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Geometric Definition

In this section, fix a complete (classical) theory T in a
signature L and let M denote a monster model for T .

Definition (Adler?)
Let A,B,C be small subsets of Meq.

I A |M^C
B if and only if for every C′ with

C ⊆ C′ ⊆ acl(BC), we have

acl(AC′) ∩ acl(BC′) = acl(C′).

I A |þ^C
B if and only if for every D ⊇ BC, there is

A′ ≡BC A such that A′ |M^C
D.



Thorn-forking and
Rosiness in

Continuous Logic

Isaac Goldbring
(joint work with

Clifton Ealy)

Thorn-forking in
Classical Logic

Thorn-forking in
Continuous Logic

An Example:
Urysohn space

Another Notion of
Rosiness

Formula Definition

Definition (Scanlon, Onshuus)
Let ϕ(x ,b) be a formula and C a small set of parameters.

I ϕ(x ,b) strongly k -divides over C if b /∈ acl(C) and
whenever b1, . . . ,bk |= tp(b/C) are distinct, we have
that

∧
ϕ(x ,bi) is inconsistent.

I ϕ(x ,b) strongly divides over C if it strongly
k -divides over C for some k .

I ϕ(x ,b) þ-divides (read: thorn-divides) over C if
there is D ⊇ C such that ϕ(x ,b) strongly divides over
D.

I ϕ(x ,b) þ-forks over C if it implies a (finite) disjunction
of formulae which thorn-divide over C.

I tp(A/B) þ-forks over C if it contains a formula which
þ-forks over C.
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Equivalence of the Definitions

Fact (Adler?)
tp(A/BC) þ-forks over C if and only if A |þ^C

B.

Main Reason
For a finite tuple b, we have b ∈ acl(AC) \ acl(C) if and
only if there is a formula ϕ(x ,b) in tp(A/bC) such that
ϕ(x ,b) strongly divides over C.
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Rosy Theories
Definition
T is said to be rosy if |þ^ is a strict independence relation
for T eq.

Facts (Adler, Ealy, Onshuus)

I T is rosy if and only if |þ^ satisfies local character on
small subsets of Meq.

I T is rosy if and only if there is a strict independence
relation for T eq.

I If T is rosy, then |þ^ is the weakest strict
independence relation for T eq, that is, if |∗^ is a strict
independence relation for T eq, then |∗^ ⇒ |þ^ .

Example
Stable theories, simple theories, and o-minimal theories
are all rosy.
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A Word About Imaginaries

In this section, fix a complete (continuous) theory T in a
(bounded continuous) signature L and let M be a
monster model for T .

To construct Meq, we add extra sorts for products (finite
or countable) of sorts quotiented by 0-definable
pseudo-metrics, where a 0-definable pseudo-metric is a
formula or uniform limit of formulae which defines a
pseudometric.

An imaginary which corresponds to a pseudometric
defined by a formula is called a finitary imaginary and
we let Mfeq denote the reduct of Meq which only
considers finitary imaginaries.
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Strong Dividing

Definition
Let ϕ(x ,b) be an formula and C a small set of
parameters.

I Ind(b/C) denotes the set of C-indiscernible
sequences of realizations of tp(b/C).

I χ(b/C) := max{d(b′,b′′) |b,b′′ ∈ I, I ∈ Ind(b/C)},
so b ∈ acl(C) if and only if χ(b/C) = 0.

I ϕ(x ,b) strongly ε-k -divides over C if:
I ε ≤ χ(b/C), and
I for every b1, . . . ,bk |= tp(b/C) satisfying d(bi ,bj ) ≥ ε

for all 1 ≤ i < j ≤ k , we have

infx max
1≤i≤k

ϕ(x ,bi ) = 1.



Thorn-forking and
Rosiness in

Continuous Logic

Isaac Goldbring
(joint work with

Clifton Ealy)

Thorn-forking in
Classical Logic

Thorn-forking in
Continuous Logic

An Example:
Urysohn space

Another Notion of
Rosiness

Connection with Algebraic Closure

Theorem (Ealy, G.)
Let A and C be small parameter sets an b a countable
tuple. Then the following are equivalent:

I b ∈ acl(AC) \ acl(C);
I b /∈ acl(C) and for every ε with 0 < ε ≤ χ(b/C), there

is a formula ϕε(x ,b) such that “ϕε(x ,b) = 0” is in
tp(A/bC) and ϕε(x ,b) strongly ε-divides over C.
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Formula Definition of Thorn-Forking

Let A,B,C be small parameter sets.
I Suppose b is a countable tuple from B. Then

tp(A/bC) thorn-divides over C if there is D ⊇ C
such that b /∈ acl(D) and for every 0 < ε ≤ χ(b/D),
there is a formula ϕε(x ,b) such that “ϕε(x ,b) = 0” is
in tp(A/bC) and ϕε(x ,b) strongly ε-divides over D.

