
HILBERT’S 5TH PROBLEM

LOU VAN DEN DRIES AND ISAAC GOLDBRING

1. Introduction

A Lie group is a topological group G for which inversion x 7→ x−1 : G→ G
and multiplication (x, y) 7→ xy : G × G → G are analytic maps with
respect to some compatible real analytic manifold structure on its underlying
topological space. It is a remarkable fact that then there is only one such
real analytic manifold structure. This uniqueness falls under the slogan

Algebra × Topology = Analysis

Important Lie groups are the vector groups Rn, their compact quotients
Rn/Zn, the general linear groups GLn(R), and the orthogonal groups On(R).
For each of these the group structure and the real analytic manifold structure
is the obvious one; for example, GLn(R) is open as a subset of Rn2

, and thus
an open submanifold of the analytic manifold Rn2

.
Hilbert’s 5th problem asks for a characterization of Lie groups that is free

of smoothness or analyticity requirements. A topological group is said to
be locally euclidean if some neighborhood of its identity is homeomorphic to
some Rn. A Lie group is obviously locally euclidean, and the most common
version of Hilbert’s 5th problem (H5) can be stated as follows:

Is every locally euclidean topological group a Lie group?

A positive solution to this problem was achieved in the early fifties by the
combined efforts of Gleason [2] and Montgomery & Zippin [12]. Yamabe
improved their results in [16] and [17]. Montgomery & Zippin exposed all
of this and more in their book [13] on topological transformation groups.
Kaplansky has also a nice treatment in Chapter 2 of [10]. Of course, the
affirmative solution of H5 gives further substance to our crude slogan.

Locally euclidean topological groups are certainly locally compact. (We
include being hausdorff as part of local compactness.) From now on G
denotes a locally compact (topological) group, with identity 1, or 1G if
we want to indicate G. Local compactnes yields a powerful analytic tool,
namely Haar measure, and we shall need it.

A notion that has turned out to be central in the story is that of having
no small subgroups: G is said to have no small subgroups (briefly: G has
NSS) if there is a neighborhood U of 1 in G that contains no subgroup of
G other than {1}. It is also useful to introduce a weaker variant of this
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property: G is said to have no small connected subgroups (briefly: G has
NSCS) if there is a neighborhood U of 1 in G that contains no connected
subgroup of G other than {1}. Dimension theory also plays a modest role:
call a topological space is bounded in dimension if for some n no subspace
is homeomorphic to the unit cube [0, 1]n. We can now formulate the main
result as characterizing Lie groups among locally compact groups:

Main Theorem. Given G, the following are equivalent:
(1) G is a Lie group;
(2) G has NSS;
(3) G is locally euclidean;
(4) G is locally connected and has NSCS;
(5) G is locally connected and bounded in dimension.

We say that G can be approximated by Lie groups if every neighborhood of
its identity contains a closed normal subgroup N of G such that G/N (with
its quotient topology) is a Lie group. The following result, due to Yamabe,
is closely related to the Main Theorem, and is important in the structure
theory of locally compact groups.

Theorem. Every locally compact group has an open subgroup that can be
approximated by Lie groups.

Hirschfeld [6] used nonstandard methods to simplify some tricky parts of the
work by Gleason, Montgomery, and Yamabe. We give here an account of [6]
with further simplifications, and some corrections. What’s more interesting,
Goldbring [4] elaborated these methods to solve affirmatively the local form
of H5. (A 1957 paper in the Annals of Mathematics by Jacoby [9] claimed
a solution to local H5, but about 15 years ago it was found that this paper
was seriously wrong; see [14].) We shall discuss local H5 in the last two
talks of this series. In the rest of this introduction we sketch the solution to
(global) H5.

Further relevant history. The clearcut formulation of H5 above became
only possible after basic topological notions had crystallized sufficiently in
the 1920’s to permit the definition of “topological group” by Schreier. The
fundamental tool of Haar measure, on any locally compact group, became
available soon afterwards. Von Neumann used it to extend the Peter-Weyl
theorem for compact Lie groups to all compact groups, and this led to
the solution of H5 for compact groups. (In our treatment of H5 we use a
weak form of this extended Peter-Weyl theorem.) Another important partial
solution of H5 is for the case of commutative G, due to Pontrjagin, and we
shall need this as well. Finally, we are going to use a result of Kuranishi [11]:

if G has a commutative closed normal subgroup N such that N and G/N
are Lie groups, then G is a Lie group.
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Gleason [3] and Iwasawa [8] proved this result of Kuranishi without assuming
commutativity of N , but we don’t need this stronger version and instead
obtain it as a consequence of the Main Theorem.

More recently, the solution to Hilbert’s fifth problem was used by Hrushovski [7]
and Breullard-Green-Tao [1] to solve the classification problem for approx-
imate groups. Tao [15] also gives an account of Hilbert’s fifth problem and
related topics.

One-parameter subgroups. Lie theory provides a precious guide towards
solving H5. It tells us that the tangent vectors at the identity of a Lie group
are in a natural bijective correspondence with the 1-parameter subgroups
of the Lie group. While tangent vectors require a manifold to live on, the
notion of 1-parameter subgroup makes sense in any topological group.

A 1-parameter subgroup (or 1-ps) of G is a continuous group morphism
R→ G. The trivial 1-parameter subgroup O of G is defined by O(t) = 1 ∈ G
for all t ∈ R. We set

L(G) := {X : R→ G| X is a 1-ps of G}.
For r ∈ R and X ∈ L(G) we define rX ∈ L(G) by (rX)(t) := X(rt), and we
also denote (−1)X by −X. Note that then 0X = O, 1X = X, −X = X−1,
and r(sX) = (rs)X for r, s ∈ R and X ∈ L(G). The operation

(r,X) 7→ rX : R× L(G)→ L(G)

will be referred to as scalar multiplication.

The case of Lie groups. Suppose G is a Lie group. Then each X ∈ L(G)
is analytic as a function from R to G, and thus determines a velocity vector
X ′(0) ∈ T1(G) at the point 1 ∈ G. This gives the bijection

X 7→ X ′(0) : L(G)→ T1(G)

mentioned above. It respects scalar multiplication: (rX)′(0) = rX ′(0). The
addition operation on L(G) that makes this bijection an isomorphism of
vector spaces over R is as follows: for X,Y ∈ L(G),

(X + Y )(t) = lim
n→∞

(
X(1/n)Y (1/n)

)[nt]
.

We make L(G) a real analytic manifold such that the R-linear isomorphisms
L(G) ∼= Rn, with n := dimG = dimR L(G), are analytic isomorphisms.
Then the so-called exponential map

X 7→ X(1) : L(G)→ G

yields an analytic isomorphism from an open neighborhood of O in L(G)
onto an open neighborhood of 1 in G.

Sketch why NSS implies Lie. These facts about Lie groups suggest that
we should try to establish L(G) as a substitute tangent space at 1, towards
finding a compatible manifold structure on G. Note in this connection that
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the exponential map X 7→ X(1) : L(G) → G is defined for any G. This is
our clue to proving the key implication NSS⇒ Lie in the Main Theorem.

Indeed, we shall take the following steps towards proving this implication.
Suppose G has NSS.

(1) Show that for any X,Y ∈ L(G) there is an X + Y ∈ L(G) given by

(X + Y )(t) = lim
n→∞

(
X(1/n)Y (1/n)

)[nt]
,

and that this addition operation and the scalar multiplication make
L(G) a vector space over R.

(2) Equip L(G) with its compact-open topology (defined below) and
show that this makes L(G) a topological vector space.

(3) Show that the exponential map X 7→ X(1) : L(G) → G maps some
neighborhood of O in L(G) homeomorphically onto a neighborhood
of 1 in G. Then local compactness of G yields local compactness of
L(G) and hence the finite-dimensionality of L(G) as a vector space
over R. It follows that G is locally euclidean.

(4) Replacing G by the connected component of 1, we can assume that
G is connected. Then the adjoint representation (defined below)
of G on the finite-dimensional vector space L(G) has as its kernel a
commutative closed normal subgroup N of G, and yields an injective
continuous group morphism G/N → GLn(R). Since N has NSS, it
is locally euclidean by (3). But N is also commutative, and hence
a Lie group (Pontrjagin). The injective continous group morphism
G/N → GLn(R) makes G/N a Lie group (E. Cartan, von Neumann).
Applying the Kuranishi theorem we conclude that G is a Lie group.

Step (1) is tricky, and requires ingenious constructions due to Gleason and
Yamabe. Step (2) is easy, and step (3) is of intermediate difficulty. Step (4)
is a reduction of the problem to a situation that that was well-understood
before 1950.

New in our treatment is that we carry out steps (1) and (2) without
requiring NSS: local compactness of G is enough. Some of (3) and (4) can
also be done in this generality, and this is the first thing we shall take care
of in the next section.

