The model-theoretic content of some conjectures about C* algebras

Isaac Goldbring

University of Illinois at Chicago

Bogotá Logic Colloquium December 2015

1 C* algebras and logic

- 2 Kirchberg's embedding problem
- 3 The QWEP conjecture

4 The weak QWEP conjecture

< 17 ▶

C* algebras

■ In this talk, *H* denotes a complex Hilbert space. A linear operator $T : H \rightarrow H$ is *bounded* if $||T|| < \infty$, where

$$||T|| := \sup\{||Tx|| : ||x|| = 1\}.$$

- A *concrete* C^{*} *algebra* is a *-subalgebra of B(H) that is closed in the operator norm topology.
- An abstract C^{*} algebra is a Banach *-algebra A satisfying the C^{*} equality: $||T^*T|| = ||T||^2$ for all $T \in A$.
- It is not hard to see that every concrete C* algebra is an abstract C* algebra. Conversely, it can be shown that every abstract C* algebra admits a faithful representation as a norm closed subalgebra of some B(H), so these really are the same notion.

$\blacksquare B(H) \text{ (boring!)}$

- If X is a compact topological space, then C(X) is a *unital*, *commutative* C* algebra when equipped with the sup-norm. By Gelfand theory, every unital commutative C* algebra is isomorphic to C(X) for some compact topological space X, whence C* algebra theory is sometimes dubbed *noncommutative topology*.
 If Γ is a discrete group and one considers the unitary representation *I* : Γ → U(ℓ²(Γ)) given by (*I*(γ)(*f*))(η) := *f*(γ⁻¹η), the *left-regular representation*, then the C* algebra generated by *I*(Γ) inside of B(ℓ²(Γ)) is called the *reduced group* C* *algebra of* Γ, denoted C*(Γ)
- There is also the *full group C* algebra of* Γ, denoted C*(Γ), which is the completion of C[Γ] with respect to the norm

$$\|x\| = \sup_{\pi} \|\pi(x)\|$$

as π ranges over all unitary representations of F_{σ} , (a)

Isaac Goldbring (UIC)

Model theory and C* algebras

- *B*(*H*) (boring!)
- If X is a compact topological space, then C(X) is a unital, commutative C* algebra when equipped with the sup-norm. By Gelfand theory, every unital commutative C* algebra is isomorphic to C(X) for some compact topological space X, whence C* algebra theory is sometimes dubbed noncommutative topology.
- If Γ is a discrete group and one considers the unitary representation $I : \Gamma \to U(\ell^2(\Gamma))$ given by $(I(\gamma)(f))(\eta) := f(\gamma^{-1}\eta)$, the *left-regular representation*, then the C* algebra generated by $I(\Gamma)$ inside of $B(\ell^2(\Gamma))$ is called the *reduced group C** *algebra of* Γ , denoted $C_r^*(\Gamma)$.
- There is also the full group C* algebra of Γ, denoted C*(Γ), which is the completion of C[Γ] with respect to the norm

$$\|x\| = \sup_{\pi} \|\pi(x)\|$$

as π ranges over all unitary representations of F_{σ} , (z), (z)

Isaac Goldbring (UIC)

Model theory and C* algebras

- $\blacksquare B(H) \text{ (boring!)}$
- If X is a compact topological space, then C(X) is a *unital*, commutative C* algebra when equipped with the sup-norm. By Gelfand theory, every unital commutative C* algebra is isomorphic to C(X) for some compact topological space X, whence C* algebra theory is sometimes dubbed *noncommutative topology*.
- If Γ is a discrete group and one considers the unitary representation $I : \Gamma \to U(\ell^2(\Gamma))$ given by $(I(\gamma)(f))(\eta) := f(\gamma^{-1}\eta)$, the *left-regular representation*, then the C* algebra generated by $I(\Gamma)$ inside of $B(\ell^2(\Gamma))$ is called the *reduced group* C* *algebra of* Γ , denoted $C_r^*(\Gamma)$.
- There is also the full group C* algebra of Γ, denoted C*(Γ), which is the completion of C[Γ] with respect to the norm

$$\|x\| = \sup_{\pi} \|\pi(x)\|$$

as π ranges over all unitary representations of F_{σ} , (z), (z)

