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Abstract. We initiate the study of pseudofiniteness in continuous logic. We

introduce a related concept, namely that of pseudocompactness, and inves-
tigate the relationship between the two concepts. We establish some basic

properties of pseudofiniteness and pseudocompactness and provide many ex-

amples. We also investigate the injective-surjective phenomenon for definable
endofunctions in pseudofinite structures.

1. Introduction

Pseudofiniteness is a well-known, interesting, and useful notion in classical logic;
see [1, 12, 14, 16]. Our goal is to introduce a concept in continuous logic in the
setting of [3, 5] which corresponds as much as possible to the classical one.

However, in view of the lack of actual negations in the formal language, two
different notions arise in our study. We choose to define them after the names of
pseudofiniteness and strong pseudofiniteness; each resembles a different aspect of
the classical notion.

We also introduce the related concept of pseudocompactness (and a correspond-
ing stronger version), because compact structures in many cases appear to be the
right counterpart in continuous logic of finite structures in classical logic: they are
saturated, have no proper ultrapowers, and indeed are totally categorical. (We
dedicate an appendix elaborating on this analogy.) Although we show that pseudo-
compactness is equivalent to pseudofiniteness in many cases, the stronger versions
are distinct in an essential way, and thus we end up considering three different
concepts.

We present detailed proofs for statements which correspond to trivial or well-
known properties of classical pseudofiniteness, in order to highlight the traps and
pitfalls of continuous logic.

Section 2 defines those four properties, proves some elementary results about
them, and introduces some basic examples and questions. It also shows that, in
the case of classical languages and structures, the four notions coincide with the
original one; this seems to require unusual attention.

Section 3 proves the equivalence of pseudofiniteness and pseudocompactness for
relational languages and argues considerably in favor of a conjecture of general
equivalence. Currently, we need to recourse to “almost structures”, which satisfy a
weaker clause of modulus of continuity for each nonlogical symbol.

Section 4 discusses the injectivity-surjectivity of definable endofunctions, that
is, whether injective definable functions of the form X → X are surjective, and
conversely. In classical logic, that property is a straightforward consequence of (and
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one main source of interest in) pseudofiniteness, although it holds independently
of the latter as well (see [10, 12]). In continuous logic, work is more complex and
requires strong pseudofiniteness and a strong assumption on the definable function;
it also helps to distinguish between pseudofiniteness and strong pseudofiniteness.

We assume that the reader is familiar with the basics of continuous logic; oth-
erwise, they may consult the paper [5] or the survey [3]. There is one nuance of
continuous logic that we use throughout the paper, which we mention here. Since
continuous logic lacks negation, one cannot, a priori, express implications. How-
ever, there is a trick that one can use to get around this problem:

Fact 1.1. [3, Prop. 7.14] Suppose that L is a bounded continuous signature, M is
an ω-saturated L-structure, and ϕ(x) and ψ(x) are two L-formulae, where x is an
n-tuple of variables. Then the following are equivalent:

(1) For all a ∈Mn, if ϕM (a) = 0, then ψM (a) = 0;
(2) There is an increasing, continuous function α : [0, 1] → [0, 1] satisfying

α(0) = 0 so that, for all a ∈Mn, we have ψM (a) ≤ α(ϕM (a)).

The import of this fact is that the second condition is indeed expressible by the
condition supx(ψ(x)−. α(ϕ(x))) = 0.

2. Definitions, basic properties, and examples

2.1. Definitions and basic properties. Until further notice, L is a bounded
metric signature (assumed to be one-sorted for simplicity) and M is an L-structure.

Definition 2.1. We say that M is pseudofinite (resp. pseudocompact) if σM = 0
for any L-sentence σ such that σA = 0 for all finite (resp. compact) L-structures A.

Remark 2.2. Unfortunately, the term “pseudocompact” is already in use in the
topology literature: A space X is said to be pseudocompact if any continuous
function X → R is bounded. There is no relationship between our notion and the
previous notion and thus this should not be a source of confusion.

Remark 2.3. If L is a many-sorted language, then an L-structure is said to be
finite (resp. compact) if the underlying universe of each sort is finite (resp. compact),
regardless of the number of sorts. Then one defines pseudofinite and pseudocompact
L-structures exactly as in the above definition.

Clearly pseudofinite structures are pseudocompact.

Lemma 2.4. The following are equivalent:
(1) M is pseudofinite (resp. pseudocompact);
(2) For any L-sentence σ, if σM = 0, then for any ε > 0, there is a finite (resp.

compact) L-structure A such that σA ≤ ε;
(3) There is a set {Ai : i ∈ I} of finite (resp. compact) L-structures and an

ultrafilter U on I such that M ≡
∏
U Ai.

As usual, (3) together with the Keisler–Shelah Theorem (see [13] for a proof in
the context of the approximate semantics predating continuous logic), provides a
purely algebraic and logic-free characterization of pseudofinite (resp. pseudocom-
pact) structures, namely, as those which have some ultrapower isomorphic to some
ultraproduct of finite (resp. compact) structures.
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Proof. (1)⇒(2): Suppose that (1) holds but (2) fails. Then there is an L-sentence
σ and an ε > 0 such that σM = 0 but σA ≥ ε for all finite (resp. compact) L-
structures A. But then (ε −. σ)A = 0 for all finite (resp. compact) L-structures A,
whence σM ≥ ε by (1), which is a contradiction. Note for future reference that the
converse is similar: Suppose that (2) holds and that σ is such that σA = 0 for all
finite L-structures A, yet σM =: r > 0. Consider ε ∈ (0, r); then |σA − r| ≤ ε for
some finite structure A, whence σA > 0, a contradiction.

