Example 1.1.1. Straight line
The straight line in R2 through (1, 2) and (2,−3) can be parametrized by α(t) =

(1, 2) + t(1,−5) = (1 + t, 2− 5t).

Example 1.1.2. Circle
The circle C of radius 2 centered at (1,−1) is given by the equation (x−1)2+(y+

1)2 = 22. To find a parametric equation for this circle we may take x− 1 = 2 cos t
and y + 1 = 2 sin t, so x = 1 + 2 cos t, y = −1 + 2 sin t. Define α : [0, 2π]→ R2 by

α(t) = (x(t), y(t)) = (1 + 2 cos t,−1 + 2 sin t).

Since α′(t) = (−2 sin t, 2 cos t) is never a zero vector for any 0 ≤ t ≤ 2π, α is a
parametrization of the circle C.

Example 1.1.3. Ellipse
To find a parametrization of the ellipse E given by x2

4 + y2

9 = 1, we can set x
2 = cos t

and y
3 = sin t. Then x = 2 cos t and y = 3 sin t. It is easy to check that

α(t) = (2 cos t, 3 sin t)
is a parametrization of E

Example 1.1.4. The graph of a function
If f : [a, b]→ R is a smooth function, then α(x) = (x, f(x)) is a parametrization

of the graph of f , {(x, f(x)) | x ∈ [a, b]}.

1.2. arclength parameter.

To define the arclength of a parametrized curve α : [a, b]→ Rn, we first subdivide
the interval [a, b] into N subintervals [ti, ti+1] of length δ = b−a

N , i = 0, 1, . . . , N−1,
by taking ti = a + iδ. We now get a polygonal approximation to the curve α,
namely the polygon with the N + 1 vertices α(ti) and N edges [α(ti), α(ti+1)]. The
length of the i-th edge is clearly ||α(ti+1 − α(ti)||, so that intuitively, their sum,∑N−1
j=0 ||α(ti+1) − α(ti)|| should approximate the length of the curve α. But of

course, when N gets large (and hence δ gets small) α(ti+1)−α(ti) is approximately
α′(tj)δ, so the length of the polygon is approximated by

∑N
j=1 ||α′(tj)||δ, which
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we recognize as a Riemann sum for the integral L =
∫ b
a
||α′(t)|| dt corresponding

to the partition t0, . . . , tN of the interval [a, b], and so we define this integral L
to be the arclength of the curve α from t = a to t = b . (We can give a physical
interpretation of the arclength. If α(t) represents the position at time t of a particle
moving in R3, then α′(t) is its instantaneous velocity at time t, so that ||α′(t)|| is
the instantaneous speed at time t, and the integral of ||α′(t)|| should represent the
distance travelled by the particle, i.e., the arclength.)

Now let us define the arclength function s from [a, b] to [0, L] by

s(t) :=
∫ t

a

||α′(u)|| du,

i.e., the arclength of α restricted to the interval [a, t]. By the Fundamental Theorem
of Calculus, dsdt = ||α′(t)||. Since α is a parametrized curve, by definition ||α′(t)|| > 0
for all t ∈ [a, b]. But a smooth function from [a, b] to [0, L] with positive derivative
at every point must be strictly increasing. In other words, s : [a, b] → [0, L] is one
to one and onto, so it has an inverse function t = t(s), and moreover, from calculus
we know that dt

ds = 1/(dsdt )
If α(t) has unit speed, i.e., ||α′(t)|| = 1 for all t ∈ [a, b], then the arclength

function for α is

s(t) =
∫ t

a

||α′(u)|| du =
∫ t

a

1 du = t− a.

In other words, the parameter t and the arclength differ by a constant, and we call
such parameter an arclength parameter, and we give a formal definition next.

Definition 1.2.1. A parametrized curve α : [c0, c1]→ Rn is said to have arclength
parameter if α′(t) is a unit vector for all c0 ≤ t ≤ c1, i.e., ||α′(t)|| = 1 for all
t ∈ [c0, c1].

Suppose α : [a, b] → Rn is a parametrized curve, s : [a, b] → [0, L] the ar-
clength function, and t = t(s) the inverse function of s. Then β(s) = α(t(s)) is a
parametrized curve with arclength parameter. Note that β and α give the same
curve in Rn but with different parametrizations. So we have shown that we can
always change parameter to make a curve parametrized by its arclength.

Example 1.2.2. Straight line
For Example 1.1.1, α′(t) = (1,−5). So s(t) =

∫ t
0
||α′(x)|| dx =

∫ t
0

√
1 + 25 dx =√

26 t, and the inverse function is t(s) = s√
26

. Hence

β(s) = α(t(s)) = α(
s√
26

) = (1 +
t√
26
, 2− 5t√

26
t)

gives the same straight line, but now is parametrized by arclength.

Example 1.2.3. Circle
For Example 1.1.2, α : [0, 2π]→ R2, α′(t) = (−2 sin t, 2 cos t), and ||α′(t)||2 = 4.

So ||α′(t)|| = 2 and s(t) =
∫ t
0
||α′(x)|| dx =

∫ t
0

2 dx = 2t. Hence the inverse function
t = s

2 , and

β(s) = α(t(s)) = α(
s

2
) = (1 + 2 cos

s

2
,−1 + 2 sin

s

2
)

gives the same circle but with arclength parameter.
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Example 1.2.4. Ellipse
For Example 1.1.3, α′(t) = (−2 sin t, 3 cos t) and ||α′(t)|| =

√
4 cos2 t+ 9 sin2 t.

Although we can not give an explicit formula for s(t) =
∫ t
0

√
4 cos2 t+ 9 sin2 t dt,

the inverse function t = t(s) exists and β(s) = α(t(s)) is parametrized by arclength.

1.3. Curvature of a plane curve.

Informally speaking, the curvature of a plane curve is the rate at which its
direction is changing. We next turn this intuitive idea into a formal definition.
Assume that α : [c0, c1] → R2 is a parametrized curve with arclength parameter,
i.e., ||α′(s)|| = 1 for all c0 ≤ s ≤ c1. Since α′(s) is a unit vector, we can write

α′(s) = (cos θ(s), sin θ(s)),

where θ(s) is the angle (measured counter-clockwise) between the positive x-axis
and the tangent vector α′(s). Thus we can think of θ(s) as the direction of the
curve α at the point α(s)

The curvature of α is defined to be the instantaneous rate of change of θ with
respect to the arclength, i.e.,

k(s) = θ′(s) =
dθ

ds
.

Exercise 1.3.1.

(1) Prove that the curvature of a straight line is identically zero.
(2) Prove that the curvature of a circle of radius r is the constant function 1

r .

If α(t) = (x(t), y(t)) is a parametrized curve and s(t) its arclength function, then
since dα

ds is in the same direction as α′(t), the curvature can be also viewed as the
instantaneous rate of change of the angle θ(t) between dα

dt and (1, 0) with respect to
the arclength parameter. Since α′(t) = (x′(t), y′(t)), the angle θ(t) = tan−1( y

′(t)
x′(t) ).

Now the Chain rule implies that

dθ

ds
=
dθ

dt

dt

ds
=

y′′x′−x′′y′

x′2

1 + ( y
′

x′ )2
dt

ds

=
y′′x′ − x′′y′

x′2 + y′2
1√
α′(t)2

=
y′′x′ − x′′y′

(x′2 + y′2)
3
2
,

which is the curvature at α(t), i.e., we have proved

Proposition 1.3.1. If α(t) = (x(t), y(t)) is a parametrized curve, then its curva-
ture function is

k =
y′′x′ − x′′y′

(x′2 + y′2)
3
2
.

For example, the curvature of α(t) = (t, f(t)) (the graph of f) is

k(t) =
f ′′(t)

(1 + f ′(t)2)
3
2
.
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1.4. Some elementary facts about inner product.

The dot product of two vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Rn is

X · Y = x1y1 + · · ·+ xnyn.

It can be checked easily that for any real numbers c1, c2 and X,Y, Z ∈ Rn the dot
product has the following properties:

(1) (c1X + c2Y ) · Z = c1X · Z + c2Y · Z,
(2) Z · (c1X + c2Y ) = c1Z ·X + c2Z · Y ,
(3) X · Y = Y ·X,
(4) X ·X ≥ 0 for all X ∈ Rn and “=” holds if and only if X = 0.

The first two conditions mean that · is a bilinear map from Rn×Rn to R, the third
condition means that · is symmetric, and the fourth condition says that · is what
is called positive definite.

More generally, we define an inner product on a real vector space V to be a
positive definite, symmetric bilinear map ( , ) : V × V → R, i.e.,

(1) (c1v1+c2v2, v) = c1(v1, v)+c2(v2, v) for all real numbers c1, c2 and v1, v2, v ∈
V ,

(2) (v1, v2) = (v2, v1) for all v1, v2 ∈ V ,
(3) (v, v) ≥ 0 for all v ∈ V and (v, v) = 0 if and only if v = 0.

An inner product space is a vector space V together with a particular choice ( , )
of an inner product on V .

Example 1.4.1.

(1) The dot product is an inner product on Rn.
(2) If V is a linear subspace of Rn, then (v1, v2) = v1 · v2 defines an inner

product on V .

Exercise 1.4.1.
Let Rn denote the space of n × 1 vectors, and A = (aij) a symmetric n × n

matrices. For X,Y in Rn define

(X,Y ) = XtAY.

(Note that Xt is 1×n, A is n×n, and Y is n×1, so XtAY is a 1×1 matrix, which
can be identified as a real number). Prove that ( , ) is symmetric and bilinear.

Let ( , ) be an inner product on V . The length (or the norm) of v ∈ V is

||v|| =
√

(v, v),

and the angle θ between v1, v2 ∈ V satisfies

cos θ =
(v1, v2)
||v1||||v2||

.

In particular, if v1 · v2 = 0, then the angle between v1 and v2 is π/2, i.e., v1 ⊥ v2.
Note that if V = R2 or R3 and the inner product is the dot product, then the above
formulas are the usual length and angle formula.

Let V be a vector space. We review some definitions:
(1) v1, . . . , vk are linearly independent if c1v1 + · · · + ckvk = 0 for some real

numbers c1, . . . , ck implies that all ci’s must be equal to zero.
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(2) v1, . . . , vk spans V if every element of V is a linear combination of v1, . . . , vk.
(3) {v1, . . . , vk} is a basis of V if they are linearly independent and span V .
(4) If ( , ) is an inner product on V , then a basis {v1, . . . , vk} is orthonormal if

(vi, vj) = δij , where

δij =

{
1, if 1 ≤ i = j ≤ k,
0, if 1 ≤ i 6= j ≤ k.

In other words, all vi’s have unit length and are mutually perpendicular.

If {v1, . . . , vn} is a basis of Rn, then given any v we can solve a system of linear
equations to find real numbers c1, . . . , cn such that v = c1v1 + · · ·+ cnvn. But when
{v1, . . . , vn} is an orthonormal basis, then we can use the inner product to get these
ci’s without solving a system of linear equations. In fact, we have

Proposition 1.4.2. Suppose ( , ) is an inner product on a vector space V , and
{v1, . . . , vn} an orthonormal basis for V . If v =

∑n
i=1 civi, then ci = (vi, v) for

1 ≤ i ≤ n.

Proof. Take the inner product of v and vi to see that

(v, vi) = (c1v1 + · · ·+ cnvn, vi)

= c1(v1, vi) + . . .+ ci(vi, vi) + . . .+ cn(vn, vi) = ci.

�

Proposition 1.4.3. Suppose ei : [a, b] → Rn are smooth maps for 1 ≤ i ≤ n such
that {e1(t), . . . , en(t)} is an orthonormal basis of Rn for all t ∈ [a, b]. Then

(1) e′i(t) =
∑n
j=1 aji(t)ej(t), where aji(t) = e′i(t) · ej(t).

(2) aij(t) = −aji(t).

Proof. Since {e1(t), . . . , en(t)} is a basis of Rn, e′i(t) is a linear combination of
e1(t), . . . , en(t), say

e′i(t) = a1i(t)e1(t) + · · ·+ ani(t)en(t).

The above Proposition implies that aji(t) = e′i(t) · ej(t), which proves (1). Since
(ei, ej) = δij is a constant, the product rule of differentiation implies that e′i · ej +
ei · e′j = 0. By (1), aji = e′i · ej = −e′j · ei = −aij . �

Let A = (aij) be an n×m matrix. The transpose of A denoted by At is a m×n
matrix, whose i-th column is the An n × n matrix A = (aij) is anti-symmetric if
At = −A, i.e., aij = −aji. So if A = (aij) is skew-symmetric, then aii = 0 for all
1 ≤ i ≤ n and aij = −aji.

Next we relate linear combinations of vectors in Rn and matrix product. Let A

be an n× n matrix, vi the i-th column of A for 1 ≤ i ≤ n, and b =


b1
·
·
·
bn

 an n× 1
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matrix. Then Ab is an n× 1 matrix, and

Ab = (v1, . . . , vn)


b1
·
·
·
bn

 = b1v1 + · · ·+ bnvn.

Conversely, if w ∈ Rn is equal to c1v1 + . . . + cnvn, then Ac = w, where c =
(c1, . . . , cn)t. If B = (bij) is an n × n matrix and ui the i-th column of B for
1 ≤ i ≤ n, then the i-th column of AB is Aui, or

AB = A(u1, . . . , un) = (Au1, . . . , Aun).

We will use these simple formulas over and over again in the study of curves and
surfaces in R3.

From now on, we will view Rn as the space of all n× 1 matrices, i.e., as column
vectors. Suppose ei : [a, b] → Rn are smooth maps such that {e1(t), . . . , en(t)} is
an orthonormal basis for each t ∈ [a, b]. Let A(t) = (aij(t)), where aij = e′j · ei.
Then Proposition 1.1.4 implies that

(1.4.1) (e′1(t), . . . , e′n(t)) = (e1(t), . . . , en(t))A(t),

where A(t) = (aij(t)) is skew-symmetric for each t ∈ [a, b].

1.5. Moving frames along a plane curve.

If α(s) =
(
x(s)
y(s)

)
is parametrized by arc length, then e1(s) = α′(s) =

(
x′(s)
y′(s)

)
is the unit tangent vector. Note that

(
−b
a

)
⊥
(
a
b

)
, which can be either checked

by computing the dot product or geometrically seeing that
(
−b
a

)
is the vector

obtained by rotating
(
a
b

)
by 90 degree counterclockwise. So e2(s) =

(
−y′(s)
x′(s)

)
is

perpendicular to e1(s) and also has length 1 (e2(s) is a normal vector to the curve
at α(s)). In other words, {e1(s), e2(s)} is an orthonormal basis of R2 for each s,
which is called an orthonormal moving frame along the plane curve α. Let θ(s)

denote the angle from
(

1
0

)
to α′(s). Then

α′(s) =
(
x′(s)
y′(s)

)
=
(

cos θ(s)
sin θ(s)

)
,

so

e′1 = α′′ =
(
−θ′ sin θ
θ′ cos θ

)
= θ′

(
− sin θ
cos θ

)
= θ′e2 = ke2.

By [],
(e′1, e

′
2) = (e1, e2)A

with A skew-symmetric. Note that the diagonal entries of a skew-symmetric matrix

are zero. But e′1 = ke2 implies that the 21-th entry of A is k, so A =
(

0 −k
k 0

)
.
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This shows that

(e′1, e
′
2) = (e1, e2)

(
0 −k
k 0

)
,

or equivalently, {
e′1 = ke2,

e′2 = −ke1.
Note also that α′ = e1. So e1, e2, α satisfies the following system of ordinary
differential equations (ODE): 

e′1 = ke2,

e′2 = −ke1,
α′ = e1.

1.6. Orthogonal matrices and rigid motions.

In this section, we view Rn as the space of real n× 1 matrices, i.e., view X ∈ Rn
as column vectors.

An n × n matrix A is orthogonal if AtA = In, the n × n identity matrix. Let
vi denote the i-th column of the n × n matrix A, i.e., A = (v1, . . . , vn). Then by
definition of matrix multiplication we see that AtA = I if and only if v1, . . . , vn are
orthonormal because

AtA =


vt1
·
·
vtn

 (v1, . . . , vn) = (vtivj) = I

implies that vtivj = δij .

Exercise 1.6.1. 2× 2 rotation matrix
Let R2 denote the space of 2×1 matrices, and ρ a constant angle. Let f : R2 → R2

be the map defined by f(v) = rotate v by ρ. We use polar coordinates to write
down the map: Suppose v = (x, y)t has radius r and angle θ, so x = r cos θ and
y = r sin θ. Since f(v) is obtained by rotating v by angle ρ, the radius of f(v) is r
and the angle is θ + ρ. If we write f(v) = (p, q)t, then{

p = r cos(θ + ρ) = r(cos θ cos ρ− sin θ sin ρ) = x cos ρ− y sin ρ,
q = r sin(θ + ρ) = r(sin θ cos ρ+ cos θ sin ρ) = x cos ρ+ y sin ρ.

