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Abstract. We provide a framework for proofs of structural theorems about

sets with positive Banach logarithmic density. For example, we prove that if
A ⊆ N has positive Banach logarithmic density, then A contains an approxi-

mate geometric progression of any length. We also prove that if A,B ⊆ N have

positive Banach logarithmic density, then there are arbitrarily long intervals
whose gaps on A·B are multiplicatively bounded, a multiplicative version Jin’s

sumset theorem. The main technical tool is the use of a quotient of a Loeb

measure space with respect to a multiplicative cut.

1. Introduction

Szemeredi’s theorem states that if A ⊆ Z has positive upper density, then A
contains arbitrarily large arithmetic progressions. The main idea behind Fursten-
berg’s proof of Szemeredi’s theorem was to associate to the aforementioned set A
a dynamical system (X,µ, T ) and a measurable set E ⊆ X with d(A) = µ(E)
satisfying, for any finite F ⊆ Z:

d

(⋂
i∈F

(A− i)

)
≥ µ

(⋂
i∈F

T−i(E)

)
.

This association, now called the Furstenberg correspondence principle [2, Lemma
4.6], converted the task of proving Szemeredi’s theorem into the task of proving
a theorem of ergodic theory, now referred to as Furstenberg’s multiple recurrence
theorem. Furstenberg’s correspondence principle holds for any countable amenable
semigroup (with densities calculated with respect to particular Følner sequences)
and there are many generalizations of Furstenberg’s recurrence theorem. In short,
Furstenberg’s correspondence has led to a large collection of structural results in
combinatorial number theory.

Nonstandard analysis provides an elegant way of establishing Furstenberg’s orig-
inal correspondence theorem. (For an introduction to nonstandard methods aimed
specifically toward applications to combinatorial number theory see [13].) In-
deed, one can consider the hyperfinite interval [−N,N ] ⊆ ∗Z, equipped with its
Loeb measure µL, which is the σ-additive measure obtained from the finitely-

additive counting measure µ(A) := st( |A|2N+1 ) defined on the algebra of hyperfi-

nite subsets of [−N,N ] using the Caratheodory extension theorem. By the non-
standard characterization of upper density, there is an infinite N ∈ ∗N for which
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d(A) = µL(∗A ∩ [−N,N ]). Letting T : [−N,N − 1] → [−N,N ] be addition by 1
(which is easily seen to be measure preserving and defined on a measure 1 set),
the dynamical system ([−N,N ], µL, T ) and the measurable set E := ∗A ∩ [−N,N ]
witness the conclusion of the Furstenberg correspondence principle.

In this paper, we consider a different kind of density, namely logarithmic den-
sity (see Section 2 for the precise definition) and seek to associate an appropriate
measure space to sets of positive logarithmic density. Using the nonstandard char-
acterization of logarithmic density, this is accomplished in the same manner as in
the previous paragraph. However, this Loeb measure space contains a serious de-
ficiency, namely the fact that multiplication is not measure preserving. The main
result in this paper is that multiplication is measure-preserving on an appropriate
quotient of the associated Loeb measure space (Theorem 2.24 below).

Initially, we had hoped to use this fact to deduce approximate geometric structure
in sets of positive logarithmic density. Indeed, one can use Furstenberg’s multiple
recurrence theorem on the quotient space to obtain actual geometric structure in the
quotient space, which, when pulled back to the original Loeb space and combined
with the transfer principle, would yield approximate geometric structure in the
original subset of the integers. While this process is valid and briefly explained
in Section 3, in an upcoming paper we show that we can actually use the original
Szemeredi theorem, combined with a “logarithmic change of coordinates,” to more
directly obtain the aforementioned approximate geometric structure and with better
bounds on the nature of the approximation. Thus, we leave it as an open problem to
find more sophisticated applications of the fact that multiplication on our quotient
measure space is measure-preserving.

We then briefly discuss a family of densities on subsets of N for which the cor-
responding sets of positive measure in the quotient space contain arbitrarily long
powers of arithmetic progressions.

In the next to last section, we show that the Lebesgue density theorem is valid in
the aforementioned quotient measure space. In the last section, we use the Lebesgue
density theorem to prove a multiplicative analog of a result of Jin [12], namely that
if A and B both have positive Banach log density, then there are arbitrarily long
intervals on which A ·B has multiplicatively bounded gaps.

1.1. A few words about nonstandard analysis. For the reader unacquainted
with nonstandard analysis, we briefly describe the main idea; a much more com-
prehensive introduction to nonstandard methods in number theory can be found
in [13]. There is an ordered field extension ∗R of the ordered field of real num-
bers which contains “ideal” elements such as infinitesimal elements and infinite
elements. Moreover, one requires the transfer principle to hold: the field ∗R “logi-
cally” behaves like R with respect to certain nice subsets of ∗R called the internal
sets. For example, any nonempty internal subset of ∗R that is bounded above has
a supremum. If a, b ∈ ∗R, we write a ≈ b if |a − b| is infinitesimal. Every finite
element a ∈ ∗R (that is, |a| ≤ n for some n ∈ N) is within an infinitesimal distance
of a unique real number, called the standard part of a and denoted st(a).

Besides enlarging ∗R, one actually enlarges every infinite subset A of ∗R to an
internal set ∗A such that ∗A ∩ R = A. In particular, N gets enlarged to ∗N. All
“new” elements of ∗N are infinite. A consequence of the transfer principle is that N
is an external (that is, not internal) subset of ∗R. (If N were internal, then since it
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is bounded above in ∗R, it would have a maximum.) From this follows the so-called
overspill principle: if E ⊆ ∗N is internal and infinite, then E ∩ (∗N \ N) 6= ∅.

Finally, there are certain internal subsets of ∗R that logically behave like finite
sets; such sets are called hyperfinite. If A ⊆ ∗R is hyperfinite, then A has an internal
cardinality |A| which is an element of ∗N.

1.2. Acknowledgements. This work was initiated during a week-long meeting at
the American Institute for Mathematics on August 4-8, 2014 as part of the SQuaRE
(Structured Quartet Research Ensemble) project “Nonstandard Methods in Num-
ber Theory.” The authors would like to thank the Institute for the opportunity and
for the Institute’s hospitality during their stay.

2. Densities, cuts, and measures

2.1. Densities.

Convention 2.1. In this paper, N denotes the set of positive natural numbers.

For the convenience of the reader, we recall the following:

Definition 2.2. Suppose that A ⊆ N. Then:

• The upper density of A is defined to be

d(A) := lim sup
n→∞

|A ∩ [1, n]|
n

.

• The lower density of A is defined to be

d(A) := lim inf
n→∞

|A ∩ [1, n]|
n

.