Sketch why every locally euclidean G has NSS. This is the other key
implication in the Main Theorem, and it passes through the other equivalent
conditions (4) and (5) in the Main Theorem. This goes roughly as follows.
When we have done step (1) above for all G, without assuming NSS, we can
use this to prove the following implications:

• if G is locally connected and has NSCS, then G has NSS;
• if G does not have NSCS, then G contains a homeomorphic copy of

[0, 1]n for all n.
It only remains to observe that if G is locally euclidean, then G is locally
connected (trivially), and bounded in dimension (by Brouwer).
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2. Preliminaries

Throughout we let m,n range over N = {0, 1, 2, . . . } and let G and H denote
locally compact groups. Given a closed normal subgroup N of G we give
G/N its quotient topology; it makes G/N a locally compact group. We also
give R its usual topology, and each Rn the corresponding product topology.
Any n-dimensional vector space over R is given the topology that makes the
R-linear isomorphisms with Rn into homeomorphisms.

In this section we state some basic facts on L(G) and its compact-open
topology. We also list some some elementary facts concerning NSS-groups,
and introduce the nonstandard setting that will enable an efficient account
of the solution of H5. Here is some further terminology. A subset U of G is
said to be symmetric if U−1 = U .

Generalities on one-parameter groups.

Lemma 2.1. Suppose X ∈ L(G) and X 6= O. Then either kerX = {0} or
kerX = Zr with r ∈ R>0. In the first case X maps each bounded interval
(−a, a) (a ∈ R>0) homeomorphically onto its image in G. In the second case
X maps the interval (−r2 ,

r
2) homeomorphically onto its image in G.

Proof. This follows from two well-known facts: a closed subgroup of the
additive group of R different from {0} and R is of the form Zr with r ∈ R>0,
and any continuous bijection from a compact space onto a hausdorff space
is a homeomorphism. �

In the rest of these notes s ranges over R>0. For X,Y ∈ L(G) we say that
X + Y exists if lims→∞

(
X(1/s)Y (1/s)

)[st] exists in G for all t ∈ R. In that
case the map

t 7→ lim
s→∞

(
X(1/s)Y (1/s)

)[st] : R→ G

is a 1-ps of G, and we define X + Y to be this 1-ps.

Lemma 2.2. Let X,Y ∈ L(G) and p, q ∈ R.
(1) X +O exists and equals X;
(2) pX + qX exists and equals (p+ q)X;
(3) if X + Y exists, then Y +X exists and equals X + Y ;
(4) if X + Y exists, then pX + pY exists and equals p(X + Y ).

Proof. We leave (1) and (2) to the reader. Note that (2) yields thatX+(−X)
exists and equals O. For (3), use that for a = X(1/s) and b := Y (1/s) we
have ba = b(ab)b−1, so (ba)n = b(ab)nb−1. Item (4) is easy when p > 0. To
reduce the case p < 0 to this case one first shows that if X + Y exists, then
(−X) + (−Y ) exists, and equals −(X + Y ). �

We define the adjoint action of G on L(G) to be the left action

(a,X) 7→ aXa−1 : G× L(G)→ L(G), (aXa−1)(t) := aX(t)a−1,
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of G on the set L(G). Then each a ∈ G gives a bijection

Ad(a) : L(G)→ L(G), Ad(a)(X) := aXa−1,

and for r ∈ R and X ∈ L(G) we have Ad(a)(rX) = rAd(a)(X), and if
X,Y ∈ L(G) and X + Y exists, then Ad(a)(X) + Ad(a)(Y ) exists and
equals Ad(a)(X + Y ).

Corollary 2.3. Suppose that X+Y exists for all X,Y ∈ L(G), and that the
binary operation + on L(G) is associative. Then L(G) with + as its addition
and the usual scalar multiplication is a vector space over R with O as zero
element, and we have a group morphism a 7→ Ad(a) : G → Aut

(
L(G)

)
of

G into the group of automorphisms of the vector space L(G).

In the situation of this corollary the map a 7→ Ad(a) : G → Aut(L(G)) is
called the adjoint representation of G.

Next, consider a continuous group morphism φ : G → H. Then we have a
map

L(φ) : L(G)→ L(H), L(φ)(X) := φ ◦X,
and L(φ)(rX) = rL(φ)(X) for all r ∈ R andX ∈ L(G). Also, ifX,Y ∈ L(G)
and X + Y exists, so does L(φ)(X) + L(φ)(Y ) and

L(φ)(X + Y ) = L(φ)(X) + L(φ)(Y ).

If φ is injective, so is L(φ). In particular, if G is a subgroup of H with the
subspace topology and φ is the inclusion map, then we identify L(G) with
a subset of L(H) via L(φ). With N = ker(φ) (a closed subgroup of G) and
OH the trivial 1-ps of H we have

L(φ)−1(OH) = L(N).

Note that assigning to each G the set L(G) and to each φ as above the map
L(φ) yields a functor L from the category of locally compact groups and
continuous group morphisms into the category of sets.

Generalities on NSS. By “NSS-group” we mean a locally compact group
that has NSS. Here are some examples of NSS-groups, and some basic facts
about them.

(1) if G is discrete, then G has NSS; the additive group of R has NSS;
(2) GLn(R) has NSS;
(3) if G1, . . . , Gn are NSS-groups, so is G1 × · · · ×Gn;
(4) if φ : G → H is a continuous injective group morphism and H has

NSS, then G has NSS.
(5) if N is a closed normal subgroup of G such that N and G/N have

NSS, then G has NSS.

The nonstandard setting. We assume familiarity with this setting; see
[5] for details. Here we just fix notations and terminology. To each relevant
“basic” set S corresponds functorially a set S∗ ⊇ S, the nonstandard exten-
sion of S. In particular, N,R, G extend to N∗,R∗, G∗, respectively. Also, any
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(relevant) relation R and function F on these basic sets extends functorially
to a relation R∗ and function F ∗ on the corresponding nonstandard exten-
sions of these basic sets. For example, the linear ordering < on N extends
to a linear ordering <∗ on N∗, and the group operation p : G×G→ G of G
extends to a group operation p∗ : G∗×G∗ → G∗. For the sake of readability
we only use a star in denoting the nonstandard extension of a basic set, but
drop the star when indicating the nonstandard extension of a relation or
function between these basic sets. For example, when x, y ∈ R∗ we write
x + y and x < y rather than x +∗ y and x <∗ y; likewise, the nonstandard
extension X∗ : R∗ → G∗ of a 1-ps X : R→ G is usually indicated just by X.
Given an ambient hausdorff space S and s ∈ S, the monad of s, notation:
µ(s), is by definition the intersection of all U∗ ⊆ S∗ with U a neighborhood
of s in S; the elements of µ(s) are the points of the nonstandard space S∗

that are infinitely close to s. The points of S∗ that are infinitely close to
some s ∈ S are called nearstandard, and Sns is the set of nearstandard points
of S∗:

Sns :=
⋃
s∈S

µ(s).

In particular, S ⊆ Sns. Since S is hausdorff, µ(s) ∩ µ(s′) = ∅ for distinct
s, s′ ∈ S. Thus we can define the standard part st(x) of x ∈ Sns to be the
unique s ∈ S such that x ∈ µ(s). We also introduce the equivalence relation
∼ on Sns whose equivalence classes are the monads:

x ∼ y :⇐⇒ st(x) = st(y) (“x and y are infinitely close”).

The following is easy and well-known.

Lemma 2.4. Suppose S is a regular hausdorff space and X is an internal
subset of S∗ such that X ⊆ Sns. Then st(X) ⊆ S is compact.

Proof. Let for each point p ∈ st(X) an open neighborhood Up ⊆ S of p be
given. It suffices to show that then finitely many of the Up cover st(X). By
regularity we can pick for each p ∈ st(X) an open neighborhood Vp ⊆ S
of p such that cl(Vp) ⊆ Up (and thus st(V ∗p ) ⊆ Up). From X ⊆ Sns we
obtain X ⊆

⋃
p∈st(X) V

∗
p , which by saturation yields X ⊆ V ∗p1 ∪ · · · ∪ V

∗
pn

with p1, . . . , pn ∈ st(X). Then st(X) ⊆ Up1 ∪ · · · ∪ Upn . �

Note that Gns =
⋃
g∈G µ(g) is a subgroup of G∗, and that the standard part

map st : Gns → G is a group morphism that is the identity on G. We let
µ := µ(1) = ker(st) denote the normal subgroup of infinitesimals of Gns.
The equivalence relation ∼ on Gns is given by:

a ∼ b ⇐⇒ ab−1 ∈ µ, (a, b ∈ Gns).

We let i, j range over N∗, ν over N∗\N, k over Z∗. Also, σ will always denote
a positive infinite element of R∗, and a, b, sometimes subscripted, range over
G∗. We adopt Landau’s “big O” and “little o” notation in the following
way: for x, y ∈ R∗ with y > 0, x = o(y) means that |x| < y/n for all n > 0,
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and x = O(y) means that |x| < ny for some n > 0. We also adapt it to G
as follows:

O[σ] = OG[σ] := {a ∈ µ : ai ∈ µ for all i = o(σ)},
o[σ] = oG[σ] := {a ∈ µ : ai ∈ µ for all i = O(σ)}

= {a ∈ µ : ai ∈ µ for all i ≤ σ)}.