This shows that (
p
q

)
=
(

cos ρ − sin ρ
sin ρ cos ρ

)(
x
y

)
.

In other words, f(v) = Rρv, where

Rρ =
(

cos ρ − sin ρ
sin ρ cos ρ

)
.

Rρ is called a rotation matrix. Note that det(Rρ) = 1 and Rρ is orthogonal.
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Exercise 1.6.2. 2× 2 reflection matrix
Let g : R2 → R2 be the linear map defined by g(v) = the reflection of v in the

line y = tan(ρ/2)x. Prove that
(1) If v = (x, y)t has polar coordinate (r, θ), then g(v) = (p, q)t has polar

coordinate (r, ρ− θ).
(2) Prove that(

p
q

)
= Sρ

(
x
y

)
, where Sρ =

(
cos ρ sin ρ
sin ρ − cos ρ

)
.

Sρ is called a reflection matrix (reflection in the line y = tan(ρ/2)x). Note
that Sρ is orthogonal and det(Sθ) = −1.

Next we will show that any 2× 2 orthogonal matrix is either a rotation matrix
or a reflection matrix.

Proposition 1.6.1. If A is a 2× 2 orthogonal matrix, then A is either a rotation
matrix or a reflection matrix.

Proof. If A =
(
a b
c d

)
is orthogonal, then AtA = I2 implies that

a2 + c2 = 1,
b2 + d2 = 1,
ab+ cd = 0.

So we may assume a = cos ρ, b = sin ρ for some ρ. But the third equation implies
that

a

c
= −d

b
= cot ρ,

so d = −b cot ρ. But

1 = b2 + d2 = b2 + cot2 θ b2 = (1 + cot2 ρ)b2 = b2 csc2 ρ,

hence b2 = sin2 ρ. So either b = sin ρ and d = − cos ρ or b = − sin ρ and d = cos ρ.
In other words, we have shown that a 2× 2 orthogonal matrix must be either is a
rotation matrix Rρ or a reflection matrix Sρ. �

Note that the dot product of X,Y ∈ Rn can be written as X · Y = XtY .

Proposition 1.6.2. Let X,Y ∈ Rn, and A a n× n matrix. Then
(1) (AX) · Y = X · (AtY ),
(2) A is orthogonal if and only if (AX) · (AY ) = X · Y .

Proof. (1) is true because (AX) · Y = (AX)tY = XtAtY = Xt(AtY ) = X ·AtY .
But (AX) · (AY ) = (AX)t(AY ) = XtAtAY is equal to XtY if and only if

AtA = I, this proves (2). �

Since the dot product on Rn gives the length and angle, A is orthogonal if and
only if A preserves length and cosine of the angle.

Definition 1.6.3. A map f : Rn → Rn is called a rigid motion if there exists
an orthogonal matrix A with det(A) = 1 and a constant vector b ∈ Rn such that
f(X) = AX + b for all X ∈ Rn.



10

The reason we require that det(A) = 1 in the definition of rigid motions is
because we want rigid motions preserve the orientation of Rn.

Given a constant angle ρ and a constant vector b ∈ R2, the map f(X) = RρX+b
is a rigid motion of R2 and all rigid motions of R2 are of this form, i.e., a rigid motion
is a rotation plus a translation.

Proposition 1.6.4. Let α : [a, b] → R2 be a curve parametrized by its arc length,
f : R2 → R2 a rigid motion defined by f(X) = RρX + b, and β : [a, b] → R2 the
curve defined by β(s) = f(α(s)). Then α and β have the same curvature functions.

Proof. Since β(s) = f(α(s)) = Rρα(s) + b, β′(s) = Rρα
′(s). But Rρ is orthogonal,

so ||β′(s)|| = ||Rρα′(s)|| = ||α′(s)|| = 1. This shows that β is parametrized by its
arc length. Let e1(s) = α′(s) and e2(s) = rotate e1(s) by π/2 counterclockwise,
and ẽ1(s) = β′(s) and ẽ2(s) = rotate ẽ1(s) by π/2 counterclockwise. Because Rρ is
a rotation and Rρ(e1) = ẽ1, Rρ(e2(s)) = ẽ2(s). The curvature function k and k̃ of
α and β are given by

k(s) = e′1(s) · e2(s), k̃(s) = ẽ′1(s) · ẽ2(s)

respectively. But

ẽ′1 · ẽ2 = (Rρe1)′ · (Rρe2) = (Rρe′1) · (Rρe2),

which is equal to e′1 · e2 because Rρ is orthogonal. So we have proved k = k̃. �

Exercise 1.6.3.

(1) Prove that if A,B are orthogonal matrices, then AB is also an orthogonal
matrix.

(2) Prove that if A is an orthogonal matrix, then A−1 is orthogonal.
(3) Suppose A,B are 3 × 3 orthogonal matrices with det(A) = det(B) = 1,

b, c constant 3 × 1 vectors, and f, g are maps from R3 to R3 defined by
f(X) = AX + b and g(X) = Bx+ c, i.e., f and g are rigid motions of R3.
Prove that the composition f ◦ g is also a rigid motion.

(4) Suppose A is a 3×3 orthogonal matrix, b a 3×1 vector, and f(X) = AX+b
is a rigid motion of R3. Find the formula for the inverse function of f and
show that it is also a rigid motion.
(The above two exercise says that the set of all rigid motions of R3 is a
group under composition).

1.7. Fundamental Theorem of plane curves.

First we recall some results from calculus:

Theorem 1.7.1. Fundamental Theorem of Calculus
Suppose h : [a, b] → R is continuous, and f : [a, b] → R is the function defined

by f(x) =
∫ x
a
h(t) dt. Then f is differentiable and f ′ = h.

Theorem 1.7.2. Given a continuous function h : [a, b] → R and c0 ∈ [a, b], if
y : [a, b]→ R satisfies y′ = h and y(c0) = y0, then

y(s) = y0 +
∫ s

c0

h(t) dt.
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Proof. From calculus, we know that y(s) = C +
∫ s
c0
h(t) dt for some constant C.

But y(c0) = y0 = C +
∫ c0
c0
h(t) dt = C + 0 = C, so C = y0. �

Lemma 1.7.3. Given two unit vectors v1, v2 in R2 and p0, q0 ∈ R2, there exists a
unique rigid motion f , i.e., f(X) = RρX + b, such that

f(p0) = q0, Rρv1 = v2.

Proof. Since v1, v2 are unit vectors in R2, there is a unique angle 0 ≤ ρ < 2π
such that v2 = Rρv1. To get b, we need to solve f(p0) = Rρp0 + b = q0, so
b = q0 −Rρp0. �

Theorem 1.7.4. Fundamental Theorem of plane curves

(1) Given a smooth function k : [a, b] → R, p0 = (x0, y0)t ∈ R2, v0 ∈ R2

a unit vector, and c0 ∈ [a, b], then there exists a unique α : [a, b] → R2

parametrized by its arc length such that α(c0) = p0, α′(c0) = v0, and its
curvature function is k.

(2) If α, β : [a, b] → R2 are parametrized by arc length and have the same
curvature functions, then there is a unique rigid motion f of R2 such that
β = f ◦ α.

Proof. Since v0 is a unit vector, there is a constant angle θ0 such that v0 =
(cos θ0, sin θ0)t. Set

θ(s) = θ0 +
∫ s

c0

k(t)dt,

x(s) = x0 +
∫ s

c0

cos θ(t) dt,

y(s) = y0 +
∫ s

c0

sin θ(t) dt,

α(s) = (x(s), y(s))t.

By the fundamental theorem of calculus, θ′(s) = k(s), x′(s) = cos θ(s), and y′(s) =
sin θ(s). But α′(s) = (x′(s), y′(s)) = (cos θ(s), sin θ(s))t, so α is parametrized by
arc length and the curvature for α is θ′ = k. This proves that k is the curvature
function for the curve α, and (1) is proved.

The proof of (1) also implies that if γ : [a, b] → R2 is a curve parametrized by
arc length, γ(c0) = p0 and γ′(c0) = v0, then γ must be the one constructed in (1).
Or equivalently, suppose two curves α1, α2 : [a, b]→ R2 parametrized by arc length
have the same curvature function, α1(c0) = α2(c0), and α′1(c0) = α′2(c0). Then
α1 = α2.

By Lemma 1.7.3, there is a unique rigid motion f(X) = RρX + b such that
f(α(c0)) = β(c0) and Rρα

′(c0) = β′(c0). Let γ : [a, b] → R2 be defined by γ(s) =
f(α(s)). By Proposition 1.6.4, α and γ have the same curvature function. But
γ(0) = f(α(0)) = β(0) and γ′(0) = Rρα

′(0) = β′(0), so β and γ have the same
curvature function, pass through the same point with same unit tangent when
s = c0. So β = γ, i.e., β = f ◦ α. �

Exercise 1.7.1. Use the method given in Theorem 1.7.4 to find the curve whose
curvature is 2, passes through (0, 1)t whose tangent at (1, 0)t is (1/2,

√
3/2)t.
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1.8. Parallel curves.

Let α : [a, b] → R2 be a curve parametrized by arc length, and {e1(s), e2(s)}
the o.n. moving frame along α (here e1(s) = α′(s) is the unit tangent and e2(s) =
Rπ

2
e1(s) the unit normal). Given a constant r > 0, the curve parallel to α having

distance r to α is
β(s) = α(s) + r e2(s).

Note that

β′(s) = α′(s) + r e′2(s) = e1(s)− r k(s)e1(s) = (1− r k(s))e1(s),

so if k(s) 6= 1/r for all s ∈ [a, b] then β is a parametrized curve. Such a β is
also called a wave front of α, and when k(s0) = 1/r then the curve fails to be a
parametrized curve at s0 (recall that β is a parametrized curve if β′(s) 6= (0, 0) for
all s ∈ [a, b]), and we say that β has a singular point at s = s0.

Definition 1.8.1. Suppose α : [a, b] → R2 is a curve parametrized by arc length,
and k(s0) 6= 0. The osculating circle at α(s0) is the circle centered at α(s0) +

1
k(s0)

e2(s0) with radius 1
k(s0)

.

By definition, the osculating circle passes through α(s0) and has the same tangent
line as the curve α at α(s0). Let e1, e2 denote the o. n. moving frame along α.
Let β denote the arc-length parametrization of the osculating circle of α at α(s0)
such that β(s0) = α(s0) and β′(s0) = α′(s0). The curvature of β (a circle of radius
1/k(s0)) is the constant function k(s0), which is equal to the curvature of α at
α(s0). Let θ(s) and τ(s) denote the polar angle of α′ and β′ respectively, i.e.,

α′(s) = (cos θ(s), sin θ(s)), β′(s) = (cos τ(s), sin τ(s)).

Then θ′ and τ ′ are the curvature functions for α and β respectively. But α′(s0) =
β′(s0) implies that θ(s0) = τ(s0), and the curvature of α and β at s = s0 equal
implies that θ′(s0) = τ ′(s0). Compute the second derivatives of α and β at s = s0
by the chain rule to get

α′′(s0) = θ′(s0)(− sin θ(s0),− cos θ(s0)), β′′(s0) = τ ′(s0)(− sin τ(s0), cos τ(s0)).

But we have shown that θ(s0) = τ(s0) and θ′(s0) = τ ′(s0), so α′′(s0) = β′′(s0).
Thus we have proved that

α(s0) = β(s0), α′(s0) = β′(s0), α′′(s0) = β′′(s0).

By Taylor’s Theorem, α(s) and β(s) agree up to second order near s0, or the
osculating circle is the best circle approximation of the curve α at α(s0).

1.9. Space Curves and Frenet frame.

Let α : [a, b] → R3 be an immersed curve parametrized by arc length. So
e1(s) = α′(s) is a unit tangent vector. First we construct a natural o. n. moving
frame along α, then the coefficients of their derivatives as linear combinations of
the frame should give us the local invariants for space curves as we did for plane
curves. While there is a natural choice of the unit normal vector for plane curves,
there are infinitely many unit vectors normal to a space curve. So we need to make
a choice of the second vector field of the frame. But since e1 · e1 = 1,

0 = (e1 · e1)′ = e′1 · e1 + e1 · e′1 = 2e′1 · e1.
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Thus e′1 · e1 = 0. If e′1(s) = α′′(s) is never zero, then the direction of e′1(s) is a
unit vector perpendicular to e1(s). Set k(s) = ||e′1(s)||, e2(s) = e′1(s)/||e′1(s)||, and
e3(s) = e1(s) × e2(s). Then {e1, e2, e3} is an o. n. moving frame along α. By
definition of e2 and k we have e′1 = ke2. Write e′i =

∑3
j=1 ajiej for 1 ≤ j ≤ 3, i.e.,

e′1 = a11e1 + a21e2 + a31e3,

e′2 = a12e1 + a22e2 + a32e3,

e′3 = a13e1 + a23e2 + a33e3.

Since e′1 = ke2, a11 = 0, a21 = k, and a31 = 0. By Proposition 1.4.3, A = (aij)
is skew-symmetric, i.e., aji = −aij . So aii = 0 for all 1 ≤ i ≤ 3, a12 = −k, and
a13 = 0. Therefore the matrix A must be of the form0 −k 0

k 0 −τ
0 τ 0


for some function τ . In fact, τ = e′2 · e3. So we have proved

Proposition 1.9.1. Let α : [a, b] → R3 be parametrized by arc length. If α′′(s)
is never zero, then set e1(s) = α′(s), k(s) = ||α′′(s)||, e2(s) = α′′(s)/||α′′(s)||,
e3 = e1 × e2, and τ = e′2 · e3. Then

(e′1, e
′
2, e
′
3) = (e1, e2, e3)

0 −k 0
k 0 −τ
0 τ 0

 ,

or equivalently,

(1.9.1)


e′1 = ke2,

e′2 = −ke1 + τe3,

e′3 = −τe2.

Equation (1.9.1) is called the Frenet equation, k is called the curvature, τ is the
torsion of α.

If k ≡ 0, then e′1 = α′′ = ke2 ≡ 0, so α′(s) = u0, and α(s) = u0s + u1 for some
constant vector u0.u1 in R3, i.e., α is a straight line. In general, the curvature k
measures the deviation of α from being a straight line.

If τ ≡ 0, then e′3 = −τe2 = 0. So e3 = v0 = (a, b, c)t is a constant vector.
But (α · v0) = α′ · v0 = e1 · e3 = 0 because e1, e2, e3 are orthonormal. Hence
α · v0 = c0 a constant, which shows that α(s) = (x(s), y(s), z(s)) lies in the plane
ax+ by+ cz = c0. In other words, if τ ≡ 0, then α is a plane curve. In genreal, the
torsion measures the deviation of α being a plane curve.

Example 1.9.2. helix
Let a, b be positive constants such that a2 + b2 = 1, α(s) = (a cos s, a sin s, bs).

Then α′(s) = (−a sin s, a cos s, b) has length
√
a2 + b2 = 1, i.e., α is parametrized

by arc length. Note that α lies on the cyclinder x2 + y2 = a2 and is a helix.
But e′1(s) = α′′(s) = (−a cos s,−a sin s, 0) implies that k = ||α′′(s)|| = a and
e2 = (− cos s,− sin s, 0). So e3(s) = e1(s)× e2(s) = (b sin s,−b cos s, a), {e1, e2, e3}
is the Frenet frame for α, and the torsion τ = e′2 · e3 = b.
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Proposition 1.9.3. Suppose α is a curve in R3 parametrized by arc length such
that α′′ is never zero, and f(X) = AX+ b is a rigid motion of R3. Then β := f ◦α
has the same curvature and torsion. Moreover, if (e1, e2, e3) is the Frenet frame
along α, then (Ae1, Ae2, Ae3) is the Frenet frame along β.

Proof. Since β(s) = Aα(s) + b, β′(s) = Aα′(s) = Ae1(s). A is orthogonal implies
that ||Ae1|| = ||e1|| = 1. But e′1 = ke2 and

(Ae1)′ = Ae′1 = A(ke2) = kAe2.

By definition of rigid motion, A is orthogonal and detA = 1, so A(e1 × e2) =
(Ae1) × (Ae2). Hence (Ae1, Ae2, Ae3) is the Frenet frame for β. But (Ae3)′ =
Ae′3 = A(−τe2) = −τAe2, so the torsion for β is also equal to τ . �

1.10. The Initial Value Problem for an ODE.

Suppose we know the wind velocity at every point of space and at every instant
of time. A puff of smoke drifts by, and at a certain moment we observe the precise
location of a particular smoke particle. Can we then predict where that particle
will be at all future times? By making this metaphorical question precise we will be
led to the concept of an initial value problem for an ordinary differential equation.

