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Abstract. We investigate the problem of elementary equivalence of the free
group factors, that is, do all free group factors L(Fn) share a common first-
order theory? We establish a trichotomy of possibilities for their common first-
order fundamental group, as well as several possible avenues for establishing
a dichotomy in direct analog to the free group factor alternative of [Dyk94;
Rǎd92]. We also show that the ∀∃-theories of the interpolated free group factors
are increasing, and use this to establish that the dichotomy holds on the level
of ∀∃-theories. We conclude with some observations on related problems.

1. Introduction

A basic construction in the theory of tracial von Neumann algebras associates
to every (countable, discrete) group Γ its group von Neumann algebra L(Γ).
More precisely, if one lets ℓ2(Γ) denote the Hilbert space with orthonormal basis
(uγ)γ∈Γ , then the left regular representation λ : Γ → U(ℓ2(Γ)) is the unitary
representation of Γ defined by λ(γ)(uη) := uγη. L(Γ) is then defined to be the
von Neumann subalgebra of B(ℓ2(Γ)) generated by λ(Γ). L(Γ) is a tracial von
Neumann algebrawhen equippedwith the trace τ(x) := ⟨xu1, u1⟩ and is a factor
precisely when Γ is an ICC group, that is, when all nontrivial conjugacy classes
of Γ are infinite.
It is well-known that the group von Neumann algebra L(Γ)may “forget” much
of the algebraic information about Γ . For example, by a celebrated result of
Connes [Con76], any two infinite ICCamenable groups generate the samegroup
von Neumann algebra, namely the hyperfinite II1 factor R. On the other hand,
there are situations in which L(Γ) “completely remembers” Γ , for example the
generalized wreath product groups of [IPV13]. In fact, a famous conjecture of
Connes states that L(Γ) completely remembers Γ when Γ is an ICC group with
Kazhdan’s property (T) [Con82].
A long-standing question regarding the free group factors L(Fn) for n ≥ 2, orig-
inally considered byMurray and vonNeumann in [MN43], is whether L(Fm) ∼=
L(Fn) for distinctm,n ≥ 2. In the 1990’s, Dykema [Dyk94] and independently
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Râdulescu [Râd94] used free probability to extend the collection of group von
Neumann algebras {L(Fn)}n∈N>1

to a continuous family {L(Fr)}r∈R>1
of II1 factors,

called the interpolated free group factors. Using these, he proved a dichotomy
for the free group factor isomorphism problem; the following is [Râd94, Corol-
lary 4.7]. (Wenote here thatDykema independently proved the samedichotomy
in [Dyk94, Corollary 4.2] but without including the subtler case of s = ∞.)
Theorem 1.1. One of the following two statements must hold.

(1) L(Fr) ∼= L(Fs) for all 1 < r ≤ s ≤ ∞, and the fundamental group of L(Fr) is
R+ for all 1 < r ≤ ∞.

(2) L(Fr) ̸∼= L(Fs) for all 1 < r < s ≤ ∞, and the fundamental group of L(Fr) is
{1} for all 1 < r <∞.

In this paper, we investigate the problem of free group factor elementary equiv-
alence:
Question 1.2. Is L(Fm) ≡ L(Fn) for some (or all) distinctm,n ≥ 2?

There are two natural motivations for the previous problem. First, in many cir-
cumstances, when two II1 factors are not isomorphic, they are not even elemen-
tarily equivalent. (See, for example, [GH23, Section 4].) Thus, if all free group
factors have the same first-order theory, then this might serve as evidence as
to why the free group factor isomorphism problem is so difficult. Of course, if
some free group factors have distinct first-order theories, then this would pro-
vide a strong refutation of the free group factor isomorphism problem.
A secondmotivation for Question 1.2 is Sela’s famous positive resolution [Sel06,
Theorem 3] of the Tarski problem, which asked if all nonabelian free groups
have the same first-order theory. (For this reason, Thomas Sinclair once called
Question 1.2 the noncommutative Tarski problem.) A naïve attempt toward
resolving Question 1.2 might be to somehow “transfer” the fact that F2 ≡ F3
holds to prove that L(F2) ≡ L(F3) is also true. However, a quick examination
of the construction of the group von Neumann algebra as well as the first-order
language used to study tracial von Neumann algebras shows that such a trans-
ferral of elementary equivalence is not automatic. In fact, KoichiOyakawa asked
us whether or not there are examples of ICC groups Γ1 and Γ2 that are elemen-
tarily equivalent but whose group von Neumann algebras L(Γ1) and L(Γ2) are
not elementarily equivalent. While such pairs of groups almost certainly exist,
we are unable to prove this at the moment; we discuss some ideas around this
problem in the last section of this paper.
Our initial hopewas to establish a dichotomy for the first-order free group factor
problem analogous to Theorem 1.1 above. Although we are currently unable to
obtain this dichotomy, we are able to obtain an interesting trichotomy:
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Theorem A. Exactly one of the following holds:

(1) L(Fr) ≡ L(Fs) for all 1 < r ≤ s < ∞, and the first-order fundamental group
of L(Fr) is R+ for all 1 < r ≤ ∞.

(2) L(Fr) ̸≡ L(Fs) for all 1 < r < s < ∞, and the first-order fundamental group
of L(Fr) is {1} for all 1 < r <∞.

(3) There is α ∈ (1,∞) such that the first-order fundamental group of L(Fr) is αZ

for all 1 < r <∞.

Using this trichotomy, we are able to obtain the desired dichotomy if the follow-
ing conjecture has a positive solution.
Conjecture 1.3. If U is an ultrafilter on N and (rk) is a sequence in R>1 for which
limU rk = ∞, then

∏
U L(Frk) ∼= L(F∞)U.

Note that this fact holds for sequences rk whose ultralimit is some r ∈ R>1 (see
Corollary 2.13). This conjecture is also a question of independent interest, since
it establishes that the theories of the interpolated free group factors varies con-
tinuously in a way that includes L(F∞).
Separately from the trichotomy, we give a few possible avenues toward estab-
lishing variants of the dichotomy using results on the preservation of first-order
theory under free products. In particular, we show

(1) If taking the free product with L(F2−ϵ) for ϵ ∈ (0, 1) preserves elemen-
tary equivalence, then we obtain the desired dichotomy.

(2) If taking the free product with L(Z) or R preserves elementary equiva-
lence and L(F2) ≡ L(Fn) for some integer n ̸= 2, then L(Fr) ≡ L(Fs) for
all r, s ∈ (1,∞).

(3) If taking the free product withM2(C) preserves elementary equivalence
andL(Fm) ≡ L(Fn) for some integersm,n of opposite parity, thenL(Fr) ≡
L(Fs) for all r, s ∈ (1,∞).

Further, using Dykema’s notions of standard embeddings [Dyk93], we also
prove the following.
Theorem B. If for some 1 < r < s there is an embedding α : L(Fr) → L(Fs) that is
both standard and elementary, then L(Fx) ≡ L(Fy) for all x, y ∈ R>1.

