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A�������. We establish an approximate 0-1 law for finite metric
spaces (of diameter at most 1) by establishing the existence of a
complete theory TAS of metric spaces for which, given any sen-
tence � in the language of pure metric spaces and any ✏ > 0, al-
most surely in su�ciently large finite metric spaces, the value of
� is within ✏ of the value TAS assigns to �. We also establish some
model-theoretic properties of the theory TAS.

1. I�����������
Recall that the Urysohn sphere U is the unique Polish metric space

of diameter 1 satisfying two properties: universality: all Polish metric
spaces of diameter at most 1 embed into U; and ultrahomogeneity: any
isometry between finite subspaces of U extends to a self-isometry of
U. From the model-theoretic perspective, U is the Fraïssé limit of the
class of all finite metric spaces of diameter at most 1 and its complete
theory is the model completion of the pure theory of metric spaces.

A lingering question aboutU is whether or not it is pseudofinite, that
is, elementarily equivalent to an ultraproduct of finite metric spaces,
or, equivalently, whether or not, given a sentence � for which �U = 0

and ✏ > 0, there is a finite metric space X of diameter at most 1 such
that �X

< ✏. In an earlier preprint, the first two authors claimed that
not only isUpseudofinite, but indeed a stronger result is true, namely
Th(U) is the almost-sure theory of finite metric spaces, which means,
given any sentence � and any ✏ > 0, almost all su�ciently large finite
metric spaces X of diameter at most 1 satisfy |�X - �U| < ✏.

However, a serious flaw in the argument was discovered by the
third author, and thus the pseudofiniteness of the Urysohn sphere is
still in question. It is the purpose of this note to rescue the latter fact,
namely that there is an almost-sure theory of finite metric spaces of
diameter at most 1. The motivation for the definition of this theory
comes from the fact that almost all su�ciently large metric spaces of
diameter at most 1 have all nontrivial distances at least 1
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some c > 0 (see [7] and [9]). This led us to consider spaces axioma-
tized using “extension axioms” just like U except with all nontrivial
distances being at least 1

2
. Since any assignment of distances between

distinct points taking values at least 1

2
automatically satisfies the tri-

angle inequality, this allowed us to salvage a version of our argument
in this context.

In the next section, we define the aforementioned extension axioms
and show that they hold approximately almost-surely in su�ciently
large finite metric spaces. In Section 3, we show that these extension
axioms axiomatize a complete theory and show that this theory is the
almost-sure theory of all finite metric spaces. The final section estab-
lishes further model-theoretic properties of the almost-sure theory,
including the fact that it has quantifier-elimination, has continuum
many nonisomorphic separable models, and is unstable but is super-
simple of U-rank 1.

In the first two sections, we assume minimal familiarity with con-
tinuous logic as established in [3, Sections 2-4]. The final section will
assume familiarity with more sophisticated model-theoretic notions.

Throughout the paper, L denotes the “empty” metric language,
that is, the metric language consisting solely of the metric symbol d.
The words “formula” and “sentence” will be used as abbreviations
for “L-formula” and “L-sentence” respectively. All metric spaces will
be viewed also as L-structures.

The authors would like to thank Henry Towsner, Caroline Terry
and Gabriel Conant for helpful comments throughout the writing of
this paper. We would also like to thank the authors of [7] for access
to their preprint.

2. E�������� ������
Suppose that C is the class of finite metric spaces in which the dis-

tance between any two distinct points lies in the interval [1
2
, 1]. Note

that all such metric spaces are discrete as any ball of radius 1

4
consists

just of its center.
Given a finitemetric spaceX = {x1, . . . , xn}, we letConfX(v1, . . . , vn)

denote the formula
max

1i<jn

|d(xi, xj)- d(vi, vj)|.

We use the notation X @ Y when X is a finite metric space and Y is
a one-point extension of X, in which case the extra point is denoted
by y.

Given X @ Y with X, Y 2 C, we let  ✏
X@Y

denote the sentence
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sup
v̄

min
⌦
✏

.- ConfX(~v), inf
w

ConfY(~v,w) .- ✏
↵
.

We identify d̄ = (dij : 1  i < j  n) 2 [0, 1](
n
2) with the met-

ric space on {1, . . . , n} with d(i, j) := dij. In this manner, if X 2 C,
we write ConfX(d̄), with the interpretation that the appearance of
d(vi, vj) gets replaced with dij. We perform a similar identification
with  ✏

X@Y
(d̄).

