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Abstract. We consider the question of when sets definable in first-order ex-

pansions of groups contain the product of two infinite sets (we refer to this
as the “productset property”). We first show that the productset property

holds for any definable subset A of an expansion of a discrete amenable group

such that A has positive Banach density and the formula x · y ∈ A is sta-
ble. For arbitrary expansions of groups, we consider a “1-sided” version of

the productset property, which is characterized in various ways using coheir

independence. For stable groups, the productset property is equivalent to this
1-sided version, and behaves as a notion of largeness for definable sets, which

can be characterized by a natural weakening of model-theoretic genericity. Fi-

nally, we use recent work on regularity lemmas in distal theories to prove a
definable version of the productset property for sets of positive Banach density

definable in certain distal expansions of amenable groups.

1. Introduction

Given a subset A of the set of integers Z, the upper Banach density of A is

BD(A) = lim
n→∞

sup
m∈Z

|A ∩ [m+ 1,m+ n]|
n

,

where, given integers a < b, [a, b] denotes the interval {a, a+ 1, . . . , b}.
We are motivated by the following strengthening of a conjecture of Erdős.

Conjecture 1.1. Given A ⊆ Z, if BD(A) > 0, then there are infinite sets B,C ⊆ Z
such that B + C ⊆ A.

This conjecture is stated for positive lower density by Erdős and Graham in
[5]. Progress was made recently by Di Nasso, Goldbring, Jin, Leth, Lupini, and
Mahlburg [3], where they showed that the conjecture holds if BD(A) > 1

2 and that
a weak version of the conjecture holds in general: if BD(A) > 0, then there are
infinite sets B,C ⊆ Z and k ∈ Z such that B + C ⊆ A ∪ (A+ k). They also prove
a variant of the aforementioned result for an arbitrary countable amenable group
G,1 where now one is interested in when sets in G contain the product B ·C of two
infinite sets B,C ⊆ G.2

In this article, we consider definable subsets of first-order expansions of groups
which contain the product of two infinite sets (we call this the productset property).

Goldbring’s work was partially supported by NSF CAREER grant DMS-1349399.
1Recall that a group is amenable if it admits a finitely additive left-invariant probabillity

measure defined on all subsets of the group. Using Følner sequences, one can make sense of the
Banach density of a subset of an amenable group (see [3]).

2While this paper was under review, a proof of Conjecture 1.1 was obtained by Moreira,
Richter, and Robertson [7].
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Using the results in [3], we show that if G is an expansion of a discrete amenable
group and A ⊆ G is a definable set such that BD(A) > 0 and the formula x·y ∈ A is
stable, then A has the productset property. For the case G = Z, we use nonstandard
analysis to give a complete proof of this result, which does not directly rely on [3].
In particular, this confirms Conjecture 1.1 for sets A ⊆ Z such that “x+ y ∈ A” is
stable in the expansion (Z,+, 0, A).

We then analyze the model theoretic content of the productset property for de-
finable sets in first-order expansions of groups. Specifically, we consider a more
flexible notion, the 1-sided productset property (see Definition 2.1), which coincides
with the productset property in the case of stable groups. Motivated by an un-
published observation of DiNasso (Proposition 3.1), we show that the productset
property for a definable set A, in an arbitrary first-order expansion of a group G,
is equivalent to the existence of nonalgebraic global types p, q finitely satisfiable
in G such that the formula x · y ∈ A is contained in p(x) ⊗ q(y) and q(y) ⊗ p(x).
Using this we conclude that, when G is stable, the productset property for definable
A ⊆ G is equivalent to the existence of a nonstandard element c 6∈ G such that the
translate A · c has infinitely many solutions in G. Thus the productset property
can be viewed as a natural weakening of the notion of generic definable sets (where
this condition holds for all such translates). We also consider a finitary version of
the productset property and its connection with generically stable types.

Finally, we consider the finitary productset property in the setting of distal
groups. Using recent work of Chernikov and Starchenko [2], we show that for distal
groups, the finitary productset property is always witnessed by a definable family
of sets. Using this, we show that if G is a distal expansion of a countable amenable
group, and if G eliminates the quantifier ∃∞, then any definable subset of G with
positive Banach density has the productset property witnessed by definable sets.

2. Erdős’s conjecture in the stable setting

Motivated by Conjecture 1.1, we define the following properties of subsets of
groups.

Definition 2.1. Let G be a group.

(1) A set A ⊆ G has the productset property if there are infinite B,C ⊆ G such
that B · C ⊆ A.

(2) A set A ⊆ G has the 1-sided productset property if there are infinite se-
quences (bi)i<ω and (ci)i<ω in G such that bi · cj ∈ A for all i ≤ j < ω.

If the group G is abelian, then we will speak of the (1-sided) sumset property
rather than the (1-sided) productset property.

The next result is [3, Lemma 3.4], which is proved using nonstandard analysis
and technical results from ergodic theory.

Lemma 2.2. Let G be a countable amenable group. Fix A ⊆ G and suppose
BD(A) > 0. Then there is a tempered Følner sequence (Fn)∞n=0 in G and an
infinite set L ⊆ G satisfying:

• lim infn→∞
|L∩Fn|
|Fn| ≥ α;

• for every finite F ⊆ L, we have that A ∩x∈F x-1A is infinite.

In particular, A has the 1-sided productset property.
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We refer the reader to [3] for further details, including the definition of a tem-
pered Følner sequence. Our applications of this result will entirely rest on the final
conclusion concerning the 1-sided productset property. So we take the opportunity
here to give a short proof of this conclusion for G = Z, suggested to us by Renling
Jin. The proof is given in terms of nonstandard analysis and we follow the usual
terminology and notations that appear in the literature. For example, N∗ denotes
a sufficiently saturated nonstandard extension of N.

Proposition 2.3. Given A ⊂ Z, if BD(A) > 0, then A has the 1-sided sumset
property.

