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Abstract. Let F be a field. We show that certain subrings contained be-

tween the polynomial ring F [X] = F [X1, · · · , Xn] and the power series ring

F [X][[Y ]] = F [X1, · · · , Xn][[Y ]] have Weierstrass Factorization, which allows
us to deduce both unique factorization and the Noetherian property. These

intermediate subrings are obtained from elements of F [X][[Y ]] by bounding
their total X-degree above by a positive real-valued monotonic up function

λ on their Y -degree. These rings arise naturally in studying p-adic analytic

variation of zeta functions over finite fields. Future research into this area may
study more complicated subrings in which Y = (Y1, · · · , Ym) has more than

one variable, and for which there are multiple degree functions, λ1, · · · , λm.

Another direction of study would be to generalize these results to k-affinoid
algebras.

1. Introduction

Let R be a commutative ring with unity, and let Sk be the set of polynomials
in R[X,Y ] = R[X1, · · · , Xn][Y1, · · · , Ym] that are homogeneous in Y of degree k.
Every element of R[X][[Y ]] can be written uniquely in the form

f =

∞∑
k=0

fk(X,Y ),

where fk(X,Y ) is an element of Sk. In this expansion, there is no restriction
on degX fk(X,Y ). Motivated by several applications to the p-adic theory of zeta
functions over finite fields, we want to consider subrings of R[X][[Y ]] in which
degX(fk) is bounded above by some function λ. In particular, let λ : R≥0 → R≥0
be a monotonic up function. We call λ a growth function. Following Wan [9], we
define a subring of R[X][[Y ]] as follows:

R[X;Y, λ] = {f =

∞∑
k=0

fk(X,Y ) : fk ∈ Sk,degX(fk) ≤ Cfλ(k), for k � 0},

where Cf is a constant depending only on f . Because λ is monotonic up, it satisfies
the trivial inequality,

λ(x) + λ(y) ≤ 2λ(x+ y)

for all x and y in R≥0. From this inequality, it is clear that R[X;Y, λ] is an R[X]-
algebra, which contains R[X].
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If λ is invertible, we have the following equivalent definition:

R[X;Y, λ] = {g =

∞∑
d=0

gd(X,Y ) : gd ∈ Ad, ordY (gd) ≥ λ−1(Cgd), for d� 0},

where Ad is the subset of elements of R[[Y ]][X], which are homogeneous of degree d
in X, and ordY (gd) is the largest integer k for which gd is an element of Y kR[X][[Y ]].

It is clear that for any positive constant c > 0, R[X;Y, cλ] = R[X;Y, λ]. If λ(x)
is a positive constant, then R[X;Y, λ] = R[[Y ]][X]. If λ(x) = ∞ for all x ∈ R≥0,
then R[X;Y, λ] is the full ring R[X][[Y ]]. This ring is canonically isomorphic to
the ring R[[Y ]]{X} of convergent power series over R[[Y ]]. If λ(x) = x for all x in
R≥0, then R[X;Y, λ] is called the over-convergent subring of R[X][[Y ]], which is
the starting point of Dwork’s p-adic theory for zeta functions. In all of these cases,
if R is noetherian, it is known that R[X;Y, λ] is noetherian: if λ(x) is a positive
constant or λ(x) ≡ ∞, the result is classical; see Fulton [4] for the case λ(x) = x.
More generally, if R is noetherian and λ satisfies the following inequality,

λ(x) + λ(y) ≤ λ(x+ y) ≤ λ(x)µ(y)

for all sufficiently large x and y, where µ is another positive valued function such
that µ(x) ≥ 1 for all x in R≥0, then R[X;Y, λ] is also noetherian as shown in Wan
[9]. For example, any exponential function λ(x) satisfies the above inequalities. In
this case the ring is particularly interesting because it arises naturally from the
study of unit root F-crystals from geometry, see Dwork-Sperber [3] and Wan [10]
for further discussions.

The first condition, λ(x) + λ(y) ≤ λ(x + y), is a natural assumption because
it ensures that elements of the form (1 − XY ) are invertible, a vital condition
to this paper. If λ does not grow at least as fast as linear, then (1 − XY )−1 =
1+
∑∞
i=1X

kY k is not an element of R[X;Y, λ]. It is not clear, however, if the second
condition, λ(x+y) ≤ λ(x)µ(y), can be dropped. In fact, we have the following open
question from Wan [9].

Question 1.1. Let R be a noetherian ring. Let λ(x) be a growth function satisfying
λ(x) + λ(y) ≤ λ(x+ y). Is the intermediate ring R[X;Y, λ] always noetherian?

This question is solved affirmatively in this paper if R is a field and there is only
one Y variable.

