Model theory and the Weak Expectation Property

Isaac Goldbring

University of Illinois at Chicago

Joint Mathematics Meeting Session on Classification Problems in Operator Algebras January 8, 2016

1 Introduction

- 2 WEP is not axiomatizable
- 3 WEP and existential closedness
- 4 The QWEP conjecture

A (1) > A (2) > A

All C* algebras are unital and all inclusions are unital.

Definition

Let *A* be a C^{*} algebra. We say that *A* has the *Weak Expectation Property* (WEP) if, whenever *B* is a C^{*} algebra containing *A*, there is a u.c.p. map $\phi : B \to A^{**}$ that is the identity on *A*.

- *A* has WEP if and only if whenver $A \subseteq B$ and *C* is another C* algebra, then $A \otimes_{\max} C \subseteq B \otimes_{\max} C$.
- In particular, if A is nuclear, then A has WEP.
- A theorem of Kirchberg says that A has WEP if and only if there is a unique C*-norm on $A \odot C^*(\mathbb{F})$.

Goal of the talk

Investigate the model-theoretic content of this notion.

Isaac Goldbring (UIC)

All C* algebras are unital and all inclusions are unital.

Definition

Let *A* be a C^{*} algebra. We say that *A* has the *Weak Expectation Property* (WEP) if, whenever *B* is a C^{*} algebra containing *A*, there is a u.c.p. map $\phi : B \to A^{**}$ that is the identity on *A*.

- *A* has WEP if and only if whenver $A \subseteq B$ and *C* is another C* algebra, then $A \otimes_{\max} C \subseteq B \otimes_{\max} C$.
- In particular, if A is nuclear, then A has WEP.
- A theorem of Kirchberg says that *A* has WEP if and only if there is a unique C*-norm on $A \odot C^*(\mathbb{F})$.

Goal of the talk

Investigate the model-theoretic content of this notion.

Isaac Goldbring (UIC)

.

All C* algebras are unital and all inclusions are unital.

Definition

Let *A* be a C^{*} algebra. We say that *A* has the *Weak Expectation Property* (WEP) if, whenever *B* is a C^{*} algebra containing *A*, there is a u.c.p. map $\phi : B \to A^{**}$ that is the identity on *A*.

- *A* has WEP if and only if whenver $A \subseteq B$ and *C* is another C^{*} algebra, then $A \otimes_{\max} C \subseteq B \otimes_{\max} C$.
- In particular, if A is nuclear, then A has WEP.
- A theorem of Kirchberg says that A has WEP if and only if there is a unique C*-norm on A ⊙ C*(𝔅).

Goal of the talk

Investigate the model-theoretic content of this notion.

.

All C* algebras are unital and all inclusions are unital.

Definition

Let *A* be a C^{*} algebra. We say that *A* has the *Weak Expectation Property* (WEP) if, whenever *B* is a C^{*} algebra containing *A*, there is a u.c.p. map $\phi : B \to A^{**}$ that is the identity on *A*.

- *A* has WEP if and only if whenver $A \subseteq B$ and *C* is another C^{*} algebra, then $A \otimes_{\max} C \subseteq B \otimes_{\max} C$.
- In particular, if A is nuclear, then A has WEP.
- A theorem of Kirchberg says that A has WEP if and only if there is a unique C*-norm on A ⊙ C*(𝔅).

Goal of the talk

Investigate the model-theoretic content of this notion.

Isaac Goldbring (UIC)

Model theory and the WEP

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- Quantifiers: If φ is a formula and $n \in \mathbb{N}$, then $\sup_{\|x\| \le n} \varphi$ and $\inf_{\|x\| \le n} \varphi$ are also formulae.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C* algebras A and B are elementarily equivalent, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- Quantifiers: If φ is a formula and $n \in \mathbb{N}$, then $\sup_{\|x\| \le n} \varphi$ and $\inf_{\|x\| \le n} \varphi$ are also formulae.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A *sentence* is a formula with no free variables.
- C* algebras A and B are elementarily equivalent, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- Quantifiers: If φ is a formula and $n \in \mathbb{N}$, then $\sup_{\|x\| \le n} \varphi$ and $\inf_{\|x\| \le n} \varphi$ are also formulae.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C* algebras A and B are elementarily equivalent, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

