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ABSTRACT. Motivated by a question of Di Nasso, we show that Hindman’s Theorem is equivalent
to the existence of idempotent types in countable complete extensions of Peano Arithmetic.
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1. INTRODUCTION

Recall that X C N is said to be an IP set if there is infinite Y C X such that every finite sum
of distinct elements of Y is in X. Hindman’s Theorem asserts that if N is partitioned into finitely
many pieces, then one of the pieces is an IP set.

Hindman’s original proof was very combinatorial in nature. Later, Galvin and Glazer gave a “soft”
proof of Hindman’s theorem using the notion of an idempotent ultrafilter. Recall that an ultrafilter
U on N is said to idempotent if, for all A C N, we have

AcUs {neN : A—nel} el

here, A—n:={zx €N : x+n € A}. It just takes an easy induction to verify that all sets in an
idempotent ultrafilter are IP sets, so to establish Hindman’s theorem, it suffices to establish the
existence of an idempotent ultrafilter. This latter task can be accomplished via several applications
of Zorn’s Lemma and essentially boils down to Ellis’ theorem about compact semi-topological
semigroups.

In [I], Di Nasso asks whether or not there can be a “nonstandard” proof of the existence of
idempotent ultrafilters, presumably using only the same amount of choice needed to prove the
existence of ordinary nonprincipal ultrafilters. Towards this end, Di Nasso and Tachtsis [2] recently
showed that the existence of idempotent ultrafilters follows from ZF along with the Ultrafilter
Theorem on R. In order to formulate an attack on this problem, he establishes a purely model-
theoretic formulation of the existence of idempotent ultrafilters: In a model of nonstandard analysis,
there exists a, § € N* satisfying the following two properties:

o forall ACN, we have a € A* < € A* < a+ [ € A%
e for all B C N2, if (o, B) € B*, then there is n € N such that (n, 3) € B*.

When there is a pair (a, 3) as above, he calls a an idempotent element of N*. Since this terminology
is a bit confusing in the sense that such elements are not actually idempotent in the algebraic sense
as elements of the semigroup N*, they have since been renamed to u-idempotent elements. DiNasso
in fact defines u-idempotent elements in models of complete extension of Peano Arithmetic (PA)
and asks for a sufficient condition to guarantee the existence of u-idempotent elements in such

models (with an eye towards an answer to his earlier question).
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The main result of this note is that Hindman’s theorem is actually equivalent to the existence of
idempotent types in arbitrary countable complete extensions of PA, where an idempotent type is
simply the type of a u-idempotent element (we give a realization-free definition below); in particular,
idempotent types always exist in such theories. (We actually use the version of Hindman’s theorem
that states that the family of IP sets is partition reqular, meaning that if X C N is an IP set and Y
is a subset of X, then either Y or X \ Y is an IP set. Accordingly, we show that idempotent types
containing a prescribed 0-definable IP set always exist.)

It is not clear to us if the existence of idempotent types in all countable complete extensions of PA
can be used to obtain idempotent ultrafilters using some sort of compactness argument. Conversely,
it follows from Lemma [2.6] below that from idempotent ultrafilters we can obtain idempotent types.

The main results in this note seem to have departed from DiNasso’s original question in two ways:
we work with types rather than elements and in countable languages rather than the uncountable
language of nonstandard analysis. Since w-idempotent elements are realizations in elementary
extensions of idempotent types, the former deviation seems to be of little concern in constructive
matters. For the latter deviation, in many cases, one often does not use the full strength of
idempotency of an ultrafilter but rather its idempotency with respect to countably many sets that
are of use for the problem at hand, and thus this change in perspective is often benign.

Hindman’s theorem and idempotent ultrafilters actually make sense in the much more general
context of semigroups and so we prove all of our results in this more general context.

Since foundational issues are of central importance in this paper, it is important to note that all of
our results proven are theorems of ZF. For an even finer analysis of the reverse mathematics of the
situation, see Remark

We would like to thank the anonymous referee for numerous helpful comments and suggestions,
including a more streamlined proof of our main result.

2. DEFINITIONS

By a semigroup structure we mean a first-order structure M := (M, -,...) in a countable language
such that (M, -) is a semigroup; in this case, we say that M is based on (M, -).