Throughout this paper we assume that R = F is a field, and that λ grows at least
as fast as linear, i.e. λ(x) + λ(y) ≤ λ(x + y) for all x, y ≥ 0. Further, we assume
that λ(0) = 0 and λ(∞) = ∞, because normalizing λ this way does not change
F [X;Y, λ]. Without loss of generality we also assume that λ is strictly increasing.
Finally, we assume that F [X;Y, λ] has only one Y variable. We call an element

g =

∞∑
d=0

gd(X1, · · · , Xn−1, Y )Xd
n

in F [X;Y, λ] Xn-distinguished of degree s if gs is a unit in F [X1, · · · , Xn−1;Y, λ],
and ordY (gd) ≥ 1 for all d > s. The main result of this paper is the following

Theorem 1.2. Under the above assumptions, we have

(1) (Euclidean Algorithm) Suppose that g is Xn-distinguished of degree s in
F [X;Y, λ], and that f is an element of F [X;Y, λ]. Then there exist unique
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elements, q in F [X;Y, λ], and r in the polynomial ring F [X1, · · · , Xn−1;Y, λ][Xn]
with degXn(r) < s, such that f = qg + r.

(2) (Weierstrass Factorization) Let g be Xn-distinguished of degree s. Then
there exists a unique monic polynomial ω in F [X1, · · · , Xn−1;Y, λ][Xn] of
degree s in Xn and a unique unit e in F [X;Y, λ] such that g = e·ω. Further,
ω is distinguished of degree s.

(3) (Automorphism Theorem) Let g(X,Y ) =
∑
µ gµ(Y )Xµ be an element of

F [X;Y, λ] where µ = (µ1, · · · , µn) and Xµ = Xµ1

1 · · ·Xµn
n . If gµ(Y ) is not

divisible by Y for some µ, where µn > 0, then there exists an automorphism
σ of F [X;Y, λ] such that σ(g) is Xn-distinguished.

(4) F [X;Y, λ] is noetherian and factorial.

The Euclidean algorithm is the key part of this theorem. Our proof of this
algorithm follows Manin’s proof of the analogous result for power series rings as
written in Lang [7], except that we have to keep careful track of more delicate
estimates that arise from the general growth function λ(x). The other results are
classical consequences of this algorithm, which are proved in this paper, but the
techniques are essentially unchanged from techniques utilized in proofs of analogous
results for power series rings as given in Bosch, etc. [1].

This topic is also motivated by a considerable body of work concerning “k-
affinoid” algebras from non-archimedean analysis. Let k be a complete non-Archimedean
valued field, with a non-trivial valuation, and define Tn = k〈X1, · · · , Xn〉, Tate’s al-
gebra, to be the algebra of strictly convergent power series over k: Tn = {

∑
µ aµX

µ :

|aµ|
|µ|→∞→ 0}. The algebra, Tn, is a noetherian and factorial ring with many useful

properties, and it is the basis for studying k-affinoid algebras, see Bosch etc [1]. A
k-algebra, A, is called k-affinoid if there exists a continuous epimorphism, Tn → A,
for some n ≥ 0. Given ρ = (ρ1, · · · , ρn) in Rn, where ρi > 0 for each i, one can
define

Tn(ρ) = {
∑
µ

aµX
µ ∈ k[[X1, · · · , Xn]] : |aµ|ρµ1

1 · · · ρµnn
|µ|→∞→ 0}.

Note that Tn(1, · · · , 1) = Tn. Furthermore, Tn(ρ) is k-affinoid if, and only if, ρi
is an element of |k∗a| for all i, where ka is the algebraic closure of k, from which
one can immediately verify that it is noetherian. It is shown by van der Put in [8]
that this ring is noetherian for any ρ in Rn, where ρi > 0 for each i. Define the
Washnitzer algebra Wn to be

Wn =
⋃

ρ∈Rn,ρi>1

Tn(ρ).

It is shown in Güntzer [5] that Wn is noetherian and factorial. A motivating study
of Wn is given by Grosse-Klönne [6]. This overconvergent ring Wn is also the basis
(or starting point) of the Monsky-Washnitzer formal cohomology and the rigid
cohomology.

More generally, for a growth function λ(x), we can also define

Tn(ρ, λ) = {
∑
µ

aµX
µ ∈ k[[X1, · · · , Xn]] : |aµ|ρλ

−1(µ1)
1 · · · ρλ

−1(µn)
n

|µ|→∞→ 0}.
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Similarly, define

Wn(λ) =
⋃

ρ∈Rn,ρi>1

Tn(ρ, λ).