Finally, we give some evidence that the third item in the trichotomy is unlikely
to hold. By investigating existential embeddings between the interpolated free
group factors, we establish the following result on the 2-quantifier theory of the
family {L(Fr)}r∈R>1

.
Theorem C. If the first-order fundamental group of the free group factors is not trivial,
then the ∀∃-theory of all interpolated free group factors is the same.
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The remainder of the paper is structured as follows. After presenting a few
preliminaries in Section 2, we present the trichotomy in Section 3, along with
some possibilities for including L(F∞) into the trichotomy. We also consider
a number of avenues for establishing the dichotomy by using preservation of
theories under taking free products. We then turn to investigating existential
embeddings between the free group factors in Section 4, and obtain that the
∀∃-theory of L(Fr) is increasing in r. Lastly in Section 5, we make observations
regarding the possible coincidence of the ∀∃-theories of free group factors and
matrix ultraproducts, the version of the main question for reduced group C*-
algebras of the free groups, and potential attacks on the question of whether or
not taking group von Neumann algebras preserves elementary equivalence.

1.1. Acknowledgements. Manyof the initial discussions concerning the results
in this paper were with David Sherman; we are truly grateful for letting us in-
clude some of his valuable insights. We would also like to thank Ken Dykema
for pointing us to his work on standard embeddings, to Dima Shlyakhtenko for
answering some of our questions on free entropy, and to Rizos Sklino for dis-
cussing the model theory of the free group with us. Finally, we thank Srivatsav
Kunnawalkam Elayavalli for helpful comments on an earlier version of this pa-
per.

2. Preliminaries

2.1. Some model-theoretic notions. We present a few necessary definitions,
but omit much of the formal model theory; we refer the reader to [FHS13],
[FHS14a], [FHS14b] for details on the model theory of tracial von Neumann
algebras.

Definition 2.1. Two tracial von Neumann algebras M and N are elementarily
equivalent, written M ≡ N, if σM = σN for every sentence σ in the language of
tracial von Neumann algebras.

By the continuous version of theKeisler-Shelah isomorphism theorem [FHS14b,
Theorem 2.1(2)], M and N are elementarily equivalent if and only if there are
ultrafiltersU andV on (possibly uncountable) index sets I and J forwhichMU ∼=
NV. (If one is willing to assume the continuumhypothesis, then one can assume
that U = V lives on a countable index set.)
We will also need the notion of an elementary embedding:

Definition 2.2. An embedding i : M ↪→ N between tracial von Neumann alge-
bras is elementary if φ(a⃗)M = φ(i(a⃗))N for all formulae φ(⃗x) and all tuples a⃗
fromM.
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One can give a similar semantic characterization of elementary embeddings: the
embedding i : M ↪→ N is elementary if and only if there are ultrafilters U and
V such that i extends to an isomorphism between MU and NV (with M and N

viewed as subsets of their respective ultrapowers via the diagonal embedding).

2.2. Amplifications. Webegin this subsection by recalling the fundamental no-
tions of compression and amplification.
Definition 2.3. Let M be a II1 factor and 0 < t < 1. The compression of M by
t is the II1 factor Mt := pMp, where p ∈ P(M) is any projection with τ(p) = t.
(This definition is independent of the choice of such a projection.)
For 1 < t < ∞, the notion of compression is extended to the notion of ampli-
fications of M by taking tensors with matrix algebras. More precisely, writing
t = n · ℓ, where 0 < ℓ < 1 and n ∈ N, we define

Mt := pMp⊗Mn(C) ∼=Mn(pMp),

where p ∈ P(M) is any projection with τ(p) = ℓ. Once again, this definition is
independent of the choice of projection as well as the representation t = n · l.

We recall that (Ms)t ∼= Mst for any s, t ∈ R+ (see, for example, [AP10, Lemma
4.2.3]).
We record that taking amplifications commutes with taking ultraproducts of II1
factors; this fact can be checked simply by unpacking the definitions (and using
the well-known fact that a projection p in an ultraproduct can be represented
by a sequence of projections of the same trace as p). In the rest of this paper, R+

denotes the set of strictly positive real numbers.
Lemma 2.4. Let M be a II1 factor. Then for any t ∈ R+ and nonprincipal ultrafilter
U, we have (MU)t ∼= (Mt)

U.

The second necessary fact is that elementary equivalence is preserved under
amplifications.
Lemma 2.5. LetM,N be II1 factors satisfyingM ≡ N. Then for any t ∈ R+, we have
Mt ≡ Nt.

Proof. While one can prove this fact using, for example, Ehrenfeucht-Fraïsse
games, the shortest proof uses the Keisler-Shelah theorem. Indeed, if M ≡ N,
then there are nonprincipal ultrafilters U and V such that

MU ∼= NV.

By Lemma 2.4, we have
(Mt)

U ∼= (MU)t ∼= (NV)t ∼= (Nt)
V,



6 GOLDBRING AND PI

whence we can concludeMt ≡ Nt. □

Analogous arguments show the following more general fact:

Lemma 2.6. If α : M → N is an elementary embedding and p ∈ P(M), then so are
α|pMp : pMp→ α(p)Nα(p) and α⊗ idMn(C) :Mn(M) →Mn(N).

Proposition 2.7. For any II1 factorM, any tk, t ∈ R+, and any nonprincipal ultrafilter
U on N for which limU tk = t, we have

∏
UMtk

∼= MU
t .

Proof. Note that (Mtk)γk
∼= Mt, where γk = t

tk
. Since limU γk = 1, assume

without loss of generality that γk < 2 for all k ∈ N. Set s > max{t, sup
k
tk}. We

now define II1 factors Ak as follows:

• if γk ≤ 1, set Ak := pkMtkpk for some projection pk ∈ P(Ms) satisfying
τ(pk) = γk, and

• if 1 < γk < 2, set Ak := pkM2(Mtk)pk for some projection pk ∈ P(Ms)
satisfying τ(pk) = γk/2.

Then, letting θk : Ak → Mt be the isomorphism witnessing Ak = (Mtk)γk
∼= Mt,

we have that
∏

U θk :
∏

UAk → MU
t is an isomorphism. We conclude by noting

that
∏

UAk
∼=
∏

UMtk . □

We now recall the definition of the fundamental group of a II1 factor.

Definition 2.8. The fundamental group of a II1 factor M is
F(M) := {t ∈ R+ : Mt

∼= M}.

The terminology fundamental group is appropriate as F(M) is indeed a sub-
groupof themultiplicative groupR+ using the aforementioned fact that (Ms)t ∼=
Mst.
In [GH16], the first-named author and Hart introduced the first-order funda-
mental group Ffo(M) := {t ∈ R+ : Mt ≡ M} of a II1 factor M. It was shown
there thatFfo(M) is a closed subgroup ofR+ containing the ordinary fundamen-
tal group F(M) as a subgroup. (We note that F(M) need not always be closed.)
At the time of writing of this paper, there is no known example of a II1 factorM
whose first-order fundamental group is not all of R+.

2.3. Interpolated free group factors. Wenext recall the interpolated free group
factors:

Fact 2.9 ([Dyk94; Rǎd92]). There is a family {L(Fr)}1<r≤∞ of separable II1 factors
with the following properties:
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(1) If r ∈ {2, 3, . . .} ∪ {∞}, then L(Fr) is the usual group von Neumann algebra
associated to the free group Fr.

(2) L(Fr) ∗ L(Fs) ∼= L(Fr+s) for all r, s ∈ (1,∞].
(3) L(Fr)t ∼= L(F1+ r−1

t2
) for all r ∈ (1,∞] and t ∈ (0,∞).

