Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

University of Illinois at Urbana-Champaign

ASL Annual Meeting Special Session in Model Theory May 20, 2009 Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Outline

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

・ロト・日本・日本・日本・日本・日本

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Another Notion of Rosiness

・ロト・西ト・ヨト ヨー うくや

Geometric Definition

In this section, fix a complete (classical) theory T in a signature L and let \mathfrak{M} denote a monster model for T.

Definition (Adler?)

Let A, B, C be small subsets of \mathfrak{M}^{eq} .

• $A \bigsqcup_{C}^{M} B$ if and only if for every C' with $C \subseteq C' \subseteq acl(BC)$, we have

 $\operatorname{acl}(AC') \cap \operatorname{acl}(BC') = \operatorname{acl}(C').$

► $A \bigsqcup_{C}^{b} B$ if and only if for every $D \supseteq BC$, there is $A' \equiv_{BC} A$ such that $A' \bigsqcup_{C}^{M} D$.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Formula Definition

Definition (Scanlon, Onshuus)

Let $\varphi(x, b)$ be a formula and *C* a small set of parameters.

- ▶ $\varphi(x, b)$ strongly *k*-divides over *C* if $b \notin acl(C)$ and whenever $b_1, \ldots, b_k \models tp(b/C)$ are distinct, we have that $\bigwedge \varphi(x, b_i)$ is inconsistent.
- φ(x, b) þ-divides (read: thorn-divides) over C if there is D ⊇ C such that φ(x, b) strongly divides over D.
- ► tp(A/B) þ-forks over C if it contains a formula which þ-forks over C.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Equivalence of the Definitions

Fact (Adler?) tp(A/BC) p-forks over C if and only if $A \perp_{C}^{p} B$.

Main Reason

For a finite tuple *b*, we have $b \in acl(AC) \setminus acl(C)$ if and only if there is a formula $\varphi(x, b)$ in tp(A/bC) such that $\varphi(x, b)$ strongly divides over *C*. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Rosy Theories

Definition

T is said to be **rosy** if \bigcup^{p} is a strict independence relation for T^{eq} .

Facts (Adler, Ealy, Onshuus)

- ➤ T is rosy if and only if small subsets of m^{eq}.
- T is rosy if and only if there is a strict independence relation for T^{eq}.
- If *T* is rosy, then ^b/₂ is the weakest strict independence relation for *T*^{eq}, that is, if ^{*}/₂ is a strict independence relation for *T*^{eq}, then ^{*}/₂ ⇒ ^b/₂.

Example

Stable theories, simple theories, and o-minimal theories are all rosy.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

・日本・西本・山本・山本・山本

A Word About Imaginaries

In this section, fix a complete (continuous) theory T in a (bounded continuous) signature L and let \mathfrak{M} be a monster model for T.

To construct \mathfrak{M}^{eq} , we add extra sorts for products (finite or countable) of sorts quotiented by 0-*definable pseudo-metrics*, where a 0-definable pseudo-metric is a formula or uniform limit of formulae which defines a pseudometric.

An imaginary which corresponds to a pseudometric defined by a formula is called a **finitary imaginary** and we let $\mathfrak{M}^{\text{feq}}$ denote the reduct of \mathfrak{M}^{eq} which only considers finitary imaginaries.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Strong Dividing

Definition

Let $\varphi(x, b)$ be an formula and *C* a small set of parameters.

- Ind(b/C) denotes the set of C-indiscernible sequences of realizations of tp(b/C).
- ► $\chi(b/C) := \max\{d(b', b'') | b, b'' \in I, I \in \operatorname{Ind}(b/C)\},\$ so $b \in \operatorname{acl}(C)$ if and only if $\chi(b/C) = 0$.
- $\varphi(x, b)$ strongly ϵ -k-divides over C if:
 - $\epsilon \leq \chi(b/C)$, and
 - For every b₁,..., b_k ⊨ tp(b/C) satisfying d(b_i, b_j) ≥ ε for all 1 ≤ i < j ≤ k, we have</p>

$$\inf_{x} \max_{1 \leq i \leq k} \varphi(x, b_i) = 1.$$

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

・ロト・日本・日本・日本・日本・日本

Connection with Algebraic Closure

Theorem (Ealy, G.)