If λ is invertible, Wn(λ) most closely resembles the ring k[X;Y, λ] = k[X1, · · · , Xn;Y, λ]
studied in this paper. If λ(x) = cx for some c > 0 and all x in R≥0, then
Wn(λ) = Wn is the Washnitzer algebra. Similarly, Tn((1, · · · , 1), λ) = Tn for all λ,
and Tn(ρ, id) = Tn(ρ).

The results of this paper suggest that there may be a p-adic cohomology theory
for more general growth functions λ(x) (other than linear functions), which would
help to explain the principal zeros of Dwork’s unit root zeta function [2], [10] in the
case when λ is the exponential function. This is one of the main motivations for
the present paper.

Acknowledgment 1.3. We would like to thank Christopher Davis for informing us
of several relevant references.

2. Results and Proofs

For the rest of the paper, we assume that F is a field and that p is a fixed positive
real number greater than one.

Definition 2.1. Define | |λ on F [[Y ]] by |f(Y )|λ = 1
pλ(ordY (f)) for all f in F [[Y ]].

This is basically the Y -adic absolute value on F [[Y ]], re-scaled by the growth
function λ(x).

Proposition 2.2. (F [[Y ]], | |λ) is a complete normed ring.

Proof. We defined λ(0) = 0 and λ(∞) = ∞, so |a|λ = 0 if, and only if, a = 0
(because λ is strictly increasing), and |c0|λ = 1 for all c0 in F×. Suppose that f
and g are elements of F [[Y ]], then ordY (fg) = ordY (f)+ordY (g), and λ(ordY (f)+
ordY (g)) ≥ λ(ordY (f)) + λ(ordY (g)). Thus,

|fg|λ =
1

pλ(ordY (f)+ordY (g))

≤ 1

pλ(ordY (f))+λ(ordY (g))

= |f |λ|g|λ.
Similarly, because ordY (f + g) ≥ min{ordY (f), ordY (g)}

|f + g|λ =
1

pλ(ordY (f+g))

≤ 1

pλ(min{ordY (f),ordY (g)})

= max{|f |λ, |g|λ}.

To show completeness, if
(
f (i)
)∞
i=1

is a Cauchy sequence with respect to the

standard Y -adic norm | | on F [[Y ]], then f (i) converges to an element f in F [[Y ]].
Thus, |f − f (i)| = 1

pordY (f−f(i))
converges to 0 as i approaches ∞, and so ordY (f −

f (i)) must approach∞. This can happen if, and only if, the corresponding sequence,
λ(ordY (f − f (i))), approaches ∞, as desired. �
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Remark 2.3. A norm which only satisfies |ab| ≤ |a||b|, instead of strict equality is
sometimes called a pseudo-norm; we disregard the distinction in this paper.

We can write any element f in F [X;Y, λ] in the following form:

f(X,Y ) =
∑
µ

fµ(Y )Xµ

where µ = (µ1, · · · , µn) is a tuple of positive integers, and Xµ = Xµ1

1 · · ·Xµn
n .

This form and the above norms allow us to formulate two equivalent definitions for
F [X;Y, λ]:

F [X;Y, λ] = {f =

∞∑
µ

fµ(Y )Xµ : fµ ∈ F [[Y ]], |fµ|pλ
−1(Cf |µ|) |µ|→∞→ 0}

= {f =

∞∑
µ

fµ(Y )Xµ : fµ ∈ F [[Y ]], |fµ|λpCf |µ|
|µ|→∞→ 0}

where |µ| = µ1 + · · ·+ µn.

Definition 2.4. For all c in Rn, ci > 0, define

F [X;Y, λ]c = {
∑
ν

fµX
µ : |fµ|λ p

c·µ |µ|→∞→ 0}

where c · µ = c1µ1 + · · ·+ cnµn.

Definition 2.5. Define ‖ ‖λ,c on F [X;Y, λ]c by

‖f‖λ,c = max |fµ|λpc·µ.

It’s easy to see that F [[Y ]] ⊂ F [X;Y, λ]c ⊆ F [X;Y, λ]c′ if c′i ≤ ci for i = 1, · · · , n.

Proposition 2.6. The function ‖ ‖λ,c is a non-Archimedean norm on F [X;Y, λ]c.

Proof. On F [[Y ]], ‖ ‖λ,c reduces to | |λ. Suppose that f and g are elements of
F [X;Y, λ]c. Then

‖f + g‖λ,c = max
µ
{|fµ + gµ|λpc·µ}

≤ max
µ
{max{|fµ|λ, |gµ|λ}pc·µ}

≤ max{‖f‖λ,c, ‖g‖λ,c}.

