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Introduction

WEP
All C⇤ algebras are unital and all inclusions are unital.

Definition
Let A be a C⇤ algebra. We say that A has the Weak Expectation
Property (WEP) if, whenever B is a C⇤ algebra containing A, there is a
u.c.p. map � : B ! A⇤⇤ that is the identity on A.

A has WEP if and only if whenver A ✓ B and C is another C⇤

algebra, then A ⌦max C ✓ B ⌦max C.
In particular, if A is nuclear, then A has WEP.
A theorem of Kirchberg says that A has WEP if and only if there is
a unique C⇤-norm on A � C⇤(F).

Goal of the talk
Investigate the model-theoretic content of this notion.
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Introduction

Continuous logic-The case of C⇤ algebras

Atomic formulae: '(~x) := kp(~x)k, p(~x) a *polynomial (over C).
Quantifier-free formulae: '(~x) := f ('1(~x), . . . ,'n(~x)), each 'i
atomic, f : Rn ! R continuous.
Quantifiers: If ' is a formula and n 2 N, then supkxkn ' and
infkxkn ' are also formulae.
If A is a C⇤ algebra, '(~x) is a formula, and ~a a tuple from A, then
'(~a)A is a real number.
For example, '(x) := supy kxy � yxk is a formula. If A is a C⇤

algebra and a 2 A, then '(a)A = 0 if and only if a is in the center
of A.
A sentence is a formula with no free variables.
C⇤ algebras A and B are elementarily equivalent, written A ⌘ B, if
�A = �B for all sentences �.
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Introduction

Axiomatizable classes

Definition
Let K be a class of (separable) C⇤ algebras. We say that K is
axiomatizable if there is a set T of sentences such that a (separable)
C⇤ algebra A belongs to K if and only if �A = 0 for all � 2 T .

Examples

Abelian, non-abelian, real-rank 0, n-subhomogeneous (fixed n), C⇤

algebras that admit a trace, C⇤ algebras that admit a character,...

Some of these examples are proven to be axiomatizable using an
abstract test: K is axiomatizable if and only if it is closed under
isomorphism, ultraproducts, and ultraroots.

Isaac Goldbring (UIC) Model theory and the WEP JMM 2016 5 / 26



Introduction

Axiomatizable classes

Definition
Let K be a class of (separable) C⇤ algebras. We say that K is
axiomatizable if there is a set T of sentences such that a (separable)
C⇤ algebra A belongs to K if and only if �A = 0 for all � 2 T .

Examples

Abelian, non-abelian, real-rank 0, n-subhomogeneous (fixed n), C⇤

algebras that admit a trace, C⇤ algebras that admit a character,...

Some of these examples are proven to be axiomatizable using an
abstract test: K is axiomatizable if and only if it is closed under
isomorphism, ultraproducts, and ultraroots.

Isaac Goldbring (UIC) Model theory and the WEP JMM 2016 5 / 26



WEP is not axiomatizable

1 Introduction

2 WEP is not axiomatizable

3 WEP and existential closedness

4 The QWEP conjecture

Isaac Goldbring (UIC) Model theory and the WEP JMM 2016 6 / 26



WEP is not axiomatizable

Arveson’s Extension Theorem

Arveson’s Extension Theorem
Let A be a C⇤ algebra, E an operator system contained in A, and
� : E ! B(H) a u.c.p. map. Then there is a u.c.p. map  : A ! B(H)
extending �.

Question

Is there a finitary version of Arveson Extension? More precisely: Is it
true that given an operator system E ✓ Mn and k 2 N, there exists
l 2 N and � > 0 such that, for any unital map � : E ! B(H) with
k�kl < 1 + �, there is a unital map  : Mn ! B(H) with k kk < 1 + 1

k
and k |E � �k < 1

k ?
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WEP is not axiomatizable

FAE is false

Let FAE denote the statement that the finitary version of Arveson
Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to B(H)!

having WEP. So:

Corollary

B(H)! do not have WEP. In particular, WEP is not an axiomatizable
property.

Corollary

A! has WEP if and only if A is subhomogeneous.
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WEP is not axiomatizable

1-exact operator systems

Definition

1 Suppose that E is a finite-dimensional operator system with basis
~a. We say that E is 1-exact if, for every ✏ > 0, there is n 2 N and
c.b. maps � : E ! Mn and  : �(E) ! E such that
k( � �)(~a)� ~ak < ✏.