So o[σ] ⊆ O[σ] ⊆ µ ⊆ Gns, and o[σ] and O[σ] are closed under a 7→ a`, for
each ` ∈ Z; in particular, these sets are symmetric. It is also clear that if
a ∈ Gns and b ∈ O[σ], c ∈ o[σ], then aba−1 ∈ O[σ] and aca−1 ∈ o[σ]. A key
fact to be proved is that o[σ] and O[σ] are subgroups of Gns.

Lemma 2.5. If a ∈ O[σ], then ai ∈ Gns for all i = O(σ).

Proof. Let a ∈ O[σ], and take a compact symmetric neighborhood U of 1 in
G. If ai ∈ U∗ for all i = O(σ), then ai ∈ Gns for all i = O(σ), as desired.
Suppose aj /∈ U∗ for some j = O(σ), and take j minimal with this property.
Then ai ∈ Gns with st(ai) ∈ U for i = 0, . . . , j. We cannot have j = o(σ),
so σ = O(j). Therefore, if i = O(σ), then i = nj + i′ with i′ < j, and thus
ai = (aj)nai

′ ∈ Gns. �

The next lemma indicates why O[σ] is of interest: its elements generate the
one-parameter subgroups of G in a very intuitive way.

Lemma 2.6. Let a ∈ O[σ]. Then the map Xa : R→ G defined by Xa(t) :=
st(a[σt]) is a 1-ps of G. Moreover:

(1) Xa` = `Xa for all ` ∈ Z;
(2) b ∈ µ =⇒ Xbab−1 = Xa;
(3) Xa = O ⇐⇒ a ∈ o[σ];
(4) L(G) = {Xb : b ∈ O[σ]}.

Proof. It is clear that Xa is a group morphism. To show continuity at 0 ∈ R,
let U be a neighborhood of 1 in G. Take a neighborhood V of 1 in G such
that cl(V ) ⊆ U . Since ak ∈ µ ⊆ V ∗ for all k = o(σ), we have n > 0 such that
ak ∈ V ∗ whenever |k| < σ/n. Also ak ∈ Gns for such k, so st(ak) ∈ cl(V )
whenever |k| < σ/n. Hence Xa(t) = st(a[σt]) ∈ U whenever t ∈ R and
|t| < 1/n.

The remaining assertions follow easily. In connection with (4) we note
that for X ∈ L(G) and b := X(1/σ) we have b ∈ O[σ] and X = Xb. �

The compact-open topology. Let P be a locally compact space, Q a
hausdorff space, and C(P,Q) the set of continuous maps P → Q. For
compact K ⊆ P and open U ⊆ Q, put

O(K,U) := {f ∈ C(P,Q) : f(K) ⊆ U}.
We equip C(P,Q) with its compact-open topology; this is the topology on
C(P,Q) that has the finite intersections of these sets O(K,U) as basic open
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sets; it makes C(P,Q) into a hausdorff space, and makes the evaluation map

Φ : C(P,Q)× P → Q, Φ(f, p) := f(p),

continuous. Let A be any subset of P and F be a closed subset of Q. Then

{f ∈ C(P,Q) : f(A) ⊆ F}
is closed, since its complement in C(P,Q) is the union over all a ∈ A of the
open sets

{f ∈ C(P,Q) : f(a) /∈ F}.
A nonstandard view of the compact-open topology is as follows: Let f ∈
C(P,Q) and g ∈ C(P,Q)∗; then

g ∈ µ(f) ⇐⇒ g(p′) ∈ µ(f(p)) for all p ∈ P and p′ ∈ µ(p).

We apply this to the case where P = R is the real line and Q = G. Then
L(G) is closed in C(R, G), and below L(G) is given the topology induced on
it by the (compact-open) topology of C(R, G). Let I := [−1, 1] ⊆ R. Let
X ∈ L(G). Then every neighborhood U of 1 in G determines a neighborhood

N(U) := {Y ∈ L(G) : Y (t) ∈ X(t)U for all t ∈ I}
of X in L(G), and the collection

{N(U) : U is a neighborhood of 1 in G}
is a neighborhood base of X in L(G). (These facts are easy to verify using
the above characterization of monads in the compact-open topology.)

Lemma 2.7. The following maps are continuous:
(1) the exponential map X 7→ X(1) : L(G)→ G;
(2) the scalar multiplication map (r,X) 7→ rX : R× L(G)→ L(G);
(3) the adjoint action map G× L(G)→ L(G).

Proof. Item (1) follows from the continuity of evaluation in the compact-
open topology. To prove (2), let X ∈ L(G) and r ∈ R, and let X ′ ∈ L(G)∗

and r′ ∈ R∗ be such that X ′ ∈ µ(X) and r′ ∈ µ(r); it suffices to show that
then r′X ′ ∈ µ(rX). Let t′ ∈ R∗ with t′ ∈ µ(t), t ∈ R; then r′t′ ∈ µ(rt), so

(r′X ′)(t′) = X ′(r′t′) ∈ µ(X(rt)) = µ((rX)(t)).

This argument shows that r′X ′ ∈ µ(rX), as desired. �

Lemma 2.8. Suppose U ⊆ G is a compact neighborhood of 1 in G and
contains no subgroups of G other than {1}. Then the set

K := {X ∈ L(G) : X(I) ⊆ U}
is a compact neighborhood of O in L(G).

Proof. Let Y ∈ K∗, that is, Y ∈ L(G)∗ and Y (I∗) ⊆ U∗. If ε ∈ R∗ is
infinitesimal, then st

(
Y (Zε)

)
⊆ U is a subgroup of G, so Y (ε) ∈ µ. Hence

for each neighborhood V of 1 in G there is n > 0 such that Y (r) ∈ V ∗ for all
r ∈ R∗ with |r| < 1/n. Consequently, X : R→ G defined by X(t) = st(Y (t))
is a 1-ps with X(I) ⊆ U , and Y ∈ µ(X). �
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3. Generating compact connected subgroups

We say that a is degenerate if ai ∈ µ for all i. Note: G has NSS iff G∗ has
no degenerate elements other than 1. We do not yet restrict our attention
to NSS-groups, so we do allow degenerate elements 6= 1 in µ. In some sense,
nondegenerate elements in µ generate nontrivial connected subgroups of G.
This depends on the following elementary fact.

Lemma 3.1. Let a1, . . . , aν be an internal sequence such that ai ∈ µ and
a1 · · · ai ∈ Gns for all i ∈ {1, . . . , ν}. Then the set

S := {st(a1 · · · ai) : 1 ≤ i ≤ ν} ⊆ G

is compact and connected (and contains 1).

Proof. The compactness of S follows from Lemma 2.4. Assume S is not
connected. Then we have disjoint open subsets U and V of G such that
S ⊆ U ∪ V and S meets both U and V . We can assume that 1 ∈ U , so
a1 ∈ U∗. There are i ≤ ν such that st(a1 · · · ai) ∈ V , and a1, . . . , ai ∈ V ∗
for such i. Take i ≤ ν minimal such that a1 · · · ai ∈ V ∗. Then i ≥ 2 and
a1 · · · ai−1 ∈ U∗. Now a := st(a1 · · · ai−1) = st(a1 · · · ai) ∈ S. If a ∈ U , this
gives a1 · · · ai ∈ U∗, and if a ∈ V , it gives a1 · · · ai−1 ∈ V ∗, and we have a
contradiction in either case. �

Till further notice U is a compact symmetric neighborhood of 1 in G. If
aN∗ ⊆ U∗ (in particular, if a is degenerate), then we set ordU (a) = ∞; if
aN∗ 6⊆ U∗, then we let ordU (a) be the largest j such that ai ∈ U∗ for all
i ≤ j. Thus ordU (a) = 0 iff a /∈ U∗, and ordU (a) > N if a ∈ µ.

Lemma 3.2. Suppose a ∈ µ and ai /∈ µ for some i = o
(

ordU (a)
)
. Then

U contains a nontrivial connected subgroup of G.

Proof. By the previous lemma the set

GU (a) := {st(ak) : k = o
(

ordU (a)
)
}

is a union of connected subsets of U , each containing 1, and is thus itself a
connected subset of U . It is also a subgroup of G. �

An element a ∈ µ is said to be U -pure if it is nondegenerate and a ∈ O[ν]
for ν := ordU (a). If U contains no nontrivial connected subgroup of G, then
by the last lemma every nondegenerate a ∈ µ is U -pure.

An element a ∈ µ is said to be pure if it is V -pure for some compact
symmetric neighborhood V of 1 in G. Thus:

Corollary 3.3. If G has NSCS, then every nondegenerate a ∈ µ is pure.