Isaac Goldbring (UIC)

Model theory and C* algebras

- B(H) (boring!)
- If X is a compact topological space, then C(X) is a unital, commutative C* algebra when equipped with the sup-norm. By Gelfand theory, every unital commutative C* algebra is isomorphic to C(X) for some compact topological space X, whence C* algebra theory is sometimes dubbed noncommutative topology.
- If Γ is a discrete group and one considers the unitary representation $I : \Gamma \to U(\ell^2(\Gamma))$ given by $(I(\gamma)(f))(\eta) := f(\gamma^{-1}\eta)$, the *left-regular representation*, then the C* algebra generated by $I(\Gamma)$ inside of $B(\ell^2(\Gamma))$ is called the *reduced group* C* *algebra of* Γ , denoted $C_r^*(\Gamma)$.
- There is also the full group C* algebra of Γ, denoted C*(Γ), which is the completion of C[Γ] with respect to the norm

$$\|x\| = \sup_{\pi} \|\pi(x)\|$$

as π ranges over all unitary representations of $\Gamma_{\mathcal{P}}$

\mathcal{O}_2

- Suppose that *H* is separable with orthonormal basis $(e_n : n \in \mathbb{N})$. Let $T_1, T_2 : H \to H$ be the bounded operators defined by $T_1(e_n) = e_{2n}$ and $T_2(e_n) = e_{2n+1}$.
- The C* subalgebra of B(H) generated by T₁ and T₂ is called the Cuntz algebra O₂.
- \$\mathcal{O}_2\$ is a very interesting C* algebra for many reasons. It has played a crucial role in the classification programme for (simple, separable, nuclear) C* algebras.

Continuous logic-The case of C* algebras

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C* algebras A and B are elementarily equivalent, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

Continuous logic-The case of C* algebras

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|$, $p(\vec{x})$ a *polynomial (over \mathbb{C}).
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_y ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^A = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C* algebras A and B are elementarily equivalent, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

Continuous logic-The case of C* algebras

- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|$, $p(\vec{x})$ a *polynomial (over \mathbb{C}).
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.
- A sentence is a formula with no free variables.
- C^{*} algebras A and B are *elementarily equivalent*, written $A \equiv B$, if $\sigma^A = \sigma^B$ for all sentences σ .

The ultraproduct of C* algebras

- Suppose that $(A_i : i \in I)$ is a family of C* algebras and that \mathcal{U} is an ultrafilter on *I*.
- The *ultraproduct* of the family is the C* algebra

$$\prod_{\mathcal{U}} A_i := \ell^{\infty}(A_i) / c_{\mathcal{U}}(A_i),$$

where

$$\ell^{\infty}(\boldsymbol{A}_i) := \{(\boldsymbol{x}_i) \in \prod_i \boldsymbol{A}_i : \sup_i \|\boldsymbol{x}_i\| < \infty\}$$

and

$$c_{\mathcal{U}}(A_i) := \{(x_i) \in \ell^{\infty}(A_i) : \lim_{\mathcal{U}} \|x_i\| = 0\}.$$

When $A_i = A$ for all *i*, we write A^U and call it an *ultrapower of A*.

1 C* algebras and logic

2 Kirchberg's embedding problem

3 The QWEP conjecture

4 The weak QWEP conjecture

< 🗇 🕨

If A is a C* algebra, then elements of the form x*x are called positive.