2 An arbitrary operator system is 1-exact if and only if each of its
finite-dimensional subsystems is 1-exact.
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WEP is not axiomatizable

Omitting types

Definition
Let K be a class of C⇤ algebras (or operator spaces or operator
systems...). We say that K is an omitting types class if there is a family
of nonnegative formulae 'm,n(~xn) such that a C⇤ algebra A belongs to
K if and only if, for all n, we have

 
sup
~xn

infm 'm,n(~xn)

!A

= 0.

One should think of this as a particularly nice kind of infinitary
axiomatizability.
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WEP is not axiomatizable

Sketch of the proof

We first show that if FAE held, then the class of 1-exact operator
systems is omitting types.
We then consider two spaces: Mn is the space of “codes” for
n-dimensional operator systems, equipped with the logic topology;
and OSn, the space of (isomorphism classes of) n-dimensional
operator systems, equipped with its weak topology. Both are
Polish spaces.
There is a “forgetful” map F : Mn ! OSn, which is surjective,
open, and continuous.
Let En denote the 1-exact elements of OSn. We show that the
class of 1-exact operator systems being omitting types implies that
F�1(En) is G�, so Polish.
By the Open Mapping Theorem for Polish spaces, we get that En
is weakly Polish. But this contradicts fundamental work of Junge
and Pisier.
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WEP and existential closedness

Existentially closed C⇤ algebras

Definition
A C⇤ algebra A is said to be existentially closed (e.c.) if, for any
quantifier-free formula '(~x ,~y), tuple ~a from A, and extension B ◆ A,
we have

inf{'(~b,~a)A : ~b 2 A1} = inf{'(~c,~a)B : ~c 2 B1}.

Theorem (G. and Sinclair)

If A is an existentially closed C⇤ algebra, then A has WEP. More
generally, if X ✓ B(H) is an operator system that is e.c. in B(H), then
there is a u.c.p. B(H) ! X (weak closure) restricting to idX .
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WEP and existential closedness

Idea of the proof

Theorem
if X ✓ B(H) is an operator system that is e.c. in B(H), then there is a
u.c.p. B(H) ! X (weak closure) restricting to idX .

Proof.

It is enough to show (by weak compactness) that for every
self-adjoint b 2 B(H)k there is u.c.p. X + Cb1 + · · ·+ Cbk ! X
extending idX .
Since X is e.c., any instance of positivity in
Mn(X + Cb1 + · · ·+ Cbk ) can be approximately witnessed by an
element of Mn(X ).
By weak compactness, this is enough.
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WEP and existential closedness

No model companion

Theorem (Eagle, Farah, Kirchberg, Vignati)

The class of existentially closed C⇤ algebras is not axiomatizable (no
“model companion.”)

Proof (G.)

Suppose that A is separable and e.c. If being e.c. were axiomatizable,
then A! has a cofinal family of separable subalgebras with WEP
(namely the elementary substructures), so itself has WEP. Thus, A is
subhomogeneous, in particular finite. But Sinclair and I showed e.c. C⇤

algebras are purely infinite.
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WEP and existential closedness

Semi-p.e.c. as an operator system

Definition

A quantifier-free formula is positive if it is built using only
increasing connectives.
We say that a C⇤ algebra A is semi-p.e.c. as an operator system
if, whenever A ✓ B is an inclusion of C⇤ algebras, '(~x ,~y) is a
positive quantifier-free formula in the language of operator
systems, and ~a is a tuple from A, we have

inf{'(~b,~a)A : ~b 2 A1} = inf{'(~c,~a)B : ~c 2 B1}.

Theorem (G. and Sinclair)

A unital C⇤ algebra has WEP if and only if it is semi-p.e.c. as an
operator system.
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WEP and existential closedness

WEP implies semi-p.e.c.