We also recall the definitions of logarithmic densities:

Definition 2.3. Suppose that A ⊆ N. Then:

• The upper logarithmic density of A is defined to be

ld(A) := lim sup
n→∞

1

lnn

∑
x∈A∩[1,n]

1

x
.

• The lower logarithmic density of A is defined to be

ld(A) := lim inf
n→∞

1

lnn

∑
x∈A∩[1,n]

1

x
.

When dealing with logarithmic densities, it is useful to recall that, setting Hn :=∑n
k=1

1
k (the so-called nth harmonic number), we have limn→∞(Hn− lnn) = γ, the

so-called Euler-Mascheroni constant. For example, it follows easily that ld(N) =
ld(N) = 1.

The proof of the following lemma is straightforward.

Lemma 2.4. Suppose that A,B ⊆ N and n ∈ N.

(1) ld(A+ n) = ld(A) and ld(A+ n) = ld(A).
(2) If A4B is finite, then ld(A) = ld(B) and ld(A) = ld(B).

The following fact is the content of [3, Lemma 2.1(e)(f)]:

Fact 2.5. For A ⊆ N, we have d(A) 6 ld(A) 6 ld(A) 6 d(A).
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We would like to offer an alternative proof of the preceding fact. We will only
prove that d(A) ≤ ld(A); the other inequality follows from the inequality for lower
densities and the fact that d(A) = 1 − d(N \ A) and ld(A) = 1 − ld(N \ A). The
heuristic behind our proof is simple: the logarithmic density of a set can only
decrease if we “push the elements of the set to the right;” such a shift should leave
the lower density fixed. Here are the specifics:

Set fA : N → R to be defined by fA(n) :=
∑
x∈A∩[1,n]

1
x . Without loss of

generality, we may assume d(A) > 0. Take α < d(A) and H > N. It suffices to

show that st( fA(H)
lnH ) ≥ α. Since two sets that differ by only a finite number of

elements have the same lower density and the same lower logarithmic density, we

can assume that infn>1
|A∩[1,n]|

n > α.
Let m := |∗A ∩ [1, H]| and set

B =
{⌊x

α

⌋
+ 1 : x ∈ [1,m]

}
∩ [1, H].

Next observe that, for every k ∈ [1, H], we have |B∩[1,k]|k ≤ α. (Without taking
integer parts, B would be an arithmetic progression of real numbers, whence the
densities are clearly bounded by α; by taking integer parts and then adding 1, if
anything, we have reduced the densities.) Let K := |B|. Let (an : n ≤ m) and
(bn : n ≤ K) be the enumerations of A ∩ [1, H] and B in increasing order. Since

α < |∗A∩[1,k]|
k for each k ∈ [1, H], it follows that an ≤ bn for all n ≤ K. We thus

get that

fA(H) =

m∑
n=1

1

an
≥

K∑
n=1

1

an
≥

K∑
n=1

1

bn
=: fB(H).

Since fB(H)
lnH ≈ α ln(H)

lnH = α, it follows that st( fA(H)
lnH ) ≥ α.

We also recall the following definition:

Definition 2.6. For A ⊆ N, the (upper) Banach density of A is defined to be

BD(A) := lim
n→∞

sup
k≥1

|A ∩ [k, k + n]|
n+ 1

.

Of course, for the preceding definition to be legitimate, one must prove that
the limit involved always exists. This is a rather straightforward argument; it also
follows immediately from Fekete’s Lemma (see [10]).

We now want to define a Banach version of logarithmic density; to do so, we
must show that the corresponding limit exists.

Lemma 2.7. Suppose that g : N → R is a nondecreasing function satisfying, for

all j, n ∈ N, the inequality g(nj) ≤ jg(n). Then limn→∞
g(n)
lnn exists and equals

infn≥1
g(n)
lnn .

Proof. It is enough to show that, for every n ∈ N and N ∈ ∗N \ N, we have

st( g(N)
lnN ) ≤ g(n)

lnn . Take j ∈ ∗N such that nj ≤ N < nj+1; note that j > N. We
conclude by observing that

g(N)

lnN
≤ (j + 1)g(n)

j lnn
= (1 +

1

j
)
g(n)

lnn
≈ g(n)

lnn
.

�
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Proposition 2.8. For any A ⊆ N, the limit

lim
n→∞

sup
k≥1

1

lnn

∑
x∈A∩[k,nk]

1

x

exists and equals

inf
n≥1

sup
k≥1

1

lnn

∑
x∈A∩[k,nk]

1

x
.

Proof. Define g : N→ R by

g(n) = sup
k≥1

 ∑
x∈[k,kn)∩A

1

x

 .

Clearly g is nondecreasing, so, by Lemma 2.7, it suffices to show that g(nj) ≤ jg(n)
for all j, n ∈ N. To see this, it suffices to observe that, for a fixed k, one has

∑
x∈[k,knj)∩A

1

x
=

j∑
s=1

 ∑
x∈[kns−1,kns)∩A

1

x

 ≤
j∑
s=1

g(n) = j · g(n).

�

We are thus entitled to make the following:

Definition 2.9. For A ⊆ N, the (upper) Banach log density of A is

`BD(A) := lim
n→∞

sup
k≥1

1

lnn

∑
x∈A∩[k,nk]

1

x
.

Of course one could also define the lower Banach log density, but in this paper
we only focus on the upper Banach log density.

The next proposition can be proven in a manner analogous to the corresponding
statement for upper log density.

Proposition 2.10. For any A ⊆ N, we have `BD(A) ≤ BD(A).

Finally, we will frequently make use of the following nonstandard formulation of
Banach log density.

Proposition 2.11. If A ⊆ N, then `BD(A) ≥ α if and only if for every N > N,
there is k ∈ ∗N such that

st

(∑
x∈∗A∩[k,Nk]

1
x

lnN

)
(2.1)

is at least α.

Equivalently, one can say that, for any N > N, `BD(A) is the supremum over
k ∈ ∗N of the quantity in (2.1).
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2.2. Loeb measure spaces. In this subsection, we fix N > N. Motivated by the
proposition at the end of the last subsection, we introduce a measure on internal
subsets of intervals [k,Nk]. More precisely, for each internal set A ⊆ [k,Nk], set

ν(A) := νk,N (A) = st

(∑
a∈A

1

a lnN

)
.

It is readily verified that ν is a finitely additive measure defined on the internal
subsets of [k,Nk], whence we obtain a Loeb measure space based on [k,Nk], whose
measure we continue to denote by ν = νk,N . By Proposition 2.11, for every N > N,
there is k ∈ ∗N such that `BD(A) = νk,N (∗A ∩ [k,Nk]).

Recall that, for n ∈ N, we set Hn =
∑n
k=1

1
k .