We will interpret “space” to mean Rn, and an “instant of time” will be repre-
sented by a real number t. Thus, knowing the wind velocity at every point of space
and at all instants of time means that we have a function F : R × Rn → Rn that
associates to each (t, x) in R×Rn a vector F (t, x) in Rn representing the wind ve-
locity at x at time t. Such a mapping is called a time-dependent vector field on Rn.
We will always be working with such F that are at least continuous, and usually F
will even be continuously differentiable. In case F (t, x) does not actually depend
on t then we call F a time-independent vector field on Rn, or simply a vector field
on Rn. Note that this is the same as giving a map F : Rn → Rn.
How should we model the path taken by the smoke particle? An ideal smoke particle
is characterized by the fact that it “goes with the flow”, i.e., it is carried along by
the wind, meaning that if x(t) is its location at a time t, then its velocity at time t
will be the wind velocity at that point and time, namely F (t, x(t)). But the velocity
of the particle at time t is x′(t) = dx

dt , so the path of a smoke particle will be a
differentiable curve x : (a, b) → Rn such that x′(t) = F (t, x(t)) for all t ∈ (a, b).
Such a curve is called a solution curve of the time-dependent vector field F and we
also say that“x satisfies the ordinary differential equation dx

dt = F (t, x)”.
Usually we will be interested in solution curves of a differential equation dx

dt =
F (t, x) that satisfy a particular initial condition. This means that we have singled
out some special time t0 (often, t0 = 0), and some specific point v0 ∈ Rn, and
we look for a solution of the ODE that satisfies x(t0) = v0. (In our smoke parti-
cle metaphor, this corresponds to observing the particle at v0 as our clock reads
t0.) The pair of equations dx

dt = F (t, x) and x(t0) = v0 is called an “initial value
problem” (abbreviated as IVP) for the ODE dx

dt = F (t, x). The reason that it is so
important is that the so-called Existence and Uniqueness Theorem for ODE says
(more or less) that, under reasonable assumptions on X, the initial value problem
has a “unique” solution.
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Remark 1.10.1. If the vector field F is time-independent, then the ODE dx
dt =

F (x) is often called autonomous.

Remark 1.10.2. Let F : R × Rn → Rn, and F (t, x) = (f1(t, x), . . . , fn(t, x)) so
that written out in full, the ODE dx

dt = F (t, x) looks like

dxi
dt

= fi(t, x1(t), . . . , xn(t)), i = 1, . . . n.

In this form it is usually referred to as a “system of ordinary differential equations”.

Example 1.10.3. F a constant vector field, i.e., F (t, x) = u, where u is some fixed
element of Rn. The solution with initial condition x(t0) = v0 is clearly the straight
line x(t) := v0 + (t− t0)u.

Example 1.10.4. F is the “identity” vector field, F (t, x) = x. The solution with
initial condition x(t0) = v0 is clearly x(t) := e(t−t0)v0. (Later we will see how to
generalize this to an arbitrary linear vector field, i.e., one of the form F (t, v) = Av
where A is a constant n× n matrix.)

Example 1.10.5. A vector field that is “space-independent”, i.e., F (t, x) = φ(t)
where φ : R → Rn is continuous. The solution with initial condition x(t0) = v0 is
x(t) = v0 +

∫ t
to
φ(s) ds.

1.11. The Local Existence and Uniqueness Theorem of ODE.

In what follows, we formulate the discussion in the last section in precise math-
ematical terms.

Let Br(p0) denote the ball in Rn with radius r centered at p0, i.e.,

Br(p0) = {p ∈ Rn | ||p− p0|| < r}.
A subset U of Rn is open if for each p ∈ U there exists some r > 0 (r depend on
the point p) such that Br(p) ⊂ U .

A map f from an open subset U of Rn to Rm is C1 if ∂f
∂xi

is continuous for all
1 ≤ i ≤ n.

Theorem 1.11.1. The Local Existence and Uniqueness Theorem of ODE
Let U ⊂ Rn be an open subset, F : (a, b)× U → Rn is C1. Fix c0 ∈ (a, b). Then

given any p0 ∈ U , there exists ε > 0 and a unique solution α : (c0 − ε, c0 + ε)→ U
of the following initial value problem:

(1.11.1)

{
dα
dt = F (t, α(t)),
α(c0) = p0.

Remark 1.11.2. If F is only continuous, the above theorem may not hold. For
example, let F : (−1, 1) × (−1, 1) → R be the map defined by F (t, y) = y1/3.
Consider the initial value problem:{

dy
dt = y1/3,

y(0) = 0.

First note that the constant function y = 0 is a solution. But this is a separable
ODE y−1/3dy = dt. Integrate both sides to get 3

2y
2/3 = t + c. But the initial

condition y(0) = 0 implies that c = 0. So y = (2t/3)3/2. This shows that
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(1) we have two solutions defined on [0, 1) for the initial value problem,
(2) the second solution is not defined on an open interval containing t = 0.

Next we give an application of the uniqueness of solutions of ODE. Let M3×3

denote the space of all 3× 3 matrices. Then we can identify M3×3 as (R3)3 = R9.

Proposition 1.11.3. Suppose A : [a, b] → M3×3 is smooth and A(t) is skew-
symmetric for all t ∈ [a, b], c0 ∈ (a, b), and C is a 3 × 3 orthogonal matrix. If
g : [a, b]→M3×3 a smooth solution to the following initial value problem{

dg
dt = g(t)A(t),
g(c0) = C.

Then g(t) is orthogonal for all t ∈ [a, b].

Proof. Set y(t) = g(t)T g(t), where g(t)T is the transpose of g(t). By the product
rule, we have y(c0) = CTC = I and

y′ = (gT )′g + gT g′ = (g′)T g + gT gA = (gA)T g + gT gA

= AT gT g + gT gA = AT y + yA.

But the constant function z(t) = I also satisfies the above equation because z′ = 0
and AT z + zA = AT + A = 0. So by the existence and uniqueness of solutions of
ODE y = z. Hence y(t) = g(t)T g(t) = I, and g(t) is orthogonal. �

1.12. Fundamental Theorem of space curves.

Proposition 1.12.1. Let p0, q0 ∈ R3, and {u1, u2, u3} and {v1, v2, v3} o.n. bases
of R3 such that det(u1, u2, u3) = 1 and det(v1, v2, v3) = 1. Then there exists a
unique rigid motion f(x) = Ax + b such that f(p0) = q0 and Aui = vi for all
1 ≤ i ≤ 3, where A is an orthogonal 3× 3 matrix with det(A) = 1 and b ∈ R3.

Proof. Let U = (u1, u2, u3) and V = (v1, v2, v3) be the 3× 3 matrices with ui and
vi as the i-th column respectively for i = 1, 2, 3. Since {u1, u2, u3} and {v1, v2, v3}
are o.n., U and V are orthogonal matrices. We want to find A such that Aui = vi
for 1 ≤ i ≤ 3, i.e., AU = V . So A = V U−1 = V UT . We need b ∈ R3 such that
q0 = Ap0 + b. Therefore b should be equal to q0 −Ap0. �

Theorem 1.12.2. (Fundamental Theorem of curves in R3)

(1) Given smooth functions k, τ : (a, b) → R so that k(t) > 0, t0 ∈ (a, b),
p0 ∈ R3 and (u1, u2, u3) a fixed o.n. basis of R3, then there exists δ > 0
and a unique curve α : (t0− δ, t0 + δ)→ R3 parametrized by arc length such
that α(0) = p0, and (u1, u2, u3) is the Frenet frame of α at t = t0.

(2) Suppose α, α̃ : (a, b) → R3 are curves parametrized by arc length, and α, α̃
have the same curvature function k and torsion function τ . Then there
exists a rigid motion f so that α̃ = f(α).

Proof. First note that F : (a, b)× R3 × R3 × R3 → R3 × R3 × R3 defined by

F (t, e1, e2, e3) = (k(t)e2,−k(t)e1 + τ(t)e3,−τ(t)e3)
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is C1. So by the Existence and Uniqueness of solutions of ODE (Theorem 1.11.1),
there exists δ > 0 and a unique solution

g : (t0 − δ, t0 + δ)→ R3 × R3 × R3

of the initial value problem {
g′(t) = g(t)A(t),
g(t0) = (u1, u2, u3)

,

where

A(t) =

 0 −k(t) 0
k(t) 0 −τ(t)

0 τ(t) 0

 .

Since the initial value g(t0) = (u1, u2, u3) is orthogonal and A is smooth and is
skew-symmetric, by Proposition 1.11.3 g(t) must be orthogonal for all t ∈ (t0 −
δ, t0 + δ). Let ei(t) denote the i-th column of g(t). Then {e1(t), e2(t), e3(t)} is an
o.n. basis of R3 for all t ∈ (t0 − δ, t0 + δ). Set

α(t) = p0 +
∫ t

t0

e1(s) ds.

Then α′(t) = e1(t) has length 1, so α is a curve in R3 parametrized by arc length.
Write g(t) = (e1(t), e2(t), e3(t)). Then g′ = gA can be written as

e′1 = ke2,

e′2 = −ke1 + τe3,

e′3 = −τe2,
(e1, e2, e3)(t0) = (u1, u2, u3)

This imply that k and τ are the torsion and curvature for α and {e1, e2, e3} is its
Frenet frame, which proves (1).

Fix t0 ∈ (a, b). Let {e1, e2, e3} be the Frenet frame of α, and {ẽ1, ẽ2, ẽ3} the
Frenet frame of α̃. By Proposition 1.12.1, there is a unique rigid motion f(x) =
Ax + b of R3 such that f(α(t0)) = α̃(t0) and A(ei(t0)) = ẽi(t0) for 1 ≤ i ≤ 3. Set
β = f◦α. By Proposition 1.9.3, the curvature and torsion for β are also k, τ , and the
Frenet frame of β is {Ae1, Ae2, Ae3}. But both (α̃, ẽ1, ẽ2, ẽ3) and (β,Ae1, Ae2, Ae3)
satisfy the following differential equation:

(x, y1, y2, y3)′ = (y1, ky2,−ky1 + τy3,−τy2)

and have the same initial condition at t0, i.e., β(t0) = f(α(t0)) = α̃(t0), Ae1(t0) =
ẽ1(t0), Ae2(t0) = ẽ2(t0), and Ae3(t0) = ẽ3(t0). So the uniqueness of solutions of
ODE implies that β(t) = α̃(t) for all t ∈ (a, b). But β = f ◦ α, so α̃ = f ◦ α, which
proves (2). �

Exercise 1.12.1.

(1) Let a, b be positive constant real numbers. We call α(t) = (a cos t, a sin t, bt)
the helix defined by a, b.
(a) Reparametrized the curve by arc length.
(b) Find the Frenet frame, curvature, and torsion of the curve.
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(c) Given positive constants c1, c2 prove that there exist a, b such that the
helix defined by a, b has curvature c1 and torsion c2.

(d) Assume β is a curve in R3 whose curvature and torsion are positive
constants. Prove that β must be a piece of a helix. (hint: use (c) and
the Fundamental Theorem of space curves)

(2) Given a space curve α, the normal plane at α(s0) is the plane through α(s0)
and perpendicular to the tangent α′(s0). Prove that if all the normal planes
of α pass through a fixed point p0, then α lies in a sphere centered at p0.
(Hint: Take the derivative of the function f(s) = (α(s)− p0) · (α(s)− p0).)

(3) Let a, b be constants such that a2 + b2 = 1. Suppose the binormal of a
curve α is e3(s) = (a cos(s2), a sin(s2), b) and the torsion of α is positive.
Find the curvature and torsion of α. (hint: use the Frenet equation)

2. Fundamental forms of parametrized surfaces

2.1. Parametrized surfaces in R3.

Let v1 = (a1, a2, a3)T and v2 = (b1, b2, b3)T in R3. Then v1, v2 are linearly
independent if c1v1 + c2v2 = 0 for some constants c1, c2 implies that c1 = c2 = 0.
It is easy to see that v1, v2 ∈ R3 are linearly independent if and only if the cross
product v1 × v2 6= 0.

Definition 2.1.1. Let O be an open subset of R2. A smooth map f : O →
R3, f(u, v) = (f1(u, v), f2(u, v), f3(u, v)), is an immersion if ∂f

∂u (u, v), ∂f∂v (u, v) are
linearly independent for all (u, v) in O. An immersion f : O → R3 will be called a
parametrized surface in R3.

Example 2.1.2. The graph of a smooth function h : O → R
Let f : O → R3 be defined by f(u, v) = (u, v, h(u, v))T . Then

∂f

∂u
=
(

1, 0,
∂h

∂u

)T
,

∂f

∂v
=
(

0, 1,
∂h

∂v

)T
.

Set hu = ∂h
∂u and hv = ∂h

∂v . Then

∂f

∂u
× ∂f

∂v
=

∣∣∣∣∣∣
i j k
1 0 hu
0 1 hv

∣∣∣∣∣∣ = (−hu,−hv, 1)T

is never zero for all (u, v) ∈ O. So f is an immersion.

Example 2.1.3. Surface of revolution
Let h : R → R be a smooth function, and C the curve in the yz-plane given by

z = h(y), and M the surface obtained by rotating the curve C along the y-axis.
Then M can be parametrized by

f(y, θ) = (h(y) cos θ, y, h(y) sin θ)T .
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A direct computation implies that

fy :=
∂f

∂y
= (h′(y) cos θ, 1, h′(y) sin θ), fo :=

∂f

∂θ
= (−h(y) sin θ, 0, h(y) cos θ),

and
fy × fθ = (h cos θ,−hh′, h sin θ)T = h(cos θ,−h′, sin θ)T ,

so f fails to be an immersion exactly at (y, θ) when h(y) = 0. However, if h(y) > 0
for all y ∈ R, then f is an immersion.

2.2. Tangent and normal vectors.

Let f : O → R3 be a parametrized surface, and (u0, v0) ∈ O. Suppose c :
(−ε, ε)→ O, c(t) = (u(t), v(t)), is smooth and c(0) = (u0, v0). We call (f ◦ c)′(0) a
tangent vector of f at f(u0, v0). By the chain rule

d

dt

∣∣∣∣
t=0

f(u(t), v(t)) =
d

dt

∣∣∣∣
t=0

∂f

∂u
(u(t), v(t))

du

dt
+
∂f

∂v
(u(t), v(t))

dv

dt

= fu(u0, v0)u′(0) + fv(u0, v0)v′(0).

In particular, if c(t) = (u0 + t, v0), then (f ◦ c)′(0) = fu(u0, v0), and if c(t) =
(u0, v0 + t) then (f ◦ c)′(0) = fv(u0, v0). These computations imply that the space
of all tangent vectors of f at f(u0, v0) is a 2-dimensional linear subspace of R3 and
{fu(u0, v0), fv(u0, v0)} is a basis. We call the space Tfp of all tangent vectors of f
at p = (u0, v0) the tangent plane of f at p.

Since v1 × v2 is perpendicular to both v1, v2,

N(u0, v0) =
fu(u0, v0)× fv(u0, v0)
||fu(u0, v0)× fv(u0, v0)||

is a unit vector perpendicular to the tangent plane of f at (u0, v0), i.e., N(u0, v0)
is a unit normal to f at (u0, v0).

Given a parametrized surface f : O → R3, we have constructed a moving basis
(frame) on the parametrized surface: fu, fv, N . If we imitate what we did for
curves in R3, then we should take the derivative of the moving frame and write
them as linear combinations of fu, fv, N . We expect the coefficients of these linear
combinations will give us the geometric invariants for the surface. Write

(fu, fv, N)u := (fuu, fvu, Nu) = (fu, fv, N)P,

(fu, fv, N)v := (fuv, fvv, Nv) = (fu, fv, N)Q

for some P,Q : O →M3×3, i.e.,

fuu = fup11 + fvp21 +Np31,

fvu = fup12 + fvp22 +Np32,

· · ·
Since fuv = fvu, the second column of P is equal to the first column of Q, so the
entries of P,Q have 18 − 3 = 15 functions. However, we will see later that entries
of P,Q can be expressed in terms of two “fundamental forms” (depending on six
functions) and they must satisfy a system of partial differential equations, which
are the so called Gauss-Codazzi equations. The fundamental theorem of surfaces in
R3 states that the two fundamental forms satisfying the Gauss-Codazzi equations
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determine the surfaces in R3 unique up to rigid motions. In order to explain the two
fundamental forms, we need to review some more linear algebra of bilinear forms
and linear operators.

2.3. Quadratic forms.

Recall that a bilinear form on a vector space V is a map b : V × V → R such
that

b(c1v1 + c2v2, v) = c1b(v1, v) + c2b(v2, v),

b(v, c1v1 + c2v2) = c1b(v, v1) + c2b(v, v2)

for all v, v1, v2 ∈ V and c1, c2 ∈ R. A bilinear form b is symmetric if b(v, w) = b(w, v)
for all v, w ∈ V .