Next,

‖fg‖λ,c = max
σ
{

∣∣∣∣∣
( ∑
µ+ν=σ

fµgν

)∣∣∣∣∣
λ

pc·σ}

≤ max
σ
{ max
µ+ν=σ

{|fµgν |λ}pc·σ}

≤ max
µ,ν
{|fµ|λ|gν |λpc·(µ+ν)}

= ‖f‖λ,c‖g‖λ,c.

�

Proposition 2.7. F [X;Y, λ] =
⋃

c∈Rn,ci>0

F [X;Y, λ]c
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Proof. Suppose that f is an element of F [X;Y, λ], then |fµ|λp(Cf ,··· ,Cf )·µ converges
to 0 as |µ| approaches ∞. Conversely, if f is an element of F [X;Y, λ]c, let Cf =
mini ci. �

Lemma 2.8. Suppose f is an element of F [X;Y, λ]. Then f(X,Y ) is invertible
if, and only if, f ≡ c0 mod (Y ) where c0 is a unit in F . If an element f in
F [X;Y, λ]c is invertible in F [X;Y, λ], then f−1 is an element of F [X;Y, λ]c. Fur-
ther, if ‖f‖λ,c ≤ 1, then ‖f−1‖λ,c ≤ 1.

Proof. If f(X,Y ) is invertible, then it is an invertible polynomial modulo (Y ).
Therefore, f is a non-zero unit modulo (Y ).

If f ≡ c0 mod (Y ) for c0 in F×, we can write f = c0(1−g(X,Y )) as an element
of F [X;Y, λ]c for some c > 0. Then

f−1 = c−10

(
1 +

∞∑
k=1

g(X,Y )k

)

= c−10

1 +
∞∑
k=1

∞∑
j=1

∑
µ(1)+···+µ(k)=σ

|σ|=j

Xσ
k∏
i=1

gµ(i)(Y )


Observe that, (∣∣∣∣∣

k∏
i=1

gµ(i)(Y )

∣∣∣∣∣
λ

)
pc·σ =

k∏
i=1

(∣∣gµ(i)(Y )
∣∣
λ
pc·µ

(i)
)

converges to 0 as |σ| approaches ∞ because gµ = −c0fµ. Suppose ‖f‖λ,c ≤ 1,
then this product is also less than or equal to one, because each term satisfies this
property, so ‖f−1‖λ,c = |c−10 |λ = 1.

�

Proposition 2.9. The ring, (F [X;Y, λ]c, ‖ ‖λ,c), is an F [[Y ]]-Banach algebra.

Proof. Suppose that f =
∑
µ fµ(Y )Xµ and g =

∑
ν gν(Y )Xν , are elements of

F [X;Y, λ]c, then |fµ±gµ|λ ≤ max{|fµ|λ, |gµ|λ}, and the quantity max{|fµ|λpc·µ, |gµ|λpc·µ}
converges to 0 as |µ| approaches ∞. Thus, f + g is an element of F [X;Y, λ]c.

Similarly, we see that∣∣∣∣∣ ∑
µ+ν=σ

fµgν

∣∣∣∣∣
λ

≤ max
µ+ν=σ

{|fµ|λ · |gν |λ}

and lim|σ|→∞maxµ+ν=σ{|fµ| · |gν |pc·σ} = 0 as desired. Thus, fg is an element of
F [X;Y, λ]c.

Now to prove that that this norm is complete, we let
(
f (i)
)∞
i=1

=
(∑∞

µ f
(i)
µ Xµ

)∞
i=1

be a Cauchy sequence in F [X;Y, λ]c. Then we can choose a suitable subsequence

of
(
f (i)
)∞
i=1

(because a Cauchy sequence is convergent if, and only if, it has a con-

vergent subsequence) and assume that

|f (j)µ − f (i)µ |λpc·µ ≤ ‖f (j) − f (i)‖λ,c < 1/i for all j > i > 0 and all |µ| ≥ 0.
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For all j and µ, f
(j)
µ is an element of F [[Y ]] which is complete, so there is an

element fµ in F [[Y ]] such that f
(j)
µ converges to fµ as j approaches ∞. Define

f =
∑
µ fµX

µ. We claim that |fµ|λpc·µ converges to 0 as |µ| approaches ∞.

Note that | |λ is continuous, so |fµ−f (i)µ |λpc·µ ≤ 1/i, for all |µ| ≥ 0 and all i > 0.

We choose µ, such that |µ| is sufficiently large, so that |f (i)µ |λpc·µ < 1/i. Because
the norm is non-Archimedean, this shows that |fµ|λpc·µ ≤ 1/i. Thus, |fµ|λpc·µ
converges to 0 as |µ| approaches ∞. Hence, f is an element of F [X;Y, λ]c and

‖f − f (i)‖λ,c = max |fµ − f (i)µ |λpc·µ ≤ 1/i, therefore, limi f
(i) = f . �

Definition 2.10. A power series f(X,Y ) =
∑∞
k=0 fk(X,Y )Xk

n in F [X;Y, λ] is
called Xn-distinguished of degree s in F [X;Y, λ] if

(1) fs(X,Y ) is a unit in F [X1, · · · , Xn−1;Y, λ] and
(2) |fk(X,Y )| < 1 for all k > s, where | | is the canonical Y -adic norm.