Proposition 2.12. For any k 6 a 6 b 6 Nk, we have

ν([a, b]) = st

(
ln b− ln a

lnN

)
.

In particular, ν([k, k
√
N ]) = ν([k

√
N,Nk]) = 1

2 .

Proof. We assume that a, b ∈ ∗N \ N; the other cases are similar and easier. We
have

Hb −Ha−1

lnN
=

(Hb − ln b) + (ln b− ln a) + (ln a
a−1 ) + (ln(a− 1)−Ha−1)

lnN
.

Since a, b > N, we have Ha−1− ln(a− 1), Hb− ln b ≈ γ. Also, ln a
a−1 ≈ 0. It follows

that

ν([a, b]) = st

(
b∑

x=a

1

x lnN

)
= st

(
Hb −Ha−1

lnN

)
= st

(
ln b− ln a

lnN

)
.

�

Corollary 2.13. Suppose that a, b, c ∈ ∗N are such that a, b, ac, bc ∈ [k,Nk]. Then
ν([a, b]) = ν([ac, bc]).

In contrast to the previous corollary, note that, under the same assumptions, ν(c·
[a, b]) 6= ν([a, b]) in general, that is, multiplication need not be measure preserving.
Indeed,

ν(c · [a, b]) = st

 ∑
x∈[a,b]

1

cx lnN

 = st

1

c

∑
x∈[a,b]

1

x lnN

 .

We will shortly see that this problem vanishes when we pass to a certain quotient
of the Loeb measure space.

In calculations pertaining to the aforementioned quotient space, it will become
useful to know how to approximate the measures of certain internal subsets of
[k,Nk]. First, let us establish some notation. We call an interval [a, b] ⊆ [k,Nk]
big if st( ba ) > 2 (where, for the sake of this definition, the standard part of an
infinite hyperreal is itself). Now suppose that C ⊆ [k,Nk] is internal and we write
C =

⊔
i∈I [ai, bi], where the intervals [ai, bi] are the internal connected components

of C, that is, they are the maximal intervals contained in C. (Note then that the
set I and the sequences (ai) and (bi) are all internal.) We then say that C has big
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components if each connected component [ai, bi] is big. In what follows, considering
sets with big components will considerably simplify the computations.

For the proof of the next lemma, we will need to recall the following elementary
estimates: suppose that r, s ∈ N are such that 2 ≤ r ≤ s. Then:

ln(s+ 1)− ln(r) ≤
s∑
i=r

1

i
≤ ln(s)− ln(r − 1).

Lemma 2.14. Suppose that C =
⊔
i∈I [ai, bi] has big components and that C ⊆

∗N \ N. Then ν(C) ≈ 1
lnN

∑
i∈I(ln(bi)− ln(ai)).

Proof. Fix i ∈ I. Note then that

ln(bi)− ln(ai) ≤
∑

n∈[ai,bi]

1

n
≤ ln(bi)− ln(ai − 1).

It follows that

|(ln(bi)− ln(ai))−
∑
n∈[ai,bi]

1
n |

ln(bi)− ln(ai)
≤ ln(ai)− ln(ai − 1)

ln 2
≈ 0.

Fix ε > 0. We then have

|(
∑
i∈I

(ln(bi)− ln(ai)))− (
∑
i∈I

∑
n∈[ai,bi]

1

n
)| ≤

∑
i∈I

ε · (ln(bi)− ln(ai))

≤ ε ·
∑
i∈I

bi∑
n=ai+1

1

n

≤ ε ·HN .

Therefore, we have

|ν(C)− 1

lnN

∑
i∈I

(ln(bi)− ln(ai))| ≤ 2ε · HN

lnN
≈ 2ε.

Since ε > 0 was arbitrary, this yields the desired result. �

2.3. Multiplicative cuts. As mentioned in the previous section, we will soon pass
to a certain quotient of the above Loeb measure spaces. In this regard, the following
notion is central:

Definition 2.15. An infinite initial segment V of ∗N is a multiplicative cut if
V ·V ⊆ V .

Note the following obvious facts:

• multiplicative cuts are also additive cuts, that is, they are closed under
addition;
• bounded multiplicative cuts must be external;
• N is the smallest multiplicative cut.

For N ∈ ∗N \ N, we let

VN =
⋂
n∈N

[1, bN1/nc]. (2.2)

Then VN is the largest multiplicative cut in [1, N ].

Definition 2.16. Suppose that U and V are infinite initial segments of ∗N ∪ {0}
and ∗N respectively. We set:
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(1) lnV := {x ∈ ∗N ∪ {0} : bexc ∈ V }.
(2) eU =

⋃
x∈U [1, bexc].

It is straightforward to verify the following facts:

(1) V is a multiplicative cut if and only if lnV is an additive cut.
(2) eU is a multiplicative cut if and only if U is an additive cut.
(3) If U is an additive cut, then ln(eU ) = U .
(4) If V is a multiplicative cut, then elnV = V .

In the rest of this subsection, we fix N ∈ ∗N \ N and a multiplicative cut
V ⊆ [1, N ].

Definition 2.17. For any a, b ∈ ∗N \ N, we declare a ∼V b if and only if |bln ac −
bln bc| ∈ lnV .

Equivalently, if a < b, then a ∼V b if and only if b bac ∈ V . Note that ∼V is an

equivalence relation on ∗N. For a ∈ ∗N, we set [a]V := {x ∈ ∗N : a ∼V x}. We
also set ϕV : ∗N→ ∗N/ ∼V to denote the quotient map, that is, ϕV (a) := [a]V . If
V = N, we simply write ϕ instead of ϕV .

The proof of the following proposition is straightforward.

Proposition 2.18. Fix a ∈ ∗N. Then:

(1) If x, y ∈ [a]V and x < y, then [x, y] ⊆ [a]V .
(2) [a]V =

⋃
x∈V

[
bax−1c, ax

]
.

It is straightforward to show that, if [a]V = [a′]V and [b]V = [b′]V , then [ab]V =
[a′b′]V . (For instance, use that equality modulo an additive cut is a congruence
relation with respect to addition on ∗N.) This allows us to set, for a, b ∈ ∗N,
[a]V · [b]V := [ab]V . It is worth noting that this multiplication on equivalence
classes satisfies cancellation: if [a]V · [b]V = [a]V · [c]V , then [b]V = [c]V .

We can also order equivalence classes by setting [a]V < [b]V if and only if a < b
and a 6∼V b.

Proposition 2.19. ( ∗N/ ∼V , <) is a dense linear order.