Definition 2.1. We say ¢(x,y) € Sa(M) is an independent type if, for any o(z,y) € g, there is
u € M such that ¢(u,y) € q.

Here, So(M) denotes the set of complete 2-types over M.

Remark 2.2. In model-theoretic terminology, independent types are simply heirs. More precisely, if
(a,b) realizes q (in some elementary extension of M), then q is independent if and only if tp(b/Ma)
is an heir of tp(b/M).

Definition 2.3. p(z) € S1(M) is called an idempotent type if there is an independent type ¢(z,y)
such that p(z), p(y),p(z - y) € q(z,y).

Remark 2.4. In the definition of idempotent type, we do not insist that the type be non-principal.
In fact, an idempotent type p(x) € S1(M) is principal if and only if p(z) = tp(a/M) for a € M
idempotent. We will have more to say about this at the end of the paper.

Remark 2.5. Recall that the (model-theoretic) completion of N is the structure N# with a symbol
for every function and relation on N and a symbol for every element of N. In [I], it is shown that
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if T# := Th(N#), then by identifying a type with the set of definable sets defined by formulas in the
type, idempotent types for T# are precisely the idempotent ultrafilters on N. The same observation
(with an identical proof) actually holds for arbitrary semigroup structures.

The following reformulation of idempotent type will prove useful in the next section. It is in fact
the type generalization of the fact proved in [I] that an ultrafilter ¢/ on N is idempotent if and only
if: for every A € U, there is a € A such that A —a € U.

Lemma 2.6. A type p(x) € S1(M) is idempotent if and only if: for every p(x) € p(x), there is
u € M so that p(u) A p(u-x) € p(x).

Proof. First we suppose that p(x) is an idempotent type. Let ¢(x,y) be an independent type which
witnesses this and fix p(z) € p(z). Then p(z)Ap(z-y) € q(z,y) since p(z)Up(y)Up(x-y) C q(x,y).
Then, since ¢(z) is independent, we have that there is some u € M so that ¢(u) Ap(u-y) € q(z,y).
Finally, since p(y) C ¢(x,y), we have that ¢(u) A ¢(u-y) € p(y). Changing variables from y to z
yields the result.

Now, suppose that for every ¢(x) € p(x), there is u € M so that ¢(u) A p(u-x) € p(x). We say
that o(z,y) is represented if for some u € M, ¢(u,x) € p(x). We first check that

p(x) Up(y) Up(a - y) U{~(x,y) | (z,y) is not represented}

is consistent. Towards this end, we need only check that ¢(x) A o(y) A p(z - y) A N\;<,, "Yi(x,y) is
consistent, where ¢(z) € p(x) and each v;(x,%) is not represented. By hypothesis, we know that
there is u € M so that p(u) A p(u - x) € p(z), whence we also have p(u) A ¢(x) A p(u - x) € p(x).
Since each v;(z,y) is not represented, we have that —;(u,z) € p(x) for each i. It follows that
o(u) Ap(x) Ne(u-x) ANN,;<,, %i(u, x) € p(x), showing our needed consistency.

Now, let g(x,y) be any type containing p(z)Up(y)Up(z-y)U{—¥(x,y) | ¥(z,y) is not represented}.
Since ¢(z,y) only contains formulas 1 (z,y) which are represented, g(x,y) is independent. Since
p(z) Up(y) Up(x - y) C q(z,y), this shows that p(z) is idempotent. O

We finally recall the main combinatorial notion of the paper.

Definition 2.7. Let (M,-) be a semigroup. If (u,) is a countable sequence from M, we define
FP(uyn) = {uwj, ---wj, @ 01 <--- <ig}. Wecall X C M an IP set if there is a sequence (u,) for
which FP(u,) C X, in which case we refer to (u,) as a basis for X.

3. MAIN RESULTS

In this section, (M, -) denotes an arbitrary countable semigroup.

Statement 3.1 (Hindman’s theorem for (M,-)). Let X C M be an IP-set. Then for any Y C X,
either Y or X \'Y is an IP-set.

Statement 3.2 (Existence of idempotent types for semigroup structures based on (M, +)). If M =
(M,-,...) is a semigroup structure based on (M,-) and X C M is an M-definable IP-set, then there
is an idempotent type over M containing X .

Theorem 3.1. Statement [3.1] is equivalent to Statement[3.3.

