High piecewise syndeticity of product sets in amenable groups

Isaac Goldbring

University of Illinois at Chicago

Combinatorics meets ergodic theory Banff, July 2015

1 A quantitative version of Jin's Theorem

2 Amenable groups

3 Proof of the first part

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Densities

Definition

Suppose that $A \subseteq \mathbb{Z}$.

1 The upper density of A is

$$\bar{d}(A) := \limsup_{n \to \infty} \frac{|A \cap [-n, n]|}{2n+1}.$$

2 The Banach density of A is

$$\mathsf{BD}(A) := \lim_{n \to \infty} \sup_{x \in \mathbb{Z}} \frac{|A \cap [x - n, x + n])|}{2n + 1}$$

イロト イ理ト イヨト イヨト

Jin's Theorem

Theorem (Jin, 2002)

If $A, B \subseteq \mathbb{Z}$ are such that BD(A), BD(B) > 0, then A + B is piecewise syndetic: there is $m \in \mathbb{N}$ such that A + B + [-m, m] contains intervals of arbitrarily large length.

The proof used nonstandard analysis.

イロト イポト イヨト イヨト

A quantitative version of Jin's Theorem

Theorem (DGJLLM, 2013)

Suppose that $A, B \subseteq \mathbb{Z}$ are such that $\overline{d}(A) = \alpha > 0$ and BD(B) > 0. Then A + B is upper syndetic of level α : there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$\bar{d}(\{x\in\mathbb{Z} : x+[-k,k]\subseteq A+B+[-m,m]\})\geq\alpha.$$

This proof also used nonstandard analysis. In particular, we had to formulate and prove a version of the Lebesgue Density Theorem for quotients of Loeb measure spaces. The proof actually works for subsets of \mathbb{Z}^d for any *d*.

< ロ > < 同 > < 回 > < 回 >

1 A quantitative version of Jin's Theorem

2 Amenable groups

3 Proof of the first part

• • • • • • • • • • •

Amenable groups

Let G be a countable (discrete) group.

Definition

G is *amenable* if *G* admits a (left) Folner sequence, namely a sequence $S := (S_n)$ of finite subsets of *G* such that, for every $g \in G$, we have

$$\lim_{n\to\infty}\frac{|gS_n\triangle S_n|}{|S_n|}=0.$$

Examples of (countable) amenable groups include finite groups and virtually solvable groups. Free groups are not amenable.

< ロ > < 同 > < 回 > < 回 >

Densities in amenable groups

Definition

Suppose that G is an amenable group and A is a subset of G.

1 If $S = (S_n)$ is a Folner sequence for *G*, the (upper) *S*-density of *A* is

$$d_{\mathcal{S}}(A) := \limsup_{n \to \infty} \frac{|A \cap S_n|}{|S_n|}$$

2 The Banach density of A is

 $BD(A) := \sup\{d_{\mathcal{S}}(A) : \mathcal{S} \text{ a Folner sequence for } G\}.$

Remark

Suppose $G = \mathbb{Z}$. If $S_n = [-n, n]$, then $d_S = \overline{d}$. One can also check that the notion of Banach density is the same.

Isaac Goldbring (UIC)

イロン イロン イヨン イヨン 二日

Amenable group version of Jin's Theorem

Theorem (Beiglböck, Bergelson, Fish, 2009)

If G is a countable amenable group, $A, B \subseteq G$ with BD(A), BD(B) > 0, then AB is piecewise syndetic: there is a finite set $E \subseteq G$ so that, for all finite sets $L \subseteq G$, there is $x \in G$ with $Lx \subseteq EAB$.

- This theorem was originally proven using ergodic theory.
- Later, Di Nasso and Lupini gave a combinatorial proof using nonstandard analysis that also worked for uncountable amenable groups and which showed one could assume $|E| \le \lfloor \frac{1}{BD(A)BD(B)} \rfloor$.
- The point of this talk is to show how we can achieve a quantitative version of the above theorem generalizing our theorem for Z^d.

\mathcal{S} -thick and \mathcal{S} -syndetic

Definition

Suppose that *G* is a countable amenable group, S is a Folner sequence for *G*, *A* is a subset of *G*, and $\alpha > 0$.

1 We say that A is S-thick of level α if, for any finite $L \subseteq G$, we have

$$d_{\mathcal{S}}(\{x\in G : Lx\subseteq A\})\geq \alpha.$$

2 We say that A is S-syndetic of level α if there is a finite E ⊆ G such that EA is S-thick of level α.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The main results

Theorem (DGJLLM, 2015)

Suppose that G is a countable amenable group and S a Folner sequence. Further suppose that $A, B \subseteq G$ are such that $d_S(A) = \alpha > 0$ and BD(B) > 0. Then BA is S-syndetic of level α' for every $\alpha' < \alpha$. If, in addition, G is abelian, then BA is S-syndetic of level α .