Proof. Suppose that [a]V < [b]V . Let c := b
√
abc. It is readily verified (using that

V is a multiplicative cut) that [a]V < [c]V < [b]V . �

For any k ∈ ∗N, we set Hk,N,V := ϕV ([k,Nk]). Once again, to simplify notation,
if V = N, we simply drop the V and write Hk,N instead of Hk,N,V . We will often
abuse notation and write ϕV : [k,Nk] → Hk,N,V , that is, we will let ϕV also de-
note its restriction to [k,Nk]. Following traditional verbiage from the nonstandard
analysis literature, one may refer to elements of Hk,N,V as monads (thus explaining
the title of this article).

It is worth noting that if a ∈ [k,Nk] is such that ax > Nk or baxc < k for some

x ∈ V , then [a]V is not completely contained in [k,Nk]; for our purposes, the set
of such exceptional a’s will become negligible in a sense to be made precise shortly.
In light of Proposition 2.11, the spaces Hk,N,V will prove important when studying
Banach log density.

Remark 2.20. For each a ∈ [k,Nk], set

Φ(a) := st

(
ln a− ln k

lnN

)
. (2.3)
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Then Φ : [k,Nk] → [0, 1] is easily seen to be a surjection. Moreover, Φ(a) = Φ(b)
if and only if a ∼VN

b, where VN is defined as in (2.2). Hence, we obtain an
order-preserving isomorphism Φ# : Hk,N,VN

→ [0, 1] given by

Φ#([a]VN ) := st

(
ln a− ln k

lnN

)
.

2.4. Quotient measure spaces. We are finally ready to describe the appropriate
quotient of the above Loeb measure spaces. Once we have done this, we will show
that certain natural operations on these measure spaces are measure-preserving
(Theorems 2.23, 2.24, and 2.25 below).

Fix N > N and a multiplicative cut V contained in [1, N ]. Via ϕ : [k,Nk] →
Hk,N,V , the Loeb measure νk,N induces a measure m = mk,N,V on Hk,N,V . More
precisely, a set E ⊆ Hk,N,V is mk,N,V -measurable if and only if ϕ−1(E) is νk,N -
measurable, in which case we set

mk,N,V (E) := νk,N (ϕ−1(E)). (2.4)

Of course, mk,N,V is a probability measure on Hk,N,V . Since Loeb measures are
complete, it follows that mk,N,V is also complete. As before, if V = N, then we
write mk,N instead of mk,N,N.

Example 2.21. If V = VN , then the order-preserving isomorphism Φ# : Hk,N,VN
→

[0, 1] is also an isomorphism of measure spaces, where [0, 1] is equipped with the
usual Lebesgue measure.

Proposition 2.22. Suppose that A ⊆ [k,Nk] is internal. Then ϕ(A) is m-measurable.

Proof. The proof is identical to that of [8, Proposition 6.3]. �

Recall that if (X,B, µ) and (Y, C, ν) are probability spaces, then T : X → Y
is said to be measure-preserving if T is measurable and µ(T−1(A)) = ν(A) for all
A ∈ C. If, additionally, there is a measure-preserving map U : Y → X that is
almost-everywhere an inverse to T , then we say that T is an invertible measure-
preserving map; since any such U is unique up to a ν-null set, we may refer to it
as T−1 and speak of “the” inverse to T .

Given x := [a]V , we can define a map Tx : Hk,N,V → Hka,N,V by Tx(e) := xe.
The following two theorems are the main reason for considering quotient measure
spaces.

Theorem 2.23. For any x := [a]V , we have Tx : Hk,N,V → Hka,N,V is an invertible
measure-preserving map.

Proof. We will only show: if E ⊆ Hk,N,V is mk,N,V -measurable, then Tx(E) is
mka,N,V -measurable and mka,N,V (Tx(E)) = mk,N,V (E). To finish the proof of the
proposition, one would need to show that Tx is measurable and measure-preserving;
the proof of this fact is similar to what we will actually show but is a bit messier.

Without loss of generality, we may suppose that a ∈ ∗N \ N. Indeed, if a ∈ N,
then Tx is “essentially” the identity map on Hk,N,V ; see the discussion following
the proof of the current proposition.

Without loss of generality, we may also assume that ϕ−1V (E) ⊆ ∗N \ N. Fix

(standard) ε > 0. Since ϕ−1V (E) is Loeb measurable, we can find internal sets

C,D ⊆ [k,Nk] with C ⊆ ϕ−1V (E) ⊆ D and with νk,N (D \ C) < ε. Without loss
of generality, we may assume that D ⊆ ∗N \ N and that both C and D have big
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components. Indeed, we can arrange that D has big components by deleting from
D all of the components that are not big; note that the remaining set is internal and
still contains ϕ−1V (E). We can arrange that C has big components by prolonging
each connected component to three times the right endpoint (and merging intervals
where necessary); the resulting set is still internal, is still contained in ϕ−1V (E), and
is readily verified to have big components.

Decompose C =
⊔
i∈I [ai, bi] and D =

⊔
j∈J [cj , dj ] into their connected compo-

nents. Set F :=
⊔
i∈I [aai, abi] and G :=

⊔
j∈J [acj , adj ].

Claim: F ⊆ ϕ−1V (Tx(E)) ⊆ G.
Proof of Claim: First suppose that p ∈ F . Fix l ∈ [ai, bi] such that al ≤ p ≤
a(l + 1). Since l ∼V l + 1, we have al ∼V a(l + 1), whence [p]V = [al]V ∈ Tx(E).
Now suppose that p ∈ ϕ−1V (Tx(E)), say [p]V = [a]V · [d]V with [d]V ∈ E. Take

y ∈ V such that p ∈ [bady c, ady]. Since ab dy c ≤ b
ad
y c, we have p ∈ [ab dy c, ady]. Write

p = ak + r with k ∈ [b dy c, dy] and 0 ≤ r < a. Since [b dy c, dy] ⊆ ϕ−1V (E), we have

k ∈ [cj , dj ] for some j ∈ J . Note that dj /∈ ϕ−1V (E) as then dj + 1 ∈ ϕ−1V (E) ⊆ D, a
contradiction. Thus p = ak + r ≤ a(dj − 1) + a = adj , whence p ∈ [acj , adj ]. This
completes the proof of the claim.

Since F has big components and is contained in ∗N \ N, by Lemma 2.14 we have
that

νka,N (F ) ≈ 1

lnN

∑
i∈I

(ln(abi)− ln(aai)) =
1

lnN
(ln(bi)− ln(ai)) ≈ νk,N (C).

We conclude that νka,N (G) = νk,N (D). For the same reason, we have that νka,N (G) =
νk,N (D).