Before proving Theorem we will state and prove the following consequence of Statement
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Lemma 3.3. Let M be a semigroup satisfying Statement and X C M be an IP-set. Let
(A, | n > 1) be any countable collection of subsets of M. Then there exists:

o a sequence of IP-sets (Zp |n > 1);
e a non-increasing sequence of IP-sets X = By D By D By D -+,
e a sequence of elements (y, | n > 1) of M;

so that for each n > 1, the following hold:

(1) Zy = Ay or M\ Ay;
(2) Yn € Zn N Bp_1;
(3) By, C Zp N (Zn/yn), i.e. for every x € By, we have x,y, - x € Z,.

Proof. Set By = X. Suppose that we have defined Z,, By, and y, for all 1 < n < k so that the
three conditions are satisfied for each 1 < n < k.

Set Z, = Ay if and only if Ax N Bi_1 is an IP-set, and otherwise set Z, = M ~ Ai. By Statement
Zj N By is an IP-set. Let FP(x,),>1 be contained in Zj N Bj_; for some infinite sequence
(xn, | n>1). Set By, = FP(xy,)n>2 and let yp = 1. It is clear that these choices of By, Zj, and yj
satisfy the conditions (1)-(3).

O

Proof that Statement[3.1) implies Statement[3.3: Let (A, | n > 1) enumerate all L(M)-definable
subsets of M such that each definable set is enumerated infinitely often. The previous lemma yields
a sequence of definable sets (Z,, | n > 1) so that Z,, = A,, or Z,, = M \ A,,. Let F ={Z, | n > 1}
and define a 1-type p(z) by ¢(z) € p(z) if and only if the set defined by ¢(z) is in F. Note that
p(z) is consistent as the intersection of (Z; | ¢ < n) must contain B,,, which is an IP-set, and is
thus non-empty.

We now claim that p(z) satisfies the condition of Lemma Suppose that ¢(z) € p(x) defines
Zn. We claim that ¢(y, - ) € p(x) as well. Take m > n such that A,, is the set defined
by ©(yn - ). It remains to note that at stage m, we could not have set Z,, to be equal to
M ~\ A,,. Indeed, every z € B, has the property that y, - z € Z,, whence B,, C A,, and thus
BpnN (M N Ap) € B, N (M~ Ap,) =0, which is not an IP-set. O

Proof that Statement[3.3 implies Statement[3.1): Fix an IP set X C M and fix Y C X. Let £
denote the language by {-, X,Y} and consider the semigroup structure M := (M,-, X,Y). Let
p(z) be an idempotent type contained in the independent type ¢(x,y) containing the formula
X (z). Without loss of generality, we may assume Y (z) belongs to p (otherwise re-name Y to define
X\Y).

Set ¥1(x,y) ==Y (x) ANY(x-y). Since ¢ witnesses that p is idempotent, we have that 11 (z,y) € q.
Since ¢ is independent, there is a u; € M so that ¥;(u1,y) € ¢. Again, since g witnesses that p is
idempotent, Y(uj - z) AY(u1 - x - y) € q.

Let o(z,y) = ¥1(x,y) A 1(ug - x,y). Since ¥o(x,y) belong to ¢, there is us € M so that
Yo(ug,y) € p. We now have that uq,us,u; - ug € Y. Moreover, a(ug,z) A Po(uz,x - y) € q
Continuing in this manner, we construct a sequence (u; | ¢ € w) which is a basis for Y. O

Remark 3.4. The proof that Statement implies Statement is more or less Galvin’s half
of the Galvin-Glazer proof of Hindman’s theorem (written in first-order formalism). On the other
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hand, Hindman originally had proven the existence of an idempotent ultrafilter on N from the
Continuum Hypothesis in [4] and it is unclear to us if there is any connection between his argument
and our proof that Statement implies Statement [3.2]

Remark 3.5. Concerning the reverse mathematical strength of our result, our result shows the
equivalence over RCA of the existence of idempotent types (Statement above) and the so-called
Iterated Hindman’s Theorem, which says that if (X;) is an infinite sequence of subsets of M, then
there exists a sequence (y;) so that for each k, FP((y;)i>r) € Xk or FP((yi)i>k) € M ~\ Xj. We
do not pursue this notation or formalism, preferring rather to simply informally allow repeated
uses of Hindman’s theorem (Statement in our proofs. The proofs given above can be routinely
formalized in this language.