Proof. Without loss of generality, A ⊆ N. Take hyperfinite I ⊆ N∗\N such that
|A∗ ∩ I|/|I| ≈ α := BD(A). We claim that it suffices to find x ∈ I such that
(A∗ − x) ∩ N is infinite. Indeed, suppose (bi)i<ω is an infinite sequence in N such
that bi + x ∈ A∗ for all i < ω. Then for any j < ω, we may apply transfer to find
cj ∈ N such that bi + cj ∈ A for all i ≤ j.

Write I = [a, b] and fix N ∈ N∗\N such that N/(b−a) ≈ 0. In order to find x ∈ I
such that (A∗−x)∩N is infinite, it suffices to find x ∈ I such that |A∗∩[x, x+n)|/n ≥
α/2 for all n ∈ N∗ with n ≤ N . Suppose, towards a contradiction, that no such
x ∈ I exists. We define a hyperfinite sequence (xk)k≤K from I as follows. Set
x0 := a. Suppose that x0, . . . , xk have been constructed such that xi+1 − xi ≤ N
and |A∗∩[xi, xi+1)|/(xi+1−xi) < α/2 for all i < k. If b−xk < N , set xk+1 := b and
terminate the construction. Otherwise, set xk+1 ∈ I to be such that xk+1−xk ≤ N
and |A∗ ∩ [xk, xk+1)| < α/2. It follows that

|A∗ ∩ I| =
K−2∑
k=0

|A∗ ∩ [xk, xk+1)|+ |A∗ ∩ [xK−1, xK ]| < α

2
(xK−1 − a) +N,

whence
|A∗ ∩ I|
|I|

<
α

2
· xK−1 − a

b− a
+

N

b− a
≈ α

2
,

contradicting the choice of I. �

Suppose that G is a first-order structure expanding a group and A ⊆ G is
definable. We abuse terminology and say that A is stable if the two-variable formula
x · y ∈ A does not have the order property.

Proposition 2.4. Suppose that G is a first-order structure expanding a group and
that A ⊆ G is a stable definable set. Then A has the productset property if and only
if it has the 1-sided productset property.

Proof. One direction is trivial. For the other direction, fix a stable definable set
A ⊆ G which has the 1-sided productset property witnessed by infinite sequences
(bi)i<ω and (ci)i<ω in G. Let P1 = {(i, j) : i > j, bi · cj ∈ A} and P2 = {(i, j) : i >
j, bi · cj 6∈ A}. By Ramsey’s theorem, there is an infinite set I of indices and some
t ∈ {1, 2} such that (i, j) ∈ Pt for all i, j ∈ I with i > j. If t = 2, then (bi)i∈I and
(ci)i∈I witness the order property for x · y ∈ A, which is a contradiction. Therefore
t = 1, and so, setting B = {bi : i ∈ I} and C = {ci : i ∈ I}, we have B ·C ⊆ A. �

Lemma 2.2 and Proposition 2.4 yield the productset property for stable definable
sets of positive Banach density in expansions of amenable groups.
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Theorem 2.5. Suppose that G is a first-order structure expanding a countable
amenable group and that A ⊆ G is a stable definable set. If BD(A) > 0, then there
are infinite B,C ⊆ G such that B · C ⊆ A.

Remark 2.6. In the model-theoretic setting, a first-order structure expanding a
group G is definably amenable if there is a finitely additive left-invariant probability
measure on the definable subsets of G. It is worth emphasizing that, in this paper,
we do not consider this weaker notion of amenability.

3. Substantial subsets of groups

3.1. The productset property and coheir substantiality. The original moti-
vation for the present paper comes from the following unpublished observation of
Mauro DiNasso. We thank him for his permission in allowing us to include this
result and its proof.

Proposition 3.1. A ⊆ Z has the sumset property if and only if there are nonprin-
cipal ultrafilters U and V on Z such that A ∈ (U ⊕ V) ∩ (V ⊕ U).

Here, U ⊕ V is the ultrafilter on Z defined by setting A ∈ U ⊕ V if and only if
A− V ∈ U , where A− V := {k ∈ Z : A− k ∈ V}.

Proof of Proposition 3.1. First suppose that B,C ⊆ Z are infinite and that B+C ⊆
A. It follows that the family {B} ∪ {A − c : c ∈ C} has the finite intersection
property, whence there is a nonprincipal ultrafilter U on Z extending this family.
In the same way, there is a nonprincipal ultrafilter V on Z extending the family
{C} ∪ {A − b : b ∈ B}. Since B ⊆ A − V and B ∈ U , we have that A − V ∈ U ,
that is, A ∈ U ⊕ V; the argument that A ∈ V ⊕ U is identical.

Now suppose that A ∈ (U ⊕V)∩ (V ⊕U) for nonprincipal ultrafilters U and V on
Z. Pick b0 ∈ A− V and c0 ∈ A− U arbitrarily. Now pick b1 ∈ (A− V) ∩ (A− c0),
with b1 6= b0, and c1 ∈ (A − U) ∩ (A − b0) ∩ (A − b1), with c1 6= c0. Now pick
b2 ∈ (A−V)∩ (A− c0)∩ (A− c1), with b2 6∈ {b0, b1}, and then c2 ∈ (A−U)∩ (A−
b0)∩ (A− b1)∩ (A− b2), with c2 6∈ {c0, c1}. Continuing in this way, we get infinite
sequences (bi)i<ω and (cj)j<ω such that bi + cj ∈ A for all i, j < ω. �

Remark 3.2. Proposition 3.1 also holds in an arbitrary abelian group (with vir-
tually the same proof).

For the rest of Section 3, we let G denote a fixed first-order expansion of a
group. We also let T denote the complete theory of G and we let G be a sufficiently
saturated monster model of T . We write A ⊂ G to mean A is a “small” subset,
in the sense that G is |A|+-saturated. Unless otherwise specified, we use ϕ(x) to
denote a formula in the single variable x with parameters from G. We say that a
formula ϕ(x) has the 1-sided productset property (resp. productset property) if the
set ϕ(G) has the 1-sided productset property (resp. productset property).