• • • • • • • • • • • •

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- Quantifiers: If φ is a formula and $n \in \mathbb{N}$, then $\sup_{\|x\| \le n} \varphi$ and $\inf_{\|x\| \le n} \varphi$ are also formulae.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C^{*} algebras *A* and *B* are *elementarily equivalent*, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

Axiomatizable classes

Definition

Let \mathcal{K} be a class of (separable) C^{*} algebras. We say that \mathcal{K} is *axiomatizable* if there is a set T of sentences such that a (separable) C^{*} algebra A belongs to \mathcal{K} if and only if $\sigma^A = 0$ for all $\sigma \in T$.

Examples

Abelian, non-abelian, real-rank 0, *n*-subhomogeneous (fixed *n*), C* algebras that admit a trace, C* algebras that admit a character,...

Some of these examples are proven to be axiomatizable using an abstract test: \mathcal{K} is axiomatizable if and only if it is closed under isomorphism, ultraproducts, and ultraroots.

< ロ > < 同 > < 回 > < 回 >

Axiomatizable classes

Definition

Let \mathcal{K} be a class of (separable) C^{*} algebras. We say that \mathcal{K} is *axiomatizable* if there is a set T of sentences such that a (separable) C^{*} algebra A belongs to \mathcal{K} if and only if $\sigma^A = 0$ for all $\sigma \in T$.

Examples

Abelian, non-abelian, real-rank 0, *n*-subhomogeneous (fixed *n*), C^* algebras that admit a trace, C^* algebras that admit a character,...

Some of these examples are proven to be axiomatizable using an abstract test: \mathcal{K} is axiomatizable if and only if it is closed under isomorphism, ultraproducts, and ultraroots.

1 Introduction

- 2 WEP is not axiomatizable
- 3 WEP and existential closedness
- 4 The QWEP conjecture

Arveson's Extension Theorem

Arveson's Extension Theorem

Let *A* be a C^{*} algebra, *E* an operator system contained in *A*, and $\phi : E \to B(H)$ a u.c.p. map. Then there is a u.c.p. map $\psi : A \to B(H)$ extending ϕ .

Question

Is there a *finitary version* of Arveson Extension? More precisely: Is it true that given an operator system $E \subseteq M_n$ and $k \in \mathbb{N}$, there exists $l \in \mathbb{N}$ and $\delta > 0$ such that, for any unital map $\phi : E \to \mathcal{B}(H)$ with $\|\phi\|_l < 1 + \delta$, there is a unital map $\psi : M_n \to \mathcal{B}(H)$ with $\|\psi\|_k < 1 + \frac{1}{k}$ and $\|\psi\|_E - \phi\| < \frac{1}{k}$?

Arveson's Extension Theorem

Arveson's Extension Theorem

Let *A* be a C^{*} algebra, *E* an operator system contained in *A*, and $\phi : E \to B(H)$ a u.c.p. map. Then there is a u.c.p. map $\psi : A \to B(H)$ extending ϕ .

Question

Is there a *finitary version* of Arveson Extension? More precisely: Is it true that given an operator system $E \subseteq M_n$ and $k \in \mathbb{N}$, there exists $l \in \mathbb{N}$ and $\delta > 0$ such that, for any unital map $\phi : E \to \mathcal{B}(H)$ with $\|\phi\|_l < 1 + \delta$, there is a unital map $\psi : M_n \to \mathcal{B}(H)$ with $\|\psi\|_k < 1 + \frac{1}{k}$ and $\|\psi|E - \phi\| < \frac{1}{k}$?

イロト イポト イヨト イヨト 三臣

Let FAE denote the statement that the finitary version of Arveson Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to $\mathcal{B}(H)^{\omega}$ having WEP. So:

Corollary

 $\mathcal{B}(H)^{\omega}$ do not have WEP. In particular, WEP is not an axiomatizable property.