Definition 2.3.1. A real-valued functionQ on a vector space V is called a quadratic
form if it can be written in the form Q(v) = b(v, v) for some symmetric bilinear
form b on V . (We say that Q is the quadratic form associated to b).

If b is a symmetric bilinear form, then

b(v+w, v+w) = b(v, v) + b(v, w) + b(w, v) + b(w,w) = b(v, v) + 2b(v, w) + b(w,w),

so Q(v + w) = Q(v) + 2b(v, w) +Q(w). In other words, we can recover b from the
corresponding quadratic form Q as

b(v, w) =
1
2

(Q(v + w)−Q(v)−Q(w)).

Example 2.3.2. Let A be an n×n matrix, Rn the space of all n×1 real matrices,
and b(X,Y ) = XTAY (here we identify 1× 1 matrices as real numbers). Then b is
a bilinear form. If X = (x1, . . . , xn)T , Y = (y1, . . . , yn)T , and A = (aij), then

b(X,Y ) = XTAY = (x1, . . . , xn)


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 · · · ann



y1
·
·
yn



= (
n∑
j=1

aj1xj ,

n∑
j=1

aj2xj , . . . ,

n∑
j=1

ajnxj)


y1
·
·
yn


=

n∑
i=1

n∑
j=1

ajixjyi =
n∑

i,j=1

aijxiyj .

Let v1, . . . , vn be a basis of V , and b a bilinear form on V . Set bij = b(vi, vj) for
1 ≤ i, j ≤ n. The matrix B = (bij) is called the coefficient matrix of b with respect
to {v1, . . . , vn}. If v =

∑n
i=1 xivi and w =

∑n
i=1 yivi, then b(v, w) =

∑n
i,j=1 bijxiyj .

If b is symmetric, then bij = bji and the corresponding quadratic form Q is Q(v) =∑n
i=1 bijxixj .

Exercise 2.3.1.
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(1) Let f : R2 → R3 be the map defined by

f(z, t) = (ez cos t, ez sin t, z)T .

Sketch the surface and prove that f is an immersion. (i.e., show tht
∂f/∂z, ∂f/∂t are linearly independent at every point).

(2) Let f : R2 → R3 be the map defined by f(z, θ) = (z cos θ, z sin θ, z). Sketch
the surface and prove that f is not an immersion when z = 0.

(3) Let α(s) = (y(s), z(s)) be a smooth curve parametrized by arc length in
the yz-plane, and f(s, θ) = (z(s) cos θ, y(s), z(s) sin θ). Find all the points
when f fails to be an immersion.

(4) Let α : (a, b) → R3 be a curve parametrized by arc length with positive
curvature function, e1(s) = α′(s), and f : (a, b)×R→ R3 the map defined
by f(s, t) = α(s) + te1(s). Prove that f is an immersion except at (s, 0).

2.4. Linear operators.

Let V be a vector space, {v1, . . . , vn} a basis of V , and T : V → V a linear map.
Then for each 1 ≤ i ≤ n we can write T (vi) as a linear combination of v1, . . . , vn,

T (vj) =
n∑
i=1

aijvi.

We call A = (aij) the matrix associated to the linear map T with respect to the
basis {v1, . . . , vn}. Note that if we write v =

∑n
i=1 xivi and T (v) =

∑n
i=1 yivi, then

Y = AX, where X = (x1, . . . , xn)T and Y = (b1, . . . , bn)T . This is because

T (v) = T

(
n∑
i=1

xivi

)
=

n∑
i=1

xiT (vi) =
n∑

i,j=1

xiajivj =
n∑
j=1

(
n∑
i=1

ajixi

)
vj ,

so yj =
∑n
i=1 ajixi, i.e., Y = AX.

If we change basis, the corresponding matrix of T change by a conjugation:

Proposition 2.4.1. Let T : V → V be a linear map, and A and B the matrices of T
associated to bases {v1, · · · , vn} and {u1, · · · , un} of V respectively. If ui =

∑
j cjivj

for 1 ≤ i ≤ n, then B = C−1AC, where C = (cij).

Proof.

T (ui) =
n∑
k=1

bkiuk =
n∑
k=1

bki

n∑
m=1

cmkvm =
n∑

m=1

(
n∑
k=1

bkicmk

)
vm

= T

 n∑
j=1

cjivj

 =
n∑
j=1

cjiT (vj) =
n∑
j=1

cji

n∑
m=1

amjvm

=
n∑

m=1

 n∑
j=1

cjiamj

 vm.
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But {v1, . . . , vm} is a basis of V , so T (ui) can be written uniquely as a linear
combination of v1, . . . , vn. Hence

n∑
k=1

bkicmk =
n∑
j=1

cjiamj ,

which means that the mi-th entry of CB is equal to the mi-th entry of AC. So
CB = AC, which implies that B = C−1AC. �

Suppose A = (aij) and B = (bij) are the matrices associated to the linear maps
S : V → V and T : V → V with respect to basis {v1, . . . , vn} respectively. In other
words,

S(vj) =
n∑
i=1

aijvi, T (vj) =
n∑
i=1

bijvi, 1 ≤ j ≤ n.

Let S ◦ T : V → V denote the composition of S and T , i.e.,

(S ◦ T )(v) = S(T (v)).

Proposition 2.4.2. If A = (aij) and B = (bij) are the matrices associated to
linear maps S : V → V and T : V → V with respect to the basis {v1, . . . , vn}, then
the matrix associated to S ◦ T with respect to {v1, . . . , vn} is AB.

Proof. Suppose C = (cij) is the matrix associated to S◦T with respect to v1, . . . , vn,
i.e.,

S(T (vj)) =
n∑
k=1

ckjvk.

But

S(T (vj)) = S(
n∑
i=1

bijvi) =
n∑
i=1

bijS(vi)

=
n∑
i=1

bij

n∑
k=1

akivk =
n∑
k=1

(
n∑
i=1

akibij

)
vk,

so ckj =
∑n
i=1 akibij = (AB)kj . This proves C = AB. �

Definition 2.4.3. Let ( , ) be an inner product on V . A linear operator T : V → V
is self-adjoint if (Tv,w) = (v, Tw) for all v, w ∈ V .

Proposition 2.4.4. Let T : V → V be a linear map, and A = (aij) the matrix as-
sociated to T with respect to an orthonormal basis v1, . . . , vn. Then aij = (T (vj), vi)
for 1 ≤ i, j ≤ n. Moreover, if T is self-adjoint, then A is symmetric.

Proof. Suppose T (vj) =
∑n
i=1 aijvi. Since (vi, vj) = δij , (T (vj), vi) = aij .

If T is self-adjoint, then aij = (T (vj), vi) = (vj , T (vi)) = aji. �

Suppose {v1, . . . , vn} is a basis of V but not an orthonormal, then although
((T (vi), vj)) is not the matrix associated to T with respect to this basis, we still
can compute the matrix in terms of (T (vi), vj) and (vi, vj) as follows:

Proposition 2.4.5. Let (V, ( , )) be an inner product space, v1, . . . , vn a basis of
V , T : V → V a self-adjoint operator, A = (aij) the matrices of T with respect
to v1, . . . , vn, and bij = (T (vi), vj). Let gij = (vi, vj), G = (gij), G−1 = (gij) the
inverse of G, and B = (bij). Then
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(1) B = AtG,
(2) A = G−1Bt = G−1B,
(3) det(A) = det(B)

det(G) , tr(A) =
∑n
i=1 aii =

∑
i,j bijg

ij.

Proof. Compute directly to get

bij = (T (vi), vj) = (
∑
k

akivk, vj) =
∑
k

akigkj = (AtG)ij ,

i.e., the ij-th entry of B is equal to the ij-th entry of AtG, which implies (1). Then
At = BG−1. But B and G are symmetric matrices, so A = (G−1)tBt = G−1B,
which proves (2). Recall that det(A1A2) = det(A1) det(A2) and det(G−1) = 1

det(G) .

Thus det(A) = det(B)
det(G) . �

Let ( , ) be an inner product on V , and S : V → V a self-adjoint linear operator.
Define bS : V × V → R by

bS(v, w) = (S(v), w).
It is easy to check that

(i) bS is a symmetric bilinear form on V ,
(ii) the coefficient matrix of bS is (sij), where sij = (S(vi), vj).

The bilinear form bS will be called the bilinear associated to S.

Proposition 2.4.6. Suppose ( , ) is an inner product on V , and b a symmetric
bilinear form on V . Then there exists a unique self-adjoint operator S : V → V
such that b = bS.

Proof. Let {v1, . . . , vn} be an orthonormal basis of V , and bij = b(vi, vj). Define
S : V → V be the linear map such that S(vi) =

∑n
j=1 bjivj . It is easy to check

that b = bS . �

Exercise 2.4.1.

(1) Suppose the coefficient matrix of the bilinear form b on R2 with respect to

basis
(

1
1

)
,

(
2
3

)
is
(

1 −1
−1 2

)
. Find b(v, v) for v =

(
1
0

)
.

(2) Let V be the linear subspace of R3 defined by x+ y+ z = 0, and b(v, w) =
v · w, the dot product of v and w. Prove that

(a)

 1
−1
0

 ,

 0
1
−1

 form a basis of V ,

(b) Find the coefficient matrix of b with respect to this basis.

2.5. The first fundamental Form.

Definition 2.5.1. Suppose f : O → R3 is a parametrized surface in R3. A qua-
dratic form Q on f , is a function p 7→ Qp that assigns to each p in O a quadratic
form Qp on the tangent plane Tfp of f at p.
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Remark 2.5.2. Making use of the bases fu(p), fv(p) in the Tfp, a quadratic form Q
on f is described by the symmetric 2×2 matrix of real-valued functions Qij : O → R
defined by

Qij(p) := Q(fxi(p), fxj (p)),

(where x1 = u and x2 = v). We call the Qij the coefficients of the quadratic
form Q, and we say that Q is of class Ck if its three coefficients are Ck. These
three functions Q11, Q12 = Q21, and Q22 on O determine the quadratic form Q
on f uniquely: if w ∈ Tfp, then we can write w = ξfu(p) + ηfv, and Qp(w) =
Q11(p) ξ2 + 2Q12(p) ξ η +Q22(p) η2.

Note that we can choose any three functions Qij and use the above formula
for Qp(w) to define a unique quadratic form Q on f with these Qij as coefficients.
This means that we can identify quadratic forms on a surface with ordered
triples of real-valued functions on its domain.

Notation. Because of the preceding remark, it is convenient to have a simple
way of referring to the quadratic form Q on a surface having the three coefficients
A,B,C. There is a classical and standard notation for this, namely:

Q = A(u, v) du2 + 2B(u, v) du dv + C(u, v) dv2.

To see the reason for this notation—and better understand its meaning—consider
a curve in O given parametrically by t 7→ (u(t), v(t)), and the corresponding image
curve α(t) := f(u(t), v(t)) on f . Then α′(t) = fu(u(t), v(t))u′(t)+fv(u(t), v(t))v′(t)
and

Q(α′(t)) = A(u(t), v(t))(u′(t))2 +B(u(t), v(t))(u′(t)v′(t)) + C(u(t), v(t))(v′(t))2.

The point is that curves on f are nearly always given in the form t 7→ f(u(t), v(t)),
so a knowledge of the coefficients A,B,C as functions ot u, v is just what is needed
in order to compute the values of the form on tangent vectors to such a curve from
the parametric functions u(t) and v(t). As a first application we shall now develop
a formula for the length of the curve α.

Definition of the First Fundamental Form of a Surface f

Since the tangent plane Tfp is a linear subspace of R3 it becomes an inner-
product space by using the restriction of the inner product on R3. Let Ip : TMp ×
TMp → R denote this inner product, i.e.,

Ip(ξ, η) = ξ · η

for all ξ, η ∈ Tfp, which is the First Fundamental Form on f . The coefficient matrix
for I with respect to the basis {fu, fv} is (gij), where

g11 = fu · fu,
g12 = g21 = fu · fv,
g22 = fv · fv.

Thus:
I = g11(u, v) du2 + 2g12(u, v) du dv + g22(u, v) dv2.

If ξ1 and ξ2 are tangent vectors of f at p0 = (u0, v0), then we can write ξ1 =
a1fu(p0) + a2fv(p0) and ξ2 = b1fu(p0) + b2fv(p0) for some constants a1, a2, b1, b2.
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So

ξ1 · ξ2 = (a1fu(p0) + a2fv(p0)) · (b1fu(p0) + b2fv(p0))

= g11(p0)a1b1 + g12(p0)(a1b2 + a2b1) + g22(p0)a2b2.

In other words, we can compute the inner product of two vectors of the tangent
plane Tfp0 (hence the length of a vector and the angle between two vectors in Tfp)
from gij(p0)’s.

The Arc Length of a Curve on a Surface
Let t 7→ (u(t), v(t)) be a parametric curve in O with domain [a, b]. The length,

L, of the curve α : t 7→ f(u(t), v(t)) is:

L =
∫ b

a

||α′(t)|| dt

=
∫ b

a

√
g11(u(t), v(t))u′(t)2 + 2g12(u(t), v(t))u′(t)v′(t) + g22(u(t), v(t))v′(t)2) dt.

The Angle between two curves
Let c1(t) = (x1(t), x2(t)) and c2(t) = (y1(t), y2(t)) be two smooth curves in O

such that c1(0) = c2(0) = p0 = (u0, v0). The angle θ between α1 = f ◦ c1 and
α2 = f ◦ c2 is defined to be the angle between α′1(0) and α′2(0). So

cos θ =
α′1(0) · α′2(0)
||α′1(0)||||α′2(0)||

=

∑2
i,j=1 gij(p0)x′i(0)y′j(0)√(∑2

i,j=1 gij(p0)x′i(0)x′j(0)
)(∑2

i,j=1 gij(p0)y′i(0)y′j(0)
) .

The Area

First recall that the area of the parallelgram spanned by v1, v2 in R3 is equal to
the base times the height, so it is ||v1||||v2|| sin θ, where θ is the angle between v1
and v2. But cos θ = v1·v2

||v1||||v2|| implies that

||v1||2||v2||2 sin2 θ = ||v1||2||v2||2(1− cos2 θ) = ||v1||2||v2||2
(

1−
(

v1 · v2
||v1||||v2||

)2
)

= ||v1||2||v2||2 − (v1 · v2)2 =
∣∣∣∣v1 · v1 v1 · v2
v2 · v1 v2 · v2

∣∣∣∣ = ||v1 × v2||2.

Next sketch the idea of how to compute the area of the surface f over a rectan-
gular region D = [a1, b1]× [a2, b2] inside O: we subdivide D into small rectangular
pieces and use the parallelgram spanned by fu4u and fv4v to approximate the
area of each small piece, and then add them up to get an approximation of the area
of f(D). When the sides of the small pieces tend to zero, the limit of the sum is
the surface area of f(D): ∫ a2

a1

∫ b2

b1

√
g11g22 − g2

12 dudv.

Alternative Notations for the First Fundamental Form.
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The First Fundamental Form of a surface is so important that there are several
other standard notational conventions for referring to it. One whose origin should
be obvious is to denote to it by ds2, and call ds =

√
ds2 the “line element” of the

surface.

2.6. The shape operator and the second fundamental form.

Suppose f : O → R3 is a parametrized surface, and N : O → R3 is the unit
normal vector field defined by

N =
fx1 × fx2

||fx1 × fx2 ||
.

Since N ·N = 1, the product rule implies that

0 =
∂

∂xi
(N ·N) = Nxi ·N +N ·Nxi = 2Nxi ·N,

so both Nx1 and Nx2 are tangent to f .

Definition 2.6.1. The shape operator Sp at p ∈ O for the parametrized surface
f : O → R3 is the linear map from Tfp to Tfp such that S(fxi(p)) = −Nxi(p) for
i = 1, 2.

Given any tangent vector ξ of f at f(p), we write ξ as a linear combination of
fx1(p), fx2(p), ξ = c1fx1(p) + c2fx2(p), then Sp(ξ) = −c1Nx1(p)− c2Nx2(p).

Proposition 2.6.2. The shape operator Sp is self-adjoint.

Proof. By definition, Sp(fx1) · fx2 = −Nx1 · fx2 . But N · fx2 = 0 implies that

(N · fx2)x1 = 0 = Nx1 · fx2 +N · fx2x1 ,

so −Nx1 · fx2 = N · fx2x1 . Similarly, −Nx2 · fx1 = N · fx1x2 . Because f is smooth,
fx1x2 = fx2x1 . So

−Nx1 · fx2 = −Nx2 · fx1 = N · fx1x2 ,

which implies that

Sp(fx1(p)) · fx2(p) = fx1(p) · Sp(fx2(p)).