Remark 3.3. In this model-theoretic context, when we say a formula ϕ(x) has
the (1-sided) productset property, it is worth emphasizing that we do not require
the witnessing sets B and C to be definable. For example, suppose G is strongly
minimal. Then any infinite definable subset of G is cofinite, and thus has the
productset property. On the other hand, the only subset of G with the productset
property witnessed by definable B and C is G itself (since, in any group, the product
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of two cofinite sets is the whole group). In Section 4, we will consider definable
versions of the productset property in the setting of distal groups.

Much of the work in this section is motivated by the consideration of Proposition
3.1 in light of the relationship between types and ultrafilters. First, recall that there
is a map (U ,V) 7→ U ⊗ V from pairs of ultrafilters on a set X to ultrafilters on X2

given by declaring, for E ⊆ X2, that E ∈ U⊗V if and only if {x ∈ X : Ex ∈ V} ∈ U ,
where Ex is the fiber of E over x, that is, Ex := {y ∈ X : (x, y) ∈ E}. In the case
X = Z, the operation ⊕ above is thus the pushforward of the operation ⊗ under
the map (x, y) 7→ x+ y.

In the model-theoretic setting, there is an operation ⊗ on global types that
is meant to mimic the operation ⊗ on ultrafilters. Specifically, fix A ⊂ G and
suppose p, q ∈ S1(G) are global types such that p is A-invariant. Define the global
type p(x)⊗ q(y) so that, given A ⊆ B ⊂ G and a formula θ(x, y) with parameters
in B, θ(x, y) ∈ p(x) ⊗ q(y) if and only if θ(x, c) ∈ p for some (any) c |= q|B .
(See [13, Section 2.2] for details.) For any A ⊂ G, there is also a surjective map
from ultrafilters on A to global types in S1(G) which are finitely satisfiable in A,
given by U 7→ {θ(x, c) : θ(A, c) ∈ U} (see [13, Example 2.1.7]). Finally, note that if
p ∈ S1(G) is finitely satisfiable in some set A ⊂ G, then p is A-invariant. Altogether,
this motivates the following model-theoretic interpretation of Proposition 3.1.

Theorem 3.4. A formula ϕ(x) has the productset property if and only if there are
nonalgebraic global types p, q ∈ S1(G) such that p, q are finitely satisfiable in G and
ϕ(x · y) ∈ (p(x)⊗ q(y)) ∩ (q(y)⊗ p(x)).

Proof. First, suppose ϕ(x) has the productset property, and let B,C ⊆ G be infinite
with B ·C ⊆ ϕ(G). Since B and C are infinite, the type {x 6= g : g ∈ G} is finitely
satisfiable in both B and C, and thus extends to global types p, q ∈ S1(G), which
are finitely satisfiable in B and C, respectively. Note then that p, q are necessarily
nonalgebraic. For a contradiction, suppose ¬ϕ(x · y) ∈ p(x) ⊗ q(y). Let c∗ |= q|G.
Then ¬ϕ(x · c∗) ∈ p so there is b ∈ B such that ¬ϕ(b · c∗) holds. Then ¬ϕ(b · y) ∈ q,
and so there is c ∈ C such that ¬ϕ(b · c) holds, which is a contradiction. By a
similar argument, ϕ(x · y) ∈ q(y)⊗ p(x).

Now suppose p, q ∈ S1(G) satisfy the conditions of the theorem. In a sufficiently
saturated extension of G, let (b∗, c∗) |= p(x) ⊗ q(y) and let (b′, c′) |= q(y) ⊗ p(x).
By assumption, ϕ(b∗ · c∗) and ϕ(b′ · c′) hold. Let p∗ = p|Gc∗ and q′ = q|Gb′. Note
that b∗ |= p∗, c′ |= q′, and p∗, q′ are nonalgebraic and finitely satisfiable in G. Fix
n < ω and suppose we have constructed sequences (bi)i<n and (cj)j<n such that
ϕ(bi · cj) holds for all i, j < n, ϕ(bi · c∗) for all i < n, and ϕ(b∗ · cj) holds for all
j < n. The formula ∧

j<n

ϕ(x · cj) ∧ ϕ(x · c∗) ∧
∧
i<n

x 6= bi

is realized by b∗ and thus is in p∗. So we may find a realization bn in G. Since
c∗ ≡G c′, we have ϕ(bi · c′) for all i ≤ n. So the formula∧

i≤n

ϕ(bi · y) ∧ ϕ(b′ · y) ∧
∧
j<n

y 6= cj

is realized by c′ and thus is in q′. So we may find a realization cn in G. Since b∗ ≡G
b′, we have ϕ(b∗ · cn). This constructs infinite B,C such that B · C ⊆ ϕ(G). �
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In the next subsection, we will analyze the productset property in the context
of model-theoretic genericity in stable and simple theories. Toward this end, a
natural question is when, in the above characterization of the productset property,
we can choose realizations of the types p and q, which are mutually independent
with respect to finite satisfiability. This motives the next definition.

Definition 3.5. A formula ϕ(x) is 1-sided coheir substantial (resp. coheir substan-
tial) if there are b, c ∈ G\G such that ϕ(b · c) holds and tp(b/Gc) is (resp. tp(b/Gc)
and tp(c/Gb) are) finitely satisfiable in G.

Theorem 3.6. Fix a formula ϕ(x). The following are equivalent:

(i) ϕ(x) has the 1-sided productset property.
(ii) ϕ(x) is 1-sided coheir substantial.

(iii) There are nonalgebraic global types p, q ∈ S1(G) such that p is finitely satis-
fiable in G and ϕ(x · y) ∈ p(x)⊗ q(y).