Corollary

 A^{ω} has WEP if and only if A is subhomogeneous.

・ロット (日本) (日本) (日本)

Let FAE denote the statement that the finitary version of Arveson Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to $\mathcal{B}(H)^{\omega}$ having WEP. So:

Corollary

 $\mathcal{B}(H)^{\omega}$ do not have WEP. In particular, WEP is not an axiomatizable property.

Corollary

 A^{ω} has WEP if and only if A is subhomogeneous.

・ロト ・四ト ・ヨト ・ヨト

Let FAE denote the statement that the finitary version of Arveson Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to $\mathcal{B}(H)^{\omega}$ having WEP. So:

Corollary

 $\mathcal{B}(H)^{\omega}$ do not have WEP. In particular, WEP is not an axiomatizable property.

Corollary

 A^{ω} has WEP if and only if A is subhomogeneous.

Let FAE denote the statement that the finitary version of Arveson Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to $\mathcal{B}(H)^{\omega}$ having WEP. So:

Corollary

 $\mathcal{B}(H)^{\omega}$ do not have WEP. In particular, WEP is not an axiomatizable property.

Corollary

 A^{ω} has WEP if and only if A is subhomogeneous.

Isaac Goldbring (UIC)

1-exact operator systems

Definition

- 1 Suppose that *E* is a finite-dimensional operator system with basis \vec{a} . We say that *E* is *1-exact* if, for every $\epsilon > 0$, there is $n \in \mathbb{N}$ and c.b. maps $\phi : E \to M_n$ and $\psi : \phi(E) \to E$ such that $\|(\psi \circ \phi)(\vec{a}) \vec{a}\| < \epsilon$.
- 2 An arbitrary operator system is 1-exact if and only if each of its finite-dimensional subsystems is 1-exact.

A (10) F (10)

Omitting types

Definition

Let \mathcal{K} be a class of C^{*} algebras (or operator spaces or operator systems...). We say that \mathcal{K} is an *omitting types class* if there is a family of nonnegative formulae $\varphi_{m,n}(\vec{x}_n)$ such that a C^{*} algebra *A* belongs to \mathcal{K} if and only if, for all *n*, we have

$$\left(\sup_{\vec{x}_n}\inf_m\varphi_{m,n}(\vec{x}_n)\right)^A=0.$$

One should think of this as a particularly nice kind of *infinitary* axiomatizability.

< □ > < 同 > < 三 > < 三 >

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: \mathfrak{M}_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and \mathcal{OS}_n , the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$, which is surjective, open, and continuous.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that \mathcal{E}_n is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: \mathfrak{M}_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and \mathcal{OS}_n , the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$, which is surjective, open, and continuous.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that \mathcal{E}_n is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: \mathfrak{M}_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and \mathcal{OS}_n , the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$, which is surjective, open, and continuous.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that \mathcal{E}_n is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: *m*_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and *OS*_n, the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$, which is surjective, open, and continuous.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that \mathcal{E}_n is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: *m*_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and *OS*_n, the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$, which is surjective, open, and continuous.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that *E_n* is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

1 Introduction

- 2 WEP is not axiomatizable
- 3 WEP and existential closedness

4 The QWEP conjecture

• • • • • • • • • • • •

Existentially closed C* algebras

Definition

A C^{*} algebra *A* is said to be *existentially closed* (e.c.) if, for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$, tuple \vec{a} from *A*, and extension $B \supseteq A$, we have

$$\inf\{\varphi(\vec{b},\vec{a})^{A} : \vec{b} \in A_{1}\} = \inf\{\varphi(\vec{c},\vec{a})^{B} : \vec{c} \in B_{1}\}.$$

Theorem (G. and Sinclair)

If A is an existentially closed C^* algebra, then A has WEP. More generally, if $X \subseteq \mathcal{B}(H)$ is an operator system that is e.c. in $\mathcal{B}(H)$, then there is a u.c.p. $\mathcal{B}(H) \to \overline{X}$ (weak closure) restricting to id_X .

