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A quantitative version of Jin’s Theorem

Densities

Definition
Suppose that A ✓ Z.

1 The upper density of A is

d̄(A) := lim sup
n!1

|A \ [�n, n]|
2n + 1

.

2 The Banach density of A is

BD(A) := lim
n!1

sup
x2Z

|A \ [x � n, x + n])|
2n + 1

.
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A quantitative version of Jin’s Theorem

Jin’s Theorem

Theorem (Jin, 2002)

If A, B ✓ Z are such that BD(A), BD(B) > 0, then A + B is piecewise
syndetic: there is m 2 N such that A + B + [�m, m] contains intervals
of arbitrarily large length.

The proof used nonstandard analysis.
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A quantitative version of Jin’s Theorem

A quantitative version of Jin’s Theorem

Theorem (DGJLLM, 2013)

Suppose that A, B ✓ Z are such that d̄(A) = ↵ > 0 and BD(B) > 0.
Then A + B is upper syndetic of level ↵: there is m 2 N such that, for
all k 2 N, we have

d̄({x 2 Z : x + [�k , k ] ✓ A + B + [�m, m]}) � ↵.

This proof also used nonstandard analysis. In particular, we had to
formulate and prove a version of the Lebesgue Density Theorem for
quotients of Loeb measure spaces. The proof actually works for
subsets of Zd for any d .
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Amenable groups

Amenable groups

Let G be a countable (discrete) group.

Definition
G is amenable if G admits a (left) Folner sequence, namely a
sequence S := (Sn) of finite subsets of G such that, for every g 2 G,
we have

lim
n!1

|gSn4Sn|
|Sn|

= 0.

Examples of (countable) amenable groups include finite groups and
virtually solvable groups. Free groups are not amenable.
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Amenable groups

Densities in amenable groups

Definition
Suppose that G is an amenable group and A is a subset of G.

1 If S = (Sn) is a Folner sequence for G, the (upper) S-density of A
is

dS(A) := lim sup
n!1

|A \ Sn|
|Sn|

.

2 The Banach density of A is

BD(A) := sup{dS(A) : S a Folner sequence for G}.

Remark
Suppose G = Z. If Sn = [�n, n], then dS = d̄ . One can also check that
the notion of Banach density is the same.
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Amenable groups

Amenable group version of Jin’s Theorem

Theorem (Beiglböck, Bergelson, Fish, 2009)

If G is a countable amenable group, A, B ✓ G with BD(A), BD(B) > 0,
then AB is piecewise syndetic: there is a finite set E ✓ G so that, for all
finite sets L ✓ G, there is x 2 G with Lx ✓ EAB.

This theorem was originally proven using ergodic theory.
Later, Di Nasso and Lupini gave a combinatorial proof using
nonstandard analysis that also worked for uncountable amenable
groups and which showed one could assume |E |  b 1

BD(A) BD(B)c.
The point of this talk is to show how we can achieve a quantitative
version of the above theorem generalizing our theorem for Zd .

Isaac Goldbring (UIC) High piecewise syndeticity Banff July 2015 9 / 24



Amenable groups

S-thick and S-syndetic

Definition
Suppose that G is a countable amenable group, S is a Folner
sequence for G, A is a subset of G, and ↵ > 0.

1 We say that A is S-thick of level ↵ if, for any finite L ✓ G, we have

dS({x 2 G : Lx ✓ A}) � ↵.

2 We say that A is S-syndetic of level ↵ if there is a finite E ✓ G
such that EA is S-thick of level ↵.
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Amenable groups

The main results

Theorem (DGJLLM, 2015)

Suppose that G is a countable amenable group and S a Folner
sequence. Further suppose that A, B ✓ G are such that dS(A) = ↵ > 0
and BD(B) > 0. Then BA is S-syndetic of level ↵0 for every ↵0 < ↵. If,
in addition, G is abelian, then BA is S-syndetic of level ↵.