Lemma 3.4. Let a ∈ µ. Then a is pure iff there is ν such that a ∈ O[ν]
and aν /∈ µ.
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Proof. If a is U -pure, say, then for ν = ordU (a) we have a ∈ O[ν] and aν /∈ µ.
Conversely, let ν be such that a ∈ O[ν] and aν /∈ µ. If ordU (a) = O(ν),
then a is U -pure. If ν = O

(
ordU (a)

)
, then aν ∈ Gns, and we can take a

compact symmetric neighborhood V of 1 in G such that aν /∈ V ∗, and then
a is V -pure. �

Let Q range over internal symmetric subsets of G∗ such that 1 ∈ Q ⊆ µ.
We define Qi to be the internal subset of G∗ consisting of all a1 · · · ai where
a1, . . . , ai is an internal sequence in Q. Thus

Q∞ :=
⋃
i

Qi

is the internal subgroup of G∗ internally generated by Q.
We say that Q is degenerate if Q∞ ⊆ µ. If Q∞ 6⊆ U∗, then we let

ordU (Q) be the largest j such that Qj ⊆ U∗, and if Q∞ ⊆ U∗, then we set
ordU (Q) :=∞. Thus e := ordU (Q) > N. We set

GU (Q) := {st(a) : a ∈ Qi for some i = o(e)}.
Lemma 3.5. If e 6=∞, then st(Qe) 6⊆ int(U).

Proof. Assume e 6= ∞, and take b ∈ Qe such that bq /∈ U∗ for some q ∈ Q.
One checks easily that then st(b) /∈ int(U). (check) �

Lemma 3.6. GU (Q) is a compact connected subgroup of G contained in U .
In particular, if Qi 6⊆ µ for some i = o(e), then U contains a nontrivial
compact connected subgroup of G.

Proof. The set GU (Q) is the union of the increasing family of subsets st(Qi)
of G with i = o(e). But there is only a “small” number of subsets of G, so
saturation gives i0 = o(e) such that st(Qi) = st(Qi0) for all i = o(e) with
i ≥ i0. Then GU (Q) = st(Qi0), so GU (Q) is compact. As in the proof of
Lemma 3.2, GU (Q) is a union of connected subsets of U , each containing 1,
and is thus itself a connected subset of U . It is also a subgroup of G. �

4. compact groups

Theorem 4.1. Let G be compact and U an open neighborhood of 1 in G.
Then there is a continuous injective group morphism G/N → GLn(R) for
some closed normal subgroup N of G contained in U .

Proof. The Peter-Weyl theorem yields for any a 6= 1 a continuous group
morphism φa : G → GLna(R) that does not have a in its kernel Na. As a
varies over G\H, the open sets G\Na cover G\U , so there are a1, . . . , am ∈
G \ U such that N := Na1 ∩ · · · ∩Nam is contained in U . Then the desired
result holds for this N and n := na1 + · · ·+ nam . �

Corollary 4.2. Let G be compact and U a neighborhood of 1 in G. Then
there is a closed normal subgroup N of G contained in U and an open set
V in G such that N ⊆ V ⊆ U and every subgroup of G contained in V is
contained in N .



12 LOU VAN DEN DRIES AND ISAAC GOLDBRING

Proof. We can assume that U is open, and then we take N as in the pre-
vious theorem, so that G/N has NSS. Take an open neighborhood W of
the identity in G/N that contains no nontrivial subgroup of G/N . Let
V := π−1(W )∩U , where π : G→ G/N is the natural map. Then V has the
desired property. �

5. Gleason-Yamabe Lemmas and their Consequences

This is the most technical part of the story. The leading idea is to make
G act by isometries on its space of real-valued continuous functions with
compact support, and to use the Haar integral on this space.

Gleason-Yamabe Lemmas. Throughout this subsection we fix a compact
symmetric neighborhood U of 1 in G and a continuous function τ : G→ [0, 1]
such that

τ(1) = 1, τ(x) = 0 for all x ∈ G \ U .
Let Q ⊆ U be symmetric with 1 ∈ Q and let e be a positive integer with
Qe ⊆ U . Define the function ∆ = ∆Q,e : G→ [0, 1] by

(i) ∆(1) = 0;
(ii) ∆(x) = i/(e+ 1) if x ∈ Qi \Qi−1, 1 ≤ i ≤ e;
(iii) ∆(x) = 1 if x /∈ Qe.

Then for all x ∈ G,
(iv) ∆(x) = 1 if x /∈ U ;
(v) |∆(ax)−∆(x)| ≤ 1/e for a ∈ Q.

Now use τ to smooth 1−∆: define θ = θQ,e : G→ [0, 1] by

θ(x) = sup
y∈G

(
1−∆(y)

)
τ(y−1x) = sup

y∈U

(
1−∆(y)

)
τ(y−1x).

The following properties are easy consequences:
(1) θ is continuous, and θ(x) = 0 outside U2;
(2) 0 ≤ τ ≤ θ ≤ 1;
(3) |θ(ax)− θ(x)| ≤ 1/e for a ∈ Q;

For continuity of θ, note that if a ∈ µ and x ∈ G, then θ(xa) − θ(x) is
infinitesimal in R∗. To prove (3), let a ∈ Q, and note that for all x, y ∈ G,

|
(
1−∆(a−1y)

)
−
(
1−∆(y)

)
| ≤ 1/e,

and y−1ax = (a−1y)−1x, so

|
(
1−∆(y)

)
τ(y−1ax)−

(
1−∆(a−1y)

)
τ((a−1y)−1x)| ≤ 1/e,

which gives (3).

Let C be the real vector space of continuous functions G→ R with compact
support, with norm given by

‖f‖ = sup{|f(x)| : x ∈ G}.
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We have a left action G× C → C of G on C given by

(a, f) 7→ af, (af)(x) = f(a−1x).

More suggestively, (af)(ax) = f(x) for a, x ∈ G, f ∈ C. It is clear that for
a ∈ G the map f 7→ af is an R-linear isometry of C onto itself, and thus,

‖abf − f‖ ≤ ‖af − f‖+ ‖bf − f‖ (a, b ∈ G, f ∈ C).

We have the following useful equicontinuity result:
(4) for each ε ∈ R>0 there is a neighborhood Vε of 1 in G, independent

of (Q, e), such that ‖aθ − θ‖ ≤ ε for all a ∈ Vε.
To see why, let ε ∈ R>0. Uniform continuity of τ gives a neighborhood U of
1 in G such that |τ(g)− τ(h)| < ε for all g, h ∈ G with gh−1 ∈ U . Now, take
a neighborhood Vε of 1 in G such that y−1ay ∈ U for all (y, a) ∈ U × Vε.
Then |τ(y−1ax)− τ(y−1x)| < ε for all x ∈ G, y ∈ U and a ∈ Vε. This gives
(4).

A second smoothing will be done by integration. Take the unique left-
invariant Haar measure µ on G such that µ(U2) = 1. Here left-invariance
means that for all a ∈ G and f ∈ C we have

∫
f(ax)dµ(x) =

∫
f(x)dµ(x).

Then
(5) 0 ≤

∫
θ(x)dµ(x) ≤ 1, by (1) and (2).

We now introduce the continuous function φ = φQ,e : G → R by φ(x) :=∫
θ(xu)θ(u) dµ(u). Then

(6) φ(x) = 0 outside U4;
(7) φ(1) ≥

∫
τ(u)2 dµ(u) > 0, by (2);

(8) ‖aφ− φ‖ ≤ ‖aθ − θ‖ for all a ∈ G;
(9) if a ∈ Q, then ‖aφ− φ‖ ≤ 1/e, by (3) and (8).

The significance of (7) is that the positive lower bound
∫
τ(u)2 dµ(u) on

φ(1) is independent of (Q, e).

Lemma 5.1. Let ε ∈ R>0. Then there is a neighborhood U = Uε ⊆ U of 1
in G, independent of (Q, e), such that for all a ∈ Q and b ∈ U ,

‖b · (aφ− φ)− (aφ− φ)‖ ≤ ε

e
.

Proof. Let a ∈ Q, b ∈ U . Then, with x ∈ G and y := b−1x,

(aφ− φ)(x) =
∫

[θ(a−1xu)− θ(xu))]θ(u) dµ(u)

b(aφ− φ)(x) = (aφ− φ)(y) =
∫

[θ(a−1yu)− θ(yu))]θ(u) dµ(u).

By the left-invariance of our Haar measure we can replace u by x−1yu in
the function of u integrated in the first identity, so

(aφ− φ)(x) =
∫

[θ(a−1yu)− θ(yu))]θ(x−1yu) dµ(u).
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Taking differences gives

[b · (aφ− φ)− (aφ− φ)](x) =
∫

[(aθ − θ)(yu)][(θ − y−1xθ)(u)] dµ(u).

If the left hand side here is nonzero, then x ∈ U4 or a−1x ∈ U4 or b−1x ∈ U4

or a−1b−1x ∈ U4, and thus x ∈ U6 in all cases. Also y−1x = x−1bx, so by
(4) we can take the neighborhood Uc,ε ⊆ U of 1 in G so small that for all
b ∈ Uε and x ∈ U6 we have y−1x ∈ U and ‖θ− y−1xθ‖ < ε/µ(U3). Then Uε
has the desired property. �

Lemma 5.2. With ε ∈ R>0, let U = Uε be as in the previous lemma and
let a ∈ Q and n > 0 be such that ai ∈ U for i = 0, . . . , n. Then

‖(anφ− φ)− n(aφ− φ)‖ ≤ nε

e
.