A particular consequence of item (3) above is that the interpolated free group
factors L(Fr) for finite r are each amplifications of each other, whence they all
have the same fundamental group, while the fundamental group of L(F∞) is
R+, a fact first proven by Radulescu in [Rǎd92].
We will need a generalization of item (2) in the previous fact due to Dykema
[Dyk93]. To state the result, we define the free dimension fd of certain tracial
von Neumann algebras as follows:

• fd(L(Fr)) = r.
• fd(Mk(C)) = 1− 1

k2
.

• fd(L(Z)) = fd(R) = 1.

Here and throughout this paper, R denotes the unique separable hyperfinite II1
factor.
Fact 2.10. If M and N are each either L(Fr) (for some r ∈ (1,∞]),Mk(C) (for some
k ∈ N), L(Z), or R, then M ∗N ∼= L(Ft) with t := fd(M) + fd(N).

Thus, for example, we haveR∗L(Fn) ∼= L(Fn+1) and L(Fk)∗Mn(C) ∼= L(Fk+1− 1

n2
).

We will also have occasion to use an even more general formula due to Dykema
[Dyk94, Theorem 1.2]:
Fact 2.11. For any two II1 factors M and N and any n ≥ 1, we have

((M⊗Mn(C)) ∗N) 1
n

∼= M ∗ (Mn(C) ∗N) 1
n
.

Using Facts 2.10 and 2.11, we obtain:
Fact 2.12. For any two II1 factors M and N and any n ≥ 1, we have

(M⊗Mn(C)) ∗ (N ⊗Mn(C)) ∼= (M ∗N ∗ L(Fn2−1))⊗Mn(C).

Proposition 2.7 and Fact 2.9 together imply the following:
Corollary 2.13. For any rk, r ∈ (1,∞) with rk → r, we have

∏
U L(Frk) ∼= L(Fr)U.

Given the previous corollary, the next question becomes natural:
Question 2.14. If limU rk = ∞, do we have

∏
U L(Frk) ∼= L(F∞)U?

The following question at the other extremewas posed to us byDavid Sherman:
Question 2.15. If limU rk = 1, what can one say about

∏
U L(Frk)?
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3. Towards a dichotomy for free group factor elementary equivalence

In direct analog to Theorem 1.1, we have the following conjectured dichotomy
for free group factor elementary equivalence:

Conjecture 3.1. One of the following two statements must hold.

(1) L(Fr) ≡ L(Fs) for all 1 < r ≤ s ≤ ∞, and the first-order fundamental group
of L(Fr) is R+ for all 1 < r ≤ ∞.

(2) L(Fr) ̸≡ L(Fs) for all 1 < r < s ≤ ∞, and the first-order fundamental group
of L(Fr) is {1} for all 1 < r <∞.

In this section, we show how a general trichotomy always holds and explain
under what additional hypotheses we can establish Conjecture 3.1 above.

3.1. A trichotomy. While we are currently unable to establish the desired di-
chotomy appearing in Conjecture 3.1, we can prove an interesting trichotomy
for the first-order fundamental group of the interpolated free group factors.

Theorem 3.2. Exactly one of the following holds:

(1) L(Fr) ≡ L(Fs) for all 1 < r ≤ s < ∞, and the first-order fundamental group
of L(Fr) is R+ for all 1 < r ≤ ∞.

(2) L(Fr) ̸≡ L(Fs) for all 1 < r < s < ∞, and the first-order fundamental group
of L(Fr) is {1} for all 1 < r <∞.

(3) There is α ∈ (1,∞) such that Ffo(L(Fr)) = αZ for all 1 < r <∞.

Proof. Suppose that L(Fr) ≡ L(Fs) for some 1 < r < s <∞, and set t := ( r−1
s−1

)1/2.
Let us call such a t a ratio. Then for any x, y ∈ (1,∞) for which t = ( x−1

y−1
)1/2, we

have L(Fx) ≡ L(Fy).
Further suppose that we have two ratios t1 and t2 that are not simply powers
of each other. Then the multiplicative subgroup G they generate is dense in
R+. Using Proposition 2.7, we see that G must also be closed, and hence all of
R+. □

Aconsequence of the previous theorem is that all interpolated free group factors
have the same first-order fundamental group, which we will denote by F in the
remainder of this paper.

3.2. Including L(F∞). Unlike its classical counterpart, L(F∞) is notablymissing
in Theorem 3.2 above. We discuss a couple of hypotheses that would remedy
this fact.
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Lemma 3.3. If L(Fr) ≡ L(F∞) for some r ∈ (1,∞), then L(Fr) ≡ L(Fs) ≡ L(F∞) for
all s ∈ (1,∞).

Proof. Fix s ∈ (1,∞) and take t ∈ R+ such that L(Fr)t ∼= L(Fs). Using Lemma
2.5 and the fact that L(F∞) has full fundamental group, we have that

L(Fs) ∼= L(Fr)t ≡ L(F∞)t ∼= L(F∞). □

Notice that if L(Fr) ≡ L(F∞) for all r ∈ (1,∞), then Question 2.14 has a positive
answer. On the other hand:

Lemma 3.4. If Question 2.14 has a positive answer and F ̸= {1}, then L(Fr) ≡ L(F∞)
for all r ∈ (1,∞).

Proof. Fix t ∈ F ∩ (0, 1) and notice that

L(F2) ≡
∏
U

L(F2)tk ∼=
∏
U

L(F1+ 1

tk
) ∼= L(F∞)U,

where the last isomorphism follows from the assumption that Question 2.14 has
a positive answer. □

We now examine one other avenue from which we can obtain that all interpo-
lated free group factors, including L(F∞), are elementarily equivalent. It re-
quires the notion of a standard embedding of free group factors, taken from
[Dyk93, Definition 4.1].

Definition 3.5. Let r ≤ r ′. Then ψ : L(Fr) → L(Fr ′) is a standard embedding
if: for some tracialW∗-probability space (M, τ), with M containing a copy of R
and a semicircular family ω = {Xt | t ∈ T } such that R and ω are free, there
exist subsets S ⊆ S ′ ⊆ T , projections ps ∈ P(R) for s ∈ S ′, and isomorphisms
α : L(Fr) → (R∪ {psX

sps | s ∈ S}) ′′ and β : L(Fr ′) → (R∪ {psX
sps | s ∈ S ′}) ′′ such

that ψ = β−1 ◦ i ◦α, where i is the inclusion map. In other words, the following
diagram commutes:

(R ∪ {psX
sps}s∈S)

′′ (R ∪ {psX
sps}s∈S ′) ′′

L(Fr) L(Fr ′)

i

α

ψ

β

Lemma 3.6. If α : L(Fr) → L(Fs) is standard, t ∈ (0, 1) is such that L(Fr)t ∼=
L(Fs), and p ∈ P(L(Fr)) is a projection with τ(p) = t, then α|pL(Fr)p is a standard
embedding that induces a standard embedding α ′ : L(Fs) → α(p)L(Fs)α(p). If α is
elementary, then so is α ′.
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Proof. The fact thatα|pL(Fr)p is standard is [Dyk93, Proposition 4.2]. Now com-
pose with an isomorphism L(Fs) → pL(Fr)p to obtain α ′. That α ′ is elementary
if α is elementary is a consequence of Lemma 2.6. □

Theorem 3.7. Suppose that there is an embedding α : L(Fr) → L(Fs) that is both
standard and elementary. Then L(Fx) ≡ L(F∞) for all x ∈ (1,∞).