It follows that νka,N (G \ F ) < ε. Since ε > 0 was arbitrary, this shows that

ϕ−1V (Tx(E)) is Loeb measurable. Moreover,

|νka,N (ϕ−1V (Tx(E)))− νk,N (ϕ−1V (E))| ≤ |νka,N (G)− νk,N (D)|+ 2ε = 2ε;

since ε > 0 is arbitrary, we have νka,N (ϕ−1(Tx(E))) = νk,N (ϕ−1(E)), that is,
mka,N,V (Tx(E)) = mk,N,V (E). �

Now suppose that x := [a]V is such that a < VN , where VN is as in Equation
(2.2). Then the “inclusion” mapping [k,Nk]→ [ka,Nka] (which is technically only
defined on a ν-conull set) induces an invertible measure-preserving transformation
Hk,N,V → Hka,N,V . In this way, we can identify the measure spaces Hk,N,V and
Hka,N,V . Combining this identification and Theorem 2.23, we obtain the following:

Theorem 2.24. For x := [a]V with a < VN , the map Tx : Hk,N,V → Hk,N,V is an
invertible measure-preserving transformation.

For u ∈ [1, N ], set u−1 := bNu c. Of course, this notion depends on N and
occasionally we will want to make this dependence explicit, in which case we write
u−1,N .

The final goal of this subsection is to prove the following:

Theorem 2.25. The map Υ = ΥN,V : H1,N,V → H1,N,V given by Υ(ϕV (u)) :=
ϕV (u−1) is well-defined. Moreover, Υ is an invertible measure-preserving transfor-
mation satisfying Υ−1 = Υ.
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We break the proof of Theorem 2.25 up into a series of lemmas. We first prove
that Υ is well-defined.

Lemma 2.26. Suppose that u, v ∈ [1, N2 ] satisfy u ∼V v. Then u−1 ∼V v−1.

Proof. Without loss of generality, u ≤ v. We must show that bu
−1

v−1 c ∈ V . Write

u−1 := N
u − ε and v−1 := N

v − δ, where ε, δ ∈ [0, 1). Then:

u−1

v−1
=
N − εu
N − δv

· v
u
≤ N

N − v
· v
u
≤ 2 · v

u
.

�

We next prove that Υ is an involution.

Lemma 2.27. Suppose that x ∈ [1, N2 ]. Then x ∼V (x−1)−1.

Proof. Since x−1 ≤ N
x , we have x ≤ N

x−1 , so x ≤ (x−1)−1. Write (x−1)−1 = N
x−1−δ1

and x−1 = N
x − δ2, with δ1, δ2 ∈ [0, 1). We then have:

(x−1)−1

x
=

N
N
x −δ2

− δ1
x

=
Nx− δ1N + δ1δ2x

x(N − δ2x)
≤ N

N − x
≤ 2.

�

Suppose that A ⊆ [1, N ] is internal and its decomposition into components is
A =

⊔
i∈I [ai, bi]. We say that A has separated components if, whenever [ai, bi] and

[aj , bj ] are adjacent components with aj > bi, we have aj > 2bi.

Lemma 2.28. Suppose that A has separated components and is contained in
⋂
k∈N[1, Nk ).

Then, for any distinct i, j ∈ I, we have [b−1i , a−1i ] ∩ [b−1j , a−1j ] = ∅.

Proof. Without loss of generality, assume that 2bi < aj . Suppose that b−1i ≤ x ≤
a−1i . Then N

bi
− ε ≤ x ≤ N

ai
for some ε ∈ [0, 1). We then have ai ≤ N

x ≤
Nbi
N−bi , so

ai ≤ x−1 ≤ 2bi since bi
N ≈ 0. If b−1j ≤ x ≤ a−1j , then we would have aj ≤ x−1,

contradicting 2bi < aj . �

For internal A ⊆ [1, N ] with decomposition A =
⊔
i∈I [ai, bi], we set A−1 =⊔

i∈I [b
−1
i , a−1i ]. If A has separated components and is contained in

⋂
k∈N[1, Nk ),

the preceding lemma tells us this definition of A−1 is also its decomposition into
components.

Lemma 2.29. Suppose that A ⊆ [1, N ] is internal, has big and separated compo-
nents, and is contained in (∗N \ N) ∩

⋂
k∈N[1, Nk ). Then A−1 has big components

and ν(A) = ν(A−1).

Proof. In order to show that A−1 has big components, it suffices to show that if
[a, b] is big and b

N is infinitesimal, then [b−1, a−1] is also big. Write a−1 = N
a − ε

and b−1 = N
b − δ. Then:

a−1

b−1
=
b

a
· N − εa
N − δb

>
b

a
· (1− a

N
).

The quantity on the right hand side of the display is appreciably larger than 2 since
b
a is appreciably larger than 2 and a

N is infinitesimal.
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We now must show that ν(A) = ν(A−1). Decompose A =
⊔
i∈I [ai, bi] into its

components; then [b−1i , a−1i ] are the components of A−1. By Lemma 2.14 (which

applies to A−1 since A ⊆
⋂
k∈N[1, Nk )), we know that

ν(A) ≈ 1

lnN

∑
i∈I

(ln(bi)− ln(ai))

and

ν(A−1) ≈ 1

lnN

∑
i∈I

(ln(a−1i )− ln(b−1i )).

For simplicity, set αi := ln(bi)− ln(ai) and βi := ln(a−1i )− ln(b−1i ). Fix i ∈ I and

write a−1i = N
ai
− ε and b−1i = N

bi
− δ. Then |αi − βi| = | ln(N−εaiN−δbi )| ≈ 0. Since A

has big components, it follows that |αi−βi|
αi

≈ 0. It follows that

|
∑
i∈I αi

lnN
−
∑
i∈I βi

lnN
| ≤

∑
i∈I |αi − βi|

lnN
≤
∑
i∈I |αi − βi|∑

i∈I αi
≈ 0.

Putting everything together, we get ν(A) = ν(A−1). �

Lemma 2.30. Suppose that E ⊆ H1,N,V is m1,N,V -measurable. Then Υ(E) is
m1,N,V -measurable and m1,N,V (Υ(E)) = m1,N,V (E)

Proof. Fix M ∈ ∗N \ N such that ν([M,N/M ]) = 1. Without loss of generality,
we may assume that ϕ−1V (E) ⊆ [M,N/M ]. Fix ε > 0 and take internal sets C ⊆
ϕ−1V (E) ⊆ D with ν1,N (D \ C) < ε. Without loss of generality, D ⊆ [M,N/M ].
Moreover, arguing as in the proof of Theorem 2.23, we may assume that both
C and D have big and separated components. Decompose C =

⊔
i∈I [ai, bi] and

D =
⊔
j∈J [cj , dj ] into their measurable components.

Claim: C−1 ⊆ ϕ−1V (Υ(E)) ⊆ D−1.

Proof of Claim: First suppose that x ∈ [b−1i , a−1i ]. Write b−1 = N
b − δ for some

δ ∈ [0, 1). Then

a ≤ N

x
≤ Nb

N − δb
≤ Nb

N − b
≤ 2b.