Let Mn ✓ [0, 1](
n
2) denote the set of all metric spaces on {1, . . . , n}

with values in [0, 1]. We let �n be Lebesgue measure on [0, 1](
n
2), and

we let ⌫n be Lebesgue measure normalized toMn, that is,

⌫n(A) =
�n(A)

�n(Mn)
.

The following is a less precise version of [7, Theorem 1.3].

Fact 2.1. There is a decreasing sequence (�n) from (0, 1

2
) which tends to 0

such that, setting

Dn :=

�
d̄ 2 Mn : dij �

1

2
- �n for all 1  i < j  n

�
,

we have limn!1 ⌫n(Dn) = 1.

We let µn be Lebesgue measure normalized to Dn.

Theorem 2.2. For any X1 @ Y1, . . . , Xm @ Ym from C and any ✏ > 0, we

have

lim
n!1

µn

⇣⌦
d̄ 2 Dn : max

i=1,...,m

 
✏

Xi@Yi
(d̄) = 0

↵⌘
= 1.

Proof. Fix i 2 {1, . . . ,m} and set X := Xi and Y := Yi. Let k = |X|.
We decompose elements d̄ from [0, 1](

n
2) as d̄ = (d̄ 0

, d̄
k+1

, . . . , d̄
n
, d̄

00),
where d̄

0 2 [0, 1](
k
2), d̄ 00 2 [0, 1](

n-k
2 ), and d̄

t 2 [0, 1]k for t = k +
1, . . . , n. The intention is that d̄ 0 represents dij for 1  i < j  k, d̄t

represents dit for i = 1, . . . , k and t = k+ 1, . . . , n, and d̄
00 represents

dij for k < i < j  n.
Let En denote the projection of Dn onto the last

�
n-k

2

�
coordinates,

and set Sn := [1
2
, 1](

k
2) ⇥ [1

2
+ �n, 1]k(n-k) ⇥ En. Note that the values of

d specified by an element in Sn cannot violate the triangle inequality,
so we have Sn ✓ Dn.

Let Bn be the set of d̄ 2 Dn such that:
• ConfX(d̄ 0)  ✏, and
• ConfY(d̄ 0

, d̄
t) > ✏ for all t = k+ 1, . . . , n.
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If we let A = {d̄ 0 2 Mk : ConfX(d̄ 0)  ✏}, then we have �n(Bn) 
�k(A) · ((1

2
+ �n)k - ✏k)n-k · �n-k(En), so

µn(Bn) =
�n(Bn)

�n(Dn)
 �n(Bn)

�n(Sn)


�k(A) · ((1

2
+ �n)k - ✏k)n-k · �n-k(En)

(1
2
)(

k
2) · (1

2
- �n)k(n-k) · �n-k(En)

= 2
(k2)�k(A)

 
(1
2
+ �n)k - ✏k

(1
2
- �n)k

!n-k

We have that

(1
2
+ �n)k - ✏k

(1
2
- �n)k


 

1

2
+ �n

1

2
- �n

!k

- (2✏)k

and so, since limn!1 �n = 0, it follows that there exists a constant C
and a constant p < 1 such that µn(An)  Cp

n for all large enough n.
The previous calculation yielded an upper bound on the probabil-

ity that a random element ofDn failed the extension axiom  
✏

Xi@Yi
as

witnessed by the first k elements. The calculation is identical if one
focuses on any other k element subset instead of the first k coordi-
nates. Moreover, if we were consideringm extension axioms instead
of just one, we would obtain a similar expression, possibly with dif-
ferent constants C and p. It follows that for some constants K and
q < 1,

µn

⇣⌦
d̄ 2 Dn : max

i=1,...,m

 
✏

Xi@Yi
(d̄) > 0

↵⌘
 mn

k
Kq

n

for su�ciently large n. As n tends to infinity, this quantity goes to
zero, yielding the desired result. ⇤

Corollary 2.3. For any X1 @ Y1, . . . , Xm @ Ym from C and any ✏ > 0, we

have

lim
n!1

⌫n

⇣⌦
d̄ 2 Mn : max

i=1,...,n

 
✏

Xi@Yi
(d̄) = 0

↵⌘
= 1.

Proof. Let A :=
�
d̄ 2 Mn : maxi=1,...,n 

✏

Xi@Yi
(d̄) = 0

 
. We then have

⌫n(A) = µn(A \Dn) · ⌫n(Dn) + ⌫n(A \Dn).