Proof. Starting with the given embedding α, one can iterate the previous lemma
to get an inductive sequence of standard elementary embeddingsL(Fri) → L(Fri+1

)
with limi ri = ∞. By [Dyk93, Proposition 4.3(ii)], the limit is isomorphic to
L(F∞). Moreover, since the chain is elementary, we have that L(Fr) ≡ L(F∞).
The theorem now follows using Lemma 3.3. □

In particular, since the natural inclusions L(Fr) → L(Fr) ∗ L(Fs) are standard
[Dyk93, Proposition 4.4(i)] (e.g. the natural inclusions L(Fm) → L(Fn) for in-
tegersm ≤ n), if any of them are elementary, we get that L(Fx) ≡ L(F∞) for all
x ∈ (1,∞).

3.3. Free Products That Preserve Elementary Equivalence. Werecordhere that
the free group factor alternative for elementary equivalence can be obtained in
much the same way as in [Voi+16, Theorem 5.1] if taking free products with a
fixed tracial von Neumann algebra preserves first-order theories.

Question 3.8. Does taking the free product with a fixed tracial von Neumann
algebra preserve first-order theories? That is, if we have two tracial von Neu-
mann algebras M ≡ N, and a third tracial von Neumann algebra A, is it true
thatM ∗A ≡ N ∗A?

We obtain the free group factor alternative for elementary equivalence in the
case that the previous question has a positive resolution (in particular for A =
L(F2−ϵ)).

Theorem 3.9. If taking the free product with L(F2−ϵ) preserves elementary equivalence
for all ϵ ∈ (0, 1), then Conjecture 3.1 has a positive solution.

Proof. Since L(Fr) ∗ L(Fr ′) ∼= L(Fr+r ′) for all 1 < r, r ′ ≤ ∞, the same holds true
of elementary equivalence:

(1) L(Fr) ∗ L(Fr ′) ≡ L(Fr+r ′), for 1 < r, r ′ ≤ ∞.
Similarly, by Fact 2.9 above, we have

L(Fr)t ≡ L
(
F1+ r−1

t2

)
for all 1 < r ≤ ∞, 0 < t <∞.
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Now suppose that there is 1 < r < s <∞ satisfying L(Fr) ≡ L(Fs). Then for all
0 < t <∞,
(2) L(F1+t−2(r−1)) ≡ L(Fr)t ≡ L(Fs)t ≡ L(F1+t−2(s−1)),

where the center equivalence is due to Lemma 2.5.
Choose 0 < ϵ < 1 and 0 < t <∞ satisfying ϵ = t−2(r− 1). Then,

1+ t−2(s− 1) = 1+ ϵ

(
s− 1

r− 1

)
.

Thus,
L(F3) ≡ L(F1+ϵ) ∗ L(F2−ϵ) by (1)

= L(F1+t−2(r−1)) ∗ L(F2−ϵ)
≡ L(F1+t−2(s−1)) ∗ L(F2−ϵ) by (2) and Q3.3
= L(F1+ϵ( s−1

r−1
)) ∗ L(F2−ϵ)

≡ L(F3+ϵ( s−r
r−1

)) by (1)
≡ L(F3)α,

where α−2 = 1 + ϵ
2
( s−r
r−1

). Then, letting ϵ vary over (0, 1), we have that (1, 1 +
1
2
( s−r
r−1

)) ⊆ Ffo(L(F3)). Thus, Ffo(L(F3)) is a multiplicative subgroup of R+ con-
taining an open interval, and is therefore all of R+. We conclude that L(F3) ≡
L(Fx) for all x ∈ (1,∞). □

We next explore some results which show that if free producting with L(Z)
or R preserves elementary equivalence, then under certain conditions, the tri-
chotomy can be improved to a dichotomy.

Definition 3.10. Call (r, s) ∈ (1,∞)2 an independent pair if the numbers { r+k
s+k

}∞k=−1

do not all generate the same multiplicative subgroup of R+.

Lemma 3.11. Suppose that there is an independent pair (r, s) ∈ (1,∞)2 for which
L(Fr) ≡ L(Fs). Further suppose that free producting with either L(Z) or R preserves
elementary equivalence. Then L(Fx) ≡ L(Fy) for all x, y ∈ (1,∞).

Proof. If L(Fr) ≡ L(Fs), then by Fact 2.10 and the assumptions of the lemma, we
have that L(Fr+i) ≡ L(Fs+i) for all i ≥ 1. Then by the assumption on r and s, we
get that not all of the associated ratios generate the same subgroup and then we
conclude as in the remarks preceding Theorem 3.2. □

Corollary 3.12. Suppose that L(F2) ≡ L(Fn) for some integer n ̸= 2 and that free
producting with either L(Z) or R preserves elementary equivalence. Then L(Fr) ≡
L(Fs) for all r, s ∈ (1,∞).
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Proof. First suppose that n is odd. Then (2, n) is an independent pair since 1
n−1

cannot be a power of 2
n
.

On the other hand, suppose L(F2) ≡ L(Fn) for some even integer n = 2ℓ, so that
2
n
= 1

ℓ
. Assuming that the multiplicative subgroup generated by 1

n−1
, 1
ℓ
, 3
n+1
, . . .

are all the same, then there exists somem so that

1

ℓm
=

3

n+ 1
=⇒ n+ 1 = 3ℓm =⇒ n ≡ 2 mod 3.

The same argument with 1
ℓm

= k
n+(k−2)

shows that n ≡ 2 mod k for every k ≥ 3.
This implies n = 2. □

We examine a similar line of reasoning using free products by matrix algebras.
We first note that Fact 2.10 implies the following:

Lemma 3.13. Suppose that L(Fr) ≡ L(Fs) and free producting withMk(C) preserves
theories. Then L(Fr+1− 1

k2
) ≡ L(Fs+1− 1

k2
).

Proposition 3.14. If free producting with M2(C) preserves elementary equivalence
and L(Fm) ≡ L(Fn) wherem,n are integers with different parity, then L(Fr) ≡ L(Fs)
for all r, s ∈ (1,∞).

Proof. By free producting withM2(C) once we have L(Fm+ 3
4
) ≡ L(Fn+ 3

4
), which

yields the ratio 4m−1
4n−1

. If this ratio generates the same multiplicative subgroup
as m−1

n−1
, then we obtain that there is some t such that (4m − 1)(n − 1)t = (4n −

1)(m− 1)t. Since 4m− 1 and 4n− 1 are odd, andm,n have different parity, this
yields a contradiction. □

Although it seems difficult to prove that free producting can ever preserve ele-
mentary equivalence, in some cases we have some positive results. The follow-
ing proposition follows immediately from Lemma 2.4 and Fact 2.11.

Proposition 3.15. Suppose thatM,M ′,N, ′ are II1 factors such thatM ∼= M⊗Mn(C)
and similarly for M ′, N, and N ′. Further assume that M ∗ N ≡ M ′ ∗ N ′. Then
M ∗N ∗ L(Fn2−1) ≡ M ′ ∗N ′ ∗ L(Fn2−1).