Let A and C be small parameter sets an b a countable tuple. Then the following are equivalent:

- ► $b \in \operatorname{acl}(AC) \setminus \operatorname{acl}(C);$
- b ∉ acl(C) and for every ε with 0 < ε ≤ χ(b/C), there is a formula φ_ε(x, b) such that "φ_ε(x, b) = 0" is in tp(A/bC) and φ_ε(x, b) strongly ε-divides over C.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Formula Definition of Thorn-Forking

Let A, B, C be small parameter sets.

- Suppose b is a countable tuple from B. Then tp(A/bC) thorn-divides over C if there is D ⊇ C such that b ∉ acl(D) and for every 0 < ε ≤ χ(b/D), there is a formula φ_ε(x, b) such that "φ_ε(x, b) = 0" is in tp(A/bC) and φ_ε(x, b) strongly ε-divides over D.
- tp(A/BC) thorn-divides over C if there is a countable b ⊆ B such that tp(A/bC) thorn-divides over C.
- tp(A/BC) thorn-forks over C if there is D ⊇ BC such that every extension of tp(A/BC) to D thorn-divides over C.
- One can then show that tp(A/BC) thorn-forks over C if and only if $A \bigsqcup_{C}^{p} B$ (in the geometric sense).

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Countable Character

In classical logic, \bigcup^{b} always satisfied **finite character**:

 $A \underset{C}{\overset{b}{\downarrow}} B$ if and only if $A_0 \underset{C}{\overset{b}{\downarrow}} B$ for all finite $A_0 \subseteq A$.

In continuous logic, \bigcup^{b} satisfies countable character:

 $A \underset{C}{\overset{b}{\sqcup}} B$ if and only if $A_0 \underset{C}{\overset{b}{\sqcup}} B$ for all countable $A_0 \subseteq A$.

The reason for this is that, in continuous logic, $a \in acl(B)$ implies $a \in acl(B_0)$ for some *countable* $B_0 \subseteq B$.

A **countable independence relation** is defined just like an independence relation except that finite character is replaced by countable character. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Rosy Continuous Theories

T is **rosy** if \bigcup^{b} satisfies local character for small subsets of \mathfrak{M}^{eq} .

Theorem

T is rosy if and only if \bigcup^{p} is a strict countable independence relation for T^{eq} if and only if there is a strict countable independence relation for T^{eq} . If *T* is rosy, then \bigcup^{p} is the weakest strict countable independence relation for T^{eq} .

Example

All stable and simple continuous theories are rosy.

Theorem (Ealy, G.)

If T is a classical theory, then T is rosy as a classical theory if and only if T is rosy with respect to finitary imaginaries when considered as a continuous theory. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Jrysohn space

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

・ロト・西ト・西ト・日・ 白・ シュウ・

A Question of Ben-Yaacov

Question (Ben-Yaacov)

Is there an essentially continuous simple unstable theory?

All known examples of continuous theories were either stable (e.g. Hilbert space, probability algebras, L^p -Banach lattices, \mathbb{R} -trees) or not simple (e.g. the Keisler randomization of a theory with the independence property).

Theorem (Ealy, G.)

There is an essentially continuous rosy theory, namely the theory of the Urysohn sphere. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

The Urysohn Sphere

Definition

Urysohn sphere is the unique (up to isometry) Polish metric space of diameter \leq 1 which is

- 1. *universal*: every Polish metric space of diameter \leq 1 can be isometrically embedded into it, and
- 2. *ultrahomogeneous*: any isometry between finite subsets of it can be extended to an isometry of the whole space.
- Let L denotes the continuous signature consisting solely of the metric symbol d, which is assumed to have diameter bounded by 1.
- ► Let 𝔅 denote the Urysohn sphere, considered as an *L*-structure.
- ► Let T_⊥ denote the *L*-theory of ⊥ and we let U denote a monster model for T_⊥.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

The Urysohn Sphere

Definition

Urysohn sphere is the unique (up to isometry) Polish metric space of diameter \leq 1 which is

- 1. *universal*: every Polish metric space of diameter \leq 1 can be isometrically embedded into it, and
- 2. *ultrahomogeneous*: any isometry between finite subsets of it can be extended to an isometry of the whole space.
- Let L denotes the continuous signature consisting solely of the metric symbol d, which is assumed to have diameter bounded by 1.
- Let I denote the Urysohn sphere, considered as an L-structure.
- Let T_𝔅 denote the *L*-theory of 𝔅 and we let 𝔅 denote a monster model for T_𝔅.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Facts (Henson)

- $T_{\mathfrak{U}}$ is \aleph_0 -categorical.
- $T_{\mathfrak{U}}$ admits quantifier elimination.
- ► T₁₁ is the model completion of the empty *L*-theory and is the theory of existentially closed metric spaces of diameter bounded by 1.
- ► For every small set of real parameters A from U, the real algebraic closure of A in U equals the topological closure of A in U, i.e. algebraic closure is trivial.