Proof. We have anφ− φ =
∑n−1

i=0 a
i(aφ− φ), so

(anφ− φ)− n(aφ− φ) =
n−1∑
i=0

ai(aφ− φ)− (aφ− φ).

By the previous lemma we have for i = 0, . . . , n− 1,

‖ai(aφ− φ)− (aφ− φ)‖ ≤ ε

e
,

which gives the desired result by summation. �

Suppose now that Q is a symmetric internal subset of G∗ with 1 ∈ Q and
Q ⊆ µ. Let e ∈ N∗ be such that e ≥ 1 and Qe ⊆ U∗. Then the constructions
and results above transfer automatically to the nonstandard setting and
yield internally continuous functions

θ = θQ,e : G∗ → [0, 1]∗, φ = φQ,e : G∗ → R∗

satisfying the internal versions of (1)-(9) and Lemmas 5.1 and 5.2. With
these assumptions we have

Corollary 5.3. Suppose a ∈ Q, ν = O(e), and a ∈ o[ν]. Then

ν‖aφ− φ‖ ∼ 0.

Proof. By Lemma 5.2 we have for each ε ∈ R>0,

‖(aνφ− φ)− ν(aφ− φ)‖ ≤ νε

e
,

so the lefthand side in this inequality is infinitesimal. Also, by (8) and (4)
we have ‖aνφ− φ‖ ≤ ‖aνθ − θ‖, so ‖aνφ− φ‖ is infinitesimal. �

Consequences of the Gleason-Yamabe Lemmas.

Lemma 5.4. Let a1, . . . , aν be an internal sequence in G∗ such that all
ai ∈ o[ν]. Then a1 · · · aν ∈ µ.
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Proof. Put Q := {1, a1, . . . , aν , a
−1
1 , . . . , a−1

ν }, and towards a contradiction,
suppose that Qν 6⊆ µ. Take a compact symmetric neighborhood U of 1 in
G such that Qν+1 6⊆ U∗, so ordU (Q) ≤ ν. By decreasing ν if necessary, and
Q accordingly, we arrange that ordU (Q) = ν.

Consider first the special case that Qi ⊆ µ for all i = o(ν). (This occurs
if G has NSCS). Take b ∈ Qν such that st(b) 6= 1, and then take a compact
symmetric neighborhood U ⊆ U of 1 in G such that st(b) /∈ U4, and put
e := ordU (Q), so ν = O(e). The previous subsection yields an internally
continuous function φ = φQ,e : G∗ → R∗ satisfying the internal versions
of (6)-(9) and Lemma 5.3. In particular, φ(x) = 0 outside (U∗)4 (hence
φ(b−1) = 0), and φ(1) is not infinitesimal. Then ‖bφ−φ‖ is not infinitesimal.
Take an internal sequence b1, . . . , bν in Q such that b = b1 · · · bν . Then
Lemma 5.3 yields

‖bφ− φ‖ ≤
ν∑
i=1

‖biφ− φ‖ ∼ 0,

and we have a contradiction.
Next, assume that Qi 6⊆ µ for some i = o(ν). Then we set

H := GU (Q) = {st(b) : b ∈ Qi for some i = o(ν)},
so H is a nontrivial compact subgroup of G contained in U . By Corollary 4.2
we can take a proper closed normal subgroup N of H and a compact sym-
metric neighborhood V ⊆ U of 1 in G such that N ⊆ int(V ) and every
subgroup of H contained in V is contained in N . Put µ := ordV (Q), so
N < µ ≤ ν, and we have the compact subgroup

GV (Q) = {st(b) : b ∈ Qi for some i = o(µ)}
of H with GV (Q) ⊆ V , so GV (Q) ⊆ N . By Lemma 3.5 we can take b ∈ Qµ
with st(b) /∈ int(V ). Then st(b) /∈ N , so we can take a compact symmetric
neighborhood U of 1 in G such that N ⊆ int(U), U4 ⊆ V and st(b) /∈ U4.

Put e := ordU (Q). If e = o(µ), then st(Qe) ⊆ GV (Q) ⊆ N , contradicting
st(b) /∈ N . This shows µ = O(e). The rest of the proof now proceeds as in
the special case considered earlier, with ν replaced by µ, and b1, . . . , bν by
an internal sequence b1, . . . , bµ in Q such that b = b1 · · · bµ. �

Corollary 5.5. Let a1, . . . , aν be an internal sequence in G∗ such that all
ai ∈ O[ν]. Then a1 · · · aν ∈ Gns.

Proof. If a1 · · · aν ∈ U∗, we are done. Assume otherwise. Take the least j
with ai · · · ai+j /∈ U∗ for some i with 1 ≤ i < i+j ≤ ν. Then by the previous
lemma we cannot have j = o(ν), and this gives n > 0 with nj ≤ ν < (n+1)j.
Hence

a1 · · · aν = (a1 · · · aj)(aj+1 · · · a2j) · · · (anj+1 · · · aν) ∈ (U∗)n ⊆ Gns.

�

Lemma 5.6. If a ∈ O[ν] and b ∈ o[ν], then (ab)i ∼ ai for all i ≤ ν.
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Proof. Set bi := aiba−i. Then (ab)i = b1 · · · bi · ai. Assuming a ∈ O[ν] and
b ∈ o[ν], we have bi ∈ o[ν] for i ≤ ν, so b1 · · · bi ∈ µ for all i ≤ ν, by
Lemma 5.4. �

Lemma 5.7. Suppose that a, b ∈ O[ν] and ai ∼ bi for all i ≤ ν. Then
a−1b ∈ o[ν].

Proof. If a ∈ o[ν], then b ∈ o[ν], so (a−1b)i ∼ a−i ∈ µ for all i ≤ ν,
and we are done. So we can assume that a /∈ o[ν], and then, replacing
ν by an element of N∗ of the same archimedean class, we have aν /∈ µ.
Let Q := {1, a, a−1, b, b−1}. Then Qi ⊆ µ for all i = o(ν) by Lemma 5.4,
and Qν ⊆ Gns by Corollary 5.5. Suppose towards a contradiction that
(a−1b)j /∈ µ, where j ≤ ν. Then ν = O(j). Take a compact symmetric
neighborhood U of 1 in G such that aν /∈ U and (a−1b)j /∈ U4, and put
e = ordU (Q), so e and ν have the same archimedean class. As before we
have the internally continuous function φ = φQ,e : G∗ → R∗ satisfying
the internal versions of (6)-(9) and Lemma 5.3. Then φ((a−1b)j) = 0 and
ε := φ(1) > 0 is not infinitesimal, and thus

ε ≤ ‖(b−1a)jφ− φ‖ ≤ j‖(b−1a)φ− φ‖
= j‖aφ− bφ‖ = j‖(aφ− φ)− (bφ− φ‖.

The desired contradiction will be obtained by showing that

j‖(aφ− φ)− (bφ− φ)‖ < ε.

Let δ ∈ R>0; then Lemma 5.2 gives a compact symmetric neighborhood
U ⊆ U of 1 in G such that if k > 0 and ai, bi ∈ U∗ for all i ≤ k, then

‖(akφ− φ)− k(aφ− φ)‖ ≤ kδ/e, ‖(bkφ− φ)− k(bφ− φ)‖ ≤ kδ/e, so

‖ j
k

(akφ− φ)− j(aφ− φ)‖ ≤ jδ/e, ‖ j
k

(bkφ− φ)− j(bφ− φ)‖ ≤ jδ/e.

Choose δ ∈ R>0 such that jδ/e < ε/3, and put k := min(ordU (a), ordU (b)).
Then k < ν and ai, bi ∈ U∗ for all i ≤ k, and therefore

‖ j
k

(akφ− φ)− j(aφ− φ)‖ < ε/3, ‖ j
k

(bkφ− φ)− j(bφ− φ)‖ < ε/3.

Also ν = O(k), and hence j/k < n for some n. Since ak ∼ bk, this gives

‖(j/k)(akφ− φ)− (j/k)(bkφ− φ)‖ = (j/k)‖akφ− bkφ‖ ∼ 0.

In view of the earlier inequalities, this yields

‖j(aφ− φ)− j(bφ− φ)‖ < ε,

as promised. �

Theorem 5.8. The sets O[σ] and o[σ] have the following properties:
(1) O[σ] and o[σ] are normal subgroups of Gns;
(2) if a ∈ O[σ] and b ∈ µ, then [a, b] := aba−1b−1 ∈ o[σ];
(3) O[σ]/ o[σ] is commutative, and O[σ]/ o[σ] ⊆ center

(
µ/ o[σ]

)
.
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Proof. As to (1), let a, b ∈ O[σ]. Then (ab)i ∈ µ for all i = o(σ) by
Lemma 5.4, so ab ∈ O[σ]. Thus O[σ] is a normal subgroup of Gns. For
i = O(σ) this argument shows that o[σ] is a normal subgroup of Gns. As
to (2), this follows from the previous lemma. Item (3) is immediate from
(2). �

L(G) as a topological vector space. It follows from Lemma 5.6 that for
a ∈ O[σ] and b ∈ o[σ] we have Xa = Xab, so we have a surjective map

a o[σ] 7→ Xa : O[σ]/ o[σ]→ L(G).