- When $G = \mathbb{Z}^d$ and $S_n = [-n, n]^d$, this recovers our earlier theorem.
- This also recovers another theorem of ours: if A, B ⊆ Z^d are such that <u>d</u>(A) = α > 0 and BD(B) > 0, then A + B is S'-syndetic for any subsequence S' of S.

The moreover part: we may assume that $d_{\mathcal{S}}(A \cup gA) > \alpha$ for some $g \in G$ (otherwise you can show that *A* is already *S*-thick of level α) and that BD(*B*) > 1/2, so BD($B \cap Bg^{-1}$) > 0.

・ロ・・ (日・・ モ・・ ・ 日・・

The main results

Theorem (DGJLLM, 2015)

Suppose that G is a countable amenable group and S a Folner sequence. Further suppose that $A, B \subseteq G$ are such that $d_S(A) = \alpha > 0$ and BD(B) > 0. Then BA is S-syndetic of level α' for every $\alpha' < \alpha$. If, in addition, G is abelian, then BA is S-syndetic of level α .

- When *G* = ℤ^{*d*} and *S*_{*n*} = [−*n*, *n*]^{*d*}, this recovers our earlier theorem.
- This also recovers another theorem of ours: if A, B ⊆ Z^d are such that <u>d</u>(A) = α > 0 and BD(B) > 0, then A + B is S'-syndetic for any subsequence S' of S.
- The moreover part: we may assume that d_S(A ∪ gA) > α for some g ∈ G (otherwise you can show that A is already S-thick of level α) and that BD(B) > 1/2, so BD(B ∩ Bg⁻¹) > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

1 A quantitative version of Jin's Theorem

2 Amenable groups

3 Proof of the first part

< 17 ▶

A dictionary: ultrapowers and nonstandard analysis

- $A^* =$ an ultrapower of A
- internal subset of A*=ultraproduct of subsets of A
- hyperfinite subset of A*=ultraproduct of finite subsets of A
- If $E \subseteq A^*$ is hyperfinite, say $E = \prod_{\mathcal{U}} E_n$, then $|E| = (|E_n|)^{\bullet} \in \mathbb{N}^*$
- If $\nu \in \mathbb{N}^*$, say $\nu = (a_n)^{\bullet}$, then $\nu > \mathbb{N}$ if and only if (a_n) is \mathcal{U} -unbounded
- If $x \in \mathbb{R}^*$ and $|x| \le n$ for some $n \in \mathbb{N}$, then there is a unique $r \in \mathbb{R}$ such that |x r| is infinitesimal; *r* is called the *standard part* of *x* and is denoted st(*x*)

Suppose that X is a hyperfinite set. We can define a finitely additive measure μ_X on the collection of internal subsets of X given by

$$\mu_{X}(A) := \operatorname{st}\left(\frac{|A|}{|X|}\right).$$

 μ_X then extends to a probability measure on the σ -algebra of *Loeb* measurable subsets of X. For internal $C \subseteq G^*$, we write $\mu_X(C)$ instead of $\mu_X(C \cap X)$.

Folner approximations

Fact (Di Nasso and Lupini)

G is amenable if and only if *G* has a *Folner approximation*, which is a hyperfinite subset $Y \subseteq G^*$ such that, for all $g \in G$, we have

$$rac{|gY riangle Y|}{|Y|} pprox 0,$$

or, equivalently, for all $g \in G$, we have $\mu_Y(gY) = 1$. In this case, for any $A \subseteq G$, we have

 $BD(A) = \max\{\mu_X(A^*) : X \text{ a Folner approximation for } G\}.$

For example, if $S = (S_n)$ is a Folner sequence for *G*, then S_{ν} is a Folner approximation for *G* whenever $\nu > \mathbb{N}$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare H_0 := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (BA)^*\}) < 1\}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

 $H_{n+1} := \{g \in G \; : \; \mu_{\Gamma}(\{x \in \Gamma \; : \; gx \in (\{s_0, \ldots, s_n\}BA)^*\}) < 1\}.$

- Suppose $H_n = \emptyset$ and let $E := \{s_0, \dots, s_n 1\}$. Further suppose that $\mu_{S_{\nu}}(\Gamma) \ge \alpha$. We claim that *EBA* is *S*-thick of level α .
- Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*)\} \ge \alpha$.
- But for any $C \subseteq G$, we have $d_{\mathcal{S}}(C) = \max(\{\mu_{S_{\nu}}(C^*) : \nu > \mathbb{N}\})$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare H_0 := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (BA)^*\}) < 1\}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