So in many ways, $T_{\mathfrak{U}}$ is the continuous analog of the theory of the infinite set in classical logic. However,...

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Fact (Pillay) $T_{\mathfrak{U}}$ is not simple.

Proof.

- Let A be a small set of real elements from U which are mutually ¹/₂ apart.
- Let p(x) be the unique 1-type over A determined by the conditions {d(x, a) = ¹/₄ | a ∈ A}.
- It suffices to show that *p* divides over any proper closed subset *B* of *A*. Fix such a *B* and let *a* ∈ *A* \ *B*. We can find a *B*-indiscernible sequence (*a_i* | *i* < ω) of realizations of tp(*a*/*B*) such that *d*(*a_i*, *a_j*) = 1 for all *i* < *j* < ω.</p>

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

• Then $d(x, a) = \frac{1}{4}$ divides over *B*.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Fact (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Proof.

- Let A be a small set of real elements from U which are mutually ¹/₂ apart.
- Let p(x) be the unique 1-type over A determined by the conditions {d(x, a) = ¹/₄ | a ∈ A}.
- It suffices to show that *p* divides over any proper closed subset *B* of *A*. Fix such a *B* and let *a* ∈ *A* \ *B*. We can find a *B*-indiscernible sequence (*a_i* | *i* < ω) of realizations of tp(*a*/*B*) such that *d*(*a_i*, *a_j*) = 1 for all *i* < *j* < ω.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Then $d(x, a) = \frac{1}{4}$ divides over *B*.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Fact (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Proof.

- Let A be a small set of real elements from U which are mutually ¹/₂ apart.
- Let p(x) be the unique 1-type over A determined by the conditions {d(x, a) = ¹/₄ | a ∈ A}.
- It suffices to show that *p* divides over any proper closed subset *B* of *A*. Fix such a *B* and let *a* ∈ *A* \ *B*. We can find a *B*-indiscernible sequence (*a_i* | *i* < ω) of realizations of tp(*a*/*B*) such that *d*(*a_i*, *a_j*) = 1 for all *i* < *j* < ω.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Then $d(x, a) = \frac{1}{4}$ divides over *B*.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Fact (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Proof.

- Let A be a small set of real elements from U which are mutually ¹/₂ apart.
- Let p(x) be the unique 1-type over A determined by the conditions {d(x, a) = ¹/₄ | a ∈ A}.
- It suffices to show that *p* divides over any proper closed subset *B* of *A*. Fix such a *B* and let *a* ∈ *A* \ *B*. We can find a *B*-indiscernible sequence (*a_i* | *i* < ω) of realizations of tp(*a*/*B*) such that *d*(*a_i*, *a_j*) = 1 for all *i* < *j* < ω.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Then $d(x, a) = \frac{1}{4}$ divides over *B*.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Fact (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Proof.

- Let A be a small set of real elements from U which are mutually ¹/₂ apart.
- Let p(x) be the unique 1-type over A determined by the conditions {d(x, a) = ¹/₄ | a ∈ A}.
- It suffices to show that *p* divides over any proper closed subset *B* of *A*. Fix such a *B* and let *a* ∈ *A* \ *B*. We can find a *B*-indiscernible sequence (*a_i* | *i* < ω) of realizations of tp(*a*/*B*) such that *d*(*a_i*, *a_j*) = 1 for all *i* < *j* < ω.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Then $d(x, a) = \frac{1}{4}$ divides over *B*.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Proof (Sketch)

- First observe that $A \coprod_{C}^{M} B$ (in the real sense) if and only if $\overline{A} \cap \overline{B} \subseteq \overline{C}$; this follows from the triviality of algebraic closure in $T_{\mathfrak{U}}$.
- ▶ Let *A* and *B* be small subsets of \mathbb{U} . For each $x \in \overline{A} \cap \overline{B}$, let $B_x \subseteq B$ be countable so that $x \in \overline{B_x}$.
- ▶ Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \bigsqcup_{C}^{p} B$.
- Since |C| ≤ |A| ⋅ ℵ₀, this shows that b has local character when restricted to the real sorts.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

- Proof (Sketch)
 - First observe that A ⊥^M_C B (in the real sense) if and only if A
 ∩ B
 ⊆ C
 ; this follows from the triviality of algebraic closure in T₁₁.

