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Abstract. We provide an example of two elementarily equivalent countable
ICC groups G and H such that G is amenable and H is not inner amenable.
As a result, we provide the first example of elementarily equivalent groups
whose group von Neumann algebras are not elementarily equivalent, answering
a question asked by many researchers.

1. Introduction

If G is a group and X is a set, an action G ↷ X of G on X is called amenable
if there is a finitely additive G-invariant probability measure on X. G is called
amenable if the action of G on itself by left multiplication is amenable while
G is called inner amenable if the action of G on G \ {e} by conjugation is
amenable. Throughout this note, we assume basic facts about amenable groups;
we recommend [9] as a good reference. We note that amenable groups are inner
amenable; see, for example, [9, Theorem 2.20].

A group G is called ICC if all nontrivial conjugacy classes are infinite.

Two groups G and H are called elementarily equivalent if they satisfy the
same first-order sentences in the language of groups. Equivalently, by the Keisler-
Shelah theorem, two groups are elementarily equivalent if and only if they have
isomorphic ultrapowers.

The main result of this note is the following:

Theorem 1.1. There are elementarily equivalent countable ICC groups G and H
such that G is amenable and H is not inner amenable.

In Section 3, we show how our main result settles a question in the model theory
of operator algebras while in Section 4 we explain how to interpret the main result
as the existence of an inner amenable but not uniformly inner amenable group.

We thank David Jekel, Yash Lodha, and Jennifer Pi for many useful discussions
around this project.
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2. Proof of the main result

Throughout this note, K := Falg
2 denotes the algebraic closure of the field of two

elements while L denotes any algebraically closed field of characteristic 2 and posi-
tive transcendence degree (for example, L = F2(t)

alg, where t is an indeterminate).

Recall that for any field F , SL2(F ) denotes the group of 2× 2 matrices over F of
determinant 1.

SL2(K), being a locally finite group, is amenable. In fact, for any field F , SL2(F )
is amenable if and only if F is algebraic over a finite field (see, for example, [1,
Proposition 11]). Consequently, we have that SL2(L) is not amenable.

We actually claim that SL2(L) is not even inner amenable. To see this, we will
need the following fact (for a proof, see, for example, [9, Theorem 2.21]):

Fact 2.1. Suppose that G ↷ X is an amenable action and that the stabilizer
subgroup Gx is amenable for each x ∈ X. Then G is amenable.

By considering the conjugation action of G on G\{e}, one has, as a corollary, the
following:

Fact 2.2. If G is inner amenable and the centralizer C(g) of each g ∈ G \ {e} is
amenable, then G is amenable.

Recall that a group G is called commutative transitive (CT) if C(g) is abelian
for all g ∈ G\{e}. (The nomenclature is due to the fact that CT groups are those
groups for which, on nontrivial elements, commutation is a transitive relation.)
Since abelian groups are amenable, the previous fact implies:

Corollary 2.3. An inner amenable CT group is amenable.

Thus, to prove that SL2(L) is not inner amenable, it suffices to quote the following:

Fact 2.4. For any field F of characteristic 2, SL2(F ) is a CT group.

Fact 2.4 has a slippery history. In [15], it was mentioned that PSL2(F2n) is a CT
group for any n ≥ 1. (Recall that for any field F , PSL2(F ) := SL2(F )/{±1};
when F has characteristic 2, PSL2(F ) coincides with SL2(F ).) Strangely enough,
no proof of this fact is given, but the author claims “That this group possesses
the property in question follows from its analysis.” Then a reference is given to
[3, pages 262-265]. From this fact and some basic model theory, one can prove
Fact 2.4; see [7, Theorem 3.7(1)]). Given that this “proof” of Fact 2.4 is somewhat
incomplete, we prefer to give a detailed proof here; we thank David Jekel for
providing us with this proof and for his permission to include it here. (Not that
we will need to know this but, building on work of Suzuki [14] and Wu [16],
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it follows that PSL2(F ) is not a CT group when F has positive characteristic
different from 2; see [7, Theorem 3.7(2)].)

Proof of Fact 2.4. Without loss of generality, we may assume that F is alge-
braically closed. Fix g ∈ SL2(F ) \ {1}. Since F is algebraically closed, g is
similar to a matrix g′ in SL2(F ) that is in Jordan canonical form (see [12, Chap-
ter XIV, Corollary 2.5]). Since g and g′ have isomorphic centralizers in SL2(F ),
we may assume that g itself is in Jordan canonical form.

First suppose that g is diagonal. Then g =

(
a 0
0 a−1

)
for some a ∈ F . Fix

h =

(
c d
e f

)
∈ C(g). Since gh =

(
ac ad
a−1e a−1f

)
while hg =

(
ac a−1d
ae a−1f

)
, we

see that (a − a−1)d = (a − a−1)e = 0; since a ̸= 1 (else g = 1), we have that
a− a−1 ̸= 0 (recall that F has characteristic 2), whence d = e = 0. It follows that
C(g) is the set of diagonal matrices in SL2(F ), which is certainly abelian.