By Lemma 5.6 we also have for a, b ∈ O[σ] that if Xa = Xb, then a−1b ∈ o[σ],
so the above map is a bijection. We make L(G) into an abelian group
with group operation +σ so that this bijection is a group isomorphism
O[σ]/ o[σ] → L(G), in other words, Xa +σ Xb = Xab for a, b ∈ O[σ]. Note
that Xa +σ Xa = 2Xa for a ∈ O[σ]. To show that this operation +σ is
independent of σ, we need the next lemma. In its proof we use that for
g, h ∈ G and [g, h] := ghg−1h−1 we have gh = [g, h]hg.

Lemma 5.9. Let a, b ∈ o[ν] and aν ∈ O[σ]. Then (ab)ν = caνbν with
c ∈ o[σ]. Likewise, (ba)ν = bνaνd with d ∈ o[σ].

Proof. We define ci := [ai−1, [bi−1, a]][bi−1, a] ∈ µ for i = 1, . . . , ν, so c1 = 1.
We claim that then (ab)i = c1 · · · ciaibi. This is clear for i = 1. Assume the
claim holds for a certain i < ν. Then

(ab)i+1 = c1 · · · ciaibiab = c1 · · · ciai[bi, a]abi+1

= c1 · · · ci[ai, [bi, a]][bi, a]ai+1bi+1 = c1 · · · ci+1a
i+1bi+1

This proves our claim. Now aν ∈ O[σ] gives a ∈ O[νσ], so [bi, a] ∈ o[νσ]
for 0 ≤ i < ν, hence ci ∈ o[νσ] for 1 ≤ i ≤ ν. Put c := c1 · · · cν . Then for
1 ≤ j ≤ σ, the element cj = (c1 · · · cν)j is a product of jν ≤ νσ elements,
each in o[νσ], so cj ∈ µ by Lemma 5.4, and thus c ∈ o[σ], as desired.

With a−1, b−1 in place of a, b, this yields the second part. �

Lemma 5.10. Let X,Y ∈ L(G). Then X + Y exists and equals X +σ Y .

Proof. It suffices to show that X +σ Y = X +τ Y for all positive infinite
τ ∈ R∗. Consider first the case τ = νσ and set

a := X(1/τ), b := Y (1/τ), aσ := X(1/σ), bσ := Y (1/σ),

so aσ = aν , bσ = bν . We have a, b ∈ o[ν], so aνbν = c(ab)ν with c ∈ o[σ] by
Lemma 5.9. Put d := (ab)ν , so aσ, bσ, d ∈ O[σ], with aσbσ = cd, hence

X +σ Y = Xaσbσ = Xcd = Xd,

and thus for all t ∈ R,

(X +σ Y )(t) = st(d[σt]) = st
(
(ab)[τt]

)
= (X +τ Y )(t).
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Next we consider the case τ = (1 + ε)σ with infinitesimal ε ∈ R∗. With
a, b, aσ, bσ defined as before, we have a, b, aσ, bσ ∈ O[σ] = O[τ ] and

aσ = a ·X(ε/τ), bσ = b · Y (ε/τ)

with X(ε/τ), Y (ε/τ) ∈ o[σ] = o[τ ], so aσbσ = abc with c ∈ o[σ]. For t ∈ R>0

we have [σt] = [τt] + k with k = o(σ), so

(aσbσ)[σt] ∼ (aσbσ)[τt] = (abc)[τt] ∼ (ab)[τt],

and thus X+σ Y = X+τ Y . For arbitrary positive infinite τ ∈ R∗ we reduce
to the previous two cases by taking ν, ν ′ ∈ N∗ \N such that ν ′τ = (1 + ε)νσ
with infinitesimal ε ∈ R∗. �

By Lemma 5.10 we now have the real vector space L(G) as indicated in
Lemma 2.3. In Section 2 we gave it the topology induced by the compact-
open topology of C(R, G). Note also that for X,Y ∈ L(G) and r ∈ R we
have (X + Y )(r) = (rX + rY )(1), that is,

(X + Y )(r) = lim
s→∞

(
X(

1
s

)Y (
1
s

)
)[rs] = lim

s→∞

(
X(

r

s
)Y (

r

s
)
)[s]
.

Corollary 5.11. L(G) is a topological vector space over R.

Proof. Lemma 2.7 gives the continuity of scalar multiplication, so it remains
to establish the continuity of +. Let X,Y ∈ L(G), and let W be a neighbor-
hood of X + Y in L(G). It suffices to obtain neighborhoods P and Q of X
and Y in L(G) such that for all X ′ ∈ P and Y ′ ∈ Q we have X ′ + Y ′ ∈W .
To get such P,Q, take a compact neighborhood U of 1 in G so small that
for all Z ∈ L(G), if Z(t) ∈ (X + Y )(t)U for all t ∈ I, then Z ∈ W . Next,
let X ′, Y ′ ∈ L(G)∗ and X ∼ X ′ and Y ∼ Y ′. Fix some ν > N, and put

a := X(1/ν), a′ := X ′(1/ν), b := Y (1/ν), b′ := Y ′(1/ν),

so a, a′, b, b′ ∈ G(ν) and ai ∼ a′i and bi ∼ b′i for all i ≤ ν, so a o[ν] = a′ o[ν]
and b o[ν] = b′ o[ν]. Hence (ab)k ∼ (a′b′)k whenever |k| ≤ ν, so for all such
k,

(X ′(
1
ν

)Y ′(
1
ν

))k ∈
(
(X(

1
ν

)Y (
1
ν

))k
)
U∗.

By overspill this gives neighborhoods P and Q of X and Y in L(G) such
that for all X ′ ∈ P and Y ′ ∈ Q we have

(X ′(
1
ν

)Y ′(
1
ν

))k ∈
(
(X(

1
ν

)Y (
1
ν

))k
)
U∗

whenever |k| ≤ ν. It follows that for all X ′ ∈ P and Y ′ ∈ Q we have

(X ′ + Y ′)(t) ∈ (X + Y )(t) · U for all t ∈ I.
This gives X ′ + Y ′ ∈W for all X ′ ∈ P and Y ′ ∈ Q. �

Corollary 5.12. Suppose the exponential map of G maps some open neigh-
borhood of O in L(G) homeomorphically onto an open neighborhood of 1 in
G. Then G is locally euclidean and has NSS.
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Proof. Since G is locally compact, so is L(G). It follows that L(G) has
finite dimension as vector space over R, and so we can put a norm on L(G).
With respect to this norm we take an open ball B centered at O that is
homeomorphic to an open neighborhood U of 1 in G via the exponential
map of G. Take n > 1 such that V := {X(1) : X ∈ 1

nB} satisfies V 2 ⊆ U .
We claim that then V contains no subgroup of G other than {1}. To see
why, let a ∈ V, a 6= 1. Take X ∈ 1

nB with a = X(1), and take m > 1 such
that mX ∈ B \ 1

nB. Then (mX)(1) = am ∈ U \ V , so aZ 6⊆ V . �

6. Consequences of NSS

In this section we assume that our G has NSS. We shall now carry out step
(3) from the sketch in the Introduction.

Lemma 6.1. There is a neighborhood U of 1 such that for all x, y ∈ U ,
x2 = y2 =⇒ x = y.

Proof. Towards a contradiction, let x, y ∈ µ, x 6= y and x2 = y2. Then

y−1(xy−1)y = y−1x = (xy−1)−1,

so with a := xy−1 we get y−1ay = a−1. Then y−1aky = a−k for all k.
Take a compact symmetric neighborhood U of 1 in G that contains no non-
trivial subgroup of G. Take positive k such that ai ∈ U∗ for 0 ≤ i ≤ k and
ak+1 /∈ U∗. Set b := st(ak), so b 6= 1, b ∈ U , and b = b−1, so {1, b} is a
non-trivial subgroup of G contained in U , a contradiction. �

By a special neighborhood of G we mean a compact symmetric neighborhood
U of 1 in G such that U contains no non-trivial subgroup of G and for all
x, y ∈ U , x2 = y2 =⇒ x = y.

In the rest of this section we fix a special neighborhood U of G (which
exists by the lemma above), and we set ord(a) := ordU (a).

Corollary 6.2. Suppose G is not discrete. Then L(G) 6= {O}.
Proof. Take a ∈ µ with a 6= 1, and set σ := ord(a). Then a ∈ O[σ] and
a /∈ o[σ], so Xa ∈ L(G), Xa 6= O where Xa is defined as in Lemma 2.5. �

We set K := {X ∈ L(G) : X(I) ⊆ U}, so K is a compact neighborhood of O
in L(G), by Lemma 2.8. Note that for any X ∈ L(G) there is λ ∈ R>0 such
that λX ∈ K. Put K := {X(1) : X ∈ K}, so K is compact by Lemma 2.7.
Note also that K =

⋃
X∈KX(I), so K is pathconnected.