(2)⇒(3): Assume that (2) holds. Let T = Th(M) and let J be the collection
of finite subsets of T . For each ∆ ∈ J and k ∈ N>0, let A∆,k be a finite (resp.
compact) L-structure such that A∆,k |= max ∆ ≤ 1

k and let

X∆,k = {(Γ, l) ∈ J × N>0 : AΓ,l |= max ∆ ≤ 1
k}.

Note that {X∆,k : (∆, k) ∈ J × N>0} has the finite intersection property: given
∆1, . . . ,∆m ∈ J and k1, . . . , km ∈ N>0, we have that

(∆, k) ∈ X∆1,k1 ∩ . . . ∩X∆m,km
,

where ∆ = ∆1 ∪ · · · ∪ ∆m and k = max(k1, . . . , km). Let U be an ultrafilter on
J × N>0 extending {X∆,k : (∆, k) ∈ J × N>0}. Set N :=

∏
U A∆,k. We claim that

M ≡ N . To see this, suppose that σM = 0. Then X{σ},k ∈ U , so that σN ≤ 1
k .

Since k > 0 is arbitrary, we have that σN = 0.
(3)⇒(1) is clear. �

We have a preservation result, whose proof is similar to that for classical logic:

Lemma 2.5. Any ultraproduct of pseudofinite L-structures is pseudofinite. If M
is pseudofinite, so is any L-structure elementarily equivalent to M , any reduct of
M to a sublanguage of L, and any expansion of M by constants. The analogous
statements for pseudocompactness also hold.

Proof. The only statement whose proof is not identical to that in classical logic is
the one about expansion by constants, yet the procedure is similar: Given a sentence
σ in the expanded language, replace the new constant symbols by fresh variables x,
thus obtaining an L-formula ϕ(x). Assume that σB = 0 for every finite structure
B in the expanded language. Any such B equals (A, a) for some L-structure A
and some sequence of parameters a in A. Note then [supx ϕ(x)]A = 0 for any finite
L-structure A, since the choice of a is arbitrary, hence [supx ϕ(x)]M = 0. Now let
M ′ be any expansion of M with interpretations for the new constant symbols: we
have σM

′
= 0. �

In the classical analog of Lemma 2.4, item (2) is replaced by the following state-
ment: Whenever M |= σ, then A |= σ for some finite structure A. In other words,
the approximate truth appearing in item (2) above is replaced by actual truth, and
equivalence holds because of using the negation connective. This motivates us to
make the following definition:

Definition 2.6. We say that M is strongly pseudofinite (resp. strongly pseudocom-
pact) if for any L-sentence σ such that σM = 0, there is a finite (resp. compact)
L-structure A such that σA = 0.

In other words, M is an addherence point of finite (resp. compact) structures,
that is, for every L-sentence σ such that σM = 0, the “neighborhood” {N : σN = 0}
contains a finite structure.
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Observe that a finitely axiomatizable theory with no finite models cannot be
strongly pseudofinite.

Of course, strongly pseudofinite structures are strongly pseudocompact, and
Lemma 2.4 yields that each strong concept implies its corresponding plain version.
See Examples 2.19 and 4.5 for proved distinctions.

The following preservation lemma is almost as bold as the previous one: our
examples (especially 4.5) will show that strong pseudofiniteness is not preserved
under ultraproducts.

Lemma 2.7. If M is strongly pseudofinite, so is any L-structure elementarily
equivalent to M , any reduct of M to a sublanguage of L, and any expansion of M
by constants. The analogous statements for pseudocompactness also hold.

Proof. Again, the only proof not identical to that in classical logic is the one about
expansion by constants, yet it is similar: Given any sentence in the expanded
language, replace the new constant symbols by fresh variables and quantify over
each of them using the inf quantifier, then recall that inf quantifiers are actually
realized in finite or compact structures. �

Next, we prove that pseudofiniteness and pseudocompactness are preserved when
adding imaginaries. We follow the approach to imaginaries (as well as the notation)
from [3, Sec. 5], which we briefly recall here. Given a family (ϕn(x, yn) : n ∈ N)
of L-formulae, we consider the definable predicate ψ(x, Y ) := F limϕn, which is
the forced limit of these formulae. For each such definable predicate ψ(x, Y ), we
add an imaginary sort (Sψ, dψ) for canonical parameters of instances of ψ; given
a tuple b of sort Y in some L-structure M , we let [b]ψ denote its image in M eq

of sort Sψ. We also add a predicate symbol Pψ(x, z) (where z is of sort Sψ),
whose interpretation will satisfy Pψ(x, [b]ψ) = ψ(x, b), and predicate symbols γψ,n
which are approximations to the graph of the quotient map between tuples and
their equivalence classes in Sψ. We let Leq denote the resulting language and let
T eq

0 denote the Leq-theory axiomatizing the properties of the new symbols (so the
models of T eq

0 are precisely the eq-expansions of L-structures). We emphasize that
this approach to imaginaries is independent of any ambient L-structure.

Given a finite or countable tuple b and m > 0, we set b|m to be the truncation
of b to the first m elements; we also refer to b|m simply as a truncation of b.

Lemma 2.8. Let ϕ(u, v1, . . . , vn) be an Leq-formula, where u is a tuple of variables
from L and v1, . . . , vn are variables from imaginary sorts. Given ε > 0, there is an
L-formula ϕ′(u, v1, . . . , vn) such that for all L-structures M and all bi ∈ M eq of
the same sort as vi, there are truncations bi′ such that

M eq |= sup
u
|ϕ(u, [b1], . . . , [bn])− ϕ′(u, b′1, . . . , b′n)| ≤ ε.

In particular, for any Leq-sentence σ and any ε > 0, there is an L-sentence σ′ such
that T eq

0 |= |σ − σ′| ≤ ε.