4. MUSINGS ON NON-PRINCIPALITY

As mentioned above, in certain semigroups, IP sets can be finite, even singletons. Likewise, idem-
potent types can be principal. We mention here some conditions on semigroups that remove some
of these trivialities.

Here are two possible ways of making the notion of IP less trivial.

Definition 4.1. Suppose that (M, ) is a semigroup and A C M.

(1) We say that A is IIP (infinite IP) if there is a sequence (z,) such that FP(x,) C A and
FP(x,) is infinite.
(2) We say that A is DIP (distinctly IP) if there is an injective sequence (x,,) with FP(z,,) C A.

Clearly DIP sets are IIP. A class of semigroups where DIP is a good notion can be found in the
literature:

Definition 4.2. (Golan and Tsaban, [3]) We call a semigroup (M,-) moving if M \ M is a
subsemigroup of SM.

There is a more combinatorial definition of moving semigroup, but let us be content with the
ultrafilter definition.

Lemma 4.3. If (M,-) is moving, then A C M is DIP if and only if there is a nonprincipal
idempotent ultrafilter U on S containing A.

Proof. If A is DIP as witnessed by (z,,), then T := (2 (FP(z,)52,, N (8S\ S)) is a nonempty
compact subsemigroup of 5S. If Y € T is idempotent, then A € /. The converse follows from
the usual argument, using the fact that one can always find a fresh element at every stage of the
construction. ]

Corollary 4.4. In moving semigroups, the notion of being DIP is partition reqular.

Observe that in a moving semigroup, to conclude that A belonged to a nonprincipal idempotent
ultrafilter, all that was really used was that A was IIP. It thus follows that:

Corollary 4.5. In moving semigroups, the notions IIP and DIP coincide.

Here is an admittedly ad hoc definition:
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Definition 4.6. We call a semigroup (M, -) Hindman if the notion of being IIP is partition regular.

It follows from the above corollaries that moving semigroups are Hindman.
The following theorem follows immediately from the proofs in the preceding section:

Theorem 4.7. Let (M,-) be a semigroup.

(1) Suppose that (M,-) is Hindman and M is a semigroup structure based on (M,-). Then for
every M-definable X C M that is 1IP, there is a nonprincipal idempotent type containing
the formula X (x).

(2) Suppose that for every semigroup structure M based on (M,-) and every M-definable X C
M that is IIP, there is a mnonprincipal idempotent type containing X (x). Then (M,-) is
really Hindman, meaning that whenever X C M is IIP and X =Y U Z, then one of Y or
Z 1s DIP.

Corollary 4.8. In Hindman semigroups, the notions IIP and DIP coincide.

Question 4.9. Do the notions IIP and DIP coincide in every semigroup? Does the property that
the DIP sets are partition reqular characterize moving semigroups? Is every Hindman semigroup
moving?

A positive answer to the second question yields a positive answer to the third question.

REFERENCES

[1] M. Di Nasso, Hypernatural numbers as ultrafilters, Chapter in “Nonstandard Analysis for the Working mathe-
matician” (P.A. Loeb and M. Wolff, eds.), 2nd edition, Springer, 2015

[2] M. Di Nasso and E. Tachtsis, Idempotent ultrafilters without Zorn’s Lemma, Proc. A.M.S. 146 (2018), 397-411

[3] G. Golan and B. Tsaban, Hindman’s coloring theorem in arbitrary semigroups, Journal of Algebra 395 (2013),
111-120.

[4] N. Hindman, The existence of certain ultra-filters on N and a conjecture of Graham and Rothschild, Proc. A.M.S.
36 (1972), 341-346.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706-1388, USA

E-mail address: landrews@math.wisc.edu

URL: http://wuw.math.wisc.edu/~andrews/

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, 340 ROWLAND HALL (BLDG.# 400), IRVINE,
CA 92697-3875

FE-mail address: |lisaac@math.uci.edu

URL: homepages.math.uci.edu/~isaac/


mailto:andrews@math.wisc.edu
http://www.math.wisc.edu/~andrews/
mailto:isaac@math.uci.edu
homepages.math.uci.edu/~isaac/

	1. Introduction
	2. Definitions
	3. Main results
	4. Musings on non-principality
	References