A particular instance of the previous proposition is the case that M, M ′, N and
N ′ are II1 factors, each of which have all positive integers in their fundamental
group (e.g. if they have full fundamental group). In this case, ifM∗N ≡ M ′∗N ′,
then M ∗N ∗ L(Fn2−1) ≡ M ′ ∗N ′ ∗ L(Fn2−1) for all n ≥ 1.
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4. ∀∃-theories of free group factors

In this section, we establish some promising results concerning the values of
∀∃-sentences in free group factors. Recall that a ∀∃-sentence is a sentence σ of
the form sup

x⃗
infy⃗φ(⃗x, y⃗), where φ is a quantifier-free formula. For a II1 factor

M, we consider the ∀∃-theory Th∀∃(M) of M, which is the function σ 7→ σM

defined on the set of all ∀∃ sentences.
Our results concerning ∀∃-sentences will follow from the existence of certain
nice embeddings between some pairs of interpolated free group factors.

4.1. Existential embeddings.

Definition 4.1. An embedding i : M ↪→ N is existential ifφ(a⃗)M = φ(i(a⃗))N for
all existential formulaeφ(⃗x), that is, all formulae of the formφ(⃗x) = infy⃗ψ(⃗x, y⃗),
where ψ is quantifier-free.

Equivalently, i : M ↪→ N is existential if there is an embedding j : N ↪→ MU for
which j ◦ i restricts to the diagonal embedding ofM intoMU.
Since existential embeddings preserve formulae with one quantifier, we write
i : M ↪→1 N to emphasize that the embedding i is existential. We may also write
M ↪→1 N to mean that there is an existential embedding of M into N. It is clear
that wheneverM ↪→1 N, then Th∀∃(M) ≤ Th∀∃(N) (as functions).

Lemma 4.2. If i : M ↪→1 P and j : N ↪→1 Q are existential embeddings, then so is
i ∗ j : M ∗N ↪→1 P ∗ Q.

Proof. Let i ′ : P ↪→ MU and j ′ : Q → NU be such that i ′ ◦ i and j ′ ◦ j are the
respective diagaonal embeddings. The lemma follows from observing that the
composition of the natural maps

M ∗N ↪→ P ∗ Q ↪→ MU ∗NU ⊆ (M ∗N)U

is the diagonal embedding, where the first map is i ∗ j and the second map is
i ′ ∗ j ′. □

In what follows, we call a tracial von Neumann algebra embeddable if it admits
a trace-preserving embedding into RU.

Proposition 4.3. For any n ≥ 2 and any embeddable type II1 von Neumann algebras
M1, . . . ,Mn, there is an existential embedding L(Fn) ↪→1 M1 ∗ · · · ∗Mn.

Proof. We proceed by induction on n. Suppose n = 2. Since eachMi is type II1,
there is an embeddingR ↪→ Mi for each i = 1, 2. By [Far+16, Lemma 2.1], these
embeddings are existential. By Fact 2.10 and Lemma 4.2, there is an existential
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embedding L(F2) ∼= R ∗ R ↪→1 M1 ∗ M2. The induction step follows from Fact
2.10, that is, using that R ∗ L(Fn) ∼= L(Fn+1). □

For the next result, we recall that Connes [Con76] established that the free
group factors are embeddable; since the interpolated free group factors are am-
plifications of embeddable factors, they are themselves embeddable (as R has
full fundamental group).
Corollary 4.4. For any natural number n ≥ 2 and any r ∈ R∪ {∞} with r ≥ n, there
is an existential embedding L(Fn) ↪→1 L(Fr).

Proof. If r = n, the result is trivial. Thus, we may suppose that r > n. We may
then write L(Fr) = L(Fr1) ∗ · · · ∗L(Frn)with r1, . . . , rn ∈ (1,∞]. Since each L(Fri)
is embeddable, the result follows from Proposition 4.3. □

Corollary 4.5. Th∀∃ L(F∞) = sup
n
Th∀∃(L(Fn)).

Proof. The inequality Th∀∃ L(F∞) ≥ sup
n
Th∀∃(L(Fn)) follows from Corollary

4.4. The other inequality follows from a general model-theoretic fact: ifM is the
union of a chain (Mn) of structures, then Th∀∃(M) ≤ sup

n
Th∀∃(Mn). □

We now show how to generalize Corollary 4.4 to allow for both factors to be
interpolated free group factors. First, a general lemma:
Lemma 4.6. Suppose that i : M ↪→1 N is an existential embedding. Then for any
t > 0, the map it : Mt ↪→1 Nt is an existential embedding.

Proof. Fix an embedding ϕ : N ↪→ MU such that ϕ◦ i is the diagonal embedding
ofM intoMU.
Choose some natural number N and projection p ∈ M of appropriate trace so
thatMt

∼=MN(pMp). Then define the map
it : Mt

∼=MN(pMp) ↪→MN(pNp) ∼= Nt

that applies the map i entrywise in the matrices. Similarly define
ϕt :MN(pNp) ↪→MN(pM

Up) ∼= (MU)t ∼= (Mt)
U

as the map that applies ϕ entrywise in the matrices. Then ϕt ◦ it is the diagonal
embedding ofMt into (Mt)

U, whence it is existential. □

Corollary 4.7. For any r, s ∈ (1,∞] with r ≤ s, there is an existential embedding of
L(Fr) ↪→1 L(Fs), whence Th∀∃(L(Fr)) ≤ Th∀∃(L(Fs)).

Proof. Take t > 0 such that L(F2)t ∼= L(Fr). Take s ′ ∈ (1,∞] such that L(Fs ′)t ∼=
L(Fs); note that 2 ≤ s ′. Then amplyifying an existential embedding L(F2) ↪→1

L(Fs ′) yields an existential embedding L(Fr) ↪→1 L(Fs) by Lemma 4.6. □
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The above results motivate the following natural question:

Question 4.8. Is it true that Th∀∃(L(Fr)) = Th∀∃(L(Fs)) for all r, s ∈ (1,∞]?

A positive answer to Question 4.8 would follow from a positive answer to the
following question:

Question 4.9. Are there 1 < r < s < ∞ for which there exists an existential
embedding L(Fs) ↪→1 L(Fr)? In particular, are there n < m for which there is an
existential embedding L(Fm) ↪→1 L(Fn) or are there t ∈ (1, 2) for which there is
an existential embedding L(F2) ↪→ L(Ft)?

Proposition 4.10. If Question 4.9 has a positive answer, then L(Fy) ↪→ L(Fx) for any
1 < x < y < ∞. In particular, a positive answer to Question 4.9 implies a positive
answer to Question 4.8.

Proof. Suppose that there are 1 < r < s <∞ for which there exists an existential
embedding L(Fs) ↪→1 L(Fr). Fix 1 < x < y < ∞. Fix t > 0 sufficiently small so
that 1 + r−1

t2
≤ x < y ≤ 1 + s−1

t2
. Using Lemma 4.6 and Corollary 4.7, we have

that
L(Fy) ↪→1 L(Fs)t ↪→1 L(Fr)t ↪→1 L(Fx),

as desired. □

Remark 4.11. A natural idea for answering the latter two parts of Question 4.9
would be to attempt to write L(Fn) as a free product ofmmany II1 factors and to
write L(Ft) as a free product of two II1 factors. However, both of these questions
are open at the moment and a positive solution to either would show that free
entropy dimension of Voiculescu [Voi94] is not independent of generators.