When G = Zd and Sn = [�n, n]d , this recovers our earlier
theorem.
This also recovers another theorem of ours: if A, B ✓ Zd are such
that d(A) = ↵ > 0 and BD(B) > 0, then A + B is S 0-syndetic for
any subsequence S 0 of S.
The moreover part: we may assume that dS(A [ gA) > ↵ for some
g 2 G (otherwise you can show that A is already S-thick of level ↵)
and that BD(B) > 1/2, so BD(B \ Bg�1) > 0.
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Proof of the first part

A dictionary: ultrapowers and nonstandard analysis

A⇤ = an ultrapower of A
internal subset of A⇤=ultraproduct of subsets of A
hyperfinite subset of A⇤=ultraproduct of finite subsets of A
If E ✓ A⇤ is hyperfinite, say E =

Q
U En, then |E | = (|En|)• 2 N⇤

If ⌫ 2 N⇤, say ⌫ = (an)•, then ⌫ > N if and only if (an) is
U-unbounded
If x 2 R⇤ and |x |  n for some n 2 N, then there is a unique r 2 R
such that |x � r | is infinitesimal; r is called the standard part of x
and is denoted st(x)
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Proof of the first part

Loeb measure

Suppose that X is a hyperfinite set. We can define a finitely additive
measure µX on the collection of internal subsets of X given by

µX (A) := st
✓
|A|
|X |

◆
.

µX then extends to a probability measure on the �-algebra of Loeb
measurable subsets of X . For internal C ✓ G⇤, we write µX (C) instead
of µX (C \ X ).
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Proof of the first part

Folner approximations

Fact (Di Nasso and Lupini)

G is amenable if and only if G has a Folner approximation, which is a
hyperfinite subset Y ✓ G⇤ such that, for all g 2 G, we have

|gY4Y |
|Y | ⇡ 0,

or, equivalently, for all g 2 G, we have µY (gY ) = 1. In this case, for
any A ✓ G, we have

BD(A) = max{µX (A⇤) : X a Folner approximation for G}.

For example, if S = (Sn) is a Folner sequence for G, then S⌫ is a
Folner approximation for G whenever ⌫ > N.
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Proof of the first part

The “process”

Fix a hyperfinite subset � of G⇤ and ⌫ > N.
We define a sequence (Hn) of subsets of G and a sequence (sn)
from G as follows.
H0 := {g 2 G : µ�({x 2 � : gx 2 (BA)⇤}) < 1}.
Suppose that Hn has been defined and is not empty. Let sn 2 Hn
be arbitrary and define

Hn+1 := {g 2 G : µ�({x 2 � : gx 2 ({s0, . . . , sn}BA)⇤}) < 1}.

Suppose Hn = ; and let E := {s0, . . . , sn � 1}. Further suppose
that µS⌫ (�) � ↵. We claim that EBA is S-thick of level ↵.
Fix L ✓ G finite. Since Hn = ;, we have that Lx ✓ (EBA)⇤ for
almost all x 2 �, whence µS⌫ ({x 2 S⌫ : Lx ✓ (EBA)⇤)} � ↵.
But for any C ✓ G, we have dS(C) = max({µS⌫ (C⇤) : ⌫ > N}).
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Proof of the first part

The “process” (continued)

We are seeking hyperfinite � ✓ G⇤ with µS⌫ (�) � ↵ such that the
process stops at some finite stage.
Suppose there is standard r > 0 and a Folner approximation Y of
G such that, setting C := A⇤ \ S⌫ , D := B⇤ \ Y , and

� := {x 2 S⌫ :
|xC�1 \ D|

|Y | � r},

we have µS⌫ (�) � ↵.
We then claim that Hn = ; for n > 1

r .
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Proof of the first part

The process (continued)

Suppose that Hn 6= ;. For k = 0, . . . , n, fix sk 2 Hk and take �k 2 �
so that sk�k /2 ({s0, . . . , sk�1)BA)⇤.
Note then that if 0  i < j  n � 1, then sj�j(A⇤)�1 \ siB⇤ = ;.
It follows that the sets sk ((�kC�1) \ D) for k = 0, . . . , n � 1 are
pairwise disjoint.
Since Y is a Folner approximation for G, we have

1 � st

 
|
Sn�1

k=0 sk ((�kC�1) \ D)|
|Y |

!
=

n�1X

k=0

µY ((�kC�1) \ D) � nr .