Proof. The proof is by induction on the complexity of ϕ. First suppose that ϕ is
atomic. Without loss of generality, we may suppose that ϕ is not an L-formula.
Thus, there is a definable predicate ψ(x, Y ) = F lim(ϕn(x, yn)) such that ϕ is of
the form:

Pψ(x, z), dψ(z, z∗), or γϕn,ψ(yn, z).
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In the first case, choose N such that 2−N ≤ ε. Then

M eq |= sup
x
|Pψ(x, [b])− ϕN (x, b|N )| ≤ ε.

In the second case, choose N so that 2−N+1 ≤ ε. Then

M eq |=
∣∣∣d([b], [b∗])− sup

x
|ϕN (x, b|N )− ϕN (x, b∗|N )|

∣∣∣ ≤ ε.
Finally, for the third case, choose N so that 2−N ≤ ε. Then

M eq |= sup
yn

∣∣∣γϕn
(yn, [b])− sup

x
|ϕn(x, yn)− ϕN (x, b|N )

∣∣∣ ≤ ε.
The connective step of the proof follows immediately from uniform continuity.
There are two quantifier cases to consider. First suppose that ϕ(u, v1, . . . , vn) =
infw χ(u,w, v1, . . . , vn), where w is a variable of L. Let χ′(u,w, v1, . . . , vn) be
as in the conclusion of the lemma for χ and ε. Then set ϕ′(u, v1, . . . , vn) :=
infw χ′(u,w, v1, . . . , vn). Now assume ϕ(u, v1, . . . , vn) = infw χ(u, v1, . . . , vn, w),
where w is an imaginary variable. Let χ′(u, v1, . . . , vn, w′) be an L-formula sat-
isfying the conclusion of the lemma for χ and ε. Then set ϕ′(u, v1, . . . , vn) :=
infw′ χ′(u, v1, . . . , vn, w′). �

In order to make the desired preservation result true, we need to make a slight
modification to the eq-construction for finite structures. Suppose that A is a finite
L-structure and ψ(x, Y ) is a definable predicate with Y a countable tuple of pa-
rameter variables. Observe then that there is a finitary definable predicate ψ̃(x, y)
(that is, y is a finite tuple) such that ψ and ψ̃ are logically equivalent. Consequently,
there is no need to add the sort Sψ if one adds the sort S eψ. Thus, we insist that
the eq-construction for finite structures only add sorts for canonical parameters of
finitary imaginaries. In this way, Aeq is once again a finite structure. Observe that
if A is a compact structure, then Aeq is also a compact structure.

Proposition 2.9. If M is pseudofinite (resp. pseudocompact), then so is M eq.

Proof. Suppose that M eq |= σ = 0. Fix ε > 0. Then M |= σ′ ≤ ε. Then
there is a finite (resp. compact) L-structure A such that A |= σ′ ≤ 2ε. Since also
Aeq |= |σ − σ′| ≤ ε, we have Aeq |= σ ≤ 3ε. �

Question 2.10. Are the notions of strong pseudofiniteness and strong pseudocom-
pactness preserved when adding imaginaries? More generally, how natural is strong
pseudofiniteness in continuous logic, which relies heavily on approximations?

The next two subsections present a list of many examples of pseudofinite and
pseudocompact metric structures:

2.2. The case of a classical structure. In this subsection, we let L denote a
signature for classical logic. In order for us to treat L as a signature for continuous
logic, we must also specify a modulus of uniform continuity for each symbol. For
each function and predicate symbol, we use ∆(ε) := ε as our modulus of uniform
continuity. Note that any classical L-structure, when equipped with the discrete
metric, is a metric L-structure.

For the rest of this subsection, let M denote a classical L-structure. If M is
pseudofinite in the classical sense, then we will say that M is classically pseudofinite.
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Thus, when we say that M is pseudofinite, we are considering M as a metric L-
structure. It is not immediately clear that M is classically pseudofinite if and only
if M is pseudofinite as there are metric L-structures that are not the result of
viewing classical L-structures as metric structures. Nonetheless, in this section, we
will prove:

Theorem 2.11. Given a classical L-structure, the five notions classically pseu-
dofinite, pseudofinite, strongly pseudofinite, pseudocompact, and strongly pseudo-
compact coincide.

Towards proving this result, note that, since all five notions are invariant under
elementary equivalence, we may replace M with an ultrapower, thus reducing to
the case that M is ω-saturated (as a metric structure).

One proves the next lemma by induction on the complexity of formulae:

Lemma 2.12. For any continuous L-formula ϕ(x), there is finite Rϕ ⊆ [0, 1] such
that, for any classical L-structure A and any tuple a from A, one has ϕA(a) ∈ Rϕ.

We should remark that it is essential that we assumed that the structures in the
previous theorem are classical. Indeed, if ϕ(x, y) is d(x, y), then as A ranges over
all metric L-structures, ϕA can take on any value in [0, 1].

Lemma 2.13. Suppose that A and B are classical L-structures and that A ≡ B as
classical structures. Then A ≡ B as metric structures.

Proof. By the classical Keisler–Shelah theorem, there are (classical) ultrapowers AU

and BU that are isomorphic. However, the ultrapower construction for a classical
structure is the same in both logics. The result now follows. �

Corollary 2.14. If M is classically pseudofinite, then M is strongly pseudofinite.

Proof. We know that there are finite classical L-structures (Ai : i ∈ I) and an
ultrafilter U on I such that M ≡

∏
U Ai (a classical ultraproduct). By the previous

lemma, M ≡
∏
U Ai as metric structures. Consequently, if σ is a continuous L-

sentence such that σM = 0, then limU σAi = 0. By Lemma 2.12, σAi = 0 for some
(actually, almost all) Ai. �

Note that, for all a, b ∈ M , d(a, b) ≤ 1
2 ⇒ d(a, b) = 0. Thus, since M is ω-

saturated, there is an increasing, continuous α : [0, 1] → [0, 1] such that α(0) = 0
and d(a, b) ≤ α(d(a, b) −. 1

2 ) for all a, b ∈ M . We fix this α for the rest of the
subsection.