Since b ∼V 2b, we have ϕV (x−1) ∈ E. Since ai ≥ 2, we have x ≤ a−1i ≤ N
2 ,

so x ∼V (x−1)−1 ∈ ϕ−1V (Υ(E)) and thus x ∈ ϕ−1V (Υ(E)). Now suppose that

x ∈ ϕ−1V (Υ(E)). Then x ∼V u−1 for some u ∈ ϕ−1V (E). Choose j ∈ J such that

u ∈ [cj , dj ]. Since dj + 1 /∈ D, we cannot have u ∼V dj . Now since u, x−1 ∈ [1, N2 ],

we have u ∼V (u−1)−1 ∼V x−1, whence x−1 ≤ dj . Note that x−1 < dj , else

we contradict dj + 1 /∈ D. It follows that N
x ≤ dj , so N

dj
≤ x, whence d−1j ≤ x.

Similarly, u 6∼V cj , so cj ≤ x−1 ≤ N
x . It follows that x ≤ N

cj
, so x ≤ c−1j . This

completes the proof of the claim.

By Lemma 2.29, we have that ν(C−1) = ν(C) and ν(D−1) = ν(D). Once again,
it follows that ϕ−1V (Υ(E)) is measurable and has the same measure as E. �

Note that Lemmas 2.26, 2.27, and 2.30 together establish Theorem 2.25.
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3. Geo-arithmetic progressions

In this short section, we indicate how our results from the previous section can
be used to obtain approximate geometric structure in sets of positive Banach log
density. As mentioned in the introduction, in an upcoming paper we show how
stronger results can be deduced from Szemeredi’s theorem and a logarithmic change
of coordinates.

Let x, a ∈ ∗N. If n ∈ N, we say that x is an n-approximation of a if x/n < a <
xn. If every element x ∈ X is an n-approximation of some a ∈ A, we say that X is
an n-approximate subset of A.

For the convenience of the reader, we recall:

Fact 3.1 (Furstenberg’s Recurrence Theorem). Let T : X → X be a measure-
preserving transformation on the probability space (X,B, µ). Further suppose that
A ∈ B satisfies µ(A) > 0 and l ∈ N is given. Then there exists n ∈ N such that

µ(A ∩ T−n(A) ∩ T−2n(A) ∩ · · · ∩ T−ln(A)) > 0.

Theorem 3.2. Let A ⊆ N be such that `BD(A) > 0 and fix l ∈ N. Then there
exists n ∈ N such that, for any m ∈ N, there exists a geometric progression G =
{ari : i = 0, 1, . . . , l − 1} with a, r > m such that G is an n-approximate subset of
A.

Proof. Set α := `BD(A). Take k,N ∈ ∗N with N > N such that α = νk,N (∗A ∩
[k,Nk]). Let E = ϕ(∗A ∩ [k,Nk]) ⊆ Hk,N . By Proposition 2.22, we have that E
is mk,N -measurable and that mk,N (E) > α. Fix s ∈ ∗N with N < s < VN and set
x := [s]N. By Furstenberg’s Recurrence Theorem applied to the transformation Tx
on Hk,N (which is applicable by Theorem 2.24), we see that E contains a geometric
progression {cqi : i = 1, 2, . . . , l}; here, q = xk for some k ∈ N. Let r := sk.
Choose any a ∈ ϕ−1(cq). Then a > N and ϕ(ari−1) = cqi. Let ni = min{j ∈ N :

[bar
i

j c, ar
ij] ∩ ∗A 6= ∅}. Set n = max{ni : i = 0, 1, . . . , l − 1}. We now conclude

that there exists an l-term geometric progression in [k,Nk] with infinite ratio and
infinite initial element such that every term in the progression is an n-approximation
of some element in ∗A∩ [k,Nk]. The theorem follows by the transfer principle. �

We give two examples to show the necessity of some of the statements in the
previous theorem. First, we show that we can only expect to get approximate
arithmetic progressions in general.

Example 3.3. Let A be the set of all square-free numbers. Then by Fact 2.5 we
have `BD(A) > ld(A) > d(A) > 0 but A does not contain any 3-term geometric
progression.

The next example shows that we really do need the Banach log density to be
positive.

Example 3.4. Let α < 1. Fix a j such that (j − 1)/j > α. Let u0 = 2, ui+1 >
(jui)

3, and set

A =

∞⋃
i=1

[ui, jui].

Then:

(1) d(A) > α;
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(2) `BD(A) = 0; and
(3) for any n ∈ N, there exists an m ∈ N such that there does not exist 3-

term geometric progression G = {a, ar, ar2} with a, r > m and G is an
n-approximate subset of A.

Proof. The verification of (1) is straightforward and left to the reader. For (2), fix
N > N and k ∈ ∗N; it suffices to prove that

1

logN

 ∑
x∈∗A∩[k,Nk]

1

x

 ≈ 0.

Let [ui+t, jui+t] for t = 0, 1, . . . , p − 1 enumerate those intervals completely con-
tained in [k,Nk]. Note then that

1

logN

 ∑
x∈∗A∩[k,Nk]

1

x

 ≈ 1

logN

p−1∑
t=0

∑
x∈∗A∩[ui+t,jui+t]

1

x

 ≈ p log j

logN
.

Since ui+p−1 > u3
p−1

i and ui+p−1/ui ≤ N , we see that 3p−1 − 1 ≤ logN , whence
there is C ∈ R such that p ≤ C log logN . It follows that

p log j

logN
≤ C log j log logN

logN
≈ 0,

finishing the proof of (2).
We now prove (3). Let m = n3j. Let a, r > m and G = {a, ar, ar2} be a 3-term

geometric progression such that ui1/n 6 a 6 jui1n and ui2/n 6 ar 6 jui2n. We
show that ar2 cannot be n-approximated by any element of A.

If i1 = i2, then we get
ui1

n ≤ a, ar ≤ jui1n, whence r ≤ n2j = m, a contradiction.

So we can assume that i2 > i1. Then
ui2

jui1n
2 6 r 6

jui2
n2

ui1
.

Claim 1: jui2n ≤ ar2.
Proof of Claim 1: Since jui1n > a > m = jn3, we have ui1 > n2. Hence
ui2 > (jui1)3 > j2ui1u

2
i1
> j2ui1n

4. Hence jui2n < ui2
ui2

jui1
n3 . Since ar ≥ ui2/n

and r ≥ ui2/(jui1n2), we have that ar2 ≥ u2i2/(jui1n
3). This proves Claim 1.