Corollary 6.3. The vector space L(G) has finite dimension, and the expo-
nential map X 7→ X(1) : L(G)→ R maps K homeomorphically onto K.

Proof. The first assertion follows from Riesz’s theorem that a locally com-
pact topological vector space over R has finite dimension. For the second
assertion it suffices that the exponential map is injective on K. Let X,Y ∈ K
and X(1) = Y (1). Then (X(1/2))2 = (Y (1/2))2, so X(1/2) = Y (1/2) , and
by induction, X(1/2n) = Y (1/2n) for all n, and thus X(i/2n) = Y (i/2n) for
all i ∈ Z and n. By density this gives X = Y . �



20 LOU VAN DEN DRIES AND ISAAC GOLDBRING

Lemma 6.4. Let a ∈ G∗. Then ord a is infinite iff a ∈ µ.

Proof. Suppose ord a is infinite. Then a ∈ U∗ and aZ ⊆ U∗, so (st a)Z ⊆ U ,
and thus st a = 1. �

We put ord(Q) := ordU (Q). We extend this to the standard setting: for
any symmetric P ⊆ G with 1 ∈ P we let ord(P ) be the largest n such that
Pn ⊆ U if there is such an n, and set ordP :=∞ if Pn ⊆ U for all n.

We set Un := {x ∈ G : ordx ≥ n} for n ≥ 1, so Un ⊇ Un+1.

Lemma 6.5. The sets Un have the following properties:
(1) each Un is a compact symmetric neighborhood of 1 in G;
(2) {Un : n ≥ 1} is a (countable) neighborhood basis of 1 in G;
(3) ordUn ≥ cn for all n ≥ 1 and some c > 0 independent of n.

Proof. Given n ≥ 1, it is clear that Un ⊆ U , that the complement of Un in G
is open, and that Un is a neighborhood of 1 in G. This gives (1). For each
ν we consider the internal set

Uν := {g ∈ G∗ : ord g ≥ ν}.
Since ν > N by convention, we have Uν ⊆ µ by Lemma 6.4. It follows that
for any neighborhood U of 1 in G we have Un ⊆ U for all sufficiently large
n; this gives (2). From Uν ⊆ µ we also obtain Uν ⊆ O[ν], hence (Uν)i ⊆ µ
for all i = o(ν) by Lemma 5.4, so ordUν ≥ cν for some c ∈ R>0. This gives
(3): nonexistence of c as in (3) gives ν with ordUν < cν for all c ∈ R>0. �

Because 1 has a countable neighborhood basis in G, the topology of G is
induced by some metric on G. Given such a metric d on G we obtain also a
metric d on L(G) by

d(X,Y ) := max{d(X(t), Y (t)) : |t| ≤ 1},
and one verifies easily that this metric induces the same topology on L(G)
as the compact-open topology of C(R, G). We do not need this metric, but
it may help in visualizing some arguments.

Proof that G is locally euclidean. Let X ∈ L(G)∗. We say that X is
infinitesimal if X ∈ µ(O), the monad of O in L(G)∗. Therefore,

X is infinitesimal ⇐⇒ X(I∗) ⊆ µ ⇐⇒ X(1) ∈ µ,

by the definitions and Corollary 6.3.

Lemma 6.6. Let X,Y ∈ L(G)∗ be infinitesimal, with Y (1) ∈ O[σ]. Then

X(1)Y (1) = (X + Y )(1) · z with z ∈ o[σ].

Proof. Put a := X(1), b := Y (1), c := (X +Y )(1). Take an open neighbor-
hood U of 1 in G with U ⊆ U and take ν with σ = o(ν) and put

W := {w ∈ G∗ : wi ∈ U∗ for i = 1, . . . , ν}.
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Then W is internally open in G∗ and 1 ∈W ⊆ O[ν] ⊆ o[σ]. By the definition
of c and using transfer we have

(
X(1

e )Y (1
e )
)e ∈ cW for all sufficiently large

e ∈ N∗ \ N, so (
X(

1
e

)Y (
1
e

)
)e = cwe, we ∈ o[σ],

for all sufficiently large e ∈ N∗ \ N. But also, by Lemma 5.9,(
X(

1
e

)Y (
1
e

)
)e = abde, de ∈ o[σ],

for all e ∈ N∗ \ N. Hence ab = c(wd−1) with w, d ∈ o[σ]. �

Lemma 6.7. K is a neighborhood of 1 in G.

Proof. It is enough to show that µ ⊆ K∗. Let a ∈ µ and suppose towards
a contradiction that a /∈ K∗. Since K∗ is internally compact, we have
K∗ =

⋂
ν K

∗Uν , so we can take ν maximal with a ∈ K∗Uν . Then a = bc
with b ∈ K∗ and c ∈ Uν ⊆ µ, and ord c = ν. With X := Xc ∈ L(G) defined
by X(t) = st(c[νt]) we have X ∈ K, and thus for d := X(1/ν) ∈ K∗ we have
ci ∼ di for all i ≤ ν, and thus c = du with u ∈ o[ν] by Lemma 5.7. Hence
a = bdu. By Lemma 6.6 we have bd = gh with g ∈ K∗ and h ∈ o[ν]. Hence
a = g(hu) with ν = o(ord(hu)), contradicting the maximality of ν. �

Corollary 6.8. G is locally euclidean of dimension dimR L(G).

Proof. Take an open neigborhood U of 1 in G such that U ⊆ K, and let V be
the subset of K such that U = {X(1) : X ∈ V }. Then V is a neighborhood
of O in L(G), so contains an open neighborhood V ′ of O in L(G). Then
V ′ is also open in V , so U ′ := {X(1) : X ∈ V ′} is open in U and thus
is an open neighborhood of 1 in G homeomorphic to the open subset V ′ of
L(G). �

The adjoint representation. Take an R-linear isomorphism L(G) ∼= Rn

of vector spaces. It induces a group isomorphism

Aut(L(G)) ∼= GLn(R) ⊆ Rn2
,

and we give the set Aut(L(G)) the topology that makes this bijection into a
homeomorphism, and thus into an isomorphism of topological groups. It is
clear that this topology on Aut(L(G)) does not depend on the initial choice
of R-linear isomorphism L(G) ∼= Rn.

Let G0 be the connected component of 1 in G. It is the subgroup of G
generated by the elements X(t) with X ∈ L(G) and t ∈ R.

Lemma 6.9. The group morphism Ad : G→ Aut(L(G)) is continuous, and
ker(Ad) = {a ∈ G : a commutes with all elements of G0}. In particular, if
G is connected, then ker(Ad) = center(G).

Proof. One checks easily that if a ∈ µ and X ∈ L(G), then aXa−1 ∈ µ(X)
in L(G)∗. Applying this to the X from a basis of the vector space L(G),
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we see that Ad is continuous at 1. Since Ad is a group morphism, it follows
that Ad is continuous.

It is clear that ker(Ad) consists of those a ∈ G that commute with all
elements of the form X(t) with X ∈ L(G) and t ∈ R. �

Corollary 6.10. If G has NSS, then G is a Lie group.

Proof. Replacing G by the connected component of 1, we may assume that
G is connected. Let N := ker(Ad), which, by the previous lemma, coincides
with the center of G. In particular, N is commutative, whence N has
NSS. Moreover, there is a continuous injection G/N → Aut(L(G)); since
Aut(L(G)) ∼= GLn(R), it follows by ??? that G/N is a Lie group. It follows
from the result of Kuranishi mentioned in the introduction that G is a Lie
group. �

7. Locally Euclidean implies NSS

Lemma 7.1. Let U be a neighborhood of 1 in G. Then U contains a compact
subgroup H of G and a neighborhood V of 1 in G such that H contains every
subgroup of G contained in V .

Proof. Take an internal neighborhood V of 1 in G∗ such that V ⊆ µ. Let S
be the internal subgroup of G∗ that is internally generated by the internal
subgroups of G∗ that are contained in V . Then S ⊆ µ by Lemma 5.4, and so
the internal closure H of S in G∗ is an internally compact internal subgroup
of G∗ contained in U∗. Now use transfer. �

Corollary 7.2. If L(G) = {O}, then there is a neighborhood basis of 1 in
G consisting of compact open subgroups of G.

Proof. Let U be a neighborhood of 1 in G, and take H and V as in the
previous lemma. If L(G) = {O}, then every a ∈ µ is degenerate, hence
aZ∗ ⊆ H∗ for each a ∈ µ, so H is open. �

Corollary 7.3. If G is connected and G 6= {1}, then L(G) 6= {O}.

Lemma 7.4. Let N be a totally disconnected closed normal subgroup of
G and let π : G → G/N be the canonical map. Then the induced map
L(π) : L(G)→ L(G/N) is surjective.