Existentially closed C* algebras

Definition

A C^{*} algebra *A* is said to be *existentially closed* (e.c.) if, for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$, tuple \vec{a} from *A*, and extension $B \supseteq A$, we have

$$\inf\{\varphi(\vec{b},\vec{a})^{A} : \vec{b} \in A_{1}\} = \inf\{\varphi(\vec{c},\vec{a})^{B} : \vec{c} \in B_{1}\}.$$

Theorem (G. and Sinclair)

If A is an existentially closed C^* algebra, then A has WEP. More generally, if $X \subseteq \mathcal{B}(H)$ is an operator system that is e.c. in $\mathcal{B}(H)$, then there is a u.c.p. $\mathcal{B}(H) \to \overline{X}$ (weak closure) restricting to id_X .

Idea of the proof

Theorem

if $X \subseteq \mathcal{B}(H)$ is an operator system that is e.c. in $\mathcal{B}(H)$, then there is a u.c.p. $\mathcal{B}(H) \to \overline{X}$ (weak closure) restricting to id_X .

Proof.

- It is enough to show (by weak compactness) that for every self-adjoint $b \in \mathcal{B}(H)^k$ there is u.c.p. $X + \mathbb{C}b_1 + \cdots + \mathbb{C}b_k \rightarrow \overline{X}$ extending id_X.
- Since X is e.c., any instance of positivity in M_n(X + ℂb₁ + · · · + ℂb_k) can be approximately witnessed by an element of M_n(X).
- By weak compactness, this is enough.

No model companion

Theorem (Eagle, Farah, Kirchberg, Vignati)

The class of existentially closed C^{*} algebras is not axiomatizable (no "model companion.")

Proof (G.)

Suppose that *A* is separable and e.c. If being e.c. were axiomatizable, then A^{ω} has a cofinal family of separable subalgebras with WEP (namely the elementary substructures), so itself has WEP. Thus, *A* is subhomogeneous, in particular finite. But Sinclair and I showed e.c. C* algebras are purely infinite.

No model companion

Theorem (Eagle, Farah, Kirchberg, Vignati)

The class of existentially closed C* algebras is not axiomatizable (no "model companion.")

Proof (G.)

Suppose that *A* is separable and e.c. If being e.c. were axiomatizable, then A^{ω} has a cofinal family of separable subalgebras with WEP (namely the elementary substructures), so itself has WEP. Thus, *A* is subhomogeneous, in particular finite. But Sinclair and I showed e.c. C* algebras are purely infinite.

Semi-p.e.c. as an operator system

Definition

- A quantifier-free formula is *positive* if it is built using only increasing connectives.
- We say that a C* algebra *A* is *semi-p.e.c.* as an operator system if, whenever $A \subseteq B$ is an inclusion of C* algebras, $\varphi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems, and \vec{a} is a tuple from *A*, we have

$$\inf\{arphi(ec{b},ec{a})^{\mathcal{A}} \ : \ ec{b}\in \mathcal{A}_1\} = \inf\{arphi(ec{c},ec{a})^{\mathcal{B}} \ : \ ec{c}\in \mathcal{B}_1\}.$$

Theorem (G. and Sinclair)

A unital C* algebra has WEP if and only if it is semi-p.e.c. as an operator system.

Isaac Goldbring (UIC)

Model theory and the WEP

ヘビン 人間と 人名と 人名と

Semi-p.e.c. as an operator system

Definition

- A quantifier-free formula is *positive* if it is built using only increasing connectives.
- We say that a C* algebra *A* is *semi-p.e.c.* as an operator system if, whenever $A \subseteq B$ is an inclusion of C* algebras, $\varphi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems, and \vec{a} is a tuple from *A*, we have

$$\inf\{arphi(ec{b},ec{a})^{m{\mathcal{A}}}\ :\ ec{b}\in m{A}_1\}=\inf\{arphi(ec{c},ec{a})^{m{B}}\ :\ ec{c}\in m{B}_1\}.$$

Theorem (G. and Sinclair)

A unital C* algebra has WEP if and only if it is semi-p.e.c. as an operator system.