By Theorem 2.2, limn!1 µn(A \Dn) = 1. Since limn!1 ⌫n(Dn) = 1,
it follows that limn!1 ⌫n(A) = 1, as desired. ⇤
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3. T�� ����������� � - � ���
Wefirst recall theCompactness Theorem for continuous logic. Given

a theory T (in some language), we define the theory T
+ to consist of

all sentences � .- ✏, where � 2 T and ✏ > 0. We say that T is approxi-
mately finitely satisfiable if T+ is finitely satisfiable.

Fact 3.1 (Compactness Theorem). Given a theory T , we have that T is

satisfiable if and only if it is approximately finitely satisfiable.

We let TAS denote the L-theory consisting of the set of all extension
axioms  ✏

X@Y
together with the sentence '� 1

2
:

sup
x

sup
y

(min{d(x, y), 1
2

.- d(x, y)})

which when satisfied says that d(x, y) � 1

2
when x 6= y. A familiar

amalgamation construction shows that TAS is satisfiable. By Corol-
lary 2.3, we can say more.

Proposition 3.2. TAS has the finite model property: every finite subset

of TAS is approximately satisfied in a finite metric space. Equivalently, there

is an ultraproduct of finite metric spaces which satisfies TAS.

Proof. By Fact 2.1 and Corollary 2.3, any finite number of extension
axioms, together with any sentence '� 1

2

.- ✏ for ✏ > 0, are satisfied
in a su�ciently large finite metric space, whence the proposition fol-
lows. The ultraproduct equivalence is a standard reformulation of
the finite model property. (See, for example, [6].) ⇤

In order to prove our 0-1 law for finite metric spaces, we show that
TAS is a complete theory, that is, for all modelsX and Y of TAS, we have
that X and Y are elementarily equivalent. We establish this fact using
Ehrenfeucht-Fraïssé games.

Definition 3.3. Given metric spaces X and Y, n 2 N, and ✏ > 0, we define

G(X, Y, n, ✏) to be the two-player, n-round game, where at round i, player

I chooses ai 2 X or bi 2 Y and then player II chooses bi 2 Y or ai 2 X

accordingly. We say that player II wins a run of G(X, Y, n, ✏) if

|dX(ai, aj)- dY(bi, bj)| < ✏

for all 1  i < j  n; otherwise, player I wins. We write X ⌘n,✏ Y if player

II has a winning strategy in G(X, Y, n, ✏).

The classical version of the following fact is well-known (see, e.g.
[8, Theorem2.4.6]). For a proof (of a slight variant) in the continuous
setting, one can consult [5, Lemma 2.4].
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Fact 3.4. If X and Y are metric spaces, then X and Y are elementarily equiv-

alent if and only if X ⌘n,✏ Y for all n 2 N and ✏ > 0.

Theorem 3.5. TAS is complete.

Proof. Fix X, Y |= TAS. It su�ces to show that X ⌘n,✏ Y for all n 2 N
and ✏ > 0. We prove this by induction onn, the base casen = 1 being
trivial. Now suppose thatn > 1 andX ⌘n-1,✏ Y for all ✏ > 0. Fix ✏ > 0

and let player II play the first n- 1 rounds of G(X, Y, n, ✏) according
to a winning strategy for G(X, Y, n - 1,

✏

2
), yielding a1, . . . , an-1 2 X

and b1, . . . , bn-1 2 Y with

|dX(ai, aj)- dY(bi, bj)| <
✏

2

for all 1  i < j  n - 1. Now suppose that player I plays an 2 X

in the final round of G(X, Y, n, ✏) (the case that they play bn 2 Y is
handled in a symmetric fashion). Let X0 := {a1, . . . , an-1} and let
Y0 := X0 [ {an}. Then X0 and Y0 are in C, since Y |= '� 1

2
. Then Y |=

 

✏
2
X0@Y0

and ConfX0
(b1, . . . , bn-1) <

✏

2
, so we have that

Y |= inf
w

⇣
Conf(b1, . . . , bn-1,w) .-

✏

2

⌘
,

whence there is bn 2 Y such that ConfY0(b1, . . . , bn) < ✏. It follows
that this strategy is winning for player II in G(X, Y, n, ✏). ⇤

Given a sentence � in the language of metric spaces, let �AS denote
the unique real number r such that �X = r for all X |= TAS. It follows
that, given any ✏ > 0, the theory TAS[{✏ .- |�-�AS|} is not satisfiable.
By Fact 3.1, there are extension axioms  ✏i

Xi@Yi
(1  i  m) and ⌘ > 0

such that the theory
�
'� 1

2

.- ⌘,

✓
max
1im

 
✏i
Xi@Yi

◆
.- ⌘, ✏ .- |�- �AS|

�

is not satisfiable. Combining this observationwith Fact 2.1 andCorol-
lary 2.3 immediately yields:

Theorem 3.6 (Approximate 0-1 law). For any sentence� in the language
of metric spaces and any ✏ > 0, we have

lim
n!1

⌫n({X 2 Mn : |�X - �AS| < ✏}) = 1.