Proof. (i) ⇒ (ii): Assume that ϕ(x) has the 1-sided productset property as wit-
nessed by the infinite sequences (bi)i<ω and (ci)i<ω from G. By saturation, we may
find c ∈ G\G such that ϕ(bi ·c) holds for all i < ω. Then {ϕ(x ·c)}∪{x 6= g : g ∈ G}
is finitely satisfiable in G, and thus extends to a complete type p ∈ S1(Gc) which
is finitely satisfiable in G. If b ∈ G is a realization of p, then b, c ∈ G\G witness
that ϕ(x) is 1-sided coheir substantial.

(ii)⇒ (iii): Assume that ϕ(x) is coheir substantial as witnessed by b, c ∈ G\G.
We may extend tp(b/Gc) to a global type p ∈ S1(G), which is finitely satisfiable
in G. Since b 6∈ G, it follows that p is nonalgebraic. Since tp(b/Gc) is finitely
satisfiable in G, it follows that c 6∈ acl(Gb), and so we may extend tp(c/Gb) to
a nonalgebraic global type q ∈ S1(G). Since c |= q|G and ϕ(x · c) ∈ p, we have
ϕ(x · y) ∈ p(x)⊗ q(y), as desired.

(iii) ⇒ (i): Assume that ϕ(x) satisfies (iii) as witnessed by p, q ∈ S1(G). Let
c ∈ G\G realize q|G. Since ϕ(x ·y) ∈ p(x)⊗q(y), we have ϕ(x ·c) ∈ p. Let b |= p|Gc.
Then ϕ(b · c) holds and tp(b/Gc) is finitely satisfiable in G (since it is contained in
p). We inductively construct infinite sequences (bi)i<ω and (ci)i<ω in G such that
ϕ(bi · cj) holds for all i ≤ j < ω. In particular, fix n < ω and assume we have
distinct (bi)i<n and distinct (ci)i<n such that ϕ(bi · cj) holds for i ≤ j < n and
ϕ(bi · c) holds for i < n. The formula ϕ(x · c) ∧

∧
i<n x 6= bi is in tp(b∗/Gc) and

thus realized by some bn ∈ G. Then G |=
∧
i≤n ϕ(bi · c) ∧

∧
j<n c 6= cj and so, by

elementarity, there is cn ∈ G\(cj)j<n such that ϕ(bi · cn) holds for all i ≤ n. �

When T is stable, the “2-sided” version of the previous result holds.

Theorem 3.7. Fix a formula ϕ(x).

(a) If ϕ(x) is coheir substantial then it has the productset property.
(b) Assume T is stable. Then ϕ(x) is coheir substantial if and only if it has the

productset property.

Proof. Part (a). Follow the proof of Theorem 3.6[(iii) ⇒ (i)], with q ∈ S1(G)
chosen to be finitely satisfiable in M . We have ϕ(x · y) ∈ p(x)⊗ q(y) by the same
argument. Since b |= p|G and ϕ(b · y) ∈ q, we also have ϕ(x, y) ∈ q(y)⊗ p(x).

Part (b). We only need to show the reverse implication. Since T is stable, coheir
independence satisfies symmetry (over models), and so coheir substantial coincides
with 1-sided coheir substantial. Thus the result follows from Theorem 3.6. �
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Part (b) of the previous result can fail in general (we thank Pierre Simon for this
observation), as witnessed by the following example.

Remark 3.8. Let G = (Z,+, <, 0) and let ϕ(x) be x > 0 (which clearly has
the sumset property). For a contradiction, suppose there are b, c ∈ G\G such
b + c > 0 and tp(b/Zc) and tp(c/Zb) are both finitely satisfiable in Z. Without
loss of generality, suppose b ≤ c. Then b ≤ y and b+ y > 0 are both realized in Z,
which is impossible.

Remark 3.9. Theorems 3.4, 3.6, and 3.7 can be directly adapted to outside of
the group context, in which G is replaced by an arbitrary first-order structure M ,
ϕ(x · y) is replaced by a formula ϕ(x, y), and the productset property is interpreted
to mean B × C ⊆ ϕ(M) for some infinite B,C ⊆ M . Proposition 2.4 can also
be generalized to this context to show that the productset property and 1-sided
productset property coincide for stable formulae.

3.2. Nonforking substantiality and generic formulae in simple theories.
A key part of the proof of Theorem 3.7(b) is the symmetry of coheir independence
in stable theories. In the more general context of simple theories, coheir indepen-
dence can fail symmetry, but nonforking independence (which coincides with coheir
independence in the stable case) remains symmetric. This motivates the following
definition.

Definition 3.10. A formula ϕ(x) is 1-sided nonforking substantial (resp. nonfork-
ing substantial) if there are b, c ∈ G\G such that ϕ(b · c) holds and tp(b/Gc) does
(resp. tp(b/Gc) and tp(c/Gb) do) not fork over G.

Recall that, for any theory T , coheir independence is stronger than nonfork-
ing independence, whence (1-sided) coheir substantial implies (1-sided) nonforking
substantial. Applying Theorem 3.6, we obtain the following conclusion.

Corollary 3.11. If a formula ϕ(x) has the 1-sided productset property then ϕ(x)
is 1-sided nonforking substantial.

Combined with Lemma 2.2, we have:

Corollary 3.12. Suppose G is a first-order expansion of a countable amenable
group and A ⊆ G is definable. If BD(A) > 0, then A is 1-sided nonforking substan-
tial.

The next corollary collects the stronger conclusions obtained in the case that T
is stable or simple.

Corollary 3.13. Fix a formula ϕ(x).

(a) Assume T is stable. The following are equivalent.
(i) ϕ(x) is (1-sided) nonforking substantial.

(ii) ϕ(x) is (1-sided) coheir substantial.
(iii) ϕ(x) has the (1-sided) productset property.

(b) Assume T is simple. Then ϕ(x) is nonforking substantial if and only if it is
1-sided nonforking substantial.