Set v1 = fx1(p), v2 = fx2(p). Next we want to prove Sp is self-adjoint. Given
ξ, η in Tfp, we write ξ = c1v1 + c2v2 and η = d1v1 + d2v2. Since S is linear,

Sp(ξ) · η = c1d1Sp(v1) · v1 + c1d2Sp(v1) · v2 + c2d1Sp(v2) · v1 + c2d2Sp(v2, v2),

Sp(η) · ξ = c1d1Sp(v1) · v1 + c1d2Sp(v2) · v1 + c2d1Sp(v1) · v2 + c2d2Sp(v2) · v2.
But we have shown that Sp(v1) · v2 = v1 · Sp(v2), so Sp(ξ) · η = ξ · Sp(η). �

Let IIp denote the symmetric bilinear form on Tfp associated to the self-adjoint
operator Sp, i.e.,

IIp : Tfp × Tfp → R
is defined by

IIp(ξ, η) = S(ξ) · η.
It is easy to check that II is bilinear, and is symmetric because Sp is self-adjoint.
So the coefficient matrix (`ij) of IIp with respect to basis {fx1(p), fx2(p)} of Tfp
are given by

`ij = IIp(fxi , fxj ) = Sp(fxi) · fxj = −Nxi · fxj = N · fxixj .
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Hence
II = `11dx

2
1 + 2`12dx1dx2 + `22dx

2
2,

which is called the second fundamental form of f .

Example 2.6.3. (The graph of u). Let u : O → R be a smooth function,
and f : O → R3 the graph of u, i.e., f(x1, x2) = (x1, x2, u(x1, x2)). A direct
computation implies that

fx1 = (1, 0, ux1), fx2 = (0, 1, ux2), N =
fx1 × fx2

||fx1 × fx2 ||
=

(−ux1 ,−ux2 , 1)√
1 + u2

x1
+ u2

x2

.

fxixj = (0, 0, uxixj ).

So we have

g11 = fx1 · fx1 = 1 + u2
x1
, g12 = fx1 · fx2 = ux1ux2 , g22 = fx2 · fx2 = 1 + u2

x2
,

`ij = N · fxixj =
uxixj√

1 + u2
x1

+ u2
x2

and the two fundamental forms are

I =
2∑

i,j=1

gijdxidxj = (1 + u2
x1

)dx2
1 + 2ux1ux2dx1dx2 + (1 + u2

x2
)dx2

2,

II =
2∑

i,j=1

`ijdxidxj =
1√

1 + u2
x1

+ u2
x2

(ux1x1dx
2
1 + 2ux1x2dx1dx2 + ux2x2dx

2
2).

The area of the surface f(D) is∫ ∫
D

√
g11g22 − g2

12 tdx1dx2 =
∫ ∫

D

√
1 + u2

x1
+ u2

x2
dx1dx2.

The meaning of the second fundamental form II

Fix p0 ∈ O and a unit tangent vector ξ of f at p0, let σ denote the intersection
of the surface f(O) and the plane E spanned by ξ and the normal vector N(p0).
Then σ is a curve lies on the plane E and will be called the plane section of f at
p0 defined by ξ.

Theorem 2.6.4. (Meusnier’s Theorem) The curvature of the plane section of a
parametrized surface f : O → R3 at p0 defined by a unit tangent vector ξ in Tfpo
is equal to IIp0(ξ, ξ).

Proof. We may assume there is c : (−ε, ε) → O such that c(0) = p0, σ(s) =
f(c(s)) = f(c1(s), c2(s)) parametrized by arc-length is the plane section defined by
ξ. Then

σ′(s) = e1(s) = fx1(c1(s), c2(s))c′1(s) + fx2(c1(s), c2(s))c′2(s),

σ′′(s) = e′1(s) = fx1x1(c(s))c′1(s)2 + 2fx1x2(c(s))c′1(s)c′2(s) + fx2x2(c(s))c′2(s)2.

The normal of σ at s = 0 is N(p0), i.e., e2(0) = N(p0). But the curvature of σ at
s = 0 is

sk(0) = e′1(0) · e2(0) = σ′′(0) ·N(p0)

= c′1(0)2fx1x1(p0) ·N(p0) + 2c′1(0)c′2(0)fx1x2(p0) ·N(p0) + c′2(0)2fx2x2(p) ·N(p0)

= `11(p0)c′1(0)2 + 2`12(p0)c′1(0)c′2(0) + `22c
′
2(0)2 = IIp0(ξ, ξ).
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Example 2.6.5.

(1) Let f(x, y) = (x, y, 0) (a plane). Then N = (0, 0, 1) and any plane section
is a straight line. So II(ξ, ξ) = 0 for all unit tangent vector ξ, thus II is
zero.

(2) Let f(x, y) = (cosx, sinx, y) (the cylinder with unit circle as the base).
A simple computation implies that N(x, y) = (− sinx, cosx, 0) is the unit
normal. The plane section of f defined by ξ = fx2(p0) = (0, 0, 1) is a
straight line, so the curvature is zero. Thus IIp0(ξ, ξ) = 0. The plane
section of f defined by η(p0) = (− sinx, cosx, 0) is a circle of radius 1, so
its curvature is 1, which implies that IIp0(η, η) = 1.

(3) Let O = {(x, y) | x2 + y2 < 1}, and f(x, y) = (x, y,
√

1− x2 − y2) (a
hemi-sphere). Every plane section is a part of the great circle, hence the
curvature is 1, which implies that II(ξ, ξ) = 1 for all unit tangent vector ξ.

Example 2.6.6. Let O = {(x1, x2) | x1 ∈ (0, 2π), x2 ∈ R}, f, h : O → R3 defined
by f(x1, x2) = (x1, x2, 0) and h(x1, x2) = (cosx1, sinx1, x2). So f is the plane
region (0, 2π)× R× {0} and h is the the cylinder minus the line {(1, 0, t) | t ∈ R}.
A simple computation implies that The first and second fundamental forms for f
and h are

I = dx2
1 + dx2

2, II = 0,

Ĩ = dx2
1 + dx2

2, ˜ II = dx2
1,

respectively. Note that f and h have the same first fundamental form, so the
geometry involving arc length, angles and areas on the two surfaces are identical.
The shortest curve jointing two points (p, 0), (q, 0) in the surface f is the straight
line t 7→ (p + t(q − p), 0), so the shortest curve joining p to q in the surface given
by g is also t 7→ h(p+ t(q − p)). Thus the geometry of triangles on f and on h are
the same. In fact, the map f(x, y) 7→ h(x, y) is an ”isometry” (preserving the first
fundamental form). Properties that depend only on the first fundamental form are
called intrinsic properties.

2.7. Eigenvalues and eigenvectors.

Let V be a vector space, and S : V → V a linear map. A non-zero vector v ∈ V
is an eigenvector of S with eigenvalue λ0 if S(v) = λ0v.

Recall that if A is an n×n real matrix, then for λ0 ∈ R, det(A−λ0I) = 0 if and
only if there exists non-zero u ∈ Rn such that Au = λ0u. We call λ0 an eigenvalue
and u an eigenvector of the matrix A. If S : Rn → Rn is the linear map defined by
S(x) = Ax, then eigenvalues and eigenvectors of A are the same as for the linear
opearator S. For a linear map on a general vector space, we have

Proposition 2.7.1. Let A denote the matrix associated to the linear operator S :
V → V with respect to the basis {v1, . . . , vn}. Then

(1) λ0 ∈ R is an eigenvalues of S if and only if det(A− λ0I) = 0,
(2) if Au = λ0u, then v = u1v1 + . . . + unvn is an eigenvector of S, where

u = (u1, . . . , un)t.
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Proof. By definition, S(vi) =
∑n
j=1 ajivj . Since S is linear, we have

S(
n∑
i=1

uivi) =
n∑
i=1

uiS(vi) =
n∑
i=1

ui

n∑
j=1

ajivj =
n∑
j=1

n∑
i=1

ajiui vj .

But
∑n
i=1 ajiui is the j1-th entry of Au, which is λ0u, so it is equal to λ0uj . Thus

S(
∑n
i=1 uivi) = λ0

∑n
j=1 ujvj , and

∑n
i=1 uivi is an eigenvector of S with eigenvalue

λ0. �

Proposition 2.7.2. Let A =
(
a b
b c

)
(real, symmetric 2× 2 matrix). Then

(1) A has two real eigenvalues λ1, λ2,
(2) λ1λ2 = det(A), λ1 + λ2 = tr(A) = a+ c,
(3) there is an o.n. basis {v1, v2} of R2 such that vi is an eigenvector with

eigenvalue λi for i = 1, 2 (we call {v1, v2} an o.n. eigenbase of A).

Proof. To find eigenvalues for A, we need to solve

det(A− λI) =
∣∣∣∣a− λ b
b c− λ

∣∣∣∣ = (a− λ)(c− λ)− b2 = λ2 − (a+ c)λ+ ac− b2 = 0.

Since the discriminant 4 is (a+ c)2−4(ac− b2) = (a− c)2 +4b2 ≥ 0, this quadratic
polynomial has two real roots:

λ1 =
1
2

(a+ c+
√

(a− c)2 + b2), λ1 =
1
2

(a+ c−
√

(a− c)2 + b2).

This proves (1) and (2).
If the 4 is zero, then a = c and b = 0, so A = aI and {(1, 0)t, (0, 1)t} is an o.n.

eigenbase of A. If 4 > 0, then (A− λi)ξi = 0 can be solved easily:

ξ1 =

(
−b,

a− c−
√

(a− c)2 + b2

2

)t
, ξ2 =

(
−b,

a− c+
√

(a− c)2 + b2

2

)t
are eigenvectors of A with eigenvalues λ1, λ2 respectively. But ξ1 ·ξ2 = 0, so {v1, v2}
is an o.n. eigenbase for A, where {v1 = ξ1/||ξ1|| and v2 = ξ2/||ξ2||}. �

The above Proposition is a special case of the following general Theorem in linear
algebra:

Theorem 2.7.3. If A is a real, symmetric n× n matrix, then A has n real eigen-
values λ1, . . . , λn and there is basis {u1, . . . , un} of Rn such that Aui = λiui for all
1 ≤ i ≤ n. (We call such basis an o.n. eigenbase for A).

We have shown that the matrix associated to a self-adjoint operator with respect
to an o.n. basis is symmetric. So we conclude:

Theorem 2.7.4. (Spectral Theorem)
Let ( , ) be an inner product on V , dim(V ) = n, and S : V → V a linear

self-adjoint operator. Then

(1) S has n real eigenvalues λ1, . . . , λn,
(2) there is an o.n. basis {v1, . . . , vn} of V such that S(vi) = λiv for 1 ≤ i ≤ n.



30

Proposition 2.7.5. Let ( , ) be an inner product on V , dim(V ) = n, S : V → V a
linear self-adjoint operator, {v1, . . . , vn} an o.n. eigenbase of S, and S(vi) = λivi
for 1 ≤ i ≤ n. Let bS : V × V → R be the symmetric bilinear form associated to S,
i.e., bS(ξ, η) = (S(ξ), η). Then

min
||v||=1

bS(v, v) = λ1 = bS(v1), max
||v||=1

bS(v, v) = λn = bS(vn).

Proof. Let {v1, . . . , vn} be an o.n. eigenbase of S with eigenvalues λ1, . . . , λn re-
spectively. Then

bS

(
n∑
i=1

xivi,

n∑
i=1

xivi

)
=

S( n∑
i=1

xivi

)
,

n∑
j=1

xjvj

 =

 n∑
i=1

xiλivi,

n∑
j=1

xjvj


=

n∑
i=1

λix
2
i .

The norm ||v|| = 1 if and only if
∑n
i=1 x

2
i = 1. But the maximum and minimum

value of λ1x
2
1 + . . .+ λnx

2
n on the set

∑n
i=1 x

2
i = 1 are λn and λ1 respectively. �

2.8. Principal, Gaussian, and mean curvatures.

Since the shape operator Sp is a self-adjoint operator on the tangent plane Tfp
of a parametrized surface f : O → R3, as a consequence of the Spectral Theorem
we have

Proposition 2.8.1. The shape operator of a parametrized surface f : O → R3 at
f(p) has two real eigenvalues and an o.n. eigenbase.

Definition 2.8.2.

(1) The eigenvalues k1, k2 of the shape operator Sp of the parametrized surface
f : O → R3 at p are called the principal curvatures and principal directions.

(2) The Gaussian curvature of f is K = k1k2.
(3) The mean curvature of f is H = k1 + k2.
(4) The principal directions of f at p are the unit eigenvectors v1, v2 of the

shape operator Sp.

We have shown before that the matrix of the shape operator S with respect to
the basis {fx1 , fx2} is A = G−1L, where G = (gij), L = (`ij), gij and `ij are the

coefficients for I and II. Note that if B =
(
a b
c d

)
is invertible, then it is easy to

check that

B−1 =
1

ad− bc

(
d −b
−c a

)
.

By Proposition 2.7.1, K = k1k2 = det(A) and H = k1 + k2 = tr(A), so

(2.8.1) K =
det(`ij)
det(gij)

=
`11`22 − `212
g11g22 − g2

12

.
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We compute the matrix A of the shape operator:

A = G−1L =
1

g11g22 − g2
12

(
g22 −g12
−g12 g11

)(
`11 `12
`12 `22

)
=

1
g11g22 − g2

12

(
g22`11 − g12`12 g22`12 − g12`22
−g12`11 + g11`12 −g12`12 + g11`22

)
,

so

H =
g22`11 − 2g12`12 + g11`22

g11g22 − g2
12

.

It follows from Proposition 2.7.1 that
(1) the principal curvatures k1, k2 are eigenvalues of A = G−1L,

(2) if
(
r1
s1

)
and

(
r2
s2

)
are eigenvectors of A = G−1L with eigenvalues k1, k2,

then v1 = r1fx1 + s1fx2 and v2 = r2fx1 + s2fx2 are in principal directions.

Example 2.8.3. For cylinder f(x1, x2) = (cosx1, sinx1, x2), we have

fx1 = (− sinx1, cosx1, 0), fx2 = (0, 0, 1),

fx1x1 = (− cosx1,− sinx1, 0), fx1x2 = (0, 0, 0), fx2x2 = (0, 0, 0),

N =
fx1 × fx2

||fx1 × fx2 ||
= (cosx1, sinx1, 0),

so

g11 = g22 = 1, g12 = 0,
`11 = −1, `12 = `22 = 0,

and the matrix for the shape operator is A = G−1L =
(
−1 0
0 0

)
. So the principal

curvatures k1 = −1, k2 = 0 and fx1 , fx2 are the principal directions.

Example 2.8.4. If f is a parametrization of a piece of a sphere of radius r centered
at the origin, then the unit normal vector at f(p) is N(p) = 1

rf(p). So the shape
operator Sp(fxi) = Nxi = 1

rfxi for i = 1, 2. This implies that S = −rId and
II(ξ, η) = S(ξ) · η = −rξ · η = −rI. The eigenvalues of S are − 1

r ,−
1
r , hence

H = −2/r and K = 1/r2.

Example 2.8.5. For f(x, y) = (x, y, x2 + y2), we have

fx = (1, 0, 2x), fy = (0, 1, 2y), N =
(−2x,−2y, 1)√
1 + 4x2 + 4y2

,

fxx = (0, 0, 2), fxy = 0, fyy = (0, 0, 2).

So

g11 = 1 + 4x2, g12 = 4xy, g22 = 1 + 4y2,

`11 = `22 =
2√

1 + 4x2 + 4y2
, `12 = 0,

K =
det(`ij)
det(gij)

=
4

(1 + 4x2 + 4y2)2
, H =

4(1 + 2x2 + 2y2)
(1 + 4x2 + 4y2)3/2

.
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Exercise 2.8.1.

(1) Let h : (0,∞)→ R be a smooth function, O = {(x, y) | x > 0, y ∈ R}, and
f : O → R3 defined by

f(x, y) =
(
x, y, xh

(y
x

))
.

Prove that all tangent planes of f pass through the origin (0, 0, 0).
(2) Let O = {(x, y) | x2 + y2 < 1}. Prove that if all normals to a parametrized

surface f : O → R3 pass through a fixed point q0, then f(O) must lie in a
sphere centered at q0.

Exercise 2.8.2.
Compute I, II, H,K of the following parametrized surfaces:
(1) Let α : (a, b) → R3 be a smooth curve parametrized by arc-length with

positive curvature, O = (a, b)× (0,∞), and f : O → R3 defined by

f(s, t) = α(s) + tα′(s).

(2) Let O = (0, 2π)× (0, π), f : O → R3 defined by

f(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).

(This is a sphere)
(3) f(u, v) = (u− u3

3 + uv2, v − v3

3 + vu2, u2 − v2).
(4) Let α(s) = (x(s), y(s)) be a plane curve parametrized by arc length such

that x(s) > 0, and f(s, t) = (x(s) cos t, y(s), x(s) sin t) (the surface obtained
by rotating the curve α about the y-axis).