Remark 4.12. Recall from Fact 2.9 that L(F2) ∼= (R ∗ R ∗ L(F3)) ⊗M2(C). We
point out that if an existential embedding L(F3) ↪→1 L(F2) existed, then viewing
this embedding as an existential embedding L(F3) ↪→1 (R ∗R ∗ L(F3))⊗M2(C),
we could not have that the image is contained in R ∗ R ∗ L(F3) since L(F3) does
not have property Gamma.

A positive answer to Question 4.8 follows from the group F being nontrivial:

Proposition 4.13. Suppose that F ̸= {1}. Then for all r, s ∈ (1,∞], we have
Th∀∃(L(Fr)) = Th∀∃(L(Fs)).

Proof. Without loss of generality, assume that r ≤ s. By Corollary 4.5, we may
also suppose that s < ∞. We already know that Th∀∃(L(Fr)) ≤ Th∀∃(L(Fs)).
Take t ∈ F sufficiently small such that r ′ := 1 + r−1

t2
> s. We then have

Th∀∃(L(Fs)) ≤ Th∀∃(L(Fr ′)) = Th∀∃(L(Fr)t) = Th∀∃(L(Fr)). □
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4.2. Applying Sela’s theorem. The following is implicit in the proof of [Ela22,
Theorem A]:

Lemma 4.14. Suppose that i : Γ ↪→1 Λ is an existential embedding of groups. Then
L(i) : L(Γ) ↪→1 L(Λ) is an existential inclusion of tracial von Neumann algebras.

Proof. The inclusions Γ ↪→ Λ ↪→ ΓU yields inclusions of tracial von Neumann
algebras L(Γ) ↪→ L(Λ) ↪→ L(ΓU). By [Ela22, Lemma 3.2], the natural map
ΓU → L(Γ)U yields an embedding L(ΓU) ↪→ L(Γ)U. The composition of all these
embeddings is the diagonal embedding L(Γ) ↪→ L(Γ)U. □

The following major result is due to Sela [Sel06, Theorem 4]:

Fact 4.15. The canonical embeddings Fm ↪→ Fn form ≤ n are elementary.

Lemma 4.14 and Fact 4.15 yield an alternate proof of the fact that L(Fm) embeds
existentially into L(Fn) for m ≤ n (although it uses a much heavier hammer).
Even better, this argument shows that the canonical embedding is existential.

Remark 4.16. In [PS20], Popa and Shylakhtenko construct groups Γr such that
L(Γr) = L(Fr) for all r ∈ (1,∞). However, these groups have torsion and so can-
not be models of Th(Fn) and thus the previous methods cannot immediately be
extended to cover interpolated free group factors. It remains an open question
whether such groups Γr can be constructed that are also torsion-free.

Remark 4.17. The group analogue of the first question in Question 4.9 has a
negative solution, as pointed out to us by Rizos Sklinos (which he attributes to
Chloe Perin). Indeed, suppose towards a contradiction that there is an existen-
tial embedding i : Fm ↪→ Fn withm > n. Let a1, . . . , am ∈ Fm be free generators
of Fm. Since i is existential and each i(aj) can be written as a word in the gener-
ators of Fn, there are b1, . . . , bn ∈ Fm such that each aj can be written as a word
in b1, . . . , bn. We then note that b1, . . . , bn generate Fm, contradicting the fact
that one cannot generate Fm with fewer thanm elements.

4.3. Applying a theorem of Popa. One can also prove a special case of Corol-
lary 4.4 using the following theorem of Popa, which is a special case of [Pop14,
Corollary 4.4]:

Fact 4.18. Suppose that N1 and N2 are separable subalgebras of MU. Then there is a
unitaryu ∈ MU such thatN1 anduN2u

∗ are freely independent, whenceN1∨uN2u
∗ ∼=

N1 ∗N2.

Corollary 4.19. Suppose thatN embeds inMU. Then there is an existential embedding
M ↪→1 M ∗N. In particular, Th∀∃(M) ≤ Th∀∃(M ∗N).
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Proof. Without loss of generality, we may assume that N is separable and is a
subalgebra ofMU. Apply Fact 4.18 withN1 = M (viewed as a subalgebra ofMU

via the diagonal embedding) andN2 = N. Then the inclusionM ⊆ M∨uNu∗ is
existential; composing this inclusion with an isomorphismM∨ uNu∗ ∼= M ∗N
yields the desired existential inclusionM ↪→1 M ∗N. □

Now suppose that r, s ∈ (1,∞) with r + 1 < s. Then since L(Fs−r) embeds into
RU, which in turns embeds into L(Fr)U, we can use Corollary 4.19 to infer that
there is an existential embedding L(Fr) ↪→1 L(Fr) ∗ L(Fs−r) ∼= L(Fs).
We derive another consequence of Corollary 4.19:

Proposition 4.20. For any embeddable II1 factors M and N for which 2 ∈ F(M) ∩
F(N), there is an existential embedding L(F3/2) ↪→ M ∗ N, whence Th∀∃(L(F3/2)) ≤
Th∀∃(M ∗N).

Proof. By Fact 2.12 and the assumption that 2 ∈ F(M)∩ F(N), we haveM ∗N ∼=
M2(M)∗M2(N) ∼= (M∗N ∗L(F3))⊗M2(C). Since there is an existential embed-
ding L(F3) ↪→1 M ∗ N ∗ L(F3), by Lemma 4.6, there is an existential embedding
L(F3/2) ∼= L(F3)⊗M2(C) ↪→1 (M ∗N ∗ L(F3))⊗M2(C) ∼= M ∗N. □

The previous proposition gives an alternate proof that there is an existential
embedding L(F3/2) ↪→1 L(Fr) for any r ≥ 2.
Corollary 4.19 has another interesting consequence:

Corollary 4.21. There is a separable embeddable II1 factor M∀∃ such that Th∀∃(N) ≤
Th∀∃(M∀∃) for all embeddable II1 factorsN. Consequently, Th∀∃(M∀∃ ∗N) = Th∀∃(M∀∃)
for all embeddable II1 factors N.

Proof. For each ∀∃ sentence σ, let rσ := sup{σM : M an embeddable II1 factor}
and let Mσ be an embeddable II1 factor for which σMσ = rσ (which exists by
compactness). Note that all embeddable II1 factors embed into each other’s ul-
trapowers. Hence we may apply Corollary 4.19 to obtain: for any finite collec-
tion of ∀∃ sentences σ1, . . . , σn, we have that σM

i = rσi for all i = 1, . . . , n, where
M = Mσ1 ∗ · · · ∗ Mσn . By compactness, there is an embeddable II1 factor M∀∃
such that σM∀∃ = rσ for all ∀∃ sentences σ, as desired. □

It would be interesting to study Th∀∃(M∀∃) further. In particular, the following
question is natural:

Question 4.22. DoesTh∀∃(M∀∃) coincidewithTh∀∃(L(F∞)) orwithTh∀∃(
∏

UMn(C))?

It would also be interesting to see if there is a non-relative version ofM∀∃, that is,
a version that does not require the embeddability assumption. The issue with
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adapting the proof of Corollary 4.21 to the non-embeddable setting is that it is
not clear that given two ∀∃-sentences σ1 and σ2, there are II1 factorsM1 andM2

which embed into each other’s ultrapowers and for which σMi

i is the maximal
value rσi .