(c) Assume T is simple. If ϕ(x) has the productset property then it is nonforking
substantial.
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In the case that T is stable, we have a single notion of “substiantiality”, which
can be characterized in several interesting ways. Therefore, in the stable case, we
simply say that ϕ(x) is substantial if it satisfies one of the equivalent conditions in
part (b) of the previous corollary.

We again note that, since coheir independence implies nonforking independence
in any theory, part (c) of the previous corollary holds whenever T satisfies the
conclusion of Theorem 3.7(b).

Question 3.14. Does Corollary 3.13(c) hold without the assumption that T is
simple (or, under weaker assumptions such as NIP)?

Question 3.15. Is there a model theoretically “tame” group G (e.g. simple or NIP)
in which some formula ϕ(x) is (1-sided) nonforking substantial but not (1-sided)
coheir substantial?

Our next goal is to connect the notion of substantial definable sets to the well-
studied notion of model-theoretic genericity.

Definition 3.16. A formula ϕ(x) is generic if G is covered by finitely many left
translates of ϕ(G).

Remark 3.17. Recall that a set A ⊆ N of natural numbers is called syndetic
if finitely many translates of A cover N. Our change in terminology follows the
literature on stable group theory.

Definition 3.18. Assume T is simple.

(1) A type p ∈ S1(G) is f -generic if, for all b, c ∈ G, if b |= p and tp(b/Gc)
does not fork over G, then tp(c · b/Gc) does not fork over G.

(2) A formula ϕ(x) is f -generic if it is contained in an f -generic type p ∈ S1(G).

Remark 3.19. For a stable group G, a formula ϕ(x) is f -generic if and only if it
is generic (see [9, Lemma I.6.9]). However, outside of stable groups, these notions
need not coincide.

Another classical fact is that if T is simple, then a formula ϕ(x) is f -generic
if and only if, for all c ∈ G, ϕ(x · c) does not fork over G (see [10, Proposition
3.10]).3 The next result shows how “1-sided nonforking substantial” is essentially
obtained by replacing “for all c” with “there exists a c” (modulo certain caveats).
Moreover, “1-sided coheir substantial” is obtained from “generic” in an analogous
fashion. In the following statement, we use x /∈ G as shorthand for the (partial)
type {x 6= g : g ∈ G}.

Proposition 3.20. Let ϕ(x) be a formula.

(a) The following are equivalent.
(i) ϕ(x) is 1-sided coheir substantial.

(ii) There is c ∈ G\G such that ϕ(x · c) has infinitely many solutions in G.
(b) The following are equivalent.

(i) ϕ(x) is 1-sided nonforking substantial.
(ii) There is c ∈ G\G such that {ϕ(x · c)} ∪ x 6∈ G does not fork over G.

(c) The following are equivalent.
(i) ϕ(x) is generic.

3Outside of simple theories, this latter property is usually taken to be the definition of f -
genericity for formulae.
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(ii) For all c ∈ G, ϕ(x · c) has infinitely many solutions in G.
(iii) For all c ∈ G, ϕ(x · c) has a solution in G.

(d) Assume T is simple. The following are equivalent.
(i) ϕ(x) is f -generic.

(ii) For all c ∈ G, {ϕ(x · c)} ∪ x 6∈ G does not fork over G.
(iii) For all c ∈ G, ϕ(x · c) does not fork over G.

Proof. Parts (a) and (b) are straightforward.
Part (c). (i) ⇒ (ii). Assume ϕ(x) is generic. Fix c ∈ G and a finite subset

F ⊆ G. We find g ∈ G\F such that ϕ(g · c) holds. By assumption, there are
a1, . . . , an ∈ G such that G =

⋃n
i=1 ai · ϕ(G). Since G is infinite, there is b ∈ G

such that a-1
i · b-1 6∈ F for all 1 ≤ i ≤ n. Note that G =

⋃n
i=1 b · ai · ϕ(G). So there

is some i ∈ {1, . . . , n} such that c ∈ b · ai · ϕ(G). Then g := a-1
i · b-1 is as desired.

(ii)⇒ (iii). Trivial.
(iii) ⇒ (i). Suppose ϕ(x) is not generic. Then the type {¬ϕ(g · y) : g ∈ G} is

finitely satisfiable, and thus realized by c ∈ G. So ϕ(x · c) is not satisfied in G.
Part (d). As noted above, the equivalence of (i) and (iii) is [10, Proposition

3.10].
(i) ⇒ (ii). Suppose ϕ(x) is f -generic. Let p ∈ S1(G) be an f -generic type

containing ϕ(x). Fix c ∈ G, and let q(x) = p(x · c) ∈ S1(Gc). Since all formulae
in p are f -generic, it follows from (i) ⇒ (iii) that q does not fork over G. Let
X = p(G), and note that q(G) = X · c-1. Since p is f -generic, it follows that X
is infinite. Therefore q(G) is infinite, and so there is a realization of q in G\G. In
particular, ϕ(x · c) ∧ x 6∈ G is contained in q, and thus does not fork over G.

(ii)⇒ (iii). Trivial. �

Remark 3.21. It is worth emphasizing that, unlike the situation with f -generic
formulae, in the characterization of 1-sided nonforking substantial formulae, the
type {ϕ(x · c)}∪x 6∈ G cannot be replaced by the formula ϕ(x · c). For example, let
G be the expansion of (Z,+, 0) obtained by adding a predicate for A = {2n : n ∈ N}.
Then G is stable (see [8] or [12]). If c ∈ A(G)\G is a nonstandard power of 2, then
the formula A(x+ c) is realized by 0 ∈ G and thus does not fork over G. But A(x)
is not nonforking substantial as the powers of 2 do not have the sumset property.

Corollary 3.22. Assume T is simple. If a formula ϕ(x) is f -generic then it is
nonforking substantial.

In the case that T is stable and G is amenable, the implication given by the
previous corollary can also be explained using Banach density and Corollary 3.12.

Corollary 3.23. Assume T is stable and G is countable and amenable. Fix a
definable set A ⊆ G.