Isaac Goldbring (UIC)

Model theory and the WEP

JMM 2016 16 / 26

WEP implies semi-p.e.c.

Suppose *A* has WEP and $A \subseteq B$, both separable.

- Let $E_1 \subseteq E_2 \subseteq \cdots$ be a filtration of *B* by finite-dimensional subspaces such that $A \cap \bigcup_i E_i$ is dense in *A*.
- WEP gives us linear maps $\phi_i : E_i \to E_i \cap A$ such that $\|\phi_i\|_i \le 1$ and $\|\phi_i\|_{E_i \cap A} \operatorname{id} \|E_i \cap A\| \le 1/i$.
- Get $\phi_{\omega} : \bigcup_{i} E_{i} \to A^{\omega}$ that extends to unital, completely contractive (hence u.c.p.) $\phi_{\omega} : B \to A^{\omega}$ that restricts to the identity on *A*.
- If $\psi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems and *a* is a tuple from *A*, and *b* is a tuple from *B*, then

$\psi(b,a)^B \ge \psi(\phi_\omega(b),a)^{A^\omega} \ge \inf_x \psi(x,a)^{A^\omega} = \inf_x \psi(x,a)^A.$

< ロ > < 同 > < 回 > < 回 >

WEP implies semi-p.e.c.

- Suppose *A* has WEP and $A \subseteq B$, both separable.
- Let $E_1 \subseteq E_2 \subseteq \cdots$ be a filtration of *B* by finite-dimensional subspaces such that $A \cap \bigcup_i E_i$ is dense in *A*.
- WEP gives us linear maps $\phi_i : E_i \to E_i \cap A$ such that $\|\phi_i\|_i \leq 1$ and $\|\phi_i\|_{E_i \cap A} \operatorname{id} \|E_i \cap A\| \leq 1/i$.
- Get $\phi_{\omega} : \bigcup_{i} E_{i} \to A^{\omega}$ that extends to unital, completely contractive (hence u.c.p.) $\phi_{\omega} : B \to A^{\omega}$ that restricts to the identity on *A*.
- If $\psi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems and *a* is a tuple from *A*, and *b* is a tuple from *B*, then

$\psi(b,a)^B \ge \psi(\phi_\omega(b),a)^{A^\omega} \ge \inf_x \psi(x,a)^{A^\omega} = \inf_x \psi(x,a)^A.$

WEP implies semi-p.e.c.

- Suppose *A* has WEP and $A \subseteq B$, both separable.
- Let $E_1 \subseteq E_2 \subseteq \cdots$ be a filtration of *B* by finite-dimensional subspaces such that $A \cap \bigcup_i E_i$ is dense in *A*.
- WEP gives us linear maps $\phi_i : E_i \to E_i \cap A$ such that $\|\phi_i\|_i \le 1$ and $\|\phi_i\|_{E_i \cap A} \operatorname{id} |_{E_i \cap A} \| \le 1/i$.
- Get $\phi_{\omega} : \bigcup_{i} E_{i} \to A^{\omega}$ that extends to unital, completely contractive (hence u.c.p.) $\phi_{\omega} : B \to A^{\omega}$ that restricts to the identity on *A*.
- If $\psi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems and *a* is a tuple from *A*, and *b* is a tuple from *B*, then

$\psi(b,a)^B \ge \psi(\phi_\omega(b),a)^{A^\omega} \ge \inf_x \psi(x,a)^{A^\omega} = \inf_x \psi(x,a)^A.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

WEP implies semi-p.e.c.