Lemma 2.15. If M is strongly pseudocompact, then M is strongly pseudofinite.

Proof. Suppose σM = 0. Then

M |= max
(
σ, sup

x,y
(d(x, y)−. α(d(x, y)−. 1

2 ))
)

= 0.

Thus the displayed sentence has value 0 in some compact L-structure A. However,
the second “conjunct” forces A to be discrete, whence finite. �

In order to finish the proof of Theorem 2.11, it remains to prove that if M is
pseudocompact, then it is classically pseudofinite.

Towards this end, given a classical L-formula ϕ(x), we define its continuous
transform ϕ̃(x) by recursion as follows:
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• if ϕ(x) is t1(x) = t2(x), then ϕ̃(x) is d(t1(x), t2(x));
• if ϕ(x) is P (t1(x), . . . , tn(x)), then ϕ̃(x) is ϕ(x);
• [¬ϕ]∼ is 1−. ϕ̃;
• [ϕ ∧ ψ]∼ is max(ϕ̃, ψ̃);
• [∃y ψ(x, y)]∼ is infy ψ̃(x, y).

It is easy to see that for any classical L-structure B, any classical L-formula ϕ(x),
and any b from B, we have [B |= ϕ(b)⇒ ϕ̃(b)M = 0].

Now suppose that σ is a classical L-sentence such that M |= σ. We will find a
finite classical L-structure B such that B |= σ. For every predicate symbol P in
σ and every tuple a ∈ M , PM (a) ≤ 1

2 ⇒ P (a) = 0. Thus, there is an increasing,
continuous αP : [0, 1]→ [0, 1] with αP (0) = 0 such that σMP = 0, where

σP := sup
x

(P (x)−. αP (P (x)−. 1
2 )).

Similarly, letting τ := supx,y(d(x, y)−. α(d(x, y)−. 1
2 )), we also have that τM = 0. Let

σ′ := max(σ, (σP )P , τ), where the P ’s range over the predicate symbols appearing
in σ.

Since M is pseudocompact, there is a compact structure A such that (σ′)A ≤ 1
4 .

Define a binary relation E on A by E(x, y) :⇔ d(x, y) ≤ 1
4 . Clearly E is reflexive

and symmetric. However, E is also transitive. Indeed, if d(x, y), d(y, z) ≤ 1
4 , then

d(x, z) ≤ 1
2 . Since τA ≤ 1

4 , we get d(x, z) ≤ 1
4 . We now define the desired finite

classical L-structure as follows. We define the underlying set of B to be the set of
E-equivalence classes of A. Since A has a finite 1

4 -net, we have that B is finite.
Now we need to interpret the structure. For our purposes, it is only relevant how
we define the symbols appearing in σ. Given a predicate symbol P appearing in
σ, we declare [a] ∈ PB if and only if PA(a) ≤ 1

2 . To see that we can do so, we
need to check that if d(ai, a′i) ≤ 1

4 for each i, then PA(a) ≤ 1
2 ⇔ PA(a′) ≤ 1

2 .
However, since A |= σP ≤ 1

4 , then PA(a) ≤ 1
2 implies PA(a) ≤ 1

4 . Since we are
using the identity as modulus of uniform continuity for all of our symbols, we get
that |PA(a)− PA(a′)| ≤ 1

4 , giving the desired result. Similarly, for every function
symbol f appearing in σ, we define f([a]) := [f(a)]. Again, we can do so because
[a] = [a′] implies |f(a)−f(a′)| ≤ 1

4 as we are using the identity modulus of uniform
continuity.

Let L′ be the reduct of L that only contains the symbols of σ. It is easy to prove,
by induction on the complexity of formulae, the following:

Lemma 2.16. Suppose that ϕ(x) is a classical L′-formula. Then for any suitable
tuple a in A, we have:

(1) If ϕ̃A(a) ≤ 1
4 , then B |= ϕ([a]);

(2) If ϕ̃A(a) ≥ 3
4 , then B |= ¬ϕ([a]).

In proving the above lemma, one needs to use that inf quantifiers are realized in
compact structures. By the lemma, since σA ≤ 1

4 , we have B |= σ. This discussion
proves:

Lemma 2.17. If M is pseudocompact, then M is classically pseudofinite.

This finishes the proof of Theorem 2.11. We should remark that the above
discussion is unusual in the sense that when one generalizes a notion to continuous
logic, it is often immediate that the notion agrees with the classical notion on
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classical structures. For example, if T is a classical theory, then it is immediate to
see that T is stable as a classical theory if and only if T is stable as a continuous
theory. It is interesting to note that pseudofiniteness appears to be the first notion
where some work is required to show that the notions agree on classical structures.

2.3. Examples and questions.

Example 2.18. Let L be the signature naturally used for closed unit balls of inner
product spaces (see [3, Ex. 2.1]). For n ≥ 1, let Bn denote the closed unit ball of
Rn, viewed naturally as an L-structure. Let U be any nonprincipal ultrafilter on
N and let H =

∏
U Bn. Clearly H is the closed unit ball of an infinite-dimensional

Hilbert space. By completeness, we see that any closed unit ball of a Hilbert space
is pseudocompact.