(a) If A is generic, then BD(A) > 0.
(b) If BD(A) > 0, then A is substantial.

Proof. Part (a) follows from known facts. In particular, it is a standard exercise
that, for subsets of amenable groups, genericity corresponds to positive lower Ba-
nach density (which implies positive upper Banach density). Moreover, we have
already recalled that “f -generic” and “generic” coincide for definable subsets of
stable groups.

Part (b) follows from Corollary 3.12 and Corollary 3.13(a). �
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Question 3.24. Is there an amenable group G and a set A ⊆ G, definable in a
stable first-order expansion of G, such that A is substantial and BD(A) = 0?

Remark 3.25. Given an arbitrary ternary relation |̂ defined on small subsets of
G, one can define a formula ϕ(x) to be:

(i) |̂ -generic if for all c ∈ G\G there is b ∈ G\G such that ϕ(b · c) holds and
b |̂

G
c, and

(ii) 1-sided |̂ -substantial if there are b, c ∈ G\G such that ϕ(b · c) holds and
b |̂

G
c.

For example, define b |̂ u
G
c to mean that tp(b/Gc) is finitely satisfiable in G. Then

Theorem 3.6 says that the 1-sided productset property is equivalent to 1-sided |̂ u-

substantial; and Proposition 3.20(c) says that generic is equivalent to |̂ u-generic.

If |̂ f denotes nonforking independence, then Corollary 3.11 says that the 1-sided

productset property implies 1-sided |̂ f -substantial. In fact, this holds when |̂ f

is replaced by any ternary relation |̂ weaker than |̂ u. Another notable example

is þ-independence, denoted |̂ þ
, in T eq. For real elements, |̂ u is the same when

evaluated in T or in T eq and, moreover, implies |̂ þ
. If we further assume T is rosy,

then |̂ þ
-generic, as defined above, agrees with the notion defined in [4, Section 1]

(by following the proof of Proposition 3.20 with forking replaced by þ-forking, and
[10, Proposition 3.10] replaced by [4, Proposition 1.17]).

3.3. Generically stable types and the finitary productset property. Con-
tinuing with the analogy between Proposition 3.1 and Theorem 3.4, it is clear that
types that commute with other types with respect to the operation ⊗ will play
a role in the investigation of sets with the productset property. Such types have
been identified (in the NIP context) as the so-called generically stable types and
thus one should be motivated to consider a suitable notion of substantial formulae
associated to such types. The catch here is that generically stable types are defined
with respect to some small model M ≺ G which need not be equal to the original
small model G. Thus, one is led to the investigation of formulae ϕ for which ϕ(M)
has the productset property. In terms of the original group G, we are forced to
consider the following weaker notion:

Definition 3.26. A formula ϕ(x) has the finitary productset property if, for any
n ∈ N, there are B,C ⊆ G with |B|, |C| ≥ n such that B · C ⊆ ϕ(G).

Remark 3.27. ϕ(x) has the finitary productset property if and only if there is an
elementary extension M � G such that ϕ(M) has the productset property. Also,
if G is ω-saturated, then ϕ(x) has the finitary productset property if and only if it
has the productset property.

It is possible to carry out the above discussion precisely and prove that in NIP
theories, formulae which are substantial with respect to generically stable types (as
defined below) satisfy the finitary productset property. However, by relativizing
coheir substantiality to an arbitrary model M , we can obtain this result without
any assumptions on T . In particular, given a small model M ≺ G, we say that
a formula ϕ(x) is coheir substantial over M if it satisfies the definition of coheir
substantiality (Definition 3.5), with G replaced by the arbitrary model M . We can
now define a notion of substantial formulae motived by generically stable types.
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Definition 3.28.

(1) (From [11]) Given a small model M ≺ G, a type p ∈ S1(G) is generically
stable over M if it is M -invariant and, for any Morley sequence (bi)i<ω in
p over M and any formula θ(x) (with parameters from G), the set {i ∈ ω :
G |= θ(bi)} is finite or cofinite.

(2) A formula ϕ(x) is gs-substantial if there is a small model M ≺ G and
b, c ∈ G\M such that ϕ(b · c) holds and tp(b/Gc) extends to a nonalgebraic
global type which is generically stable over M .

The following fact on generically stable types (in arbitrary theories) is necessary
for our analysis.

Fact 3.29. [11, Proposition 1] Fix a small model M ≺ G. If a global type p is
generically stable over M , then p is definable over M and finitely satisfiable in M .

Remark 3.30. If T is NIP, then the converse of Fact 3.29 holds and provides one of
the many equivalent ways to formulate the notion of generically stable global types
(see, for example, [13, Theorem 2.29]). Moreover, [13, Proposition 2.33] states
that, in NIP theories, generically stable types commute (with respect to ⊗) with
all invariant types.

Theorem 3.31. If a formula ϕ(x) is gs-substantial, then it has the finitary prod-
uctset property.

Proof. Assume that ϕ(x) is gs-substantial as witnessed by M ≺ G and b, c ∈ G\M .
By relativizing Theorem 3.7(a), we see that if ϕ(x) is coheir substantial over M ,
then ϕ(M) has the productset property, whence ϕ(x) has the finitary productset
property. Thus, it suffices to show that ϕ(x) is coheir substantial over M .

Let p(x) be a nonalgebraic global extension of tp(b/Gc) which is generically
stable over M . By Fact 3.29, p is definable over M and finitely satisfiable in M .
Let b′ |= p|MGc. Then b′ ≡Gc b and so b′ · c ∈ ϕ(G). Since p is nonalgebraic,
we have b′ 6∈ M . Since tp(b′/Mc) is contained in p(x), we have that tp(b′/Mc)
is finitely satisfiable in M . We also have that tp(b′/Mc) is M -definable, and thus
tp(c/Mb′) is finitely satisfiable in M . Altogether b′, c ∈ G\M witness that ϕ(x) is
coheir substantial over M . �

From the proof of Theorem 3.31 it is clear that if ϕ(x) is gs-substantial as
witnessed by M = G, then ϕ(x) is coheir substantial and thus has the productset
property. This result can, once again, be adapted to work outside of the setting of
groups (see Remark 3.9).