Equivalently, f mod (Y ) is a unitary polynomial in Xn of degree s.
A power series f(X,Y ) =

∑∞
k=0 fk(X,Y )Xk

n in F [X;Y, λ]c is calledXn-distinguished
of degree s in F [X;Y, λ]c if

(1) fs(X,Y ) is a unit in F [X1, · · · , Xn−1;Y, λ]c and ‖fs(X,Y )‖λ,(c1,··· ,cn−1) =
1,

(2) ‖f‖λ,c = ‖fs(X,Y )Xs
n‖λ,c = pcns > ‖fk(X,Y )Xk

n‖λ,c for all k 6= s.

If an element f in F [X;Y, λ] is Xn-distinguished of degree s in F [X;Y, λ], then
it is Xn-distinguished in F [X;Y, λ]c for some c in Rn. Indeed, suppose that f is an
element of F [X;Y, λ]c. Because fs(X,Y ) is a unit, we can write fs(X,Y ) = u+ h,
where u is a unit in F [[Y ]], and h is an element of (Y ). By choosing c1, · · · , cn−1
small enough, we can make ‖h‖λ,c < 1, and so ‖fs(X,Y )‖λ,(c1,··· ,cn−1) = 1. We can

reduce c1, · · · , cn−1 even further to ensure that ‖fk(X,Y )Xk
n‖λ,c < ‖fs(X,Y )Xs

n‖λ,c =
pcns, because fk is an element of (Y ) for all k > s. Now, to ensure that ‖fk(X,Y )Xk

n‖λ,c <
‖fs(X,Y )Xs

n‖λ,c = pcns, for k < s, we can shrink c1, · · · , cn−1 once again so that
‖fk(X,Y )‖λ,c < pcn . In this way we find that for all k < s, ‖fk(X,Y )Xk

n‖λ,c <
pcnpcn(s−1) = pcns = ‖fs(X,Y )Xs

n‖λ,c as desired.
We can use the notion of Xn-distinguished elements to derive a Euclidean al-

gorithm for F [X;Y, λ]c. This Euclidean algorithm will then produce Weierstrass
factorization for Xn-distinguished elements, which will allow us to deduce that
F [X;Y, λ] is noetherian and factorial.

Theorem 2.11. Let

g =

∞∑
k=0

gk(X,Y )Xk
n

be Xn-distinguished of degree s in F [X;Y, λ]c. Then every f in F [X;Y, λ]c can be
written uniquely in the form

f = qg + r

where q is and element of F [X;Y, λ]c and r is a polynomial in F [X1, · · · , Xn−1;Y, λ]c[Xn],
with degXn(r) < s. Further, if f and g are polynomials in Xn, then so are q and
r.
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Proof. Let α, τ be projections given by,

α :

∞∑
k=0

gk(X,Y )Xk
n 7→

s−1∑
k=0

gk(X,Y )Xk
n

τ :

∞∑
k=0

gk(X,Y )Xk
n 7→

∞∑
k=s

gk(X,Y )Xk−s
n

We see that τ(w) and α(w) are elements of F [X;Y, λ]c, and that τ(wXs
n) = w. It

is also clear that τ(w) = 0 if, and only if, degXn(w) < s, for all w in F [X;Y, λ]c.
Such q and r exist if, and only if, τ(f) = τ(qg). Thus, we must solve,

τ(f) = τ(qα(g)) + τ(qτ(g)Xs
n) = τ(qα(g)) + qτ(g).

Note that τ(g) is invertible, trivially, because it is congruent to a unit modulo (Y ).
Let M = qτ(g). Thus, we can write

τ(f) = τ

(
M
α(g)

τ(g)

)
+M =

(
I + τ ◦ α(g)

τ(g)

)
M.

We want to show that the map
(
I + τ ◦ α(g)τ(g)

)−1
exists.

Suppose z is an element of F [X;Y, λ]c. We first claim that ‖τ(z)‖λ,c ≤ ‖z‖λ,c
pcns .

Indeed, there exists µ such that

‖z‖λ,c = |zµ|λpc·µ

≥ |zν |λpc·ν for all ν

Thus,

‖z‖λ,c
pcns

= |zµ|λpc·µ−cns

≥ |zν |λpc·ν−cns for all ν.