We will be able to show that H is not strongly pseudofinite; the function H → H,
x 7→ 1

2x, is injective but not surjective.
There are some interesting pseudocompact expansions of H. First, consider

(H,P ) =
∏
U (Bn, Pn), where Pn : Rn → Rn is a projection operator onto an

bn/2c-dimensional subspace of Rn. Then (H,P ) is a pseudocompact structure
and is a model of the theory of beautiful pairs of Hilbert spaces, namely an infinite-
dimensional Hilbert space equipped with a projection with infinite-dimensional im-
age and infinite-dimensional orthogonal complement. (See [7].)

Next, let {zi : i < ω} be a countable dense subset of {z ∈ C : |z| = 1}. Let
(H,U) =

∏
U (Bn, Un), where Un : Cn → Cn is a unitary operator with eigenvalues

{z1, . . . , zn}. Then for any m ≥ n, we have

(Bm, Um) |= inf
x

max
(
|〈x, x〉 − 1|, ‖U(x)− znx‖

)
= 0.

It follows from the work in [6] that (H,U) is a model of the theory of Hilbert spaces
equipped with a generic automorphism.

Example 2.19. Let L be the signature for probability structures (see [3, Sec. 16]).
Let Bn be the probability structure with event algebra 2n and with the counting
measure µn. Let U be a nonprincipal ultrafilter on N and let B =

∏
U Bn. We

claim that B is an atomless probability structure; since the theory of atomless
probability structures is complete, it follows that any atomless probability structure
is pseudofinite. Towards this end, suppose that x = [(xn)] ∈ B is such that µ(x) > 0.
Set mn := |xn|; then mn > 1 for almost all n, for otherwise µn(xn) ≤ 1

n and hence
µ(x) = limU µn(xn) = 0. For such n, let yn ⊆ xn be such that |yn| = 1

2mn if mn is
even or |yn| = 1

2 (mn−1) if mn is odd. Then Bn |= infy |µ(xn∩y)−µ(xn∩yc)| ≤ 1
n

for almost all n, whence B |= infy |µ(x ∩ y) − µ(x ∩ yc)| = 0. It follows that
B is atomless. Observe that, since the (complete) theory of atomless probability
structures is finitely axiomatizable, it cannot be strongly pseudofinite.

An extension of this idea shows that any atomless probability structure equipped
with a generic (or aperiodic) automorphism is also pseudofinite (but of course
not strongly pseudofinite). Indeed, the theory of atomless probability structures
equipped with a generic automorphism (denoted APAA in [3, Sec. 18]) is axiom-
atized (in the language of probability structures expanded by a unary function
symbol τ) by the axioms of atomless probability structures equipped with an au-
tomorphism together with, for each n ≥ 1, the axiom

inf
e

max
(
| 1n − µ(e)|, µ(e ∩ τ(e)), . . . , µ(e ∩ τn−1(e))

)
= 0.
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We consider the probability structures Bm from above and we equip them with the
automorphisms τm induced by the point map x 7→ x + 1 mod m. Fix n ≥ 1 and
suppose that m > n. Choose k ∈ {1, . . . ,m} maximal with respect to k−1

m−1 ≤
1
n .

Let e = {1, 1 + n, . . . , 1 + (k − 1)n} ∈ Bm. Observe that |e| = k so

|µ(e)− 1
n | ≤ |

k
m −

k
m−1 |+ |

k
m−1 −

k−1
m−1 |+ |

k−1
m−1 −

1
n | ≤

3
m−1 .

Furthemore, observe that for i ∈ {0, 1, . . . , n − 1} we have τ im(e) ∩ e ⊆ {1}, so
µ(τ im(e) ∩ e) ≤ 1

m for each such i. Consequently,

(Bm, τm) |= inf
e

max
(
| 1n − µ(e)|, µ(e ∩ τ(e)), . . . , µ(e ∩ τn−1(e))

)
≤ 3

m−1

for each m ≥ n. Let τ∞ = limU τm. It follows that

(B, τ∞) |= inf
e

max
(
| 1n − µ(e)|, µ(e ∩ τ(e)), . . . , µ(e ∩ τn−1(e))

)
= 0.

Since n ≥ 1 was arbitrary, we have that (B, τ∞) |= APAA.

Example 2.20. We can generalize the previous example as follows: Let L be a
countable classical signature. We claim that if M is a pseudofinite L-structure,
then any of its Keisler randomizations are pseudofinite metric structures, whence
pseudofiniteness is a robust model-theoretic notion in the sense that it is preserved
under randomizations. (See [4] for information on the notion of Keisler randomiza-
tion. The reason this example generalizes the previous example is that the theory
of atomless probability algebras is just the theory of the Keisler randomization of
a two-element set.) To see this, suppose that M ≡

∏
UMn, where (Mn : n ∈ N) is

a family of finite L-structures and U is a nonprincipal ultrafilter on N; observe that
since L is countable, we may always find such a countable family of finite structures.
We consider the probability structures Bn from the previous example and we let
Kn := M

{1,...,n}
n . We claim that (K,B) :=

∏
U (Kn,Bn) |= TR, where T := Th(M);

since TR is complete, it suffices to prove this claim. The Validity, Boolean, Dis-
tance, Fullness, Event, and Measure axioms are clearly “true” in each of the factor
structures, and hence “true” in the ultraproduct. The previous example already
shows that the ultraproduct satisfies the Atomless Axiom. It remains to verify the
Transfer Axiom, namely, for every sentence σ ∈ T , we need (K,B) |= d(JσK,>) = 0.
Note that dBn(JσK,>) = 0 if and only if Mn |= σ; since σ ∈ T , then Mn |= σ for
almost all n, whence dB(JσK,>) = limU dBn(JσK,>) = 0. Note that this example
provides us with our first examples of unstable pseudofinite theories (other than
the classical ones). Indeed, if T is not stable, then TR is unstable (see [4]). Also,
by a result of Ben Yaacov (see [2]), if T is simple unstable, then TR is not simple.
Thus, if T is the theory of the random graph or the theory of pseudofinite fields,
then TR is pseudofinite but not simple.