Now suppose that g is not diagonal. In this case, we have that g =

(
1 1
0 1

)
for some a ∈ F \ {0}. Once again, fix h =

(
c d
e f

)
∈ C(g). This time we

have gh =

(
c+ e d+ f
e f

)
while hg =

(
c c+ d
e e+ f

)
. We thus see that e = 0 and

c = f . It follows that C(g) is the set of upper triangular matrices in SL2(F ) whose
diagonal elements are the same; this group is easily checked to be abelian. □

Recalling that SL2(L) is not amenable, Corollary 2.3 and Fact 2.4 imply that:

Corollary 2.5. SL2(L) is not inner amenable.

Finally, we record:

Lemma 2.6. SL2(K) and SL2(L) are elementarily equivalent.

Proof. Since K and L are algebraically closed fields of the same characteristic,
we have that K and L are elementarily equivalent (see [13, Proposition 2.2.5]).
It remains to quote a standard fact: if two fields F1 and F2 are elementarily
equivalent, then so are the groups SL2(F1) and SL2(F2). (There are many ways to
see this, but perhaps the quickest is to use the Keisler-Shelah theorem to conclude
that K and L have isomorphic ultrapowers and then use the fact that taking SL2

of a field commutes with ultrapowers.) □

We note the following well-known fact.
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Proposition 2.7. For any algebraically closed field F of characteristic 2, SL2(F )
is an ICC group.

Proof. Fix g ∈ SL2(F ) \ {e}; as before, we may suppose that g is in Jordan

canonical form. If g =

(
a 0
0 a−1

)
, then it remains to note that(

b 1
0 b−1

)−1(
a 0
0 a−1

)(
b 1
0 b−1

)
=

(
a (a+ a−1)b
0 a−1

)
.

Since a + a−1 ̸= 0 (lest g = e, recalling that the characteristic of F is 2), we see
that by letting b vary over F \ {0}, we find infinitely many conjugates of g.

The other case is that g =

(
1 1
0 1

)
with a ∈ F \ {0}. In this case, we note that,

for b, c ∈ F with bc = 1, we have

(
b 0
0 c

)−1(
1 1
0 1

)(
b 0
0 c

)
=

(
1 c2

0 1

)
.

Once again, letting c range over F \ {0}, we find infinitely many conjugates of
g. □

The previous proposition holds in greater generality: PSL2(F ) is ICC for any
algebraically closed field of positive characteristic; we assumed that the field had
characteristic 2 just to give a simpler proof and since this is the only case that we
need.

3. An application to operator algebras

Theorem 1.1 above allows us to provide a negative solution to a question asked
by many researchers in the model theory of operator algebras, namely, does el-
ementary equivalence of groups imply the elementary equivalence of their group
von Neumann algebras?

Proposition 3.1. There are elementarily equivalent countable ICC groups G and
H such that their group von Neumann algebras L(G) and L(H) are not elemen-
tarily equivalent.

Proof. The groups G := SL2(K) and H := SL2(L) yield the desired example.
Indeed, since G is a countable, amenable, ICC group, by Connes’ landmark result
in [2], L(G) is the hyperfinite II1 factor R. However, by a result of Effros [5],
since H is not inner amenable, L(H) does not have property Gamma. Since
R has property Gamma and property Gamma is an axiomatizable property of
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tracial von Neumann algebras (see [6, 3.2.2]), we have that L(G) and L(H) are
not elementarily equivalent. □

4. Uniformly inner-amenable groups

If G is a group, S ⊆ G is finite, and ϵ > 0, then a (S, ϵ)-Følner set in G is a finite
set T ⊆ G such that |gT△T | < ϵ|T | for all g ∈ S. A group G is amenable if and
only if (S, ϵ)-Følner sets in G exist for all finite S ⊆ G and all ϵ > 0. G is said to
be uniformly amenable if there is a function f : N → N such that, for all finite
S ⊆ G, if |S| ≤ n, then there is a (S, 1

n
)-Følner set T ⊆ G with |T | ≤ f(n). In [10],

Keller studied uniformly amenable groups, showing that G is uniformly amenable
if and only if some (equivalently any) nonprincipal ultrapower of G is amenable.
(Keller used the language of nonstandard extensions rather than ultrapowers, but
the arguments are identical in either case.) It then follows that G is uniformly
amenable if and only if H is amenable whenever H is elementarily equivalent to G.
Indeed, one direction follows from the fact that an ultrapower of G is elementarily
equivalent to G, while the other direction follows from the fact that any group
elementarily equivalent to G embeds (elementarily) into some ultrapower of G
and the fact that subgroups of amenable groups are amenable.