It follows that n  1
r .
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Proof of the first part

The key lemma

Lemma
Suppose dS(A) � ↵ and BD(B) � �. Then there exists a Folner
approximation Y of G and ⌫ > N such that, setting C := A⇤ \ S⌫ and
D := B⇤ \ Y, we have:

1 µS⌫ (C) � ↵;
2 µY (D) � �;

3 st
⇣

1
|S⌫ |

P
x2S⌫

|(xC�1)\D|
|Y |

⌘
� ↵�.
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Proof of the first part

Finishing the process from the key lemma

Recall dS(A) > ↵ and BD(B) > 0.
Fact: there is a finite T such that dS(A) · BD(TB) > ↵. Since BA is
S-syndetic of level ↵ if and only if TBA is S-syndetic of level ↵, we
may suppose that T = {1}.
Take standard r > 0 so that dS(A) · BD(B) > ↵ + r and recall
� := {x 2 S⌫ : |(xC�1)\D|

|Y | � r}.
Take Y and ⌫ as in the previous lemma. We then have

↵ + r <
1

|S⌫ |
X

x2S⌫

|(xC�1) \ D|
|Y |  1

|S⌫ |

 
X

x2�

+
X

x /2�

!
 |�|

|S⌫ |
+ r .
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Proof of the first part

Proving the key lemma

Take any Folner approximation Y for G such that µY (D) � �.
Since dS(A) � ↵, the following statement is true: for any finite
E ✓ G and any n0 2 N, there is n > n0 such that |A\Sn|

|Sn| � ↵� 2�n0

and for which, for all g 2 E , we have |g�1Sn4Sn|
|Sn| < 2�n0 .

Apply the transferred version of this statement to Y and some
given ⌫0 > N to get ⌫ > ⌫0 such that µS⌫ (C) � ↵ and for which
|g�1S⌫4S⌫ |

|S⌫ | ⇡ 0 for all g 2 E .

We need to check the third condition of the lemma.
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Proof of the first part

We finish by counting

1
|S⌫ |

X

x2S⌫

��xC�1 \ D
��

|Y | =
1

|S⌫ |
X

x2S⌫

1
|Y |

X

d2D

�C�1(x�1d)

=
1
|Y |

X

d2D

1
|S⌫ |

X

x2S⌫

�C�1(x�1d)

=
1
|Y |

X

d2D

��S�1
⌫ d \ C�1

��
|S⌫ |

� 1
|Y |

X

d2D

 ��C�1
��

|S⌫ |
�
��d�1S⌫4S⌫

��
|S⌫ |

!

� |C|
|S⌫ |

|D|
|Y | � an infinitesimal.
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Proof of the first part

Lower density versions?

Theorem (DGJLLM, 2013)

Suppose that A, B ✓ Zd .
1 Suppose that d(A) = ↵ > 0 and BD(B) > 0. Then for any ✏ > 0,

there is m 2 N such that, for all k 2 N, we have

d({x 2 Zd : x + [�k , k ] ✓ A + B + [�m, m]}) � ↵� ✏.

2 Suppose that d = 1, d(A) = ↵ > 0 and d(B) = � > 0. Then there
is m 2 N such that, for all k 2 N, we have

d({x 2 Z : x + [�k , k ] ✓ A + B + [�m, m]}) � min(↵ + �, 1).

Question

Can we prove amenable group versions of these results?
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Proof of the first part
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