3. Fundamental Theorem of Surfaces in R3

3.1. Frobenius Theorem.

Let O be an open subset of R2, f, g : O → R smooth maps, (x0, y0) ∈ O, and
c0 ∈ R. Then the initial value problem for the following ODE system,

∂u
∂x = f(x, y),
∂u
∂y = g(x, y),
u(x0, y0) = c0,

has a smooth solution defined in some disk centered at (x0, y0) for any given
(x0, y0) ∈ O if and only if f, g satisfy the compatibility condition

∂f

∂y
=
∂g

∂x

in O. Moreover, we can use integration to find the solution as follows: Suppose
u(x, y) is a solution, then the Fundamental Theorem of Calculus implies that

u(x, y) = v(y) +
∫ x

x0

f(t, y) dt
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for some v(y) such that v(y0) = c0. But

uy = v′(y) +
∫ x

x0

∂f

∂y
dt = v′(y) +

∫ x

x0

∂g

∂x
dx = v′(y) + g(x, y)− g(x0, y)

should be equal to g(x, y), so v′(y) = g(x0, y). But v(y0) = c0, hence

v(y) = c0 +
∫ y

y0

g(x0, s)ds.

In other words, the solution for the initial value problem is

u(x, y) = c0 +
∫ y

y0

g(x0, s) ds+
∫ x

x0

f(t, y) dt.

Given smooth maps A,B;O×R→ R, we now consider the following first order
PDE system for u : O → R:

(3.1.1)

{
∂u
∂x = A(x, y, u(x, y)),
∂u
∂y = B(x, y, u(x, y)).

If we have a smooth solution u for (3.1.1), then (ux)y = (uy)x. But

(ux)y = (A(x, y, u(x, y))y = Ay +Auuy = Ay +AuB

= (uy)x = (B(x, y, u(x, y))x = Bx +Buux = Bx +BuA.

Thus A,B must satisfy the following condition:

(3.1.2) Ay +AuB = Bx +BuA.

The Frobenius Theorem states that (3.1.2) is both a necessary and sufficient con-
dition for the first order PDE system (3.1.1) to be solvable. We will see from the
proof of this theorem that, although we are dealing with a PDE, the algorithm to
construct solutions of this PDE is to first solve an ODE system in x variable (first
equation of (3.1.1) on the line y = y0), and then solve a family of ODE systems
in y variables (the second equation of (3.1.1) for each x). The condition (3.1.2)
guarantees that this process produces a solution of (3.1.1). We state the Theorem
for u : O → Rn:

Theorem 3.1.1. (Frobenius Theorem) Let U1 ⊂ R2 and U2 ⊂ Rn be open
subsets, A = (A1, . . . , An), B = (B1, . . . , Bn) : U1 × U2 → Rn smooth maps,
(x0, y0) ∈ U1, and p0 ∈ U2. Then the following first order system

(3.1.3)


∂u
∂x = A(x, y, u(x, y)),
∂u
∂y = B(x, y, u(x, y)),
u(x0, y0) = p0,

has a smooth solution for u in a neighborhood of (x0, y0) for all possible (x0, y0) ∈ U1

and p0 ∈ U2 if and only if

(3.1.4) (Ai)y +
n∑
j=1

∂Ai
∂uj

Bj = (Bi)x +
n∑
j=1

∂Bi
∂uj

Aj , 1 ≤ i ≤ n,

hold identically on U1 × U2.
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Equation (3.1.3) written in coordinates gives the following system:
∂ui
∂x = Ai(x, y, u1(x, y), . . . , un(x, y)), 1 ≤ i ≤ n,
∂ui
∂y = Bi(x, y, u1(x, y), . . . , un(x, y)), 1 ≤ i ≤ n,
ui(x0, y0) = p0

i ,

where p0 = (p0
1, . . . , p

0
n).

We call (3.1.4) the compatibility condition for the first order PDE (3.1.3).
To prove the Frobenius Theorem we need to solve a family of ODEs depending

smoothly on a parameter, and we need to know whether the solutions depend
smoothly on the initial data and the parameter. This was answered by the following
Theorem in ODE:

Theorem 3.1.2. Let O be an open subset of Rn, t0 ∈ (a0, b0), and f : [a0, b0] ×
O × [a1, b1]→ Rn a smooth map. Given p ∈ O and r ∈ [a1, b1], let yp,r denote the
solution of

dy

dt
= f(t, y(t), r), y(t0) = p,

and u(t, p, r) = yp,r(t). Then u is smooth in t, p, r.

Proof. Proof of Frobenius Theorem
If u = (u1, . . . , un) is a smooth solution of (3.1.3), then ∂

∂y
∂ui
∂x = ∂

∂x
∂u
∂y . Use the

chain rule to get

∂

∂y

∂ui
∂x

=
∂

∂y
Ai(x, y, u1(x, y), . . . , un(x, y)) =

∂Ai
∂y

+
n∑
j=1

∂Ai
∂uj

∂uj
∂y

=
∂Ai
∂y

+
n∑
j=1

∂Ai
∂uj

Bj ,

∂

∂x

∂ui
∂y

=
∂

∂x
Bi(x, y, u(x, y)) =

∂Bi
∂x

+
n∑
j=1

∂Bi
∂uj

∂uj
∂x

=
∂Bi
∂x

+
n∑
j=1

∂Bi
∂uj

Aj ,

so the compatibility condition (3.1.4) must hold.
Conversely, assume A,B satisfy (3.1.4). To solve (3.1.3), we proceed as follows:

The existence and uniqueness Theorem of solutions of ODE implies that there exist
δ > 0 and α : (x0 − δ, x0 + δ)→ U2 satisfying

(3.1.5)

{
dα
dx = A(x, y0, α(x)),
α(x0) = p0.

For each fixed x ∈ (x0 − δ, x0 + δ), let βx(y) denote the unique solution of the
following ODE in y variable:

(3.1.6)

{
dβx

dy = B(x, y, βx(y)),
βx(y0) = α(x).

Set u(x, y) = βx(y). Note that (3.1.6) is a family of ODEs in y variable depending
on the parameter x and B is smooth, so by Theorem 3.1.2, u is smooth in x, y.
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Hence (ux)y = (uy)x. By construction, u satisfies the second equation of (3.1.3)
and u(x0, y0) = p0. It remains to prove u satisfies the first equation of (3.1.3). We
will only prove this for the case n = 1, and the proof for general n is similar. First
let

z(x, y) = ux −A(x, y, u(x, y)).

But

zy = (ux −A(x, y, u))y = uxy −Ay −Auuy = (uy)x − (Ay +AuB)

= (B(x, y, u))x − (Ay +AuB) = Bx +Buux − (Ay +AuB)

= Bx +Buux − (Bx +BuA) = Bu(ux −A) = Bu(x, y, u(x, y))z.

This proves that for each x, hx(y) = z(x, y) is a solution of the following differential
equation:

(3.1.7)
dh

dy
= Bu(x, y, u(x, y))h.

Since α satisfies (3.1.5),

z(x, y0) = ux(x, y0)−A(x, y0, u(x, y0)) = α′(x)−A(x, y0, α(x)) = 0.

So hx is the solution of (3.1.7) with initial data hx(y0) = 0. We observe that the
zero function is also a solution of (3.1.7) with 0 initial data, so by the uniqueness
of solutions of ODE we have hx = 0, i.e., z(x, y) = 0, hence u satisfies the second
equation of (3.1.3). �

Remark 3.1.3. The proof of Theorem 3.1.1 gives the following algorithm to con-
struct numerical solution of (3.1.3):

(1) Solve the ODE (3.1.5) on the horizontal line y = y0 by a numerical method
(for example Runge-Kutta) to get u(xk, y0) for xk = x0 + kε where ε is the
step size in the numerical method.

(2) Solve the ODE system (3.1.6) on the vertical line x = xk for each k to get
the value u(xk, ym).

If A and B satisfies the compatibility condition, then u solves (3.1.3).

Let gl(n) denote the space of n×n real matrices. Note that gl(n) can be identified
as Rn2

. For P,Q ∈ gl(n), let [P,Q] denote the commutator (also called the bracket)
of P and Q defined by

[P,Q] = PQ−QP.

Corollary 3.1.4. Let U be an open subset of R2, (x0, y0) ∈ U , C ∈ gl(n), and
P,Q : U → gl(n) smooth maps. Then the following initial value problem for u :
U → gl(n)

(3.1.8)


ux = u(x, y)P (x, y),
uy = u(x, y)Q(x, y),
u(x0, y0) = C

has a smooth solution u defined in some small disk centered at (x0, y0) for all
possible (x0, y0) in U and C ∈ gl(n) if and only if

(3.1.9) Py −Qx = [P,Q].
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Proof. This Corollary follows from Theorem 3.1.1 with A(x, y, u) = uP (x, y) and
B(x, y, u) = uQ(x, y). We can also compute the mixed derivatives directly as
follows:

(ux)y = (uP )y = uyP + uPy = (uQ)P + uPy = u(QP + Py),

(uy)x = (uQ)x = uxQ+ uQx = (uP )Q+ uQx = u(PQ+Qx).

Thus u(QP + Py) = u(PQ+Qx). So the compatibility condition is

QP + Py = PQ+Qx,

which is (3.1.9). �

Remark 3.1.5. Given gl(3)-valued smooth maps P = (pij) andQ = (qij), equation
(3.1.8) is a system of 9 equations for 18 functions pij , qij . This is the type of equation
we need for the Fundamental Theorem of surfaces in R3. However, if P and Q are
skew symmetric, i.e., PT = −P and QT = −Q, then [P,Q] is also skew-symmetric
because

[P,Q]T = (PQ−QP )T = QTPT − PTQT = (−Q)(−P )− (−P )(−Q)

= QP − PQ = −[P,Q].

In this case, equation (3.1.8) becomes a system of 3 first order PDE involving six
functions p12, p13, p23, q12, q13, q23.

Proposition 3.1.6. Let O be an open subset of R2, and P,Q : O → gl(n) smooth
maps such that PT = −P and QT = −Q. Suppose P,Q satisfy the compatibility
condition (3.1.9), and the initial data C is an orthogonal matrix. If u : O0 → gl(n)
is the solution of (3.1.8), then u(x, y) is an orthogonal matrix for all (x, y) ∈ O0.

Proof. Set
ξ(x, y) = u(x, y)Tu(x, y).

Then ξ(x0, y0) = u(x0, y0)Tu(x0, y0) = I, the identity matrix. Compute directly to
get

ξx = (ux)Tu+ uTux = (uP )Tu+ uT (uP ) = PTuTu+ uTuP = PT ξ + ξP,

ξy = (uy)Tu+ uTuy = (uQ)Tu+ uT (uQ) = QTuTu+ uTuQ = QT ξ + ξQ.

This shows that ξ satisfies 
ξx = PT ξ + ξP,

ξy = QT ξ + ξQ,

ξ(x0, y0) = I.

But we observe that the constant map η(x, y) = I is also a solution of the above
initial value problem. By the uniqueness part of the Frobenius Theorem, ξ = η, so
uTu = I, i.e., u(x, y) is orthogonal for all (x, y) ∈ O0. �

Next we give some applications of the Frobenius Theorem 3.1.1:

Example 3.1.7. Given c0 > 0, consider the following first order PDE

(3.1.10)


ux = 2 sinu,
uy = 1

2 sinu,
u(0, 0) = c0.
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This is system (3.1.3) with A(x, y, u) = 2 sinu, B(x, y, u) = 1
2 sinu. We check the

compatibility condition next:

Ay +AuB = 0 + (2 cosu)(
1
2

sinu) = cosu sinu,

Bx +BuA = 0 + (
1
2

sinu)(2 cosu) = sinu cosu,

so Ay +AuB = Bx +BuA. Thus by Frobenius Theorem, (3.1.10) is solvable. Next
we use the method outlined in the proof of Frobenius Theorem to solve (3.1.10).

(i) The ODE {
dα
dx = 2 sinα,
α(0) = c0

is separable, i.e., dα
sinα = 2dx, so

∫
dα

sinα =
∫

2dx. This integration can be solved
explicitly:

α(x) = 2 tan−1 exp(2x+ c).
But α(0) = c0 = 2 tan−1 ec implies that c = ln(tan c0

2 ).
(ii) Solve {

du
dy = 1

2 sinu,
u(x, 0) = α(x) = 2 tan−1(2x+ c).

We can solve this exactly the same way as in (i) to get

u(x, y) = 2 tan−1(exp(2x+
y

2
+ c)),

where c = ln(tan c0
2 ).

Moreover, if u is a solution for (3.1.10), then

(ux)y = (2 sinu)y = 2 cosu uy = (2 cosu)(
1
2

sinu) = cosu sinu,

so u satisfies the following famous non-linear wave equation, the sine-Gordon equa-
tion (or SGE):

uxy = sinu cosu.

The above example is a special case of the following Theorem of Bäcklund:

Theorem 3.1.8. Given a smooth function q : R2 → R and a non-zero real constant
r, the following system of first order PDE is solvable for u : R2 → R:

(3.1.11)

{
us = −qs + r sin(u− q),
ut = qt + 1

r sin(u+ q).

if and only if q satisfies the SGE:

qst = sin q cos q, SGE.

Moreover, the solution u of (3.1.11) is again a solution of the SGE.

Proof. If (3.1.11) has a C2 solution u, then the mixed derivatives must be equal.
Compute directly to see that

(us)t = −qst + r cos(u− q)(u− q)t

= −qst + r cos(u− q)
(

1
r

sin(u+ q)
)
,
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so we get

(3.1.12) (us)t = −qst + cos(u− q) sin(u+ q).

A similar computation implies that

(3.1.13) (ut)s = qts + cos(u+ q) sin(u− q).

Since ust = uts and sin(A±B) = sinA cosB ± cosA sinB, we get

−qst + cos(u− q) sin(u+ q) = qts + cos(u+ q) sin(u− q),

so

2qst = sin(u+ q) cos(u− q)− sin(u− q) cos(u+ q) = sin(2q) = 2 sin q cos q.

In other words, the first order PDE (3.1.11) is solvable if and only if q is a solution
of the SGE.

Add (3.1.12) and (3.1.13) to get

2ust = sin(u+ q) cos(u− q) + sin(u− q) cos(u+ q) = sin(2u) = 2 sinu cosu.

This shows that if u is a solution of (3.1.11) then ust = sinu cosu. �

The above theorem says that if we know one solution q of the SGE then we can
solve the first order system (3.1.11) to construct a family of solutions of the SGE
(one for each real constant r). Note that q = 0 is a trivial solution of the SGE.
Theorem 3.1.8 implies that system (3.1.11) can be solved for u with q = 0, i.e.,

(3.1.14)

{
us = r sinu,
ut = 1

r sinu

is solvable. (3.1.14) can be solved exactly the same way as in Example 3.1.7, and
we get

u(s, t) = 2 arctan
(
ers+

1
r t
)
,

which are solutions of the SGE. The SGE is a so called “soliton” equation, and
these solutions are called ”1-solitons”. A special feature of soliton equations is the
existence of first order systems that can generate new solutions from an old one.

3.2. Line of curvature coordinates.

Definition 3.2.1. A parametrized surface f : O → R3 is said to be parametrized
by line of curvature coordinates if g12 = `12 = 0, or equivalently, both the first and
second fundamental forms are in diagonal forms.

If f : O → R3 is a surface parametrized by line of curvature coordinates, then

I = g11dx
2
1 + g22dx

2
2, II = `11dx

2
1 + `22dx

2
2.

The prinicipal, Gaussian and mean curvatures are given by the following formulas:

k1 =
`11
g11

, k2 =
`22
g22

, H =
`11
g11

+
`22
g22

, K =
`11`22
g11g22

.
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Example 3.2.2. Let u : [a, b]→ R be a smooth function, and

f(y, θ) = (u(y) sin θ, y, u(y) cos θ),

so the image of f is the surface of revolution obtained by rotating the curve z = u(y)
in the yz-plane along the y-axis. Then

fy = (u′(y) sin θ, 1, u′(y) cos θ),

fθ = (u(y) cos θ, 0,−u(y) sin θ),

N =
fy × fθ
||fy × fθ||

=
(− sin θ, u′(y),− cos θ)√

1 + (u′(y))2
,

fyy = (u′′(y) sin θ, 0, u′′(y) cos θ),

fyθ = (u′(y) cos θ, 0,−u′(y) sin θ),

fθθ = (−u(y) sin θ, 0,−u(y) cos θ).

So

g11 = 1 + (u′(y))2, g22 = u(y)2, g12 = 0,

`11 =
−u′′(y)√

1 + (u′(y))2
, `22 =

u(y)√
1 + (u′(y))2

, `12 = 0,

i.e., (y, θ) is a line of curvature coordinate system.

Proposition 3.2.3. If the principal curvatures k1(p0) 6= k2(p0) for some p0 ∈ O,
then there exists δ > 0 such that the ball B(p0, δ) of radius δ centered at p0 is
contained in O and k1(p) 6= k2(p) for all p ∈ B(p0, r).