The maximum over all ν with νn ≥ s is equal to ‖τ(z)‖λ,c, as asserted. Thus

‖τ(g)‖λ,c ≤ pcns

pcns = 1, so by the lemma 2.8 ‖τ(g)−1‖ ≤ 1. Let h = α(g)
τ(g) . Then,

‖h‖λ,c ≤ ‖α(g)‖λ,c‖τ(g)−1‖λ,c < pcns.

Next we claim that ‖(τ ◦ h)m(z)‖λ,c <
‖z‖λ,c‖h‖mλ,c

pmcns , for all m in N. Indeed,

‖τ(zh)‖λ,c ≤ ‖zh‖λ,cpcns ≤
‖z‖λ,c‖h‖λ,c

pcns by what we just proved. Now, assume that this

is true for m, then

‖τ ((τ ◦ h)m(z)h) ‖λ,c ≤ ‖(τ ◦ h)m(z)‖λ,c‖h‖λ,c
pcns

≤
‖z‖λ,c‖h‖mλ,c

pmcns
‖h‖λ,c
pcns

=
‖z‖λ,c‖h‖m+1

λ,c

p(m+1)cns

Now, we know that,

(I + τ ◦ h)
−1

(z) = z +

∞∑
m=1

(−1)m(τ ◦ h)m(z).



FACTORIAL AND NOETHERIAN SUBRINGS OF POWER SERIES RINGS 9

Let w(i)(z) = z+
∑i
m=1(−1)m(τ ◦h)m(z). We claim that the sequence

(
w(i)(z)

)∞
i=1

is Cauchy for every z in F [X;Y, λ]c. Indeed,

‖w(i+1)(z)− w(i)(z)‖λ,c = ‖(τ ◦ h)i+1(z)‖λ,c

≤
‖z‖λ,c‖h‖i+1

λ,c

p(i+1)cns
.

Because ‖h‖λ,c < pcns, we see that this difference approaches 0 as i approaches
∞. Because this norm is non-Archimedean, this is all we need to show. Therefore,
because F [X;Y, λ]c is complete, we see that w(z) = limi w

(i)(z) exists for every z
in F [X;Y, λ]c. Uniqueness is immediate from the invertibility of the map.

To prove the last statement, note that we could already carry out division
uniquely in the ring F [X1, · · · , Xn−1;Y, λ]c[Xn], by the polynomial Euclidean al-
gorithm. Therefore, the division is unique in F [X;Y, λ]c. �

Corollary 2.12. Suppose that g is Xn-distinguished of degree s in F [X;Y, λ], and
that f is an element of F [X;Y, λ]. Then there exist unique elements, q in F [X;Y, λ],
and r in the polynomial ring F [X1, · · · , Xn−1;Y, λ][Xn] with degXn(r) < s, such
that f = qg + r.

Proof. Choose c for which f and g are elements of F [X;Y, λ]c. Then, choose c′i ≤ ci
such that g is Xn-distinguished of degree s in F [X;Y, λ]c′ . Carry out the division
in this ring.

To show uniqueness we observe that |f | = max{|q|, |r|}. Indeed, without loss
of generality we can assume that max{|q|, |r|} = 1. Thus, |f | ≤ 1. Suppose that
|f | < 1. Then, 0 ≡ qg + r mod (Y ). Because degXn(r) < s = degXn(g mod (Y )),
we must have that q = r ≡ 0 mod (Y ), contradicting max{|q|, |r|} = 1. Thus, if
q′g + r′ = qg + r, then (q − q′)g + (r − r′) = 0, thus, |q − q′| = |r − r′| = 0. �

Theorem 2.13. Let f be Xn-distinguished of degree s. Then, there exists a unique
monic polynomial ω in F [X1, · · · , Xn−1;Y, λ][Xn] of degree s in Xn and a unique
unit e in F [X;Y, λ] such that f = e · ω. Further, ω is distinguished of degree s.

Proof. By the previous theorem there exists an element q in F [X;Y, λ] and a poly-
nomial r in F [X1, · · · , Xn−1;Y, λ][Xn] such that degXn(r) < s and Xs

n = qf + r.
We let ω = Xs

n − r. ω = qf is clearly Xn-distinguished of degree s. Because the
Xn-degree of ω mod (Y ) is the same the Xn-degree of f mod (Y ), we see that
q is a unit. Set e = q−1, yielding f = e · ω. Uniqueness is immediate from the
uniqueness of the division algorithm. �

Definition 2.14. A Weierstrass polynomial is a monic Xn-distinguished polyno-
mial in F [X1, · · · , Xn−1;Y, λ][Xn].