Proof. Let H := G/N , and Y ∈ L(H) with Y (1) 6= 1H . Fix ν and put
h := Y (1/ν) ∈ µ(1H). Take a compact symmetric neighborhood V of 1H
in H such that Y (1) /∈ V . Take a compact symmetric neighborhood U of 1
in G such that π(U) ⊆ V . Since π is an open map we have π(µ) ⊇ µ(1H).
Take a ∈ µ with π(a) = h. Then π(aν) = hν = Y (1), so aν /∈ U , so
σ := ordU (a) ≤ ν. We have π(st(ak)) = st(hk) = 1H for all k = o(σ), so
the connected subgroup GU (a) = {st(ak) : k = o(σ)} of G is contained in
N . But N is totally disconnected, so GU (a) = {1}, that is, a ∈ O[σ]. Also
a /∈ o[σ], so X 6= O where X = Xa ∈ L(G) is defined by X(t) = st(a[σt]).
If σ = o(ν), then π(X(t)) = st(h[σt]) = 1 for all t, so X ∈ L(N) ⊆ L(G),



HILBERT’S 5TH PROBLEM 23

that is X = O, a contradiction. Thus σ = (r + ε)ν with r ∈ R>0 and
infinitesimal ε ∈ R∗. Hence π(X(t)) = st(h[νrt]) = (rY )(t) for all t ∈ R, that
is, L(π)(X) = rY , and thus L(π)(1

rX) = Y . �

Lemma 7.5. Suppose G is locally connected and has NSCS. Then G has
NSS.

Proof. Take a compact symmetric neighborhood U of 1 in G that contains
no connected subgroup of G other than {1}. By Lemma 7.1 we can take
an open neighborhood V ⊆ U of 1 in G and a compact subgroup N1 of G
such that N1 ⊆ U and all subgroups of G contained in V are contained in
N1. Since N1 ⊆ U we have L(N1) = {O}, so N1 is totally disconnected by
Corollary 7.2, so we can take a compact subgroup N of N1 such that N is
open in N1 and N ⊆ V . Take an open subset W of V such that N = N1∩W .
Note that the set

{a ∈W : aNa−1 ⊆W}
is open. But if a ∈W and aNa−1 ⊆W , then aNa−1 ⊆ N1, so aNa−1 ⊆ N .
Thus the normalizer G1 of N in G is open in G. Let H := G1/N , and let
π : G1 → H be the canonical map. It remains to show that H has NSS and
N is finite.

Let a ∈ µ ∩G∗1. If a is degenerate, then a ∈ N∗1 , so a ∈ N∗ and π(a) = 1H .
Suppose a is pure, and put ν := ordU (a). Then aν+1 /∈ U∗. Take an open
neighborhood V ′ of 1 in G such that V ′N ⊆ V ⊆ U , so π(a)ν+1 /∈ π(V ′),
while π(a)i ∈ µ(1H) for all i = o(ν). Thus π(a) is pure in H. Thus all
infinitesimals of H other than 1H are pure, that is, H has NSS. Thus L(H)
is finite-dimensional, and by Lemma 7.4 the R-linear map

L(π) : L(G1) = L(G)→ L(H)

is continuous and surjective with kernel L(N) = {O}, and thus a homeo-
morphism. (Have not yet used the local connectedness of G. Of U we only
used that X(R) 6⊆ U for all X 6= O in L(G).)

Take a special neighborhood V of H, as defined in Section 6. Take a con-
nected neighborhood U of 1 in G1 such that

π(U) ⊆ {Y (1) : Y ∈ L(H), Y (I) ⊆ V}.
(Here we used that G is locally connected.) Let x ∈ U . Then π(x) = Y (1)
for a unique Y ∈ L(H) with Y (I) ⊆ V. and there is a unique X ∈ L(G1)
such that π ◦ X = Y , so x = X(1)x(N) with x(N) ∈ N . The map that
assigns to each x ∈ U the above Y ∈ L(H) above is continuous, by ...,
Since L(π) : L(G1) → L(H) is a homeomorphism, it follows that the map
x 7→ x(N) : U → N is continuous. But N is totally disconnected and
1(N) = 1, so x(N) = 1 for all x ∈ U . Hence U ⊆ {X(1) : X ∈ L(G1)}, and
thus G has NSS. �

Recall that a topological space is bounded in dimension if for some n it does
not contain a homeomorphic copy of [0, 1]n.
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Lemma 7.6. If G is bounded in dimension, then G has NSCS.

Proof. Suppose G does not have NSCS. Let U, V range over compact sym-
metric neighborhoods of 1 in G. We claim that for every n and U some
compact subgroup of G contained in U contains a homeomorphic copy of
the n-cube [0, 1]n. Assume this holds for a certain n and let U be given.
By Lemma 7.1 we can take V ⊆ U and a compact subgroup H ⊆ U
of G that contains every subgroup of G contained in V . Since V con-
tains a nontrivial connected compact subgroup of G, Corollary 7.3 yields
a nontrivial X ∈ L(H). By decreasing V if necessary we can assume that
X(R) 6⊆ V . Take a compact subgroup G(V ) ⊆ V of G with a homeomor-
phism Y : [0, 1]n → Y ([0, 1]n) ⊆ G(V ). Then X(R) 6⊆ G(V ). Replac-
ing X by rX for a suitable real r > 0 we can assume that X(I) ⊆ V ,
X is injective on I and X(I) ∩ G(V ) = {1}. Since G(V ) ⊆ H we can
define Z : [0, 1]n+1 = [0, 1] × [0, 1]n → H by Z(s, t) = X(s)Y (t) for
s ∈ [0, 1], t ∈ [0, 1]n. It is easy to check that then Z is injective and
continuous, and thus a homeomorphism. �

Corollary 7.7. If G is bounded in dimension and locally connected, then G
has NSS. In particular, if G is locally euclidean, then G has NSS.

Proof. Use Lemmas 7.6 and 7.5. �

8. Yamabe’s Theorem

Lemma 8.1. Let U be a neighborhood of 1 in G. Then there is an open
subgroup G′ of G and a compact normal subgroup N ′ of G′ such that N ′ ⊆ U
and G′/N ′ has NSS.

Proof. By Lemma 7.1 we can take a compact subgroup H ⊆ U of G and
W an open neighborhood W ⊆ U of 1 in G such that every subgroup of G
contained in W is a subgroup of H. Since H is compact, Theorem 4.1 yields
a compact normal subgroup N ′ ⊆W of H and an injective group morphism
H/N ′ → GLn(R). Since GLn(R) has NSS, it follows that H/N ′ has NSS.
The latter gives an open W ′ ⊆ W such that N ′ ⊆ W ′ and every subgroup
of G contained in W ′ is a subgroup of N ′. Set

G′ := the normalizer of N ′ in G = {g ∈ G : gN ′g−1 = N ′},

so G′ is a subgroup of G and N ′ is a normal subgroup of G′. We claim that
G′ and N ′ have the desired properties.

Since N ′ is compact and W ′ is open, there is a symmetric neighborhood V
of 1 in G such that V N ′V ⊆W ′. Then for all g ∈ V , the subgroup gN ′g−1

of G is contained in W ′, so gN ′g−1 ⊆ N ′, which by symmetry of V gives
gN ′g−1 = N ′. Consequently, V ⊆ G′ and thus G′ is open. It remains to
show that G′/N ′ has NSS. This holds because V N ′ ⊆W ′ is a neighborhood
of N ′ in G′, so every subgroup of G′ contained in V N ′ is contained in W ′

and thus in N ′. �
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Theorem 8.2. Suppose G/Go is compact. Then G can be approximated by
locally euclidean groups: every neighborhood of 1 contains a compact normal
subgroup N of G such that G/N is locally euclidean.

Proof. Let U be a neighborhood of 1 in G. By Lemma 8.1 and its proof
we obtain G′ and N ′ as in that lemma and an open neighborhood W ′ of
N ′ such that any subgroup of G contained in W ′ is a subgroup of N ′.
Note that Go ⊆ G′ since G′ is clopen in G. Consequently, G′/Go is an
open subgroup of the compact group G/Go, and thus of finite index in
G/Go. Hence G′ has finite index in G, so G = g1G

′ ∪ · · · ∪ gnG′ where
g1, . . . , gn ∈ G. Given g ∈ G we have g = gia with 1 ≤ i ≤ n and a ∈ G′, so
gN ′g−1 = gi(aN ′a−1)g−1

i = giN
′g−1
i , since N ′ is normal in G′. Thus

N :=
n⋂
i=1

giN
′g−1
i =

⋂
g∈G

gN ′g−1

is a compact normal subgroup of G and N ⊆ N ′ ⊆ U . It remains to show
that G/N has NSS. Let

W :=
n⋂
i=1

giW
′g−1
i ,

an open subset of G containing N . If H ⊆ W is any subgroup of G, then
for each i we have g−1

i Hgi ⊆W ′, so g−1
i Hgi ⊆ N ′, and thus H ⊆ N . �
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