Proof. The Gaussian and mean curvature K and H of the parametrized surface
f : O → R3 are smooth. The two principal curvatures are roots of λ2−Hλ+K = 0,
so we may assume

k1 =
H +

√
H2 − 4K
2

, k2 =
H −

√
H2 − 4K
2

.

Note that the two real roots are distinct if and only if u = H2 − 4K > 0. If
k1(p0) 6= k2(p0), then u(p0) > 0. But u is continuous, so there exists δ > 0 such
that u(p) > 0 for all p ∈ B(p0, δ), thus k1(p) 6= k2(p) in this open disk. �

A smooth map v : O → R3 is called a tangent vector field of the parametrized
surface f : O → R3 if v(p) ∈ Tfp for all p ∈ O.

Proposition 3.2.4. Let f : O → R3 be a parametrized surface. If its principal
curvatures k1(p) 6= k2(p) for all p ∈ O, then there exist smooth, o.n., tangent
vector fields e1, e2 on f that are e1(p), e2(p) are eigenvector for the shape operator
Sp for all p ∈ O.

Proof. This Proposition follows from the facts that
(1) self-adjoint operators have an o.n. basis consisting of eigenvectors,
(2) the shape operator Sp is a self-adjoint linear opeartor from Tfp to Tfp,
(3) the formula we gave for self-adjoint operator on a 2-dimensional inner prod-

uct space implies that the eigenvectors of the shape operator are smooth
maps.

�
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We assume the following Proposition without a proof:

Proposition 3.2.5. Let f : O → R3 be a parametrized surface. Suppose ξ1, ξ2 :
O → R3 are tangent vector fields of f such that ξ1(p), ξ2(p) are linearly independent
for all p ∈ O. Then given any p0 ∈ O there exists δ > 0, an open subset U of R2,
and a diffeomorphism φ : U → B(p0, δ) such that ξ1 and ξ2 are parallel to hx1 and
hx2 respectively, where h = f ◦ φ : U → R3.

As a consequence of the above two Propositions, we see that

Corollary 3.2.6. Let f : O → R3 be a parametrized surface, and p0 ∈ O. If
k1(p0) 6= k2(p0), then there exist an open subset O0 containing p0, an open sub-
set U of R2, and a diffeomorphism φ : U → O0 such that f ◦ φ is parametrized
by lines of curvature coordinates. In other words, we can change coordinates (or
reparametrized the surface) near p0 by lines of curvature coordinates.

We call f(p0) an umbilic point of the parametrized surface f : O → R3 if
k1(p0) = k2(p0). The above Corollary implies that away from umbilic points, we
can parametrized a surface by line of curvature coordinates locally.

3.3. The Gauss-Codazzi equation in line of curvature coordinates.

Suppose f : O → R3 is a surface parametrized by line of curvature coordinates,
i.e.,

g12 = fx1 · fx2 = 0, `12 = fx1x2 ·N = 0.
We define A1, A2, r1, r2 as follows:

g11 = fx1 · fx1 = A2
1, g22 = fx2 · fx2 = A2

2,

`11 = fx1x1 ·N = r1A1, `22 = fx2x2 ·N = r2A2.

Or equivalently,

A1 =
√
g11, A2 =

√
g22, r1 =

`11
A1

, r2 =
`22
A2

.

Set
e1 =

fx1

A1
, e2 =

fx2

A2
, e3 = N.

Then (e1, e2, e3) is an o.n. moving frame on the surface f . Recall that if {v1, v2, v3}
is an orthonormal basis of R3, then given any ξ ∈ R3, ξ =

∑3
i=1 aiei, where

ai = ξ · ei. Since (ei)x1 and (ei)x2 are vectors in R3, we can write them as linear
combinations of e1, e2 and e3. We use pij to denote the coefficient of ei for (ej)x1

and use qij to denote the coefficient of ei for (ej)x2 , i.e.,

(3.3.1)



(e1)x1 = p11e1 + p21e2 + p31e3,

(e2)x1 = p12e1 + p22e2 + p32e3,

(e3)x1 = p13e1 + p23e2 + p33e3,

(e1)x2 = q11e1 + q21e2 + q31e3,

(e2)x2 = q12e1 + q22e2 + q32e3,

(e3)x2 = q13e1 + q23e2 + q33e3,

where
pij = (ej)x1 · ei, qij = (ej)x2 · ei.
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Recall that the matrix P = (pij) and Q = (qij) must be skew symmetric because

(ei · ej)x1 = 0 = (ei)x1 · ej + ei · (ej)x1 = pji + pij .

Next we want to show that pij and qij can be written in terms of coefficients of
the first and second fundamental forms. We proceed as follows:

p12 = (e2)x1 · e1 =
(
fx2

A2

)
x1

· fx1

A1
=
(
fx2x1

A2
− fx2(A2)x1

A2
2

)
· fx1

A1

=
fx1x2 · fx1

A1A2
− (A2)x1

A1A2
2

fx2 · fx1 =
1
2 (fx1 · fx1)x2

A1A2
=

1
2 (A2

1)x2

A1A2
− 0

=
A1(A1)x2

A1A2
=

(A1)x2

A2
.

p31 = (e1)x1 · e3 =
(
fx1

A1

)
x1

· e3 =
(
fx1x1

A1
− fx1(A1)x1

A2
1

)
·N

=
fx1x1 ·N

A1
− (A1)x1

A2
1

fx1 ·N =
`11
A1
− 0 = r1.

p32 = (e2)x1 · e3 =
(
fx2

A2

)
x1

·N =
(
fx2x1

A2
− fx2(A2)x2

A2
2

)
·N = 0

So we have proved that

p12 =
(A1)x2

A2
, p31 = r1, p32 = 0.

In the above computations we have used fx1 · fx2 = 0, fx1x2 · N = 0, fx1 · N =
fx2 ·N = 0. Similar computation gives

q12 = − (A2)x1

A1
, q31 = 0, q32 = r2.

Since P,Q are skew-symmetric, we have

(3.3.2) P =

 0 (A1)x2
A2

−r1
− (A1)x2

A2
0 0

r1 0 0

 , Q =

 0 − (A2)x1
A1

0
(A2)x1
A1

0 −r2
0 r2 0

 .

So (3.3.1) becomes 
(e1)x1 = − (A1)x2

A2
e2 + r1e3,

(e2)x1 = (A1)x2
A2

e1,

(e3)x1 = −r1e1,
(e1)x2 = (A2)x1

A1
e2,

(e2)x2 = − (A2)x1
A1

e1 + r2e3,

(e3)x2 = −r2e2.

We can also write (3.3.1) in matrix form:

(3.3.3)

{
(e1, e2, e3)x1 = (e1, e2, e3)P,
(e1, e2, e3)x2 = (e1, e2, e3)Q,
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where P,Q are given by (3.3.2). It follows from Corollary 1.04 [] of the section on
Frobenius Theorem [] that P,Q must satisfy the compatibility condition

Px2 −Qx1 = PQ−QP.

Use the formula of P,Q given by (3.3.2) to compute directly to get

PQ−QP

=

 0 p −r1
−p 0 0
r1 0 0

  0 q 0
−q 0 −r2
0 r2 0

−
 0 q 0
−q 0 0
0 r2 0

  0 p −r1
−p 0 0
r1 0 0


=

 0 −r1r2 −pr2
r1r2 0 −qr1
pr2 qr1 0

 ,

Px2 −Qx1 =

 0 px2 − qx1 −(r1)x2

−(px2 − qx1) 0 (r2)x1

(r1)x2 −(r2)x1 0

 ,

where

p =
(A1)x2

A2
, q = − (A2)x1

A1
.

Since
PQ−QP = Px2 −Qx1 ,

we get

(3.3.4)


(

(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

= −r1r2,

(r1)x2 = (A1)x2
A2

r2,

(r2)x1 = (A2)x1
A1

r1.

System (3.3.4) is called the Gauss-Codazzi equation. So we have proved:

Theorem 3.3.1. Let f : O → R3 be a surface parametrized by line of curvature
coordinates, and

A1 =
√
g11, A2 =

√
g22, r1 =

`11
A1

, r2 =
`22
A2

.

Set

e1 =
fx1

A1
, e2 =

fx2

A2
, e3 =

fx1 × fx2

||fx1 × fx2 ||
= e1 × e2.

Then A1, A2, r1, r2 satisfy the Gauss-Codazzi equation (3.3.4) and

(3.3.5)



(f, e1, e2, e3)x1 = (e1, e2, e3)

A1 0 (A1)x2
A2

−r1
0 − (A1)x2

A2
0 0

0 r1 0 0


(f, e1, e2, e3)x2 = (e1, e2, e3)

 0 0 − (A2)x1
A1

0

A2
(A2)x1
A1

0 −r2
0 0 r2 0

 .
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3.4. Fundamental Theorem of surfaces in line of curvature coordinates.

The converse of Theorem 3.3.1 is also true, which is the Fundamental Theorem
of surfaces in R3 with respect to line of curvature coordinates:

Theorem 3.4.1. Supppose A1, A2, r1, r2 are smooth functions from O to R, that
satisfy the Gauss-Codazzi equation (3.3.4), and A1 > 0, A2 > 0. Given p0 ∈ O,
y0 ∈ R3, and an o.n. basis v1, v2, v3 of R3, then there exist an open subset O0 of
O containing p0 and a unique solution (f, e1, e2, e3) : O0 → (R3)4 of (3.3.5) that
satisfies the initial condition

(f, e1, e2, e3)(p0) = (y0, v1, v2, v3).

Moreover, f is a parametrized surface and its first and second fundmental forms
are

I = A2
1 dx

2
1 +A2

2 dx
2
2, II = r1A1 dx

2
1 + r2A2 dx

2
2.

Proof. We have proved that the compatibility condition for (3.3.3) is the Gauss-
Codazzi equation (3.3.4), so by the Forbenius Theorem (3.3.3) is solvable. Let
(e1, e2, e3) be the solution with initial data

(e1, e2, e3)(p0) = (v1, v2, v3).

Since P,Q are skew-symmetric and (v1, v2, v3) is an orthogonal matrix, by Propo-
sition 1.0.6 of the section on Frobenius Theorem that the solution (e1, e2, e3)(p) is
an orthogonal matrix for all p ∈ O. To construct the surface, we need to solve

(3.4.1)

{
fx1 = A1e1,

fx2 = A2e2.

Note that the right hand side is known, so this system is solvable if and only if

(A1e1)x2 = (A2e2)x1 .

To see this, we compute

(A1e1)x2 = (A1)x2e1 +A1(e1)x2 = (A1)x2e1 +A1
(A2)x1

A1
e2

= (A1)x2e1 + (A2)x1e2,

(A2e2)x1 = (A2)x1e2 +A2(e2)x1 = (A2)x1e2 +A2
(A1)x2

A2
e1

= (A2)x1e2 + (A1)x2e1,

and see that (A1e1)x2 = (A2e2)x2 , so (3.4.1) is solvable. Hence we can solve (3.4.1)
by integration. It then follows that (f, e1, e2, e3) is a solution of (3.3.5) with initial
data (y0, v1, v2, v3). But (3.4.1) implies that fx1 , fx2 are linearly independent, so f
is a parametrized surface, e3 is normal to f , and I = A2

1dx
2
1 +A2

2dx
2
2. Recall that

`ij = fxixj ·N = fxixj · e3 = −(e3)xi · ej .
So `11 = −(e3)x1 · fx1 = −(−r1e1) · A1e1 = r1, `12 = −(e3)x2 · A1e1 = 0, and
`22 = −(e3)x2 · fx2 = −(−r2e2) ·A2e2 = r2A2. Thus II = A1r1dx

2
1 +A2r2dx

2
2. �

Corollary 3.4.2. Suppose f, g : O → R3 are two surfaces parametrized by line of
curvature coordinates, and f, g have the same first and second fundamental forms

I = A2
1 dx

2
1 +A2

2 dx
2
2, II = r1A1 dx

2
1 + r2A2 dx

2
2.
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Then there exists a rigid motion φ of R3 such that g = φ ◦ f .

Proof. Let

e1 =
fx1

A1
, e2 =

fx2

A2
, e3 =

fx1 × fx2

||fx1 × fx2 ||
,

ξ1 =
gx1

A1
, ξ2 =

gx2

A2
, ξ3 =

gx1 × gx2

||fx1 × gx2 ||
.

Fix p0 ∈ O, and let φ(x) = Tx+ b be the rigid motion such that φ(f(p0)) = g(p0)
and T (ei(p0)) = ξi(p0) for all 1 ≤ i ≤ 3. Then

(1) φ ◦ f have the same I, II as f , so φ ◦ f and g have the same I, II,
(2) the o.n. moving frame for φ ◦ f is (Te1, T e2, T e3).

Thus both (φ ◦ f, Te1, T e2, T e3) and (g, ξ1, ξ2, ξ3) are solutions of (3.3.5) with the
same initial condition (g(p0), ξ1(p0), ξ2(p0), ξ3(p0)). But Frobenius Theorem says
that there is a unique solution for the initial value problem, hence

(φ ◦ f, T ξ1, T ξ2, T ξ3) = (g, ξ1, ξ2, ξ3).

In particular, this proves that φ ◦ f = g. �

3.5. Gauss Theorem in line of curvature cooridnates.

We know that the Gaussian curvature K depends on both I and II. The Gauss
Theorem says that in fact K can be computed from I alone. We will first prove
this when the surface is parametrized by line of curvatures.

Theorem 3.5.1. Gauss Theorem in line of curvature coordinates
Suppose f : O → R3 is a surface parametrized by line of curvatures, and

I = A2
1dx

2
1 +A2

2dx
2
2, II = r1A1dx

2
1 + r2A2dx

2
2.

Then

K = −

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

A1A2
,

so K can be computed from I alone.

Proof. Recall that

K =
det(`ij)
det(gij)

=
r1A1r2A2

A2
1A

2
2

=
r1r2
A1A2

.

But the first equation in the Gauss-Codazzi equation is(
(A1)x2

A2

)
x2

+
(

(A2)x1

A1

)
x1

= −r1r2.

So

K = −

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

A1A2
.

�
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3.6. Gauss-Codazzi equation in local coordinates.

We will derive the Gauss-Codazzi equations for arbitrary parametrized surface
f : O → U ⊂ R3.

Our experience in curve theory tells us that we should find a moving frame on
the surface and then differentiate the moving frame to get relations among the
invariants. We will use moving frames F = (v1, v2, v3) on the surface to derive
the relations among local invariants, where v1 = fx1 , v2 = fx2 , and v3 = N the
unit normal. Express the x and y derivatives of the local frame vi in terms of
v1, v2, v3, then their coefficients can be written in terms of the two fundamental
forms. Since (vi)xy = (vi)yx, we obtain a PDE relation for I and II. This is the
Gauss-Codazzi equation of the surface. Conversely, given two symmetric bilinear
forms g, b on an open subset O of R2 such that g is positive definite and g, b satisfies
the Gauss-Codazzi equation, then by the Frobenius Theorem there exists a surface
in R3 unique up to rigid motion having g, b as the first and second fundamental
forms respectively.

We use the frame (fx1 , fx2 , N), where

N =
fx1 × fx2

||fx1 × fx2 ||
is the unit normal vector field. Since fx1 , fx2 , N form a basis of R3, the partial
derivatives of fxi and N can be written as linear combinations of fx1 , fx2 and N .
So we have

(3.6.1)

{
(fx1 , fx2 , N)x1 = (fx1 , fx2 , N)P,
(fx1 , fx2 , N)x2 = (fx1 , fx2 , N)Q,

where P = (pij), Q = (qij) are gl(3)-valued maps. This means that
fx1x1 = p11fx1 + p21fx2 + p31N,

fx2x1 = p12fx1 + p22fx2 + p32N,

Nx1 = p13fx1 + p23fx3 + p33N,


fx1x2 = q11fx1 + q21fx2 + q31N,

fx2x2 = q12fx1 + q22fx2 + q32N,

Nx2 = q13fx1 + q23fx3 + q33N.

Recall that the fundamental forms are given by

gij = fxi · fxj , `ij = −fxi ·Nxj = fxixj ·N.
We want to express P and Q in terms of gij and hij . To do this, we need the
following Propositions.

Proposition 3.6.1. Let V be a vector space with an inner product ( , ), v1, · · · , vn
a basis of V , and gij = (vi, vj). Let ξ ∈ V , ξi = (ξ, vi), and ξ =

∑n
i=1 xivi. Then

x1

·
·
xn

 = G−1


ξ1
·
·
ξn

 ,

where G = (gij).

Proof. Note that

ξi = (ξ, vi) = (
n∑
j=1

xjvj , vi) =
n∑
j=1

xj(vj , vi) =
n∑
j=1

gjixj .
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So (ξ1, · · · , ξn)t = G(x1, · · · , xn)t. �

Proposition 3.6.2. The following statements are true:
(1) The gl(3) valued functions P = (pij) and Q = (qij) in equation (3.6.1) can

be written in terms of gij, `ij, and first partial derivatives of gij.
(2) The entries {pij , qij | 1 ≤ i, j ≤ 2} can be computed from the first funda-

mental form.