Example 2.21. Let (X, d) be a proper metric space (that is, closed balls are
compact). Fix a basepoint p ∈ X and consider (X, d, p) as a many-sorted structure
in the natural way. (See [8] for all the concepts.) Then the asymptotic cone of
(X, d, p) with respect to any nonprincipal ultrafilter on N will be pseudocompact,
and hence pseudofinite by Theorem 3.3 below. Of particular interest is the case
when (X, d) is the Cayley graph of a finitely generated group G. If G is furthermore
assumed to be hyperbolic, then this asymptotic cone will be an R-tree. If the
hyperbolic group is nonelementary (that is, it doesn’t contain an infinite cyclic
group of finite index), for exampleG = F2 the free group on two generators, then the
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R-tree is richly branching. Since the theory of richly branching R-trees is complete,
we have that any richly branching R-tree is pseudofinite.

We end this section with a couple of questions.

Question 2.22. Let U denote the bounded Urysohn space, that is, the unique Polish
metric space of diameter bounded by 1 which is ultrahomogeneous and contains an
isometric copy of every Polish metric space of diameter bounded by 1. Let TU

denote the theory of U in the metric signature containing only the distance symbol.
Is TU pseudofinite or pseudocompact?

The model theory of U is quite well-understood; see the papers [15] and [11],
where it is shown that TU is complete, admits quantifier elimination, is ℵ0-cate-
gorical, and is rosy with respect to finitary imaginaries (but is not simple). In
some sense, the Urysohn space is the continuous analog of the random graph and
so one might expect that the answer to the previous question is positive. In [15],
an axiomatization for TU is given by writing down conditions in continuous logic
describing a certain collection of “extension axioms.” Thus, the following lemma
might prove useful.

Lemma 2.23. Suppose that {γ = 0: γ ∈ Γ} |= Th(M) for some collection Γ of
L-sentences, and that, for every γ1, . . . , γn ∈ Γ and every ε > 0, there is a finite
(resp. compact) L-structure A such that A |= max(γ1, . . . , γn) ≤ ε. Then M is
pseudofinite (resp. pseudocompact).

Proof. Let σ be an L-sentence such that σM = 0. Fix δ > 0. Then by compactness,
there is ε > 0 and γ1, . . . , γn ∈ Γ such that

{max(γ1, . . . , γn) ≤ ε, σ ≥ δ}
is unsatisfiable. Let A be a finite (resp. compact) L-structure such that A |=
max(γ1 . . . , γn) ≤ ε. Then σA < δ. Since δ > 0 is arbitrary, we see that M is
pseudofinite (resp. pseudocompact). �

Thus, by the previous lemma, in order to show that TU is pseudofinite (resp.
pseudocompact), one might just try to prove that any finite collection of extension
axioms are approximately true in some finite (resp. compact) bounded metric space.
By Theorem 3.3 below, if one can prove that TU is pseudocompact, then it will follow
that TU is pseudofinite.

Question 2.24. Is there an example of an “essentially continuous” strongly pseu-
dofinite (resp. strongly pseudocompact) structure that is not finite (resp. compact)?

While the term “essentially continuous” is admittedly vague (although there
have been attempts by others to make this notion precise), we use it to preclude
discrete examples. For example, any pseudofinite classical structure is strongly
pseudofinite; we do not want such structures to constitute a positive answer to our
question. In the last section, we use some results concerning definable endofuctions
in strongly pseudofinite structures to show that some pseudofinite structures are
not strongly pseudofinite. In fact, since continuous logic is an approximate logic, we
conjecture that the answer to the above question might be negative. It would even
be interesting to settle this question under some extra set-theoretic hypotheses.

We should mention that there is a näıve attempt to construct a strongly pseudo-
finite structure, namely by using an ultraproduct relative to an ω1-complete ultra-
filter. Recall that if I is an index set and U is a nonprincipal ultrafilter on I, then
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U is ω1-complete if, whenever E ⊆ U is countable, then
⋂
E ∈ U . If I = N, then

this is equivalent to the following: whenever I1 ) I2 ) I3 ) · · · is a decreasing
sequence of subsets of I such that In ∈ U for each n, then

⋂
n≥1 In 6= ∅ (see [9,

Prop. 4.3.3 and 4.3.4]). Suppose now that (Ai : i ∈ I) is a family of finite (resp.
compact) L-structures, U is an ω1-complete ultrafilter on I, and that M is an L-
structure satisfying M ≡

∏
U Ai. Then M is strongly pseudofinite (resp. strongly

pseudocompact). Indeed, suppose that σ is a sentence such that σM = 0. Let
In := {i ∈ I : Ai |= σAi ≤ 1

n} ∈ U . Then by assumption, there is i ∈
⋂
n≥1 In, and

σAi = 0 for this i. Unfortunately, M will be finite (resp. compact). Indeed, let

Dn = {i ∈ I : |Ai| ≥ n}.

If each Dn ∈ U , then the intersection of the Dn is also in U , contradicting that each
Ai is finite. Consequently, I \Dn ∈ U for some n, whence M has size < n. For the
pseudocompact situation, given ε > 0, let

Dn := {i ∈ I : Ai does not have an ε-net of size ≤ n}.

The above argument shows that M has a finite ε-net; since ε > 0 was arbitrary, M
is compact.

3. Relationship between pseudofiniteness and pseudocompactness

In this section, L denotes a bounded one-sorted metric signature. However, now
M denotes a compact L-structure. For each m ≥ 1, let Xm ⊆M be a finite 1

m -net
for M .