Suppose A has WEP and A ✓ B, both separable.
Let E1 ✓ E2 ✓ · · · be a filtration of B by finite-dimensional
subspaces such that A \Si Ei is dense in A.
WEP gives us linear maps �i : Ei ! Ei \A such that k�iki  1 and
k�i |Ei\A � id |Ei\Ak  1/i .
Get �! :

S
i Ei ! A! that extends to unital, completely contractive

(hence u.c.p.) �! : B ! A! that restricts to the identity on A.
If  (~x ,~y) is a positive quantifier-free formula in the language of
operator systems and a is a tuple from A, and b is a tuple from B,
then

 (b, a)B �  (�!(b), a)A! � infx  (x , a)A!
= infx  (x , a)A.
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 (b, a)B �  (�!(b), a)A! � infx  (x , a)A!
= infx  (x , a)A.
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WEP and existential closedness

An application

Definition
An inclusion of C⇤ algebras A ✓ B has the complete tight Riesz
interpolation property if, for any n and any finite collection
(x1, . . . , xm, y1, . . . , yp) 2 Mn(A)sa, if there is z 2 Mn(B) so that
x1, . . . , xm < z < y1, . . . , yp, then there is z 0 2 Mn(A) satisfying the
same property.

Theorem (Kavruk)

If A is a unital separable C⇤ algebra, then A has WEP if and only if
there is an inclusion A ✓ B(H) with the complete tight Riesz
interpolation property.

The proof becomes fairly straightforward using the fact that WEP is the
same as semi-p.e.c. as an operator system.
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The QWEP conjecture

QWEP

Definition
If A is a quotient of a C⇤ algebra with WEP, then we say that A has
QWEP.

Kirchberg’s QWEP conjecture

Every separable C⇤ algebra is QWEP.

Theorem (Kirchberg)

The following are equivalent:
1 The QWEP conjecture.
2 C⇤(F) is QWEP.
3 The Connes Embedding Problem has a positive solution.
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The QWEP conjecture

QWEP is axiomatizable

Proposition (G.)

QWEP is axiomatizable. Consequently, the QWEP conjecture is
equivalent to the existence of a QWEP C⇤ algebra A such that
A ⌘ C⇤(F)

Proof.

Closure under isomorphism X
Closure under ultraproduct: Kirchberg showed that QWEP is
closed under direct product
Closure under ultraroot: one can check that ultraroots are
relatively weakly injective in the ultrapower; Kirchberg showed that
QWEP is preserved under r.w.i. subalgebras
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The QWEP conjecture

LLP and QWEP conjecture

Definition
A separable C⇤-algebra A has the local lifting property (LLP) if
whenever � : A ! C/J is a u.c.p. map and E ✓ A is a
finite-dimensional operator system, then �|E has a u.c.p. lift.

Nuclear C⇤ algebras have LLP (Choi-Effros).
C⇤(F) has LLP. (Kirchberg)
QWEP+LLP implies WEP. (Kirchberg)
It follows that the QWEP conjecture is equivalent to the statement
that LLP implies WEP.
Weak QWEP conjecture There is a non-nuclear C⇤ algebra with
both WEP and LLP.
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The QWEP conjecture

LLP models

Observation (G.)

Suppose that there is an LLP C⇤ algebra B such that B ⌘ C⇤
r (F) orQ

! Mn. Then B witnesses the truth of the weak QWEP conjecture.

Proof.
Both C⇤

r (F) and
Q

! Mn are QWEP, whence so is B. Since B has LLP, it
follows that B has WEP. B is not nuclear by a result of Farah, Hart, et.
al.
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The QWEP conjecture

Locally universal C⇤ algebras

Call a separable C⇤ algebra S locally universal if every separable
C⇤ algebra embeds into some (any) ultrapower of S.
Locally universal C⇤ algebras exist.
Kirchberg’s Embedding Problem (KEP) Does there exist a nuclear
locally universal C⇤ algebra?
LLPEP Does there exist an LLP locally universal C⇤ algebra?
Clearly KEP implies LLPEP.
Sinclair and I proved that KEP is equivalent to the existence of a
nuclear e.c. C⇤ algebra (which is necessarily O2).
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The QWEP conjecture

Wrapping up

Suppose that LLP is an omitting types property. (Sinclair and I
came close to proving this.)
Suppose that LLPEP is true. Then we can use the technique of
model-theoretic forcing to build an e.c. LLP C⇤ algebra A.
If A is nuclear, then KEP holds. Otherwise, A is a witness to the
weak QWEP conjecture.

Theorem
Suppose that LLP is omitting types. Then either KEP and LLPEP are
equivalent or else the weak QWEP conjecture holds.
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The QWEP conjecture
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