- Suppose A has WEP and $A \subseteq B$, both separable.
- Let $E_1 \subseteq E_2 \subseteq \cdots$ be a filtration of *B* by finite-dimensional subspaces such that $A \cap \bigcup_i E_i$ is dense in *A*.
- WEP gives us linear maps $\phi_i : E_i \to E_i \cap A$ such that $\|\phi_i\|_i \le 1$ and $\|\phi_i\|_{E_i \cap A} \operatorname{id} |_{E_i \cap A} \| \le 1/i$.
- Get $\phi_{\omega} : \bigcup_{i} E_{i} \to A^{\omega}$ that extends to unital, completely contractive (hence u.c.p.) $\phi_{\omega} : B \to A^{\omega}$ that restricts to the identity on *A*.
- If $\psi(\vec{x}, \vec{y})$ is a positive quantifier-free formula in the language of operator systems and *a* is a tuple from *A*, and *b* is a tuple from *B*, then

$\psi(b,a)^B \ge \psi(\phi_\omega(b),a)^{A^\omega} \ge \inf_x \psi(x,a)^{A^\omega} = \inf_x \psi(x,a)^A.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

WEP implies semi-p.e.c.

- Suppose A has WEP and $A \subseteq B$, both separable.
- Let $E_1 \subseteq E_2 \subseteq \cdots$ be a filtration of *B* by finite-dimensional subspaces such that $A \cap \bigcup_i E_i$ is dense in *A*.
- WEP gives us linear maps $\phi_i : E_i \to E_i \cap A$ such that $\|\phi_i\|_i \le 1$ and $\|\phi_i\|_{E_i \cap A} \operatorname{id} |_{E_i \cap A} \| \le 1/i$.
- Get $\phi_{\omega} : \bigcup_{i} E_{i} \to A^{\omega}$ that extends to unital, completely contractive (hence u.c.p.) $\phi_{\omega} : B \to A^{\omega}$ that restricts to the identity on *A*.
- If ψ(x, y) is a positive quantifier-free formula in the language of operator systems and a is a tuple from A, and b is a tuple from B, then

$$\psi(\boldsymbol{b},\boldsymbol{a})^{\boldsymbol{B}} \geq \psi(\phi_{\omega}(\boldsymbol{b}),\boldsymbol{a})^{\boldsymbol{A}^{\omega}} \geq \inf_{\boldsymbol{x}} \psi(\boldsymbol{x},\boldsymbol{a})^{\boldsymbol{A}^{\omega}} = \inf_{\boldsymbol{x}} \psi(\boldsymbol{x},\boldsymbol{a})^{\boldsymbol{A}}.$$

イロト イポト イヨト イヨ

An application

Definition

An inclusion of C^{*} algebras $A \subseteq B$ has the *complete tight Riesz interpolation property* if, for any *n* and any finite collection $(x_1, \ldots, x_m, y_1, \ldots, y_p) \in M_n(A)_{sa}$, if there is $z \in M_n(B)$ so that $x_1, \ldots, x_m < z < y_1, \ldots, y_p$, then there is $z' \in M_n(A)$ satisfying the same property.

Theorem (Kavruk)

If A is a unital separable C^* algebra, then A has WEP if and only if there is an inclusion $A \subseteq \mathcal{B}(H)$ with the complete tight Riesz interpolation property.

The proof becomes fairly straightforward using the fact that WEP is the same as semi-p.e.c. as an operator system.

イロン イボン イヨン 一日

An application

Definition

An inclusion of C^{*} algebras $A \subseteq B$ has the *complete tight Riesz interpolation property* if, for any *n* and any finite collection $(x_1, \ldots, x_m, y_1, \ldots, y_p) \in M_n(A)_{sa}$, if there is $z \in M_n(B)$ so that $x_1, \ldots, x_m < z < y_1, \ldots, y_p$, then there is $z' \in M_n(A)$ satisfying the same property.

Theorem (Kavruk)

If A is a unital separable C^* algebra, then A has WEP if and only if there is an inclusion $A \subseteq \mathcal{B}(H)$ with the complete tight Riesz interpolation property.

The proof becomes fairly straightforward using the fact that WEP is the same as semi-p.e.c. as an operator system.