 - ▶ Let *A* and *B* be small subsets of \mathbb{U} . For each $x \in \overline{A} \cap \overline{B}$, let $B_x \subseteq B$ be countable so that $x \in \overline{B}_x$.
 - ▶ Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \bigsqcup_{C}^{p} B$.
 - Since |C| ≤ |Ā| · ℵ₀, this shows that b has local character when restricted to the real sorts.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Proof (Sketch)

- First observe that A ⊥^M_C B (in the real sense) if and only if A
 ∩ B
 ⊆ C
 ; this follows from the triviality of algebraic closure in T₁₁.
- ► Using universality and ultrahomogeneity, one can show that $\bigcup^{M} = \bigcup^{p}$, i.e. that \bigcup^{M} already satisfies extension.
- ▶ Let *A* and *B* be small subsets of U. For each $x \in \overline{A} \cap \overline{B}$, let $B_x \subseteq B$ be countable so that $x \in \overline{B}_x$.
- ▶ Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \stackrel{\text{!}}{\underset{C}{\to}} B$.
- Since |C| ≤ |A| ⋅ ℵ₀, this shows that b has local character when restricted to the real sorts.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Proof (Sketch)

- First observe that A ⊥^M_C B (in the real sense) if and only if A
 ∩ B
 ⊆ C
 ; this follows from the triviality of algebraic closure in T₁₁.
- ► Using universality and ultrahomogeneity, one can show that $\bigcup^{M} = \bigcup^{p}$, i.e. that \bigcup^{M} already satisfies extension.
- Let A and B be small subsets of U. For each x ∈ A ∩ B, let B_x ⊆ B be countable so that x ∈ B_x.
- ▶ Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \stackrel{\text{!}}{\underset{C}{\to}} B$.
- Since |C| ≤ |Ā| · ℵ₀, this shows that b has local character when restricted to the real sorts.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Proof (Sketch)

- First observe that A ⊥^M_C B (in the real sense) if and only if A
 ∩ B
 ⊆ C
 ; this follows from the triviality of algebraic closure in T₁₁.
- ► Using universality and ultrahomogeneity, one can show that $\bigcup^{M} = \bigcup^{p}$, i.e. that \bigcup^{M} already satisfies extension.
- Let A and B be small subsets of U. For each x ∈ A ∩ B, let B_x ⊆ B be countable so that x ∈ B_x.
- ▶ Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \bigcup_{C}^{p} B$.

Since |C| ≤ |A| ⋅ ℵ₀, this shows that b has local character when restricted to the real sorts. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Proof (Sketch)

- First observe that A ⊥^M_C B (in the real sense) if and only if A
 ∩ B
 ⊆ C
 ; this follows from the triviality of algebraic closure in T₁₁.
- ► Using universality and ultrahomogeneity, one can show that $\bigcup^{M} = \bigcup^{p}$, i.e. that \bigcup^{M} already satisfies extension.
- Let A and B be small subsets of U. For each x ∈ A ∩ B, let B_x ⊆ B be countable so that x ∈ B_x.
- Let $C := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $\overline{A} \cap \overline{B} \subseteq \overline{C}$, i.e. $A \stackrel{b}{\subseteq} C B$.
- Since |C| ≤ |Ā| · ℵ₀, this shows that ↓^b has local character when restricted to the real sorts.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Weak Elimination of Finitary Imaginaries

Definition

A continuous theory *T* has **weak elimination of finitary imaginaries** (abbreviated: *T* has **WEFI**) if for any $a \in \mathfrak{M}^{feq}$, there is a finite real tuple *b* such that $a \in dcl(b)$ and $b \in acl(a)$.

Theorem (Ealy, G.)