Proof. We claim that

fxixj · fxk , fxixj ·N, Nxi · fxj , Nxi ·N,

can be expressed in terms of gij , `ij and first partial derivatives of gij . Then the
Proposition follows from Proposition 3.6.1. To prove the claim, we proceed as
follows:

fxixi · fxi = 1
2 (gii)xi ,

fxixj · fxi = 1
2 (gii)xj , if i 6= j,

fxixi · fxj = (fxi · fxj )xi − fxi · fxjxi = (gij)xi − 1
2 (gii)xj , if i 6= j

fxixj ·N = `ij ,

Nxi · fxj = −`ij ,
Nxi ·N = 0.

Let

G =

g11 g12 0
g12 g22 0
0 0 1

 .

By Proposition 3.6.1, we have

(3.6.2)



P =

g11 g12 0
g12 g22 0
0 0 1




1
2 (g11)x1

1
2 (g11)x2 −`11

(g12)x1 − 1
2 (g11)x2

1
2 (g22)x1 −`12

`11 `12 0


= G−1A1,

Q =

g11 g12 0
g12 g22 0
0 0 1




1
2 (g11)x2 (g12)x2 − 1

2 (g22)x1 −`12
1
2 (g22)x1

1
2 (g22)x2 −`22

`12 `22 0


= G−1A2.

This proves the Proposition. �

Formula (??) gives explicit formulas for entries of P and Q in terms of gij and
`ij . Moreover, they are related to the Christofell symbols Γijk arise in the geodesic
equation (??) in Theorem ??. Recall that

Γkij =
1
2
gkm[ij,m],

where (gij) is the inverse matrix of (gij), [ij, k] = gki,j+gjk,i−gij,k, and gij,k = ∂gij
∂xk

.

Theorem 3.6.3. For 1 ≤ i, j ≤ 2, we have

(3.6.3) pji = Γji1, qji = Γji2
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Proof. Note that (??) implies

(3.6.4)



p11 = 1
2 g

11g11,1 + g12(g12,1 − 1
2g11,2) = Γ1

11,

p12 = 1
2g

11g11,2 + 1
2g

12g22,1 = Γ1
21,

p21 = 1
2g

12g11,1 + g22(g12,1 − 1
2g11,2) = Γ2

11,

p22 = 1
2g

12g11,2 + 1
2g

22g22,1 = Γ2
21,

q11 = 1
2g

11g11,2 + 1
2g

12g22,1 = Γ1
12,

q12 = g11(g12,2 − 1
2g22,1) + 1

2g
12g22,2 = Γ1

22,

q21 = 1
2g

12g11,2 + 1
2g

22g22,1 = Γ2
12,

q22 = g12(g12,2 − 1
2g22,1) + 1

2g
22g22,2 = Γ2

22,

�

Note that
q11 = p12, q21 = p22.

Theorem 3.6.4. The Fundamental Theorem of surfaces in R3.
Suppose f : O → R3 is a parametrized surface, and gij , `ij are the coefficients of

I, II. Let P,Q be the smooth gl(3)-valued maps defined in terms of gij and `ij by
(??). Then P,Q satisfy

(3.6.5) Px2 −Qx1 = [P,Q].

Conversely, let O be an open subset of R2, (gij), (`ij) : O → gl(2) smooth maps such
that (gij) is positive definite and (`ij) is symmetric, and P,Q : U → gl(3) the maps
defined by (3.6.2). Suppose P,Q satisfies the compatibility equation (3.6.5). Let
(x0

1, x
0
2) ∈ O, p0 ∈ R3, and u1, u2, u3 a basis of R3 so that ui · uj = gij(x0

1, x
0
2) and

ui ·u3 = 0 for 1 ≤ i, j ≤ 2. Then there exists an open subset O0 ⊂ O of (x0
1, x

0
2) and

a unique immersion f : O0 → R3 so that f maps O0 homeomorphically to f(O0)
such that

(1) the first and second fundamental forms of the embedded surface f(O0) are
given by (gij) and (`ij) respectively,

(2) f(x0
1, x

0
2) = p0, and fxi(x

0
1, x

0
2) = ui for i = 1, 2.

Proof. We have proved the first half of the theorem, and it remains to prove the
second half. We assume that P,Q satisfy the compatibility condition (3.6.5). So
Frobenius Theorem ?? implies that the following system has a unique local solution

(3.6.6)


(v1, v2, v3)x1 = (v1, v2, v3)P,
(v1, v2, v3)x2 = (v1, v2, v3)Q,
(v1, v2, v3)(x0

1, x
0
2) = (u1, u2, u3).

Next we want to solve 
fx1 = v1,

fx2 = v2,

f(x0
1, x

0
2) = p0.

The compatibility condition is (v1)x2 = (v2)x1 . But

(v1)x2 =
3∑
j=1

qj1vj , (v2)x1 =
3∑
j=1

pj2v2.
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It follows from (3.6.2) that the second column of P is equal to the first column of
Q. So (v1)x2 = (v2)x1 , and hence there exists a unique f .

We will prove below that f is an immersion, v3 is perpendicular to the surface
f , ||v3|| = 1, fxi · fxj = gij , and (v3)xi · fxj = −`ij , i.e., f is a surface in R3 with

I =
∑
ij

gijdxidxj , II =
∑
ij

`ijdxidxj

as its first and second fundamental forms. The first step is to prove that the 3× 3
matrix function Φ = (vi · vj) is equal to the matrix G defined by (3.6.2). To do
this, we compute the first derivative of Φ. Since v1, v2, v3 satisfy (3.6.6), a direct
computation gives

(vi · vj)x1 = (vi)x1 · vj + vi · (vj)x1

=
∑
k

pkivk · vj + pkjvk · vi =
∑
k

pkigjk + gikpkj

= (GP )ji + (GP )ij = (GP + (GP )t)ij .

Formula (3.6.2) implies that GP = G(G−1A1) = A1 and A1 + At1 = Gx1 . Hence
(GP )t +GP = Gx1 and

Φx1 = Gx1 .

A similar computation implies that

Φx2 = Gx2 .

But the initial value Φ(x0
1, x

0
2) = G(x0

1, x
0
2). So Φ = G. In other words, we have

shown that
fxi · fxj = gij , fxi · v3 = 0.

Thus
(1) fx1 , fx2 are linearly independent, i.e., f is an immersion,
(2) v3 is the unit normal field to the surface f ,
(3) the first fundamental form of f is

∑
ij gijdxidxj .

To compute the second fundamental form of f , we use (3.6.6) to compute

−(v3)x1 · vj = (g11`11 + g12`12)v1 · vj + (g12`11 + g22`12)v2 · vj
= (g11`11 + g12`12)g1j + (g12`11 + g22`12)g2j

= `11(g11g1j + g12g2j) + `12(g21g1j + g22g2j)
= `11δ1j + `12δ2j .

So
−(v3)x1 · v1 = `11, −(v3)x1 · v2 = `12.

Similar computations imply that

−(v2)x2 · vj = `2j .

This proves that
∑
ij `ijdxidxj is the second fundamental form of f . �

System (3.6.5) with P,Q defined by (3.6.2) is called the Gauss-Codazzi equation
for the surface f(O), which is a second order PDE with 9 equations for six functions
gij and `ij . Equaqtion (3.6.5) is too complicated to memorize. It is more useful
and simpler to just remember how to derive the Gauss-Codazzi equation.

It follows from (3.6.1), (3.6.2), and (3.6.3) that we have
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fxix1 =
2∑
j=1

pjifxj + `i1N =
2∑
j=1

Γji1fxj + `i1N,

fxix2 =
2∑
j=1

qj2=ifxj + `i2N =
2∑
j=1

Γji2fxj + `i2N,

where pij and qij are defined in (3.6.2).
So we have

(3.6.7) fxixj = Γ1
ijfx1 + Γ2

ijfx2 + `ijN,

Proposition 3.6.5. Let f : O → R3 be a local coordinate system of an embedded
surface M in R3, and α(t) = f(x1(t), x2(t)). Then α satisfies the geodesic equation
(??) if and only if α′′(t) is normal to M at α(t) for all t.

Proof. Differentiate α′ to get α′ =
∑2
i=1 fxix

′
i. So

α′′ =
2∑

i,j=1

fxixjx
′
ix
′
j + fxix

′′
i

=
2∑

i,j,k=1

Γkijfxkx
′
ix
′
j + `ijN + fxix

′′
i

=
2∑

i,j=1

(Γkijx
′
ix
′
j + x′′k)fxk + `ijN = 0 + `ijN = `ijN.

�

3.7. The Gauss Theorem.

Equation (3.6.5) is the Gauss-Codazzi equation for M .
The Gaussian curvature K is defined to be the determinant of the shape operator

−dN , which depends on both the first and second fundamental forms of the surface.
In fact, by Proposition ??

K =
`11`22 − `212
g11g22 − g2

12

.

We will show below that K can be computed in terms of gij alone. Equate the 12
entry of equation (3.6.5) to get

(p12)x2 − (q12)x1 =
3∑
j=1

p1jqj2 − q1jpj2.

Recall that formula (3.6.4) gives {pij , qij | 1 ≤ i, j ≤ 2} in terms of the first
fundamental form I. We move terms involves pij , qij with 1 ≤ i, j ≤ 2 to one side
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to get

(3.7.1) (p12)x2 − (q12)x1 −
2∑
j=1

p1jqj2 − q1jpj2 = p13q32 − q13p32.

We claim that the right hand side of (3.7.1) is equal to

−g11(`11`22 − `212) = −g11(g11g22 − g2
12)K.

To prove this claim, use (3.6.2) to compute P,Q to get

p13 = −(g11`11 + g12`12), p32 = `12,

q13 = −(g11`12 + g12`22), q32 = `22.

So we get

(3.7.2) (p12)x2 − (q12)x1 −
2∑
j=1

p1jqj2 − q1jpj3 = −g11(g11g22 − g2
12)K.

Hence we have proved the claim and also obtained a formula of K purely in terms
of gij and their derivatives:

K = −
(p12)x2 − (q12)x1 −

∑2
j=1 p1jqj2 − q1jpj3

g11(g11g22 − g2
12)

.

This proves

Theorem 3.7.1. Gauss Theorem. The Gaussian curvature of a surface in R3

can be computed from the first fundamental form.

The equation (3.7.2), obtained by equating the 12-entry of (3.6.5), is the Gauss
equation.

A geometric quantity on an embedded surface M in Rn is called intrinsic if it
only depends on the first fundamental form I. Otherwise, the property is called
extrinsic, i.e., it depends on both I and II.

We have seen that the Gaussian curvature and geodesics are intrinsic quantities,
and the mean curvature is extrinsic.

If φ : M1 →M2 is a diffeomorphism and f(x1, x2) is a local coordinates on M1,
then φ ◦ f(x1, x2) is a local coordinate system of M2. The diffeomorphism φ is an
isometry if the first fundamental forms for M1,M2 are the same written in terms
of dx1, dx2. In particular,

(i) φ preserves anlges and arc length, i.e., the arc length of the curve φ(α) is
the same as the curve α and the angle between the curves φ(α) and φ(β)
is the same as the angle between α and β,

(ii) φ maps geodesics to geodesics.
Euclidean plane geometry studies the geometry of triangles. Note that triangles

can be viewed as a triangle in the plane with each side being a geodesic. So a
natural definition of a triangle on an embedded surface M is a piecewise smooth
curve with three geodesic sides and any two sides meet at an angle lie in (0, π).
One important problem in geometric theory of M is to understand the geometry
of triangles on M . For example, what is the sum of interior angles of a triangle on
an embedded surface M? This will be answered by the Gauss-Bonnet Theorem.
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Note that the first fundamental forms for the plane

f(x1, x2) = (x1, x2, 0)

and the cylinder
h(x1, x2) = (cosx1, sinx1, x2)

have the same and is equal to I = dx2
1 + dx2

2, and both surfaces have constant zero
Gaussian curvature (cf. Examples ?? and ??). We have also proved that geodesics
are determined by I alone. So the geometry of triangles on the cylinder is the same
as the geometry of triangles in the plane. For example, the sum of interior anlges
of a triangle on the plane (and hence on the cylinder) must be π. In fact, let φ
denote the map from (0, 2π)×R to the cylinder minus the line (1, 0, x2) defined by

φ(x1, x2, 0) = (cosx1, sinx1, x2).

Then φ is an isometry.

3.8. Gauss-Codazzi equation in orthogonal coordinates.

If the local coordinates x1, x2 are orthogonal, i.e., g12 = 0, then the Gauss-
Codazzi equation (3.6.5) becomes much simplier. Instead of putting g12 = 0 to
(3.6.5), we derive the Gauss-Codazzi equation directly using an o.n. moving frame.
We write

g11 = A2
1, g22 = A2

2, g12 = 0.

Let

e1 =
fx1

A1
, e2 =

fx2

A2
, e3 = N.

Then (e1, e2, e3) is an o.n. moving frame on M . Write{
(e1, e2, e3)x1 = (e1, e2, e3)P̃ ,
(e1, e2, e3)x2 = (e1, e2, e3)Q̃.

Since (e1, e2, e3) is orthogonal, P̃ , Q̃ are skew-symmetric. Moreover,

p̃ij = (ej)x1 · ei, q̃ij = (ej)x2 · ei.

A direct computation gives

(e1)x1 · e2 =
(
fx1

A1

)
x1

· fx2

A2
=
fx1x1 · fx2

A1A2

=
(fx1 · fx2)x1 − fx1 · fx1x2

A1A2

= −
( 1
2A

2
1)x2

A1A2
= − (A1)x2

A2
.

Similar computation gives the coefficients p̃ij and q̃ij :

(3.8.1) P̃ =

 0 (A1)x2
A2

− `11A1

− (A1)x2
A2

0 − `12A2
`11
A1

`12
A2

0

 , Q̃ =

 0 − (A2)x1
A1

− `12A1
(A2)x1
A1

0 − `22A2
`12
A1

`22
A2

0
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To get the Gauss-Codazzi equation of the surface parametrized by an orthogonal
coordinates we only need to compute the 21-th, 31-th, and 32-the entry of the
following equation

(P̃ )x2 − (Q̃)x1 = [P̃ , Q̃],
and we obtain

(3.8.2)


−
(

(A1)x2
A2

)
x2

−
(

(A2)x1
A1

)
x1

= `11`22−`212
A1A2

,(
`11
A1

)
x2

−
(
`12
A1

)
x1

= `12(A2)x1
A1A2

+ `22(A1)x2
A2

2(
`12
A2

)
x2

−
(
`22
A2

)
x1

= − `11(A2)x1
A2

1
− `12(A1)x2

A1A2
.

The first equation of (3.8.2) is called the Gauss equation. Note that the Gaussian
curvature is

K =
`11`22 − `212

(A1A2)2
.

So we have

(3.8.3) K = −

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

A1A2
.

We have seen that the Gauss-Codazzi equation becomes much simpler in or-
thogonal coordinates. Can we always find local orthogonal coordinates on a surface
in R3? This question can be answered by the following theorem, which we state
without a proof.

Theorem 3.8.1. Suppose f : O → R3 be a surface, x0 ∈ O, and Y1, Y2 : O → R3

smooth maps so that Y1(x0), Y2(x0) are linearly independent and tangent to M =
f(O) at f(x0). Then there exist open subset O0 of O containing x0, open subset
O1 of R2, and a diffeomorphism h : O1 → O0 so that (f ◦ h)y1 and (f ◦ h)y2 are
parallel to Y1 ◦ h and Y2 ◦ h.

The above theorem says that if we have two linearly independent vector fields
Y1, Y2 on a surface, then we can find a local coordinate system φ(y1, y2) so that
φy1 , φy2 are parallel to Y1, Y2 respectively.

Given an arbitrary local coordinate system f(x1, x2) on M , we apply the Gram-
Schmidt process to fx1 , fx2 to construct smooth o.n. vector fields e1, e2:

e1 =
fx1√
g11

,

e2 =
√
g11(fx2 −

g12
g11
fx1)√

g11g22 − g2
12

,

By Theorem 3.8.1, there exists new local coordinate system f̃(y1, y2) so that ∂f̃
∂x1

and ∂f̃
∂x2

are parallel to e1 and e2. So the first fundamental form written in this
coordinate system has the form

g̃11dy
2
1 + g̃22dy

2
2 .

However, in general we can not find coordinate system f̂(y1, y2) so that e1 and e2

are coordinate vector fields ∂f̂
∂y1

and ∂f̂
∂y2

because if we can then the first fundamental
form of the surface is I = dy2

1 + dy2
2 , which implies that the Gaussian curvature of

the surface must be zero.