Lemma 2.15. Let σ be the map such that σ(Xi) = (Xi + Xd
j ) with d ≥ 1, and

σ(Xj) = Xj for all j 6= i. Then σ is a well-defined automorphism of F [X;Y, λ].

Proof. Without loss of generality, we can assume that i = n and j = 1. Let
f(X,Y ) =

∑
µ fµ(Y )Xµ =

∑
µ fµ(Y )Xµ1

1 · · ·Xµn
n . Observe that,

σ(f) =
∑
µ

fµ(Y )Xµ1

1 · · ·X
µn−1

n−1 (Xn +Xd
1 )µn

=
∑
µ

fµ(Y )Xµ1

1 · · ·X
µn−1

n−1

µn∑
j=0

(
µn
j

)
Xdj

1 X
µn−j
n .



10 DAMEK DAVIS AND DAQING WAN

The quantity dj + µn − j = (d− 1)j + µn is maximal when j = µn. Therefore, the
above converges if ∑

µ

fµ(Y )Xµ1+dµn
1 · · ·Xµn−1

n−1 X
µn
n

converges. Choose c so that |fµ(Y )|pc·µ converges to 0 as |µ| approaches ∞. Let

c′n = cn
2(d+1) . Then, c1µ1+· · ·+cnµn > c1µ1+· · ·+c′nµn(d+1), so |fµ(Y )|pc1µ1+···+c′nµn(d+1)

converges to 0 as |µ| approaches∞. Therefore, this map is well defined with inverse,
σ−1(Xn) = Xn −Xd

1 and σ−1(Xj) = Xj , if j 6= n. �

Theorem 2.16. Suppose f(X,Y ) =
∑
µ fµ(Y )Xµ is an element of F [X;Y, λ]. If

|fµ(Y )| = 1, for some µ, where µ 6= 0, then there exists an automorphism σ of
F [X;Y, λ] such that σ(f) is Xn-distinguished.

Proof. Let f(X,Y ) =
∑
µ fµ(Y )Xµ =

∑
µ fµ(Y )Xµ1

1 · · ·Xµn
n . Let ν = (ν1, · · · , νn)

be the maximal n-tuple, with respect to lexicographical ordering, such that fν(Y )
is not an element of (Y ). Let t ≥ max1≤i≤n µi for all indices µ such that fµ(Y ) is
not an element of (Y ), e.g., let t be the total X-degree of f(X,Y ) mod (Y ). Now,
define an automorphism σ(Xi) = Xi +Xdi

n for i = 1, · · · , n− 1, and σ(Xn) = Xn,

where dn = 1, and dn−j = 1 + t
∑j−1
k=0 dn−k, for j = 1, · · · , n− 1. We see that this

map is just a finite composition of automorphisms of the same type as given above.
Hence, it is an automorphism.

We will prove that σ(f) is Xn-distinguished of degree s =
∑n
i=1 diνi. First, for

all µ such that fµ(Y ) is a unit, and µ 6= ν, we have
∑n
i=1 diµi < s: There exists

an index q such that 1 ≤ q ≤ n, such that µ1 = ν1, · · · , µq−1 = νq−1 and µq < νq.
Therefore µq ≤ νq − 1 and

n∑
i=1

diµi ≤
q−1∑
i=1

diνi + dq(νq − 1) + t

n∑
i=q+1

di =

q∑
i=1

diνi − 1 <

n∑
i=1

diνi = s.

Now, the expression

σ(f) =
∑
µ

fµ(Y )(X1 +Xd1
n )µ1 · · · (Xn−1 +Xdn−1

n )µn−1Xµn
n

is congruent to∑
µ

fµ(Y )/∈(Y )

fµ(Y )
∑

λ1,··· ,λn−1

0≤λi≤µi

(
µ1

λ1

)
· · ·
(
µn−1
λn−1

)
Xµ1−λ1

1 · · ·Xµn−1−λn−1

n−1 Xd1λ1+···+dn−1λn−1+µn
n

modulo (Y ). Write this reduction in the form
∑
giX

i
n mod (Y ), where the gi are

elements of F [X1, · · · , Xn−1]. Therefore, σ(f) mod (Y ) is a polynomial in Xn

of degree less than or equal to s, and X
d1λ1+···+dn−1λn−1+µn
n = Xs

n if, and only if,
µn = νn and λi = µi = νi for i = 1, · · · , n−1. Thus, we have gs = fν(Y ) mod (Y ),
but fν(Y ) is not an element of (Y ), and so σ(f) is a unitary polynomial modulo
(Y ). Therefore, σ(f) is Xn-distinguished of degree s. �

Theorem 2.17. Let ω be a Weierstrass polynomial of degree s in Xn. Then for
all d ≥ 0

(1) Y dF [X;Y, λ]/Y dωF [X;Y, λ] is a finite free F [X1, · · · , Xn−1;Y, λ]-module,
and
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(2) Y dF [X1, · · · , Xn−1;Y, λ][Xn]/Y dωF [X1, · · · , Xn−1;Y, λ][Xn] is isomorphic
to Y dF [X;Y, λ]/Y dωF [X;Y, λ].