4. Erdős’s conjecture in groups with distal theories

Given a structure M , a Keisler measure on M is a finitely additive probability
measure on the definable subsets of M . Such a measure is generically stable if it
has a (unique) extension to a global M -invariant measure which is definable and
finitely satisfiable in M (see [13, Section 7.5]). In the NIP context, the following
equivalent definition can be used, which avoids reference to global extensions (see
[13, Theorem 7.29]).

Definition 4.1. Let M be a structure whose theory is NIP. A Keisler measure µ on
M is generically stable if, for any formula ϕ(x, z̄) and ε > 0, there are a1, . . . , an ∈
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M such that, for any c̄ ∈M |z̄|,∣∣µ(ϕ(M, c̄))− 1
n |{i : M |= ϕ(ai, c̄)}|

∣∣ < ε.

We also recall that if I is an index set, (Mi)i∈I is a sequence of L-structures, µi
is Keisler measure on Mi, U is an ultrafilter on I, and N :=

∏
UMi, then one can

define the ultralimit measure µ :=
∏
U µi on N such that, for definable Di ⊆ Mi,

µ(
∏
U Di) := limU µi(Di). In the NIP setting, if each µi is generically stable on Mi,

then µ is generically stable on N (see [14, Corollary 1.3]).
We now focus on distal structures, which were first defined by P. Simon to capture

the class of “purely unstable NIP theories”. (See [13, Chapter 9] for a precise
definition.) Examples of distal structures include o-minimal structures, (Z,+, <, 0),
and, more generally, any ordered dp-minimal structure. In this section, we analyze
productsets in distal expansions of groups. In light of Remark 3.9, the productset
phenomenon is closely related to the recent study of regularity in distal theories.
In particular, we cite the following result of Chernikov and Starchenko.

Fact 4.2. [2, Corollary 4.6] Let M be a distal L-structure and fix a formula
ϕ(x, y, z̄) ∈ L. Then there are ε > 0 and formulae θ1(x, w̄), θ2(y, w̄) ∈ L such
that, for any generically stable Keisler measures µ, ν on M and any ā ∈M |z̄|, there
are c̄1, c̄2 ∈ M |w̄| such that µ(θ1(M, c̄1)), ν(θ2(M, c̄2)) ≥ ε and either θ1(M, c̄1) ×
θ2(M, c̄2) ⊆ ϕ(M2, ā) or θ1(M, c̄1)× θ2(M, c̄2) ⊆ ¬ϕ(M2, ā).

Although we have stated the previous result using singleton variables x and y
(which will be sufficient for our purposes), it is worth noting that the results of [2]
apply to formulae in any number of partitioned tuples of variables. In [1, Theorem
5.11], Chernikov, Galvin, and Starchenko use Fact 4.2 to prove essentially what we
have stated below as Corollary 4.4. Using similar methods, we prove the following
refinement of [1, Theorem 5.11] and, for the sake of completeness, derive Corollary
4.4 directly from it. Once again, we have stated our results for formulae in two
singleton variables x and y, and the generalization to formulae in any number of
partitioned tuples of variables is evident.

Proposition 4.3. Let M be a distal L-structure and fix a formula ϕ(x, y, z̄) ∈ L.
Then there are formulae θ1(x, w̄), θ2(x, w̄) ∈ L such that, for any ā ∈ M |z̄|, if for
all n > 0 there are B,C ⊆ M such that |B|, |C| ≥ n and B × C ⊆ ϕ(M2, ā),
then for all n > 0 there are c̄1, c̄2 ∈M |w̄| such that |θ1(M, c̄1)|, |θ2(M, c̄2)| ≥ n and
θ1(M, c̄1)× θ2(M, c̄2) ⊆ ϕ(M2, ā).

Proof. Fix ϕ(x, y, z̄). Fix also a nonprincipal ultrafilter U on N, and set N := MU .
Let ε > 0 and θ1(x, w̄), θ2(y, w̄) be as in Fact 4.2 with respect to the distal structure
N . Fix ā ∈ M |z̄| and assume that, for all n ∈ N, there are Bn, Cn ⊆ M such that
|Bn| = |Cn| = n and Bn ×Cn ⊆ ϕ(M2, ā). Define, for n ∈ N, the Keisler measures
µn and νn on M , such that, given a definable set D ⊆M , we have

µn(D) = 1
n |D ∩Bn| and νn(D) = 1

n |D ∩ Cn|.
By Definition 4.1, µn and νn are generically stable measures on M . Let µ =

∏
U µn

and ν =
∏
U νn. Then µ and ν are generically stable Keisler measures onN . By Fact

4.2, there are c̄1, c̄2 ∈ N |w̄| such that, setting B := θ1(N, c̄1) and C := θ2(N, c̄2),
we have µ(B), ν(C) ≥ ε and either B×C ⊆ ϕ(N2, ā) or B×C ⊆ ¬ϕ(N2, ā). Since
N is an elementary extension of M , in order to finish the proof, it suffices to show
that B,C are infinite and (B × C) ∩ ϕ(N2, ā) 6= ∅.
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For i ∈ {1, 2} and n ∈ N, let c̄ni ∈ M |w̄| be such that c̄i = (c̄ni )n∈N/U . Set
B∗n := θ1(M, c̄n1 ) and C∗n := θ2(M, c̄n2 ). Then B =

∏
U B

∗
n and C =

∏
U C
∗
n. Since

µ(B) ≥ ε, it follows that

X :=
{
n ∈ N : |B∗n ∩Bn| ≥ ε

2 |Bn|
}

=
{
n ∈ N : µn(B∗n) ≥ ε

2

}
∈ U .