Suppose first that L is a relational metric language. We can then view each
Xm as a substructure of M . We let N :=

∏
U Xm, where U is some nonprincipal

ultrafilter on N. We denote sequences from
∏
Xm as (am) and write [am] for the

corresponding equivalence class in N .

Lemma 3.1. Suppose ψ(y1, . . . , yl) = Q1x1 · · ·Qkxk ϕ(x1, . . . , xk, y1, . . . , yl) is an
L-formula with Q1 = inf and quantifier-free ϕ. Further suppose (bm1 ), . . . , (bml ) ∈∏
Xm and r ∈ [0, 1] are such that M |= ψ(bm1 , . . . , b

m
l ) ≥ r for almost all m. Then

N |= ψ([bm1 ], . . . , [bml ]) ≥ r.

Proof. We proceed by induction on k. When k = 0, this follows from the  Loś’s
theorem. Now suppose that k > 0. Fix [am] ∈ N . We wish to show that

N |= Q2x2 . . . Qkxk ϕ([am], x2, . . . , xk, [bm1 ], . . . , [bml ]) ≥ r.

If Q2 = inf, then this follows by induction. Thus, we suppose that Q2 = sup. Let
p ≤ k be maximal so that Q2 = · · · = Qp = sup. Fix ε ∈ (0, r). We know that, for
almost all m, there is cm2 , . . . , c

m
p ∈M such that

M |= Qp+1xp+1 · · ·Qkxk ϕ(am, cm2 , . . . , c
m
p , xp+1, . . . , xk, b

m
1 , . . . , b

m
l ) ≥ r − ε

2
.

For these m, choose dmj ∈ Xm such that d(cmj , d
m
j ) < 1

m for 2 ≤ j ≤ p. For the
other m, define dmj ∈ Xm in an arbitrary way. Then, for almost all m, we have

M |= Qp+1xp+1 · · ·Qkxk ϕ(am, dm2 , . . . , d
m
p , xp+1, . . . , xk, b

m
1 , . . . , b

m
l ) ≥ r − ε.

By the induction hypothesis, we have

N |= Qp+1xp+1 · · ·Qkxk ϕ([am], [dm2 ], . . . , [dmp ], xp+1, . . . , xk, [bm1 ], . . . , [bml ]) ≥ r − ε.
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Since ε can be taken to be arbitrarily small, we have

N |= Qp+1xp+1 · · ·Qkxk ϕ([am], [dm2 ], . . . , [dmp ], xp+1, . . . , xk, [bm1 ], . . . , [bml ]) ≥ r.
Thus, we have

N |= Q2x2 · · ·Qkxk ϕ([am], x2, . . . , xk, [bm1 ], . . . , [bml ]) ≥ r.
Since [am] ∈ N is arbitrary, we have

N |= ψ([bm1 ], . . . , [bml ]) ≥ r.
�

Lemma 3.2. Suppose ψ(y1, . . . , yl) = Q1x1 · · ·Qkxk ϕ(x1, . . . , xk, y1, . . . , yl) is an
L-formula with Q1 = inf and quantifier-free ϕ. Further suppose (bm1 ), . . . , (bml ) ∈∏
Xm and r ∈ [0, 1] are such that M |= ψ(bm1 , . . . , b

m
l ) ≤ r for almost all m. Then

N |= ψ([bm1 ], . . . , [bml ]) ≤ r.

Proof. We proceed by induction on k. If k = 0, the result follows from  Loś’s
theorem again. Now suppose that k > 0. Fix ε > 0. For almost all m, there is
am ∈M so that

M |= Q2x2 · · ·Qkxk ϕ(am, x2, . . . , xk, b
m
1 , . . . , b

m
l ) ≤ r + ε.

Take cm ∈ Xm so that d(am, cm) < 1
m . Then, for almost all m, we have

M |= Q2x2 · · ·Qkxk ϕ(cm, x2, . . . , xk, b
m
1 , . . . , b

m
l ) ≤ r + 2ε.

If Q2 = inf, then by induction, we have that

N |= Q2x2 · · ·Qkxk ϕ([am], x2, . . . , xk, [bm1 ], . . . , [bml ]) ≤ r + 2ε.

Since ε is arbitrary, we have that N |= ψ([bm1 ], . . . , [bml ]) ≤ r, finishing the proof.
Thus, we may assume that Q2 = sup. Let p ≤ k be maximal such that Q2 = · · · =
Qp = sup. Let [cm2 ], . . . , [cmp ] ∈ N be arbitrary. Then

M |= Qp+1xp+1 · · ·Qkxkϕ(cm, cm2 , . . . , c
m
p , xp+1, . . . , xk, b

m
1 , . . . , b

m
l ) ≤ r + 2ε

for almost all m. Thus, by induction, we have that

N |= Qp+1xp+1 · · ·Qkxkϕ([cm], [cm2 ], . . . , [cmp ], xp+1, . . . , xk, [bm1 ], . . . , [bml ]) ≤ r + 2ε.

Thus,
N |= Q2x2 · · ·Qkxkϕ([cm], x2, . . . , xk, [bm1 ], . . . , [bml ]) ≤ r + 2ε.

Since ε > 0 is arbitrary, we have

N |= ψ([bm1 ], . . . , [bml ]) ≤ r.
�

Theorem 3.3. Every compact L-structure is pseudofinite. Consequently, the no-
tions of “pseudofinite” and “pseudocompact” agree.

Proof. Suppose that σ is an L-sentence in prenex normal form. If σ begins with
an inf, then σM = σN by the previous lemmas. If not, then one shows that 1−. σ
is equivalent to a prenex sentence beginning with inf; once again, the lemmas take
care of this case. Then, the general case follows from the fact that every restricted
L-sentence is equivalent to one in prenex form and that the restricted L-sentences
are dense in the collection of all L-sentences. (See [3, Sec. 6] for proofs of these
facts.) �
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Remark 3.4. Observe that the above arguments also work when L has countably
many constant symbols by adding finitely many to each Xi. They also work when
L has function symbols and M is locally finite.