- If B is also a C* algebra, then a linear map φ : A → B is called positive if it maps positive elements to positive elements.
- * homomorphisms are positive: $\phi(x^*x) = \phi(x)^*\phi(x)$.
- A linear map $\phi : A \to B$ induces linear maps $\phi_n : M_n(A) \to M_n(B)$ (pointwise application).
- Since $M_n(A)$ and $M_n(B)$ are also C* algebras, it makes sense to speak of each ϕ_n being positive. If this happens, ϕ is said to be *completely positive*. If in addition $\phi(1) = 1$, we say that ϕ is *unital, completely positive*, or u.c.p.

- If A is a C* algebra, then elements of the form x*x are called positive.
- If B is also a C* algebra, then a linear map φ : A → B is called positive if it maps positive elements to positive elements.
- * homomorphisms are positive: $\phi(x^*x) = \phi(x)^*\phi(x)$.
- A linear map $\phi : A \to B$ induces linear maps $\phi_n : M_n(A) \to M_n(B)$ (pointwise application).
- Since $M_n(A)$ and $M_n(B)$ are also C* algebras, it makes sense to speak of each ϕ_n being positive. If this happens, ϕ is said to be *completely positive*. If in addition $\phi(1) = 1$, we say that ϕ is *unital, completely positive*, or u.c.p.

- If A is a C* algebra, then elements of the form x*x are called positive.
- If B is also a C* algebra, then a linear map φ : A → B is called positive if it maps positive elements to positive elements.
- * homomorphisms are positive: $\phi(x^*x) = \phi(x)^*\phi(x)$.
- A linear map $\phi : A \to B$ induces linear maps $\phi_n : M_n(A) \to M_n(B)$ (pointwise application).
- Since $M_n(A)$ and $M_n(B)$ are also C* algebras, it makes sense to speak of each ϕ_n being positive. If this happens, ϕ is said to be *completely positive*. If in addition $\phi(1) = 1$, we say that ϕ is *unital, completely positive*, or u.c.p.

- If A is a C* algebra, then elements of the form x*x are called positive.
- If B is also a C* algebra, then a linear map φ : A → B is called positive if it maps positive elements to positive elements.
- * homomorphisms are positive: $\phi(x^*x) = \phi(x)^*\phi(x)$.
- A linear map $\phi : A \to B$ induces linear maps $\phi_n : M_n(A) \to M_n(B)$ (pointwise application).
- Since $M_n(A)$ and $M_n(B)$ are also C* algebras, it makes sense to speak of each ϕ_n being positive. If this happens, ϕ is said to be *completely positive*. If in addition $\phi(1) = 1$, we say that ϕ is *unital, completely positive*, or u.c.p.

- If A is a C* algebra, then elements of the form x*x are called positive.
- If B is also a C* algebra, then a linear map φ : A → B is called positive if it maps positive elements to positive elements.
- homomorphisms are positive: $\phi(x^*x) = \phi(x)^*\phi(x)$.
- A linear map $\phi : A \to B$ induces linear maps $\phi_n : M_n(A) \to M_n(B)$ (pointwise application).
- Since M_n(A) and M_n(B) are also C* algebras, it makes sense to speak of each φ_n being positive. If this happens, φ is said to be *completely positive*. If in addition φ(1) = 1, we say that φ is *unital, completely positive*, or u.c.p.

Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.

Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

 $P^{A}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that A is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each n.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- \square $C_r^*(\Gamma)$ is nuclear if and only if Γ is amenable. (Lance)
- $\square O_2$ is nuclear (Cuntz).

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathcal{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that A is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each n.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- \square $C_r^*(\Gamma)$ is nuclear if and only if Γ is amenable. (Lance)
- $\square O_2$ is nuclear (Cuntz).

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathcal{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that *A* is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each *n*.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- \square $C_r^*(\Gamma)$ is nuclear if and only if Γ is amenable. (Lance)
- $\square O_2$ is nuclear (Cuntz).

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathcal{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that A is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each n.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- \square $C_r^*(\Gamma)$ is nuclear if and only if Γ is amenable. (Lance)
- $\square O_2$ is nuclear (Cuntz).