If T is real rosy and has WEFI, then T is rosy with respect to finitary imaginaries.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

$T_{\mathfrak{U}}$ has WEFI

Lemma (Lascar)

Suppose that T satisfies the following two conditions:

- There is no strictly decreasing sequence
 A₀ ⊇ A₁ ⊇ A₂ ⊇ ..., where each A_n is the algebraic
 closure of a finite set.
- If φ(x) is a formula which is defined over A and defined over B, then φ(x) is defined over A ∩ B.

Then T has WEFI.

 $T_{\mathfrak{U}}$ clearly satisfies (1). That $T_{\mathfrak{U}}$ satisfies (2) follows from the following unpublished result of Julien Melleray.

Theorem

Let A and B be finite subsets of \mathbb{U} . Let $G := \operatorname{Aut}(\mathbb{U}|A \cap B)$ and let H be the subgroup of G generated by $\operatorname{Aut}(\mathbb{U}|A) \cup \operatorname{Aut}(\mathbb{U}|B)$. Then H is dense in G with respect to the topology of pointwise of convergence. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

An Application

By the universality property of \mathfrak{U} , we know that $\mathfrak{U} \times \mathfrak{U}$ isometrically embeds in \mathfrak{U} . However,

Theorem (Ealy, G.)

There is no definable (in \mathfrak{U}^{feq}) injection $f : \mathfrak{U} \times \mathfrak{U} \to \mathfrak{U}$.

Proof.

If there was such a definable map, then it would extend to a definable injective map $f : \mathbb{U} \times \mathbb{U} \to \mathbb{U}$. Using properties of U^{p} -rank, one can show that $U^{p}(\mathbb{U} \times \mathbb{U}) \leq U^{p}(\mathbb{U})$. However, it is not too hard to show that $U^{p}(\mathbb{U}^{n}) = n$ for all n. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

An Application

By the universality property of \mathfrak{U} , we know that $\mathfrak{U} \times \mathfrak{U}$ isometrically embeds in \mathfrak{U} . However,

Theorem (Ealy, G.)

There is no definable (in $\mathfrak{U}^{\mathsf{feq}}$) injection $f : \mathfrak{U} \times \mathfrak{U} \to \mathfrak{U}$.

Proof.

If there was such a definable map, then it would extend to a definable injective map $f : \mathbb{U} \times \mathbb{U} \to \mathbb{U}$. Using properties of U^{p} -rank, one can show that $U^{p}(\mathbb{U} \times \mathbb{U}) \leq U^{p}(\mathbb{U})$. However, it is not too hard to show that $U^{p}(\mathbb{U}^{n}) = n$ for all n. Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Another Notion of Rosiness

・ロト・日本・日本・日本・日本・日本

Maximal *þ*-forking

Definition (Ben-Yaacov)

Suppose $\varphi(x, b)$ is a formula and *C* is a small set of parameters.

- φ(x, b) strongly divides over C if it χ(b/C)-divides over C.
- $\varphi(x, b)$ maximally $\not\models$ -forks over *C* if Zero(φ) $\subseteq \bigcup_{i=1}^{n}$ Zero(φ_i), where each φ_i maximally $\not\models$ -divides over *C*.
- tp(A/B) maximally β-forks over C if it contains a condition "φ = 0", where φ β-forks over C.
- We write $A \bigcup_{C}^{mp} B$ if tp(A/BC) does not maximally p-fork over C.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Maximal Rosiness

Definition

T is **maximally rosy** if \bigcup^{m_p} satisfies local character.

Downsides

- Simple continuous theories are maximally rosy and maximally rosy theories are rosy. However, we don't know of any maximally rosy unstable theory. (It appears the same argument that shows that T₁ is not simple also shows that T₁ is not maximally rosy.)
- If T is a classical theory, then T is real rosy as a classical theory if and only if it is maximally real rosy as a continuous theory. However, it does not appear that this remains true when one considers finitary imaginaries.

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space

Maximal Rosiness (cont'd)

Upsides

- In a maximally rosy theory, m^b is a strict independence relation; in particular it satisfies finite character.
- If T is a classical theory and T^R, the Keisler randomization of T, is maximally rosy with respect to finitary imaginaries, then T is rosy. We are unable to prove this when "maximally rosy" is replaced by "rosy".

Thorn-forking and Rosiness in Continuous Logic

Isaac Goldbring (joint work with Clifton Ealy)

Thorn-forking in Classical Logic

Thorn-forking in Continuous Logic

An Example: Urysohn space