Claim 2: ar2 ≤ ui2+1/n.
Proof of Claim 2: Since ar ≤ jui2n and r ≤ jui2n

2/ui1 , we have that ar2 ≤
jui2jui2n

3/ui1 . Since (jui2)3 < ui2+1, we have that jui2
jui2

n3

ui1
< ui2+1

n3

jui2ui1
.

Since jui2ui1 > u4i1 > n4, we have that ui2+1
n3

jui2
ui1

< ui2+1/n. This proves Claim

2.

From these two claims, it follows that ar2 is not n-approximated by any element
of A, whence G is not an n-approximate subset of A. �

4. Other densities

In this section, we introduce a family of densities on subsets of N for which
the corresponding sets of positive measure in the quotient space contain arbitrarily
long powers of arithmetic progressions. Since the properties of these densities have
proofs analogous to the case of logarithmic density, we allow ourselves to just state
the main definitions and results and omit almost all proofs.
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The following family of densities might look a bit strange at first, but Proposition
4.6 below helps explain the definition.

Definition 4.1. For any positive integer m and any set A ⊆ N let

BDm(A) := lim
n→∞

sup
k∈N

1

mn

∑
x∈A∩[k,(dm

√
ke+n)m]

1

x
m−1
m

.

Clearly, BD1(A) = BD(A).

Definition 4.2. Fix m ∈ N, N ∈ ∗N \ N, and k ∈ ∗N. Let U ⊆ [1, N ] be an
additive cut (for example, U = N). Let

Ik,N,m := [k, (dm
√
ke+N)m].

For any a, b ∈ Ik,N,m, set a ∼ b if | m
√
a− m

√
b| < u for some u ∈ U . Let

[a]m := {x ∈ Ik,N,m : x ∼ a}.

Clearly, if x, y ∈ [a] and x < y, then [x, y] ⊆ [a].

Proposition 4.3. The relation ∼ is an equivalence relation.

The monad [a] is the set (dm
√
ae ± U)

m
where

(
dm
√
ae ± U

)m
:=

(⋃
u∈U

[(
dm
√
ae − u

)m
,
(
dm
√
ae+ u

)m]) ∩ Ik,N,m.
Definition 4.4. Let m,N, k, U be the same as in Definition 4.2. Let

Gk,N,m = {[a] : a ∈ Ik,N,m}.

Let ϕ(a) = [a] be the quotient map from Ik,N,m to Gk,N,m.

For each internal set A ⊆ [k, (dm
√
ke+N)m], we set

ν(A) := st

(
1

mN

∑
a∈A

1

a
m−1
m

)
.

As before, we can extend ν to the σ-algebra generated by the internal sets.

Proposition 4.5. Let A ⊆ N and α > 0. Then BDm(A) ≥ α if and only if there
exists an Ik,N,m such that ν(∗A ∩ Ik,N,m) ≥ α.

Proposition 4.6. Let [a, b] ⊆ Ik,N,m. Then

ν([a, b]) = st

(
m
√
b− m
√
a

N

)
.

Furthermore, if c ∈ ∗N is such that (d m
√
be+ c)m ∈ Ik,N,m, then

ν([(d m
√
ae+ c)m, (d m

√
be+ c)m]) = ν([a, b]).

Definition 4.7. For each set E ⊆ Gk,N,m, we say that E is m-measurable if ϕ−1(E)
is Loeb measurable, in which case we define the measure

m(E) = ν(ϕ−1(E)).
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Theorem 4.8. Let UN denote the largest additive cut in [1, N ] and fix U < c < UN .
For each [a] ∈ Gk,N,m set

Tc([a]) := [(dm
√
ae+ c)m].

Then Tc is an m-measure preserving transformation on Gk,N,m.

Note that if m(E) > 0, then E contains arbitrarily long sequences of the form
[a], [(dm

√
ae + d).

m
], [(dm

√
ae + 2d)m], . . . , [(dm

√
ae + ld)m], i.e., E contains arbitrarily

long m-th powers of arithmetic progressions. Thus, using the techniques of the pre-
vious section, if A ⊆ N satisfies BDm(A) > 0, then in A we can find approximations
to arbitrarily long sequences of m-th powers of arithmetic progressions.

5. Lebesgue Density Theorem

In this section, we prove that a natural version of the Lebesgue density theorem
holds for our quotient measure spaces. For the rest of this section, fix N > N and
a multiplicative cut V contained in [1, N ]. Suppose that A ⊆ [k,Nk] is internal
and set X := ϕV (A). For x ∈ Hk,N,V and r > V , we write mx,r,V (X) to denote

mb,r,V (X∩[x, ϕ(r)x]) for any b ∈ ϕ−1V ({x}); since V ⊆ VN , we see, by the discussion
preceding Theorem 2.24, that the definition of mx,r,V is independent of the choice

of representative of ϕ−1V ({x}). We then set

δ+(x,X) = lim inf
r>V

mx,r,V (X),

or, equivalently, to clarify the meaning of lim inf in this setting:

δ+(x,X) = sup
s>V

inf
V <r<s

mx,r,V (X).

One can define the notion of δ−(x,X) in an analogous fashion. We say that
x ∈ Hk,N,V is a Lebesgue density point of X if δ+(x,X) = δ−(x,X) = 1.

Here is the version of the Lebesgue Density Theorem in our setting. We model
our proof after a proof of the classical Lebesgue density theorem given by Faure in
[9].

Theorem 5.1. Let A be an internal subset of [k,Nk] and X = ϕV (A). Then
mk,N,V -almost every point in X is a Lebesgue density point.

Proof. We only show that almost every point x of X satisfies δ+(x,X) = 1; the
proof for δ− is exactly the same. Fix n and set Xn := {x ∈ X : δ+(x,X) < n

n+1}.
It suffices to show that m∗k,N,V (Xn) = 0. (Here, m∗k,N,V denotes the outer measure.)

Fix ε > 0. Take internal sets C ⊆ D ⊆ [k,Nk] such that C ⊆ ϕ−1V (X) ⊆ D ⊆ ∗N\N
and ν(D \ C) < ε. (In this proof, we write ν for νk,N .) Fix D′ ⊆ D internal such

that ϕ−1V (Xn) ⊆ D′ and such that ν(D′) < ν∗(ϕ−1V (Xn)) + ε. We now set

C ′ := {a ∈ C : (∃b ≥ 2)([a, ba] ⊆ D′ and
1

ln b

∑
x∈C∩[a,ba]

1

x
<
n+ 1

n+ 2
)}.