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathsf{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that *A* is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each *n*.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- C^{*}_r(Γ) is nuclear if and only if Γ is amenable. (Lance)
 O₂ is nuclear (Cuntz).

A (10) A (10) A (10)

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathsf{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{\operatorname{nuc},n}^A := \inf_m P_{m,n}^A$.
- We say that *A* is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each *n*.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- C^{*}_r(Γ) is nuclear if and only if Γ is amenable. (Lance)
 O₂ is nuclear (Cuntz).

- Suppose that *A* is a C^{*} algebra and $m, n \in \mathbb{N}$.
- Define a function $P_{m,n}^A: A^n \to \mathbb{R}$ by

$$P^{\mathcal{A}}_{m,n}(\vec{a}) = \inf_{\phi,\psi} \| (\psi \circ \phi)(\vec{a}) - \vec{a} \|,$$

where $\phi : A \to M_m(\mathbb{C})$ and $\psi : M_m(\mathbb{C}) \to A$ are u.c.p. maps.

- We also define $\Delta_{nuc,n}^A := \inf_m P_{m,n}^A$.
- We say that *A* is *nuclear* if $\Delta_{nuc,n}^A \equiv 0$ for each *n*.
- Abelian C* algebras are nuclear. (Partitions of unity.)
- $C_r^*(\Gamma)$ is nuclear if and only if Γ is amenable. (Lance)
- O₂ is nuclear (Cuntz).

10/24

< 回 > < 三 > < 三 >

Theorem (Kirchberg-Phillips)

Every separable nuclear (even exact) C^* algebra embeds into \mathcal{O}_2 .

Kirchberg's Embedding Problem (KEP)

Does every C^{*} algebra embed into an ultrapower of \mathcal{O}_2 ?

In model-theoretic terms, if A is a C* algebra, does $A \models Th_{\forall}(\mathcal{O}_2)$?

Theorem (Kirchberg-Phillips)

Every separable nuclear (even exact) C^* algebra embeds into \mathcal{O}_2 .

Kirchberg's Embedding Problem (KEP)

Does every C^{*} algebra embed into an ultrapower of \mathcal{O}_2 ?

In model-theoretic terms, if A is a C^{*} algebra, does $A \models Th_{\forall}(\mathcal{O}_2)$?

Existentially closed C* algebras

Definition

A C^{*} algebra *A* is said to be *existentially closed* (e.c.) if, for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$, tuple \vec{a} from *A*, and extension $B \supseteq A$, we have

$$\inf\{\varphi(\vec{b},\vec{a})^{A} : \vec{b} \in A_{1}\} = \inf\{\varphi(\vec{c},\vec{a})^{B} : \vec{c} \in B_{1}\}.$$

Proposition (G. and Sinclair)

O₂ is the only possible nuclear C* algebra that is also e.c.
 KEP is equivalent to the statement that O₂ is e.c.

Existentially closed C* algebras

Definition

A C^{*} algebra *A* is said to be *existentially closed* (e.c.) if, for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$, tuple \vec{a} from *A*, and extension $B \supseteq A$, we have

$$\inf\{\varphi(\vec{b},\vec{a})^{A} : \vec{b} \in A_{1}\} = \inf\{\varphi(\vec{c},\vec{a})^{B} : \vec{c} \in B_{1}\}.$$

Proposition (G. and Sinclair)

1 \mathcal{O}_2 is the only possible nuclear C* algebra that is also e.c.

Existentially closed C* algebras

Definition

A C^{*} algebra *A* is said to be *existentially closed* (e.c.) if, for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$, tuple \vec{a} from *A*, and extension $B \supseteq A$, we have

$$\inf\{\varphi(\vec{b},\vec{a})^{A} : \vec{b} \in A_{1}\} = \inf\{\varphi(\vec{c},\vec{a})^{B} : \vec{c} \in B_{1}\}.$$

Proposition (G. and Sinclair)

1 \mathcal{O}_2 is the only possible nuclear C^{*} algebra that is also e.c.