There are plenty of uniformly amenable groups; for example, any solvable group
is uniformly amenable. An example of an amenable group that is not uniformly
amenable is the locally finite group S∞ :=

⋃
n≥1 Sn as it is fairly straightforward

to find a copy of a nonabelian free group inside of an ultrapower of S∞.

In [11], an appropriate notion of Følner set for inner amenable groups was discussed
(but not named):

Definition 4.1. For nonempty finite subsets S, T ⊆ G and ϵ > 0, we say that T
is a (S, ϵ)-c-Følner set if |gTg−1△T | < ϵ|T | for all g ∈ S.

The following fact is mentioned in [11, Section 6]:

Fact 4.2. A group G is inner amenable if and only if: for all finite S ⊆ G and
all ϵ > 0, there are arbitrarily large (S, ϵ)-c-Følner sets in G.

We say that G is uniformly inner amenable if there is a function f : N → N
such that, for all finite subsets S ⊆ G with |F | ≤ n, there is a finite subset T ⊆ G
with n ≤ |T | ≤ f(n) that is a (S, 1

n
)-c-Følner set for G. One can prove an analogue

of Keller’s result for amenable groups as follows:

Proposition 4.3. For a group G, the following are equivalent:

(1) G is uniformly inner amenable.
(2) If H is elementarily equivalent to G, then H is inner amenable.
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(3) Every ultrapower of G is inner amenable.

Before beginning the proof of Proposition 4.3, we record one fact. Recall that if H
is a subgroup of G, then H is existentially closed in G if: for every existential
sentence φ with parameters in H, if φ is true in G, then φ is true in H. Note that
elementary subgroups are in particular existential subgroups. Recall also that,
unlike the case of amenable groups, subgroups of inner amenable groups need not
be inner amenable. For example, G× Z is inner amenable for any group G.

Lemma 4.4. If G is an inner amenable group and H is a subgroup of G that is
existentially closed in G, then H is inner amenable.

Proof. Fix a finite set S ⊆ H, ϵ > 0, and n ≥ 1. Since G is inner amenable, there
is a finite set T ⊆ G that is a (S, ϵ)-c-Følner set with |T | ≥ n. The existence
of this (S, ϵ)-c-Følner set fact can be expressed by an existential sentence with
parameters from H and is thus true in H since H is existentially closed in G. □

Proof of Proposition 4.3. (1) ⇒ (2): Suppose that G is uniformly inner amenable
as witnessed by a function f . Then for any given n ≥ 1, the fact that any finite
subset of G of size at most n has a c-Følner set with error 1

n
of size in between

n and f(n) can be expressed by a first-order sentence true of G and thus of any
group elementarily equivalent to G.

(2) ⇒ (1): Suppose that G is not uniformly inner amenable. Without loss of
generality, we may suppose that G is inner amenable. Then there is some n ≥ 1
such that, for all m ≥ 1, there exist finite subsets Sm ⊆ G with |Sm| ≤ n such that
all (Sm,

1
n
)-c-Følner sets in G of size at least n have cardinality at least m. By the

compactness theorem, there is an elementary extension H of G which contains
a subset S ⊆ H with |S| ≤ n for which there is no (Sm,

1
n
)-c-Følner set in H of

cardinality at least n. Then H is not inner amenable.

(2) ⇒ (3) follows from the fact that ultrapowers of G are elementarily equivalent
to G.

(3) implies (2): Suppose that H is elementarily equivalent to G and embed H
elementarily in an ultrapower GU of G. By (3), GU is inner amenable whence so
is H by Lemma 4.4. □

Theorem 1.1 can thus be stated:

Corollary 4.5. SL2(K) is an amenable group that is not uniformly inner amenable.

In an earlier version of this paper, we asked if there is an inner amenable, nona-
menable group that is not uniformly inner amenable. In response to this question,
Jesse Peterson informed us of the following fact:
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Fact 4.6. If G and H are groups, then G×H is inner amenable if and only if at
least one of G or H is inner amenable.

The previous fact appears to be folklore but we were unable to find it explicitly
stated in the literature. One direction is easy: if G is inner amenable and µ is a
finitely additive measure on G \ {eG} witnessing that G is inner amenable, then
µ× δeH is a measure on (G×H) \ {(eG, eH)} that witnesses that G×H is inner
amenable. For a proof of the other direction, see [4, Proposition 2.4].

As a result of this fact, we see that, for any non-inner amenable group G, we
have that G× SL2(K) is inner amenable, nonamenable, and not uniformly inner
amenable. To see that G × SL2(K) is not uniformly inner amenable, note that
(G× SL2(K))U ∼= GU × SL2(K)U, which is not inner amenable as neither GU nor
SL2(K)U are inner amenable (GU is not inner amenable by Lemma 4.4).
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