5. Assorted further observations

5.1. Free group factors and matrix ultraproducts. The following question is
well-known to experts:

Question 5.1. Are there an integer n and an ultrafilterU such that L(Fn) has the
same theory as the matrix ultraproduct

∏
UMk(C)?

The previous question was originally motivated by the fact that both factors
above are non-Gamma, but this is not strong evidence in light of the recent con-
struction of two non-elemetnarily equivalent non-Gamma factors in [CIE22].
Another motivation is the fact that semi-circular variables arise as limits of ran-
dommatrices and the free group factorL(Fn) is generated byn free semi-circular
elements [Voi90]. This latter fact sayswe can approximate the value of quantifier-
free sentences in L(Fn) using the asymptotics of randommatrices, and the ques-
tion asks if this approximation can be extended to arbitrary sentences.
In this section, we make a few small observations about this question.

Proposition 5.2. For any nonprincipal ultrafilter U, we have
∏

U(Mk(C) ∗ L(Z)) ∼=
L(F2)U.

Proof. By Facts 2.9 and 2.10, we have thatMk(C) ∗ L(Z) ∼= L(F2− 1

k2
). Now apply

Proposition 2.7. □

Lemma 5.3. For any nonprincipal ultrafilter U, we have

Th∀∃

(∏
U

Mk(C)

)
≤ Th∀∃

((∏
U

Mk(C)
)
∗ L(Z)

)
.

Proof. Fix a separable elementary substructure M of
∏

UMk(C). Then Proposi-
tion 4.19 implies that there is an existential embeddingM ↪→1 M∗L(Z). Lemma
4.2 then implies that there is an existential embeddingM∗L(Z) ↪→1 (

∏
UMk(C))∗

L(Z), whence there is an existential embeddingM ↪→1 (
∏

UMk(C)) ∗L(Z). This
finishes the proof. □

In connection with Question 5.1, we ask if we can “bring L(Z) into the ultra-
product”?
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Question 5.4. Is it true that, for any nonprincipal ultrafilter U, we have

Th∀∃

(∏
U

Mk(C)

)
≤ Th∀∃

(∏
U

(
Mk(C) ∗ L(Z)

))
= Th∀∃(L(F2))?

In fact, is there an existential embedding
∏

UMk(C) ↪→1 L(F2)U?

For r ≥ 2, Corollary 4.4 gives an existential embedding L(F2)U ↪→1 L(Fr)U; thus,
a positive answer to the second part of Question 5.4 yields an existential em-
bedding

∏
UMk(C) ↪→1 L(Fr)U. We now show that the same conclusion can be

reached for r ∈ (1, 2).
Proposition 5.5. Suppose the second part of Question 5.4 has a positive answer. Then
for any nonprincipal ultrafilter U and any r ∈ (1, 2), we have an existential embedding∏

UMk(C) ↪→1 L(Fr)U. Consequently,
lim sup
k→∞ Th∀∃(Mk(C)) ≤ inf

r∈(1,∞)
Th∀∃(L(Fr)).

Proof. Fix r ∈ (1, 2) and takem ∈ N sufficiently large such that 1+ 1
m2 ≤ r. Take

j ∈ {0, 1, . . . ,m − 1} such that k − j is divisible by m for U-almost all k ∈ N.
For this j, there is an existential embedding

∏
UMk−j

m
(C) ↪→1 L(F2)U. (This is an

abuse of notation: k−j
m

is an integer for U-many k, and how we define the em-
bedding on the other factors is irrelevant.) By tensoring withMm(C), we then
have existential embeddings

∏
UMk−j(C) ↪→1 L(F2)Um ↪→1 L(Fr)U. It remains to

note that
∏

UMk−j(C) ∼=
∏

UMk(C). Indeed, for each k ∈ N, take a projection
pk ∈ P(Mk(C)) of trace k−j

k
. Note then that limU tr(pk) = 1, so (pk)U = 1 and∏

UMk(C) =
∏

U pkMk(C)pk ∼=
∏

UMk−j(C). □

5.2. The question for reduced groupC*-algebras. The following result of Pim-
sner and Voiculescu [PV82] settled the reduced group C*-algebra version of the
free group factor problem:
Fact 5.6. For anym ≥ 2, K1(C∗

r(Fm)) ∼= Zm. Consequently, for distinctm,n ≥ 2, we
have C∗

r(Fm) ̸∼= C∗
r(Fn).

It is of course natural to ask the following:
Question 5.7. For distinct m,n ≥ 2, do we have C∗

r(Fm) ≡ C∗
r(Fn) (in the lan-

guage of unital C*-algebras)?

As far as these authors can tell, this problem is currently open. In this section,
we make two observations about this problem. The first observation is that a
positive answer to the previous problem implies a positive answer to the first-
order free group factor alternative:
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Lemma 5.8. If C∗
r(Fm) ≡ C∗

r(Fn), then L(Fm) ≡ L(Fn).

Proof. As discussed in the proof of [Far+21, Proposition 7.2.4], if Γ is a Powers
group, it has the uniform strong Dixmier property and thus the unique trace on
C∗
r(Γ) is definable in the language of unital C*-algebras, with the same definition

working for all Powers groups. By the results of [Har85, page 234], for each
m ≥ 2, Fm is a Powers group, whence the trace onC∗

r(Fm) is definable, uniformly
inm. Since L(Fm) is the vonNeumann algebra generated byC∗

r(Fm), by [Far+21,
Proposition 3.5.1], we have that L(Fm) is interpretable in C∗

r(Fm), uniformly in
m (since the definition of the trace is uniform over allm). The conclusion of the
lemma follows. □

We end this section by showing that a positive answer to a well-known problem
in C*-algebra theory would lead to a negative answer to Question 5.7. Recall
that, for a unital C*-algebra A, U0(A) denotes the connected component of the
identity in the unitary group U(A).

Lemma 5.9. If U0(C∗
r(Fm)) is a definable subset of C∗

r(Fm), uniformly in m, then
Question 5.7 has a negative answer.

Proof. By a result of Rieffel [Rie83], ifAhas stable rank 1, thenK1(A) ∼= U(A)/U0(A).
By a result of Dykema, Haagerup, and Rordam [DHR97], C∗

r(Fm) has stable
rank 1 for all m ≥ 2. Thus, the assumptions of the lemma would imply that
K1(C

∗
r(Fm)) ∼= Zm is interpretable in C∗

r(Fm), uniformly inm. Since Zm ̸≡ Zn (as
groups) for distinctm,n ≥ 2, the result follows. □

Remark 5.10. Recall that every element of U0(A) can be written as a product of
elements of the form exp(ih) for h a self-adjoint element of A. A well-known
question in the C*-algebra literature [Phi94, Problem 2.10] asks if there is a
bound on the exponential rank of C∗

r(Fm), that is, whether there is a bound
on the number of elements in such a product for an element of U0(C∗

r(Fm)). As
pointed out to us in private communication by Leonel Robert, the finiteness of
the exponential rank ofC∗

r(Fm) is equivalent to the finiteness of the exponential
length of C∗

r(Fm). (See [Rin92] for the definition of exponential length. In gen-
eral, finite exponential length implies finite exponential rank.) As pointed out
in [Far+21, Subsection 3.12], if the exponential length of A is finite, then U0(A)
is definable. Consequently, if there is a bound on the exponential rank/length
of C∗

r(Fm), uniformly inm, then Question 5.7 would have a negative answer.