I tp(A/BC) thorn-divides over C if there is a
countable b ⊆ B such that tp(A/bC) thorn-divides
over C.

I tp(A/BC) thorn-forks over C if there is D ⊇ BC
such that every extension of tp(A/BC) to D
thorn-divides over C.

I One can then show that tp(A/BC) thorn-forks over C
if and only if A |þ^C

B (in the geometric sense).
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Countable Character

In classical logic, |þ^ always satisfied finite character:

A |þ^
C

B if and only if A0 |þ^
C

B for all finite A0 ⊆ A.

In continuous logic, |þ^ satisfies countable character:

A |þ^
C

B if and only if A0 |þ^
C

B for all countable A0 ⊆ A.

The reason for this is that, in continuous logic, a ∈ acl(B)
implies a ∈ acl(B0) for some countable B0 ⊆ B.

A countable independence relation is defined just like
an independence relation except that finite character is
replaced by countable character.
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Rosy Continuous Theories

T is rosy if |þ^ satisfies local character for small subsets
of Meq.

Theorem
T is rosy if and only if |þ^ is a strict countable
independence relation for T eq if and only if there is a strict
countable independence relation for T eq. If T is rosy, then
|þ^ is the weakest strict countable independence relation

for T eq.

Example
All stable and simple continuous theories are rosy.

Theorem (Ealy, G.)
If T is a classical theory, then T is rosy as a classical
theory if and only if T is rosy with respect to finitary
imaginaries when considered as a continuous theory.
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A Question of Ben-Yaacov

Question (Ben-Yaacov)
Is there an essentially continuous simple unstable theory?

All known examples of continuous theories were either
stable (e.g. Hilbert space, probability algebras,
Lp-Banach lattices, R-trees) or not simple (e.g. the
Keisler randomization of a theory with the independence
property).

Theorem (Ealy, G.)
There is an essentially continuous rosy theory, namely
the theory of the Urysohn sphere.
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The Urysohn Sphere
Definition
Urysohn sphere is the unique (up to isometry) Polish
metric space of diameter ≤ 1 which is

1. universal: every Polish metric space of diameter ≤ 1
can be isometrically embedded into it, and

2. ultrahomogeneous: any isometry between finite
subsets of it can be extended to an isometry of the
whole space.

I Let L denotes the continuous signature consisting
solely of the metric symbol d , which is assumed to
have diameter bounded by 1.

I Let U denote the Urysohn sphere, considered as an
L-structure.

I Let TU denote the L-theory of U and we let U denote
a monster model for TU.
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Model Theoretic Properties of TU

Facts (Henson)

I TU is ℵ0-categorical.
I TU admits quantifier elimination.
I TU is the model completion of the empty L-theory

and is the theory of existentially closed metric
spaces of diameter bounded by 1.

I For every small set of real parameters A from U, the
real algebraic closure of A in U equals the topological
closure of A in U, i.e. algebraic closure is trivial.

So in many ways, TU is the continuous analog of the
theory of the infinite set in classical logic. However,...
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Model Theoretic Properties of TU (cont’d)

Fact (Pillay)
TU is not simple.

Proof.
I Let A be a small set of real elements from U which

are mutually 1
2 apart.

I Let p(x) be the unique 1-type over A determined by
the conditions {d(x ,a) = 1

4 | a ∈ A}.
I It suffices to show that p divides over any proper

closed subset B of A. Fix such a B and let a ∈ A \ B.
We can find a B-indiscernible sequence (ai | i < ω)
of realizations of tp(a/B) such that d(ai ,aj) = 1 for
all i < j < ω.

I Then d(x ,a) = 1
4 divides over B.
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TU is real rosy
Theorem (Ealy, G.)
TU is real rosy.

Proof (Sketch)

I First observe that A |M^C
B (in the real sense) if and

only if Ā ∩ B̄ ⊆ C̄; this follows from the triviality of
algebraic closure in TU.