Given k ∈ N, there is a cofinite set Yk ⊆ N such that ε
2 |Bn| ≥ k for all n ∈ Yk.

Thus, for any k ∈ N, X ∩ Yk ⊆ {n ∈ N : |B∗n| ≥ k} ∈ U , which implies |B| ≥ k.
Thus B is infinite and, by a similar argument, C is infinite. Also, if

Y := {n ∈ N : (B∗n × C∗n) ∩ (Bn × Cn) 6= ∅},
then Y ∈ U and Y ⊆ {n ∈ N : (B∗n × C∗n) ∩ ϕ(M2, ā) 6= ∅}. Since B × C =∏
U (B∗n × C∗n), it follows that (B × C) ∩ ϕ(N2, ā) 6= ∅. �

Recall that a structure M eliminates ∃∞ if for any formula θ(x, w̄), there is some
n ∈ N such that, for any c̄ ∈M |w̄|, if |θ(M, c̄)| ≥ n, then θ(M, c̄) is infinite.

Corollary 4.4 (Chernikov, Galvin, Starchenko [1]). Let M be a distal L-structure
with elimination of ∃∞. Then for any formula ϕ(x, y, z̄) ∈ L, there is some n ∈ N
such that, for any ā ∈ M |z̄|, if there are B′, C ′ ⊆ M such that |B′|, |C ′| ≥ n
and B′ × C ′ ⊆ ϕ(M2, ā), then there are infinite definable B,C ⊆ M such that
B × C ⊆ ϕ(M2, ā).

Proof. Suppose the corollary is false as witnessed by ϕ(x, y, z̄). Then for any n ∈ N,
there is ān ∈ M |z̄| such that ϕ(M2, ān) does not contain B × C for any infinite
definable B,C ⊆ M , but there are Bn, Cn ⊆ M such that |Bn|, |Cn| ≥ n and
Bn ×Cn ⊆ ϕ(M2, ān). Let U be a nonprincipal ultrafilter on N and set N := MU .
Let θ1(x, w̄) and θ2(y, w̄) be given by Proposition 4.3 (with respect to ϕ(x, y, z̄) and
the model N). Since M eliminates ∃∞, there is some m ∈ N such that, for i ∈ {1, 2}
and c̄ ∈M |w̄|, if |θi(M, c̄)| ≥ m, then θi(M, c̄) is infinite. Let ā∗ = (ān)n∈N/U ∈ N .
By assumption and  Loś’s Theorem, ϕ(x, y, ā) satisfies the conditions of Proposition
4.3 (with respect toN). By choice of θ1 and θ2, it follows that c̄∗ satisfies the formula
ψ(z) expressing “there are w̄1, w̄2 such that θ1(x, w̄1) and θ2(y, w̄2) each have at
least m solutions and θ1(x, w̄2) × θ2(y, w̄2) is contained in ϕ(x, y, z̄).” Therefore
there is some n ∈ N such that M |= ψ(ān). By choice of m, this contradicts the
assumption on ϕ(x, y, ān). �

We now return to the setting of a fixed first-order expansion of a group G (with
the same notation and conventions described after Remark 3.2).

Definition 4.5.

(1) A formula ϕ(x) has the definable productset property if there are infinite
definable B,C ⊆ G such that B · C ⊆ ϕ(G).

(2) A formula ϕ(x) has the definable finitary productset property if there are
formulae θ1(x, w̄), θ2(x, w̄) such that, for all n ∈ N there are c̄1, c̄2 ∈ G|w̄|
such that |θ1(G, c̄1)|, |θ2(G, c̄2| ≥ n and θ1(G, c̄2) · θ2(G, c̄2) ⊆ ϕ(G).

Theorem 4.6. Assume G is distal, and fix a formula ϕ(x).

(a) If ϕ(x) has the finitary productset property, then it has the definable finitary
productset property.

(b) Suppose G eliminates ∃∞. Then there is some n ∈ N such that, if there are
B,C ⊆ G such that |B|, |C| ≥ n and B ·C ⊆ ϕ(G), then ϕ(x) has the definable
productset property.
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Proof. For part (a), apply Proposition 4.3 to the formula ϕ(x · y). For part (b),
apply Corollary 4.4 to the formula ϕ(x · y). �

Remark 4.7. Although it will not be significant for the subsequent results, it
is worth noting that in Theorem 4.6(a), the formulae θ1(x, w̄) and θ2(x, w̄) which
witness the definable finitary productset property do not depend on the parameters
appearing ϕ(x). Similarly, the integer n in part (b) does not depend on parameters.

Theorem 4.6 has the following consequences for expansions of amenable groups.

Corollary 4.8. Assume G is a distal expansion of a countable amenable group.

(a) If A ⊆ G is definable with BD(A) > 0, then A has the definable finitary prod-
uctset property.

(b) Suppose G eliminates ∃∞. If A ⊆ G is definable with BD(A) > 0, then A has
the definable productset property.

Proof. By Theorem 4.6, it suffices to show that sets of positive Banach density
have the finitary productset property. To see this, we use Lemma 2.2 and the
observation that the 1-sided productset property implies the finitary productset
property. Indeed, fix A ⊆ G and suppose (bi)i<ω, (ci)i<ω are sequences of pairwise
distinct elements such that bi · cj ∈ A for all i ≤ j. For any n ∈ N, if B =
{b0, . . . , bn−1} and C = {cn−1, . . . , c2n−2}, then B · C ⊆ A. �

The class of distal expansions of amenable groups includes any o-minimal ex-
pansion or, more generally, dp-minimal expansion of a countable ordered group
(in fact, such groups are always abelian [15]). In the o-minimal case, one also has
elimination of ∃∞. It is also worth mentioning the fact that any ℵ0-categorial dp-
minimal group is nilpotent-by-finite [6], and thus amenable. Of course, in order
to use the previous work to conclude the productset property for sets of positive
Banach density, one would need the further assumption of stability or distality.
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conjecture, available: arXiv: 1803.00498.
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