2 KEP is equivalent to the statement that \mathcal{O}_2 is e.c.

・ロト ・ 四ト ・ ヨト ・ ヨト

Good nuclear witnesses

- A condition is a finite set $p(\vec{x})$ of expressions of the form $\varphi(\vec{x}) < r$, where $\varphi(\vec{x})$ is a quantifier-free formula and $r \in \mathbb{R}^{>0}$.
- We say that a tuple \vec{a} from a C^{*} algebra A satisfies $p(\vec{x})$ if $\varphi^A(\vec{a}) < r$ holds for all expressions in $p(\vec{x})$.
- We say that *p*(*x*) is *satisfiable* if there is a tuple in a C* algebra satisfying it.
- We say that $p(\vec{x})$ has good nuclear witnesses if, for any $\epsilon > 0$, there is a C* algebra *A* and a tuple \vec{a} from *A* satisfying *p* with $\Delta_{nuc}^{A}(\vec{a}) < \epsilon$.

Theorem (G. and Sinclair)

KEP is equivalent to the statement that every satisfiable condition has good nuclear witnesses.

Good nuclear witnesses

- A condition is a finite set $p(\vec{x})$ of expressions of the form $\varphi(\vec{x}) < r$, where $\varphi(\vec{x})$ is a quantifier-free formula and $r \in \mathbb{R}^{>0}$.
- We say that a tuple \vec{a} from a C^{*} algebra A satisfies $p(\vec{x})$ if $\varphi^A(\vec{a}) < r$ holds for all expressions in $p(\vec{x})$.
- We say that *p*(*x*) is *satisfiable* if there is a tuple in a C* algebra satisfying it.
- We say that $p(\vec{x})$ has good nuclear witnesses if, for any $\epsilon > 0$, there is a C* algebra *A* and a tuple \vec{a} from *A* satisfying *p* with $\Delta_{nuc}^{A}(\vec{a}) < \epsilon$.

Theorem (G. and Sinclair)

KEP is equivalent to the statement that every satisfiable condition has good nuclear witnesses.

Idea behind the proof

Recall that *A* is nuclear if and only if, for each *n*, we have

$$\sup_{\vec{x}} \inf_m P^A_{m,n}(\vec{x}) = 0.$$

- Now the predicates P_{m,n} are not officially part of the language we mentioned for studying C* algebras, but the Beth definability theorem shows that they can be expressed in our language, and in fact by existential formulae.
- This shows that nuclearity is an *omitting types property*.
- The Omitting Types Theorem states that under a certain hypothesis, we can find a C* algebra that omits these types (so is nuclear) and is simultaneously e.c. By our previous proposition, this shows that KEP holds.
- The hypothesis needed in this situation is exactly the statement that every satisfiable condition has good nuclear witnesses.

Isaac Goldbring (UIC)

14/24

1 C* algebras and logic

2 Kirchberg's embedding problem

3 The QWEP conjecture

4 The weak QWEP conjecture

(4) (5) (4) (5)

< 6 k

QWEP

Definition

Suppose that A is a C^{*} algebra.

- **1** If *B* is a C^{*} algebra containing *A*, we call a u.c.p. map $\phi : B \to A^{**}$ that restricts to the identity on *A* a *weak conditional expectation*.
- 2 We say that A has the weak expectation property of WEP if whenever A ⊆ B, then there is a weak expectation B → A^{**}.
- 3 We say that A is QWEP if A is a quotient of a C* algebra with WEP.

Kirchberg's QWEP Conjecture

Every separable C* algebra is QWEP.

In deep work, Kirchberg proved that the QWEP conjecture is equivalent to one of the most famous open problems in operator algebras, the *Connes Embedding Problem*.

Isaac Goldbring (UIC)

Model theory and C* algebras

Bogotá, December 2015

16/24

QWEP is axiomatizable

Observation (G.)

The class of QWEP algebras is axiomatizable. (Sinclair and I showed that this is not the case for WEP algebras.)

Proof.