4. F������ �����-��������� ���������� �� TAS

In this last section, we gather some further model-theoretic facts
about TAS. We assume that the reader is familiar with the model-
theoretic terms defined in this section.
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Theorem 4.1. TAS has quantifier-elimination and is the model-completion

of the theory T0 := {'� 1
2
}.

Proof. By a standard model-theoretic test for quantifier-elimination
(see [3, Proposition 13.6]), it is enough to prove the following: given
X, Y |= TAS,A ✓ X, an isometric embedding f : A ,! Y, and a 2 X\A,
there is an elementary extension Y � Y

0 and an isometric embedding
g : A [ {a} ,! Y

0 extending f. However, this follows easily from Fact
3.1 and the fact that Y |= TAS.

In order to prove that TAS is the model-completion of T0, it remains
to show that every model of T0 embeds in a model of TAS. By Fact 3.1,
it su�ces to show that, for any X0 = {a1, . . . , an} from C and ✏ > 0,
there is X |= TAS and b1, . . . , bn 2 X such that ConfX0

(b1, . . . , bn) < ✏.
We do this by induction on n, the case n = 1 being trivial. Suppose
that n > 1 and the claim is true for n- 1. Fix X0 as above and ✏ > 0.
By induction, there is X |= TAS and b1, . . . , bn-1 2 X such that, setting
X

0
0
:= {a1, . . . , an-1}, we have ConfX 0

0
(b1, . . . , bn-1) <

✏

2
. Since X |=

 

✏
2

X 0
0@X0

, it follows that there is bn 2 X such that ConfX0
(b1, . . . , bn), as

desired. ⇤
Corollary 4.2. TAS has continuum many nonisomorphic separable models.

Proof. Anymodel of TAS is topologically discrete, so a separablemodel
of TAS is countable. In any such model, the metric d only takes on
countably many values in [0, 1]. By Theorem 4.1, given any separable
model X0 of T0, there is a separable model X of TAS such that X0 em-
beds into X, so for every value r 2 [1

2
, 1], there is a separable model

X of TAS such that the metric takes on the value r in X. It follows that
TAS has continuum many nonisomorphic separable models. ⇤
Theorem 4.3. TAS is not stable but is supersimple of U-rank 1. Moreover,

forking independence is characterized by

A |̂
C

B , A \ B ✓ C,

where A,B,C are small subsets of some monster model X of TAS.

Proof. It is straightforward to verify that the independence relation in
the above display satisfies all of the axioms of forking independence
in simple theories, whence we can conclude that TAS is simple and
the above independence relation is forking independence.1 We ver-
ify only the Independence Theorem over Models. Suppose that X is
a model, X ✓ A, X ✓ B, A |̂

X
B, and p(x) 2 S(A) and q(x) 2 S(B)

1See [1, Theorem 5.4.5].
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are independent extensions of their common restriction p0 2 S(X).
Since p and q are independent extensions of p0, all distances speci-
fied by p and q between x and elements of (A [ B) \ X are at least 1

2
,

whence we may find an abstract extension Y := A [ B [ {a} of A [ B

such that Y |= T0 and a is a tuple realizing the quantifier-free parts of
both p and q. Since TAS is the model completion of T0 and X is satu-
rated and strongly homogeneous, we may embed Y in X over A [ B.
By quantifier elimination, the image of a in X satisfies both p and q.
Consequently, the Independence Theorem over Models holds.

To see that the U-rank of the theory is 1, suppose that p 2 S1(A) is
a type with U(p) � 1. Take a forking extension q 2 S1(B) of p and
let a |= p. Then a 2 B \A and thus the condition d(x, a) = 0 belongs
to q. It follows that q is algebraic, whence U(p) = 1. Recall also that
theories of U-rank 1 are supersimple. 2

To see that TAS is not stable, letp(x) be any 1-type over amodelX, let
a 2 X realize p and take b 2 X \Xa. Then we can assign d(x, b) to be
any number in [1

2
, 1] and obtain an extension of p toXb in thismanner.

Thus, there are continuum many di�erent nonforking extensions of
p to Xb, whence TAS is not stable by [3, Theorem 14.12]. ⇤

The reader should contrast the previous result with the case of the
Urysohn sphere, which is not simple (see [4, Theorem 5.4]).
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