Note that C ′ is internal and C ′ ⊆ C ∩D′.
We first claim that ϕ−1V (Xn) ∩ C ⊆ C ′. Fix a ∈ ϕ−1V (Xn) ∩ C. Since [a]V ⊆

ϕ−1V (Xn) ⊆ D′, there is c > V such that [a, ca] ⊆ D′. Since δ+(ϕV (a), X) < n
n+1 ,

there is V < b < c such that ν(ϕ−1V (X)) < n+1
n+2 . It follows that

1

ln b

∑
x∈C∩[a,ba]

1

x
≈ νa,b(C) ≤ νa,b(ϕ−1V (X)) <

n+ 1

n+ 2
,
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whence we conclude that a ∈ C ′.
Since ϕ−1V (Xn) ⊆ C ′∪(D\C), we get ν∗(ϕ−1V (Xn)) ≤ ν(C ′)+ε, so ν(D′)−ν(C ′) ≤

ν(D′)− ν∗(ϕ−1(Xn)) + ε < 2ε.
Without loss of generality, we may suppose that D′ has big components. Decom-

poseD′ :=
⊔
i[ai, bi] into its components. We now claim that 1

ln(bi)−ln(ai)
∑
x∈C′∩[ai,bi]

1
x ≤

n+1
n+2 for each i. Fix i and let ei ∈ [ai+2, bi+1] be maximal such that 1

ln(ei−1)−ln(ai)
∑
x∈C′∩[ai,ei−1]

1
x ≤

n+1
n+2 . We want to show that ei = bi + 1. Suppose, towards a contradiction, that

ei ≤ bi. First suppose that ei ∈ C ′. Take b ≥ 2 such that [ei, bei] ⊆ D′ and
1

ln b

∑
x∈C∩[ei,bei]

1
x ≤

n+1
n+2 . Then∑

x∈C′∩[ai,bei]

1

x
=

∑
x∈C′∩[ai,ei−1]

1

x
+

∑
x∈C′∩[ei,bei]

1

x

≤ n+ 1

n+ 2
((ln(ei − 1)− ln(ai)) + ln b)

≤ n+ 1

n+ 2
(ln(bei)− ln(ai)).

Since [ei, bei] ⊆ D′, we have bei ≤ bi, so bei + 1 ≤ bi + 1 contradicts the maximality
of ei. We now suppose that ei /∈ C ′. Then∑

x∈C′∩[ai,ei]

1

x
=

∑
x∈C′∩[ai,ei−1]

1

x

≤ n+ 1

n+ 2
(ln(ei − 1)− ln(ai))

≤ n+ 1

n+ 2
(ln(ei)− ln(ai)).

Thus ei + 1 also works, contradicting the choice of ei.
We now can calculate:

ν(D′) ≤ ν(C ′) + 2ε

≈ 1

lnN

∑
x∈C′∩[k,Nk]

1

x
+ 2ε

=
1

lnN

∑
i

∑
x∈C′∩[ai,bi]

1

x
+ 2ε

≤ 1

lnN

∑
i

n+ 1

n+ 2
(ln(bi)− ln(ai)) + 2ε

≈ n+ 1

n+ 2
· ν(D′) + 2ε.

The last step used that D′ has big components and is contained in ∗N \ N.
We now conclude that ν∗(ϕ−1(Xn)) ≤ ν(D′) ≤ 2(n+ 2)ε. Since ε was arbitrary

(but n is fixed), we get that ν∗(ϕ−1(Xn)) = 0, so m∗k,N,V (Xn) = 0, as desired. �

6. Productset phenomenon

In this final section, we use the Lebesgue Density Theorem for multiplicative cuts
to obtain a multiplicative analog of Jin’s sumset result from [12]. First a lemma:
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Lemma 6.1. Suppose that A is an internal subset of [j,Nj] and B is an internal
subset of [k,Nk]. Set X = ϕV (A) and Y = ϕV (B). Suppose that mj,N,V (X) > 0
and mk,N,V (Y ) > 0. Then XY contains a non-empty interval in Hjk,N2,V .

Proof. Let x ∈ X and y ∈ Y be Lebesgue density points of X and Y respectively.
Then there exists r > V such that

mx,r,V (X ∩ [x, xr]) >
2

3
and

m y
r ,r,V

(Y ∩ [
y

r
, y]) >

2

3
.

Here, and in the rest of this proof, y
r denotes ϕV (bar c) for any a ∈ ϕ−1V ({y}). We

now set
EX := {u ∈ ϕV ([1, r]) : ux ∈ X}

and

EY :=
{
v ∈ ϕV ([1, r]) :

y

v
∈ Y

}
.

Note that

Tx(EX) = X ∩ [x, xr], and T y
r
(Υr(EY )) = Y ∩ [r−1y, y].

By Proposition 2.23 and Lemma 2.30, we have that m1,r,V (EX) > 2/3 and m1,r,V (EY ) >
2/3.

In order to finish the proof of the theorem, we show that xys ∈ XY for any s sat-
isfying V < s < r1/3. Towards this end, consider the set E′X := {u ∈ ϕV ([1, r]) : usx ∈ X}.
Then

EX ∩ [s, r] ⊂ Ts
(
E′X ∩ [1,

r

s
]
)

so that

m1,r,V (E′X) ≥ m1,r,V (Ts

(
E′X ∩ [1,

r

s
]
)

≥ m1,r,V (EX ∩ [s, r])

> 2/3−m1,r,V ([1, s])

> 1/3.

Since m1,r,V (E′X) + m1,r,V (EY ) > 1, there exists u0 ∈ E′X ∩ EY . Then u0sx is in
X and y

u0
is in Y. Thus sxy ∈ XY , as desired. �

We now obtain a multiplicative analog of the main result of [12]:

Theorem 6.2. Suppose that A,B ⊆ N satisfy `BD(A), `BD(B) > 0. Then there
exists m ∈ N such that for all n ∈ N, there is x ∈ N such that, for every [u,mu] ⊆
[x, nx], we have [u,mu] ∩ (A ·B) 6= ∅.
Proof. We work with the cut V = N. Fix N > N; by Proposition 2.11, there
exists j, k ∈ ∗N such that νj,N (∗A ∩ [j, jN ]) > 0 and νk,N (∗B ∩ [k, kN ]) > 0. Let
X := ∗A ∩ [j, jN ] ⊆ Hj,N and Y := ∗B ∩ [k, kN ] ⊆ Hk,N . By Lemma 6.1, XY

contains a nonempty interval in Hjk,N2 , say ϕ([a, b]) with b
a > N.

Let {ci : i ≤M} enumerate ∗(A · B) ∩ [a, b] in increasing order and let m :=

maxi<M

{⌈
ci+1

ci

⌉}
. Then m ∈ N, else X would not contain the entire interval

ϕ([a, b]). We claim that this m is as desired. Indeed, given any n ∈ N, we have
b ≥ na and for any interval [u,mu] ⊆ [a, na] we have [u,mu]∩ ∗(A ·B) 6= ∅, whence
we obtain the existence of the desired x ∈ N by transfer. �
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