I Using universality and ultrahomogeneity, one can
show that |M^ = |þ^ , i.e. that |M^ already satisfies
extension.

I Let A and B be small subsets of U. For each
x ∈ Ā ∩ B̄, let Bx ⊆ B be countable so that x ∈ B̄x .

I Let C :=
⋃
{Bx | x ∈ Ā ∩ B̄}. Then Ā ∩ B̄ ⊆ C̄, i.e.

A |þ^C
B.

I Since |C| ≤ |Ā| · ℵ0, this shows that |þ^ has local
character when restricted to the real sorts.
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I Since |C| ≤ |Ā| · ℵ0, this shows that |þ^ has local
character when restricted to the real sorts.



Thorn-forking and
Rosiness in

Continuous Logic

Isaac Goldbring
(joint work with

Clifton Ealy)

Thorn-forking in
Classical Logic

Thorn-forking in
Continuous Logic

An Example:
Urysohn space

Another Notion of
Rosiness

TU is real rosy
Theorem (Ealy, G.)
TU is real rosy.

Proof (Sketch)

I First observe that A |M^C
B (in the real sense) if and
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Weak Elimination of Finitary Imaginaries

Definition
A continuous theory T has weak elimination of finitary
imaginaries (abbreviated: T has WEFI) if for any
a ∈Mfeq, there is a finite real tuple b such that a ∈ dcl(b)
and b ∈ acl(a).

Theorem (Ealy, G.)
If T is real rosy and has WEFI, then T is rosy with
respect to finitary imaginaries.
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TU has WEFI

Lemma (Lascar)
Suppose that T satisfies the following two conditions:

1. There is no strictly decreasing sequence
A0 ) A1 ) A2 ) . . ., where each An is the algebraic
closure of a finite set.

2. If ϕ(x) is a formula which is defined over A and
defined over B, then ϕ(x) is defined over A ∩ B.

Then T has WEFI.
TU clearly satisfies (1). That TU satisfies (2) follows from
the following unpublished result of Julien Melleray.

Theorem
Let A and B be finite subsets of U. Let G := Aut(U|A ∩ B)
and let H be the subgroup of G generated by
Aut(U|A) ∪ Aut(U|B). Then H is dense in G with respect
to the topology of pointwise of convergence.
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An Application

By the universality property of U, we know that U× U

isometrically embeds in U. However,

Theorem (Ealy, G.)
There is no definable (in Ufeq) injection f : U× U→ U.

Proof.
If there was such a definable map, then it would extend to
a definable injective map f : U× U→ U. Using properties
of Uþ-rank, one can show that Uþ(U× U) ≤ Uþ(U).
However, it is not too hard to show that Uþ(Un) = n for all
n.
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Maximal þ-forking

Definition (Ben-Yaacov)
Suppose ϕ(x ,b) is a formula and C is a small set of
parameters.

I ϕ(x ,b) strongly divides over C if it χ(b/C)-divides
over C.

I ϕ(x ,b) maximally þ-divides over C if it strongly
divides over D for some D ⊇ C.

I ϕ(x ,b) maximally þ-forks over C if
Zero(ϕ) ⊆

⋃n
i=1 Zero(ϕi), where each ϕi maximally

þ-divides over C.
I tp(A/B) maximally þ-forks over C if it contains a

condition “ϕ = 0”, where ϕ þ-forks over C.
I We write A |mþ

^C
B if tp(A/BC) does not maximally

þ-fork over C.
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Maximal Rosiness

Definition
T is maximally rosy if |mþ

^ satisfies local character.

Downsides
I Simple continuous theories are maximally rosy and

maximally rosy theories are rosy. However, we don’t
know of any maximally rosy unstable theory. (It
appears the same argument that shows that TU is
not simple also shows that TU is not maximally rosy.)

I If T is a classical theory, then T is real rosy as a
classical theory if and only if it is maximally real rosy
as a continuous theory. However, it does not appear
that this remains true when one considers finitary
imaginaries.
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Maximal Rosiness (cont’d)

Upsides

I In a maximally rosy theory, |mþ
^ is a strict

independence relation; in particular it satisfies finite
character.

I If T is a classical theory and T R, the Keisler
randomization of T , is maximally rosy with respect to
finitary imaginaries, then T is rosy. We are unable to
prove this when “maximally rosy” is replaced by
“rosy”.
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