Isaac Goldbring (UIC)

Model theory and the WEP

JMM 2016 18 / 26

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

1 Introduction

- 2 WEP is not axiomatizable
- 3 WEP and existential closedness

4 The QWEP conjecture

• • • • • • • • • • • •

QWEP

Definition

If A is a quotient of a C^* algebra with WEP, then we say that A has QWEP.

Kirchberg's QWEP conjecture

Every separable C* algebra is QWEP.

Theorem (Kirchberg)

The following are equivalent:

- 1 The QWEP conjecture.
- 2 $C^*(\mathbb{F})$ is QWEP.
- 3 The Connes Embedding Problem has a positive solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QWEP

Definition

If A is a quotient of a C^* algebra with WEP, then we say that A has QWEP.

Kirchberg's QWEP conjecture

Every separable C* algebra is QWEP.

Theorem (Kirchberg)

The following are equivalent:

- 1 The QWEP conjecture.
- 2 $C^*(\mathbb{F})$ is QWEP.
- 3 The Connes Embedding Problem has a positive solution.

QWEP

Definition

If A is a quotient of a C^* algebra with WEP, then we say that A has QWEP.

Kirchberg's QWEP conjecture

Every separable C* algebra is QWEP.

Theorem (Kirchberg)

The following are equivalent:

- 1 The QWEP conjecture.
- 2 $C^*(\mathbb{F})$ is QWEP.
- 3 The Connes Embedding Problem has a positive solution.

QWEP is axiomatizable

Proposition (G.)

QWEP is axiomatizable. Consequently, the QWEP conjecture is equivalent to the existence of a QWEP C* algebra *A* such that $A \equiv C^*(\mathbb{F})$

Proof.

- Closure under isomorphism √
- Closure under ultraproduct: Kirchberg showed that QWEP is closed under direct product
- Closure under ultraroot: one can check that ultraroots are relatively weakly injective in the ultrapower; Kirchberg showed that QWEP is preserved under r.w.i. subalgebras

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QWEP is axiomatizable

Proposition (G.)

QWEP is axiomatizable. Consequently, the QWEP conjecture is equivalent to the existence of a QWEP C* algebra A such that $A \equiv C^*(\mathbb{F})$

Proof.

- Closure under isomorphism √
- Closure under ultraproduct: Kirchberg showed that QWEP is closed under direct product
- Closure under ultraroot: one can check that ultraroots are relatively weakly injective in the ultrapower; Kirchberg showed that QWEP is preserved under r.w.i. subalgebras

イロト イヨト イヨト イヨト

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

- Nuclear C* algebras have LLP (Choi-Effros).
- $C^*(\mathbb{F})$ has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

• • • • • • • • • • • • •

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

■ Nuclear C* algebras have LLP (Choi-Effros).

- $C^*(\mathbb{F})$ has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

• • • • • • • • • • • •

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

- Nuclear C* algebras have LLP (Choi-Effros).
- C*(F) has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

• • • • • • • • • • • • •

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

- Nuclear C* algebras have LLP (Choi-Effros).
- $C^*(\mathbb{F})$ has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

• • • • • • • • • • • • •

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

- Nuclear C* algebras have LLP (Choi-Effros).
- $C^*(\mathbb{F})$ has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

• • • • • • • • • • • •

Definition

A separable C*-algebra *A* has the *local lifting property* (LLP) if whenever $\phi : A \to C/J$ is a u.c.p. map and $E \subseteq A$ is a finite-dimensional operator system, then $\phi | E$ has a u.c.p. lift.

- Nuclear C* algebras have LLP (Choi-Effros).
- $C^*(\mathbb{F})$ has LLP. (Kirchberg)
- QWEP+LLP implies WEP. (Kirchberg)
- It follows that the QWEP conjecture is equivalent to the statement that LLP implies WEP.
- Weak QWEP conjecture There is a non-nuclear C* algebra with both WEP and LLP.

< □ > < □ > < □ > < □ >

LLP models

Observation (G.)

Suppose that there is an LLP C^{*} algebra *B* such that $B \equiv C_r^*(\mathbb{F})$ or $\prod_{\omega} M_n$. Then *B* witnesses the truth of the weak QWEP conjecture.