5.3. On a question of Oyakawa. The following questions were posed to us by
Koichi Oyakawa:

Question 5.11. Are there examples of ICC groups Γ1 and Γ2 such that:
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• Γ1 ≡ Γ2 but L(Γ1) ̸≡ L(Γ2)?
• L(Γ1) ≡ L(Γ2) but Γ1 ̸≡ Γ2?

We note that being ICC is a local property, that is, if Γ1 ≡ Γ2 and Γ1 is ICC, then
so is Γ2.
The second question is easy to answer affirmatively: Let Γ1 = S∞ and Γ2 := Z ≀Z.
Then both Γ1 and Γ2 are ICC amenable groups, whence L(Γ1) ∼= L(Γ2) ∼= R, but
Γ1 ̸≡ Γ2 for the former is locally finite and the latter is torsion-free.
Although we currently lack an example, we strongly suspect that the former
question also has an affirmative answer. In this subsection, we mention a few
approaches for constructing an example, all of which center around the notion
of inner amenable groups. Recall that the group Γ is said to be inner amenable
if there is an atomless finitely additive probability measure m defined on all
subsets of Γ such thatm(gAg−1) = m(A) for all g ∈ Γ and all subsetsA ⊆ Γ . We
mention that all amenable groups are inner amenable, although the converse is
false (for example, F2 × S∞ is inner amenable but not amenable).
The relevance of inner amenability for us is the result of Effros [Eff75] stating
that if Γ is an ICC group for which L(Γ) has property Gamma, then Γ is inner
amenable (the converse is false as was shown by Vaes in [Vae12]).
Question 5.12. Are there ICC groups Γ1 ≡ Γ2with Γ1 amenable and Γ2 non-inner
amenable?

A positive solution to Question 5.12 would yield a positive solution to Question
5.11, since then L(Γ1) ∼= Rwhilst L(Γ2)does not even have propertyGamma. (We
recall that property Gamma is an axiomatizable property of II1 factors [FHS14b,
Section 3.2.2].)
It is known that amenability is not in general preservedunder elementary equiv-
alence. For example, it is easy to find a copy of F2 inside of SU∞, whence SU∞ is
not amenable. It appears that the corresponding fact for inner amenability is
not known:
Question 5.13. Is being inner amenable preserved under elementary equiva-
lence?

If Γ is an amenable group, then all models of Th(Γ) are amenable if and only
if Γ is uniformly amenable, which is a property defined in terms of the sizes
of Følner sets for Γ . We define an analogous notion here for inner amenability,
using an appropriate notion of Følner set for inner amenable groups discussed
(but not named) in [KT21]:
Definition 5.14. For nonempty finite subsets F,W ⊆ Γ and ϵ > 0, we say thatW
is a (F, ϵ)-c-Følner set if |gWg−1△W| < ϵ|W| for all g ∈ F.
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The following fact is mentioned in [KT21, Section 6]:

Fact 5.15. Γ is inner-amenable if and only if: for all finite F ⊆ Γ and all ϵ > 0, there
are arbitrarily large finite (F, ϵ)-c-Følner subsets of Γ .

We say that Γ is uniformly inner amenable if there is a function f : N → N such
that, for all finite subsets F ⊆ Γ with |F| ≤ n, there is a finite subsetW ⊆ Γ with
n ≤ |W| ≤ f(n) that is a (F, 1

n
)-c-Følner set for Γ . It is then easy to see that Γ is

uniformly inner amenable if and only if everymodel of Th(Γ) is inner amenable.
Question 5.13 above thus asks: is every inner amenable group uniformly inner
amenable?
We now briefly mention one approach for finding an inner amenable group
is not uniformly inner amenable, giving a negative answer to Question 5.13.
For x⃗ = (x1, . . . , xm) and y⃗ = (y1, . . . , yn), let φm,n,ϵ(⃗x, y⃗) be the quantifier-free
formula expressing that y⃗ is a (⃗x, ϵ)-c-Følner set. Set

Σm,n,ϵ(⃗x) := {¬∃y⃗φm,k,ϵ(⃗x, y⃗) : k ≥ n}.

Informally, Σm,n,ϵ(⃗x) asserts that there is no (⃗x, ϵ)-c-Folner set of size at least
n. Consequently, if there arem,n, ϵ and Γ ′ ≡ Γ which contains a realization of
Σm,n,ϵ(⃗x), then Γ ′ is not inner amenable. By compactness, we have the following:

Lemma 5.16. Suppose that Γ is an inner amenable group for which there are m,n, ϵ
satisfying: for all k ≥ n, there are a⃗ = (a1, . . . , am) ∈ Γ for which there are no (a⃗, ϵ)-
c-Følner setsW with n ≤ |W| ≤ k. Then there is Γ ′ ≡ Γ that is not inner amenable.

Consequently, if there is an ICC amenable group Γ satisfying the assumption of
the previous lemma, then we would have a positive answer to Question 5.12,
and in turn the first part of Question 5.11. Here are two other approaches to
settling Question 5.11 using inner amenable groups:

Proposition 5.17. Suppose that Γ1 is non-inner amenable and Γ2 and Γ3 are amenable,
all three of which are ICC. Then L(Γ1 × Γ2) ̸≡ L(Γ3). Thus, if Γ1 × Γ2 ≡ Γ3, then Γ1 × Γ2
and Γ3 provide an example witnessing a positive solution to the first part of Question
5.11.

Proof. Note that L(Γ1×Γ2) ∼= L(Γ1)⊗R is a so-called stronglyMcDuff factor (since
L(Γ1) does not have property Gamma), which is not elementarily equivalent to
L(Γ3) ∼= R by [AGK22, Corollary 6.2.12]. □

Note that Γ1×Γ2 is inner amenable in the previous proposition, so this approach
is different from the first.
One final idea along these lines:
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Proposition 5.18. Suppose that Γ1 is an existentially closed (e.c.) group and Γ2 is a
non-inner amenable group such that Γ1 ≡ Γ2. Then Γ1 and Γ2 yield a positive solution
to the first part of Question 5.11.

Proof. As shown in [Ela22, Proposition 4.1], L(Γ1) is aMcDuff II1 factor, so cannot
be elementarily equivalent L(Γ2), which does not have property Gamma. □

Thus, the previous proposition raises the question: are e.c. groups uniformly
inner amenable?
Another line of thought concerns the question of preservation of elementary
equivalence by tensor products. To see this, recall that if Γ1, Γ2, Λ1, Λ2 are groups
for which Γi ≡ Λi for i = 1, 2, then Γ1 × Γ2 ≡ Λ1 × Λ2. Consequently, if taking
group von Neumann algebras always preserved elementary equivalence (for
ICC groups), then L(Γ1) ⊗ L(Γ2) ≡ L(Λ1) ⊗ L(Λ2) would always hold in this
situation. In particular, the following question would always have a positive
answer:
Question 5.19. If Γ andΛ are ICC groups for which L(Γ) ≡ L(Λ), must we have
L(Γ)⊗ R ≡ L(Λ)⊗ R?

We point out that a recent preprint of Farah and Ghasemi [FG23] shows that
tensoring by a type I tracial von Neumann algebra always preserves elementary
equivalence.
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