Proof. Suppose that g is an element of Y dF [X;Y, λ], then g = Y dh for some el-
ement h in F [X;Y, λ]. Because ω is Xn-distinguished, there exists a unique ele-
ment q in F [X;Y, λ], and a unique polynomial r in F [X1, · · · , Xn−1;Y, λ][Xn] with
degXn(r) < s, such that h = qω + r, so g = qY dω + Y dr. Therefore, g ≡ Y dr

mod Y dωF [X;Y, λ], so the set {Y d, Y dXn, · · · , Y dXs−1
n } forms a generating set of

Y dF [X;Y, λ]/Y dωF [X;Y, λ] over the ring F [X1, · · · , Xn−1;Y, λ]. The natural map

Y dF [X1, · · · , Xn−1;Y, λ][Xn]→ Y dF [X;Y, λ]/Y dωF [X;Y, λ]

is thus surjective. The kernel of this map is Y dωF [X1, · · · , Xn−1;Y, λ][Xn], trivially.
�

Theorem 2.18. F [X;Y, λ] = F [X1, · · · , Xn;Y, λ] is factorial, for all n ≥ 1.

Proof. First assume that n = 1. Suppose that f is an element of F [X;Y, λ]. Write
f = e ·Y dω, where ω is a unitary polynomial in X of degree s in F [[Y ]][X], and e is
a unit in F [X;Y, λ]. We can factor ω = uq1 · · · qm into irreducible factors and a unit
in F [[Y ]][X] because this ring is factorial. We want to show that these factors are
still irreducible in F [X;Y, λ]. Suppose that qi is not irreducible modulo ωF [[Y ]][X],
then qi ≡ ab mod ω, so there exists g 6= 0 such that qi = ab + gω. However, by
the uniqueness of the division algorithm g = 0, thus, a or b is a unit modulo ω.
Therefore, qi is irreducible in F [[Y ]][X]/ωF [[Y ]][X] ' F [X;Y, λ]/ωF [X;Y, λ].

If qi is not irreducible in F [X;Y, λ], then there exists elements a and b in
F [X;Y, λ], such that qi = ab. Without loss of generality, b must be a unit modulo
ω, so b = c0 + gω. Write qi = a(c0 + gω) = ac0 + agω. However, by the uniqueness
of the division algorithm, the same representation of the division algorithm which
holds in F [[Y ]][X], holds in F [X;Y, λ], and because degX(ac0) < s, we must have
ag = 0. This is a contradiction. Therefore, the qi are irreducible in both rings.
Write f = eu · Y dq1 · · · qm uniquely as a product of irreducible factors and a unit.
Continue by induction. �

Theorem 2.19. F [X1, · · · , Xn;Y, λ] is noetherian.

Proof. Assume first that n = 1. Let I ⊆ F [X;Y, λ] be an ideal. Suppose that d
is the largest positive integer such that I ⊆ Y dF [X;Y, λ]. Then every f in I is
divisible by Y d. Choose an element f in I such that ordY f = d. We can then write
f = e ·Y dω for some unit e, and Weierstrass polynomial ω. Consider the image of I
in Y dF [X;Y, λ]/Y dωF [X;Y, λ] ' Y dF [[Y ]][X]/Y dωF [[Y ]][X]; this is Noetherian.
Therefore, we can pull back the finite list of generators for the image of I and add
Y dω to get a finite generating system for I. Continue by induction.

�

3. Further Questions

This paper resolves the open problem left in Wan [9], stated at the beginning
of the paper, only when F is a field and when F [X;Y, λ] has only one Y variable.
It would be interesting to settle the general case (either positively or negatively)
when Y has more than one variable and R is a general noetherian ring.

Another open question is whether F [X;Y, λ] is factorial if there is more than
one Y variable. The answer to this question cannot be obtained from the same
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methods used in this paper because elements exist that cannot be transformed into
an Xn distinguished element through an automorphism. For example:

f(X,Y ) = Y1 +XY2 +X2Y 2
1 +X3Y 3

2 + · · · .
Another direction of research could involve studying the algebras Tn(ρ, λ) and

Wn(λ). One could try to generalize results only known about the overconvergent
case (λ(x) = id), such as those proven in Gross-Klönne [6]. One could also try to
develop the k-affinoid theory of Tn(ρ, λ) and Wn(λ).
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