Proof.

Both $C_r^*(\mathbb{F})$ and $\prod_{\omega} M_n$ are QWEP, whence so is B. Since *B* has LLP, it follows that *B* has WEP. *B* is not nuclear by a result of Farah, Hart, et. al.

LLP models

Observation (G.)

Suppose that there is an LLP C^{*} algebra *B* such that $B \equiv C_r^*(\mathbb{F})$ or $\prod_{\omega} M_n$. Then *B* witnesses the truth of the weak QWEP conjecture.

Proof.

Both $C_r^*(\mathbb{F})$ and $\prod_{\omega} M_n$ are QWEP, whence so is B. Since *B* has LLP, it follows that *B* has WEP. *B* is not nuclear by a result of Farah, Hart, et. al.

イロト イポト イヨト イヨ

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily O₂).

A (10) > A (10) > A

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily \mathcal{O}_2).

A (1) > A (2) > A

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily O₂).

A (1) > A (2) > A

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily O₂).

A (1) > A (2) > A

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily O_2).

A (10) > A (10) > A

- Call a separable C* algebra S locally universal if every separable C* algebra embeds into some (any) ultrapower of S.
- Locally universal C* algebras exist.
- Kirchberg's Embedding Problem (KEP) Does there exist a nuclear locally universal C* algebra?
- LLPEP Does there exist an LLP locally universal C* algebra?
- Clearly KEP implies LLPEP.
- Sinclair and I proved that KEP is equivalent to the existence of a nuclear e.c. C* algebra (which is necessarily O₂).

< 🗇 🕨 < 🖻 🕨

Suppose that LLP is an omitting types property. (Sinclair and I came close to proving this.)

- Suppose that LLPEP is true. Then we can use the technique of model-theoretic forcing to build an e.c. LLP C* algebra A.
- If A is nuclear, then KEP holds. Otherwise, A is a witness to the weak QWEP conjecture.

Theorem

Suppose that LLP is omitting types. Then either KEP and LLPEP are equivalent or else the weak QWEP conjecture holds.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Suppose that LLP is an omitting types property. (Sinclair and I came close to proving this.)
- Suppose that LLPEP is true. Then we can use the technique of model-theoretic forcing to build an e.c. LLP C* algebra A.
- If A is nuclear, then KEP holds. Otherwise, A is a witness to the weak QWEP conjecture.

Theorem

Suppose that LLP is omitting types. Then either KEP and LLPEP are equivalent or else the weak QWEP conjecture holds.

< ロ > < 同 > < 回 > < 回 >

- Suppose that LLP is an omitting types property. (Sinclair and I came close to proving this.)
- Suppose that LLPEP is true. Then we can use the technique of model-theoretic forcing to build an e.c. LLP C* algebra A.
- If A is nuclear, then KEP holds. Otherwise, A is a witness to the weak QWEP conjecture.

Theorem

Suppose that LLP is omitting types. Then either KEP and LLPEP are equivalent or else the weak QWEP conjecture holds.

< ロ > < 同 > < 回 > < 回 >

- Suppose that LLP is an omitting types property. (Sinclair and I came close to proving this.)
- Suppose that LLPEP is true. Then we can use the technique of model-theoretic forcing to build an e.c. LLP C* algebra A.
- If A is nuclear, then KEP holds. Otherwise, A is a witness to the weak QWEP conjecture.

Theorem

Suppose that LLP is omitting types. Then either KEP and LLPEP are equivalent or else the weak QWEP conjecture holds.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- C. Eagle, I. Farah, E. Kirchberg, A. Vignati, *Quantifier elimination* in C* algebras, preprint.
- I. Goldbring and T. Sinclair, On Kirchberg's Embedding Problem, Journal of Functional Analysis, 269 (2015), 155-198.
- I. Goldbring and T. Sinclair, *Omitting types in operator systems*, to appear in the Indiana University Mathematics Journal. arXiv 1501.06395.