 $H_{n+1} := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (\{s_0, \dots, s_n\}BA)^*\}) < 1\}.$

- Suppose H_n = Ø and let E := {s₀,..., s_n − 1}. Further suppose that μ_{S_ν}(Γ) ≥ α. We claim that EBA is S-thick of level α.
- Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*)\} \ge \alpha$.
- But for any $C \subseteq G$, we have $d_{\mathcal{S}}(C) = \max(\{\mu_{S_{\nu}}(C^*) : \nu > \mathbb{N}\})$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare \ H_0 := \{ g \in G \ : \ \mu_{\Gamma}(\{ x \in \Gamma \ : \ gx \in (BA)^* \}) < 1 \}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

$$H_{n+1} := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (\{s_0, \dots, s_n\}BA)^*\}) < 1\}.$$

- Suppose $H_n = \emptyset$ and let $E := \{s_0, \dots, s_n 1\}$. Further suppose that $\mu_{S_{\nu}}(\Gamma) \ge \alpha$. We claim that *EBA* is *S*-thick of level α .
- Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*)\} \ge \alpha$.
- But for any $C \subseteq G$, we have $d_{\mathcal{S}}(C) = \max(\{\mu_{S_{\nu}}(C^*) : \nu > \mathbb{N}\})$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare \ H_0 := \{ g \in G \ : \ \mu_{\Gamma}(\{ x \in \Gamma \ : \ gx \in (BA)^* \}) < 1 \}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

$$H_{n+1} := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (\{s_0, \dots, s_n\}BA)^*\}) < 1\}.$$

Suppose $H_n = \emptyset$ and let $E := \{s_0, \dots, s_n - 1\}$. Further suppose that $\mu_{S_{\nu}}(\Gamma) \ge \alpha$. We claim that *EBA* is *S*-thick of level α .

■ Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*)\} \ge \alpha$.

But for any $C \subseteq G$, we have $d_{\mathcal{S}}(C) = \max(\{\mu_{\mathcal{S}_{\nu}}(C^*) : \nu > \mathbb{N}\})$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare \ H_0 := \{ g \in G \ : \ \mu_{\Gamma}(\{ x \in \Gamma \ : \ gx \in (BA)^* \}) < 1 \}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

$$H_{n+1} := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (\{s_0, \dots, s_n\}BA)^*\}) < 1\}.$$

- Suppose H_n = Ø and let E := {s₀,..., s_n − 1}. Further suppose that μ_{S_ν}(Γ) ≥ α. We claim that EBA is S-thick of level α.
- Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*)\} \ge \alpha$.

But for any $C \subseteq G$, we have $d_S(C) = \max(\{\mu_{S_\nu}(C^*) : \nu > \mathbb{N}\})$.

- Fix a hyperfinite subset Γ of G^* and $\nu > \mathbb{N}$.
- We define a sequence (*H_n*) of subsets of *G* and a sequence (*s_n*) from *G* as follows.
- $\blacksquare \ H_0 := \{ g \in G \ : \ \mu_{\Gamma}(\{ x \in \Gamma \ : \ gx \in (BA)^* \}) < 1 \}.$
- Suppose that H_n has been defined and is not empty. Let $s_n \in H_n$ be arbitrary and define

$$H_{n+1} := \{g \in G : \mu_{\Gamma}(\{x \in \Gamma : gx \in (\{s_0, \ldots, s_n\}BA)^*\}) < 1\}.$$

- Suppose H_n = Ø and let E := {s₀,..., s_n − 1}. Further suppose that μ_{S_ν}(Γ) ≥ α. We claim that EBA is S-thick of level α.
- Fix $L \subseteq G$ finite. Since $H_n = \emptyset$, we have that $Lx \subseteq (EBA)^*$ for almost all $x \in \Gamma$, whence $\mu_{S_{\nu}}(\{x \in S_{\nu} : Lx \subseteq (EBA)^*\}) \ge \alpha$.
- But for any $C \subseteq G$, we have $d_{\mathcal{S}}(C) = \max(\{\mu_{\mathcal{S}_{\nu}}(C^*) : \nu > \mathbb{N}\})$.