- Closure under isomorphisms √
- Closure under ultraproducts: Kirchberg proved that QWEP is closed under products and it is clearly closed under quotients; an ultrapower is a quotient of a product
- Closure under ultraroot: One can show that there is a weak expectation $A^{\mathcal{U}} \rightarrow A^{**}$ and Kirchberg proved that if there is a weak conditional expectation $B \rightarrow A^{**}$ and *B* is QWEP then so is *A*.

ヘロン 人間 とく 塗 とく

Models with special properties

- Farah, Hart, et. al. asked whether every C* algebra was elementarily equivalent to a nuclear C* algebra.
- They soon showed that this was not the case. But perhaps they weren't aware of what a positive answer might mean:

Corollary (G.)

The QWEP conjecture is equivalent to the statement that $C^*(\mathbb{F}_{\infty})$ is elementarily equivalent to a QWEP C^* algebra.

Proof.

Kirchberg proved that the QWEP conjecture is equivalent to the statement that $C^*(\mathbb{F}_{\infty})$ is QWEP.

18/24

1 C* algebras and logic

2 Kirchberg's embedding problem

3 The QWEP conjecture

4 The weak QWEP conjecture

→ ∃ > < ∃</p>

4 A N

The local lifting property

Definition

Let A be a C^* algebra.

1 Suppose that $\phi : A \to C/J$ is a u.c.p. map and that $E \subseteq A$ is a finite-dimensional vector subspace that is closed under *. A *lift of* $\phi | E$ is a u.c.p. map $\psi : E \to C$ such that $\pi \circ \psi = \phi$, where $\pi : C \to C/J$ is the quotient map.

2 A has the *local lifting property* (or LLP) if whenever ϕ and E are as above, then $\phi | E$ has a lift.

Theorem (Kirchberg)

The QWEP conjecture is equivalent to the statement that LLP implies WEP.

3

The weak QWEP conjecture

The weak QWEP conjecture

The weak QWEP conjecture

There is a non-nuclear C* algebra with both WEP and LLP.

Proposition (G.)

If either $C_r^*(\mathbb{F})$ or $\prod_{\mathcal{U}} M_n$ are elementarily equivalent to an LLP C^{*} algebra *B*, then *B* witnesses the truth of the weak QWEP conjecture.

Proof.

Both of the above algebras are QWEP, whence so is *B*. Kirchberg proved that QWEP+LLP implies WEP. Finally, Farah, Hart et. al. proved that the above algebras have no nuclear models.

(日)

The LLPEP

- Call a C* algebra S locally universal if every C* algebra embeds into an ultrapower of S.
- It is easy to see that separable locally universal C* algebras exist.
- KEP is equivalent to the statement that there is a separable nuclear locally universal C* algebra.

Definition

We refer to the statement that there is a separable locally universal LLP C* algebra the LLPEP.

Clearly KEP implies LLPEP.

Putting everything together

Question

Is LLP omitting types?

Sinclair and I have shown that LLP is axiomatizable by axioms of the form $\sup_x \inf_v \inf_l \sup_m \chi_{l,m}(v, x) = 0$ with χ existential.

Theorem

Suppose that LLP is omitting types. Then either KEP and LLPEP are equivalent or else the weak QWEP conjecture has a positive solution.

Proof.

Suppose that the LLPEP holds. Then we can run the omitting types theorem to get an e.c. C* algebra *A* that is LLP. Sinclair and I showed that e.c. C* algebras have WEP. If *A* is nuclear, then KEP holds. Otherwise, *A* is a witness to the weak QWEP conjecture.

Isaac Goldbring (UIC)

Model theory and C* algebras

23/24

- C. Eagle, I. Farah, E. Kirchberg, A. Vignati, *Quantifier elimination* in C* algebras, preprint.
- I. Goldbring and T. Sinclair, On Kirchberg's Embedding Problem, to appear in the Journal of Functional Analysis. arXiv 1404.1861

< ∃ > < ∃