The "process" (continued)

- We are seeking hyperfinite $\Gamma \subseteq G^*$ with $\mu_{S_{\nu}}(\Gamma) \ge \alpha$ such that the process stops at some finite stage.
- Suppose there is standard r > 0 and a Folner approximation Y of G such that, setting $C := A^* \cap S_{\nu}$, $D := B^* \cap Y$, and

$$\Gamma := \{ x \in \mathcal{S}_{\nu} : \frac{|x\mathcal{C}^{-1} \cap \mathcal{D}|}{|Y|} \geq r \},$$

we have $\mu_{S_{\nu}}(\Gamma) \ge \alpha$. We then claim that $H_n = \emptyset$ for $n > \frac{1}{r}$.

The process (continued)

- Suppose that $H_n \neq \emptyset$. For k = 0, ..., n, fix $s_k \in H_k$ and take $\gamma_k \in \Gamma$ so that $s_k \gamma_k \notin (\{s_0, ..., s_{k-1}\}BA)^*$.
- Note then that if $0 \le i < j \le n-1$, then $s_j \gamma_j (A^*)^{-1} \cap s_i B^* = \emptyset$.
- It follows that the sets $s_k((\gamma_k C^{-1}) \cap D)$ for k = 0, ..., n-1 are pairwise disjoint.
- Since Y is a Folner approximation for G, we have

$$1 \geq \operatorname{st}\left(\frac{|\bigcup_{k=0}^{n-1} s_k((\gamma_k C^{-1}) \cap D)|}{|Y|}\right) = \sum_{k=0}^{n-1} \mu_Y((\gamma_k C^{-1}) \cap D) \geq nr.$$

It follows that $n \leq \frac{1}{r}$.

The key lemma

Lemma

Suppose $d_{\mathcal{S}}(A) \ge \alpha$ and $BD(B) \ge \beta$. Then there exists a Folner approximation Y of G and $\nu > \mathbb{N}$ such that, setting $C := A^* \cap S_{\nu}$ and $D := B^* \cap Y$, we have:

1
$$\mu_{S_{\nu}}(C) \ge \alpha;$$

2 $\mu_{Y}(D) \ge \beta;$
3 $\operatorname{st}\left(\frac{1}{|S_{\nu}|} \sum_{x \in S_{\nu}} \frac{|(xC^{-1}) \cap D|}{|Y|}\right) \ge \alpha\beta.$

< 回 > < 三 > < 三 >

Finishing the process from the key lemma

- Recall $d_{\mathcal{S}}(A) > \alpha$ and BD(B) > 0.
- Fact: there is a finite *T* such that $d_{\mathcal{S}}(A) \cdot BD(TB) > \alpha$. Since *BA* is *S*-syndetic of level α if and only if *TBA* is *S*-syndetic of level α , we may suppose that $T = \{1\}$.
- Take standard r > 0 so that $d_{\mathcal{S}}(A) \cdot BD(B) > \alpha + r$ and recall $\Gamma := \{x \in S_{\nu} : \frac{|(xC^{-1}) \cap D|}{|Y|} \ge r\}.$
- Take Y and ν as in the previous lemma. We then have

$$\alpha + r < \frac{1}{|S_{\nu}|} \sum_{x \in S_{\nu}} \frac{|(xC^{-1}) \cap D|}{|Y|} \le \frac{1}{|S_{\nu}|} \left(\sum_{x \in \Gamma} + \sum_{x \notin \Gamma} \right) \le \frac{|\Gamma|}{|S_{\nu}|} + r.$$

Finishing the process from the key lemma

- Recall $d_{\mathcal{S}}(A) > \alpha$ and BD(B) > 0.
- Fact: there is a finite *T* such that $d_{\mathcal{S}}(A) \cdot BD(TB) > \alpha$. Since *BA* is *S*-syndetic of level α if and only if *TBA* is *S*-syndetic of level α , we may suppose that $T = \{1\}$.
- Take standard r > 0 so that $d_{\mathcal{S}}(A) \cdot BD(B) > \alpha + r$ and recall $\Gamma := \{x \in S_{\nu} : \frac{|(xC^{-1}) \cap D|}{|Y|} \ge r\}.$
- Take Y and ν as in the previous lemma. We then have

$$\alpha + r < \frac{1}{|\mathcal{S}_{\nu}|} \sum_{x \in \mathcal{S}_{\nu}} \frac{|(x\mathcal{C}^{-1}) \cap D|}{|Y|} \le \frac{1}{|\mathcal{S}_{\nu}|} \left(\sum_{x \in \Gamma} + \sum_{x \notin \Gamma} \right) \le \frac{|\Gamma|}{|\mathcal{S}_{\nu}|} + r.$$

Proving the key lemma

- Take any Folner approximation Y for G such that $\mu_Y(D) \ge \beta$.
- Since $d_{\mathcal{S}}(A) \ge \alpha$, the following statement is true: for any finite $E \subseteq G$ and any $n_0 \in \mathbb{N}$, there is $n > n_0$ such that $\frac{|A \cap S_n|}{|S_n|} \ge \alpha 2^{-n_0}$ and for which, for all $g \in E$, we have $\frac{|g^{-1}S_n \triangle S_n|}{|S_n|} < 2^{-n_0}$.
- Apply the transferred version of this statement to *Y* and some given $\nu_0 > \mathbb{N}$ to get $\nu > \nu_0$ such that $\mu_{S_{\nu}}(C) \ge \alpha$ and for which $\frac{|g^{-1}S_{\nu} \bigtriangleup S_{\nu}|}{|S_{\nu}|} \approx 0$ for all $g \in E$.
- We need to check the third condition of the lemma.

Proving the key lemma

- Take any Folner approximation Y for G such that $\mu_Y(D) \ge \beta$.
- Since $d_{\mathcal{S}}(A) \ge \alpha$, the following statement is true: for any finite $E \subseteq G$ and any $n_0 \in \mathbb{N}$, there is $n > n_0$ such that $\frac{|A \cap S_n|}{|S_n|} \ge \alpha 2^{-n_0}$ and for which, for all $g \in E$, we have $\frac{|g^{-1}S_n \triangle S_n|}{|S_n|} < 2^{-n_0}$.
- Apply the transferred version of this statement to Y and some given ν₀ > ℕ to get ν > ν₀ such that μ_{S_ν}(C) ≥ α and for which |g⁻¹S_ν△S_ν|/|S_ν| ≈ 0 for all g ∈ E.

We need to check the third condition of the lemma.

Proving the key lemma

- Take any Folner approximation Y for G such that $\mu_Y(D) \ge \beta$.
- Since $d_{\mathcal{S}}(A) \ge \alpha$, the following statement is true: for any finite $E \subseteq G$ and any $n_0 \in \mathbb{N}$, there is $n > n_0$ such that $\frac{|A \cap S_n|}{|S_n|} \ge \alpha 2^{-n_0}$ and for which, for all $g \in E$, we have $\frac{|g^{-1}S_n \triangle S_n|}{|S_n|} < 2^{-n_0}$.
- We need to check the third condition of the lemma.

We finish by counting

$$\begin{aligned} \frac{1}{|S_{\nu}|} \sum_{x \in S_{\nu}} \frac{|xC^{-1} \cap D|}{|Y|} &= \frac{1}{|S_{\nu}|} \sum_{x \in S_{\nu}} \frac{1}{|Y|} \sum_{d \in D} \chi_{C^{-1}}(x^{-1}d) \\ &= \frac{1}{|Y|} \sum_{d \in D} \frac{1}{|S_{\nu}|} \sum_{x \in S_{\nu}} \chi_{C^{-1}}(x^{-1}d) \\ &= \frac{1}{|Y|} \sum_{d \in D} \frac{|S_{\nu}^{-1}d \cap C^{-1}|}{|S_{\nu}|} \\ &\geq \frac{1}{|Y|} \sum_{d \in D} \left(\frac{|C^{-1}|}{|S_{\nu}|} - \frac{|d^{-1}S_{\nu} \triangle S_{\nu}|}{|S_{\nu}|} \right) \\ &\geq \frac{|C|}{|S_{\nu}|} \frac{|D|}{|Y|} - \text{ an infinitesimal.} \end{aligned}$$

2

• • • • • • • • • • • • •

Lower density versions?

Theorem (DGJLLM, 2013)

Suppose that $A, B \subseteq \mathbb{Z}^d$.

1 Suppose that $\underline{d}(A) = \alpha > 0$ and BD(B) > 0. Then for any $\epsilon > 0$, there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

$$\underline{d}(\{x\in\mathbb{Z}^d : x+[-k,k]\subseteq A+B+[-m,m]\})\geq \alpha-\epsilon.$$

2 Suppose that d = 1, $\underline{d}(A) = \alpha > 0$ and $\underline{d}(B) = \beta > 0$. Then there is $m \in \mathbb{N}$ such that, for all $k \in \mathbb{N}$, we have

 $\underline{d}(\{x \in \mathbb{Z} : x + [-k,k] \subseteq A + B + [-m,m]\}) \geq \min(\alpha + \beta, 1).$

Question

Can we prove amenable group versions of these results?

Isaac Goldbring (UIC)

High piecewise syndeticity

Banff July 2015 23 / 24

- M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, *High density piecewise syndeticity of product sets in amenable groups*, submitted. arXiv 1505.04701
- M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg, *High density piecewise syndeticity of sumsets*, Advances in Math. Volume 278 (2015), 1-33.