Suppose now that L has function symbols. If f is a function symbol in L
and a is a suitable tuple in Xm, define fXm(a) to be an element of Xm so that
d(fXm(a), fM (a)) < 1

m . In particular, when c is a constant symbol, we define cXm

so that d(cM , cXm) < 1
m . Observe that Xm is not an L-structure for the singular

reason that it does not respect the modulus of uniform continuity specified by L.
However, Xm is an “almost L-structure” in the following sense:

Definition 3.5. An almost L-structure X is defined as an L-structure, except that
the clause of modulus of continuity for each function symbol f is weakened thus:
for sufficiently small ε, we require

d(a, b) < ∆f (ε)⇒ d(fX(a), fX(b)) ≤ ε;

and the clause of modulus of continuity for each predicate symbol is weakened
analogously.

(Of course, every L-structure is an almost L-structure.)
Indeed, since the net Xm is finite, there is rm > 0 such that d(a, b) ≥ rm for

each pair of distinct a, b ∈ Xm, in which case, when ∆f (ε) < rm, we have that
d(a, b) < ∆f (ε)⇒ a = b. (We are assuming here that limε→0+ ∆f (ε) = 0, which is
usually the case.)

Once again, let N =
∏
U Xm. Observe that, although the Xm are only almost

L-structures, N is an actual L-structure. Indeed, fix ε > 0 and suppose that
[am], [bm] are tuples in N such that d([am], [bm]) < ∆f (ε). Then for almost all m,
we have d(am, bm) < ∆f (ε), whence d(fXm(am), fXm(bm)) ≤ ε+ 2

m . Consequently,
d(fN ([am]), fN ([bm])) ≤ ε.

Lemma 3.6. For any ε > 0 and L-term t(x), where x is a tuple of variables, there
is K ∈ N so that for all m ≥ K and all a ∈ Xm, we have d(tM (a), tXm(a)) < ε.

Proof. One proves this lemma by induction on the complexity of t. When t is a
function symbol applied to variables or a constant symbol, then this follows from
the definition of interpretation in Xm. Now suppose that t(x) = f(t1(x), . . . , tk(x)).
Choose K ′ so that 1

K′ < ∆f ( ε2 ), and then choose K > 2
ε so that our claim holds

for t1, . . . , tk with 1
K′ in place of ε. Suppose that m ≥ K and a ∈ Xm. Then

d(tMi (a), tXm
i (a)) < 1

K′ for each i, whence

d
(
fM (tM1 (a), . . . , tMk (a)), fM (tXm

1 (a), . . . , tXm

k (a))
)
≤ ε

2 ,

whence

d
(
fM (tM1 (a), . . . , tMk (a)), fXm(tXm

1 (a), . . . , tXm

k (a))
)
≤ ε

2 + 1
m < ε.

�

Lemma 3.7. For any ε > 0 and quantifier-free L-formula ϕ(x), where x is a tuple
of variables, there is K ∈ N so that for all m ≥ K and all a ∈ Xm, we have
|ϕM (a)− ϕXm(a)| < ε.
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Proof. We induct on the complexity of ϕ. First suppose that ϕ(x) is the atomic
formula d(t1(x), t2(x)). Then

|d(tM1 (x), tM2 (x))− d(tXm
1 (x), tXm

2 (x))| ≤

d(tM1 (x), tXm
1 (x)) + d(tM2 (x), tXm

2 (x)) < ε

for m sufficiently large by the previous lemma. Now suppose that ϕ(x) is the atomic
formula P (t1(x), . . . , tk(x)). Then

|PM (tM1 (x), . . . , tMk (x))− PXm(tXm
1 (x), . . . , tXm

k (x))| =

|PM (tM1 (x), . . . , tMk (x))− PM (tXm
1 (x), . . . , tXm

k (x))| < ε

if m is sufficiently large so that d(tMi (x), tXm
i (x)) < ∆P (ε) for each i. Finally,

uniform continuity of connectives allows us to prove the inductive step. �

Definition 3.8. An L-structure Z is almost pseudofinite (resp. almost pseudocom-
pact) if whenever σA = 0 for all finite (resp. compact) almost L-structures A, then
σZ = 0.

Similarly, Z is almost strongly pseudofinite (resp. almost strongly pseudocompact)
if whenever σZ = 0 then there is a finite (resp. compact) almost L-structure A such
that σA = 0.

(In all four cases, the “almost” version of a property is a consequence of the
property itself.)

Lemma 3.9. Z is almost pseudofinite if and only if, whenever σZ = 0 and ε > 0,
there is a finite almost L-structure A such that σA ≤ ε.

Proof. This is analogous to the equivalence of (1) and (2) in Lemma 2.4. �

Proposition 3.10. M ≡ N . Thus, every compact L-structure is almost pseudofi-
nite and thus

pseudocompactness ⇒ almost pseudofiniteness ⇒ almost pseudocompactness.

Proof. The idea is that Lemmas 3.1 and 3.2 still hold in this context. The only
difference in the proofs is the base case, which we give now. Suppose that M |=
ϕ(bm1 , . . . , b

m
l ) ≥ r for almost all m. Fix ε ∈ (0, r). By the previous lemma, we have

that for almost all m, Xm |= ϕ(bm1 , . . . , b
m
l ) ≥ r−ε, so N |= ϕ([bm1 ], . . . , [bml ]) ≥ r−ε.

Since ε can be taken arbitrarily small, we see that N |= ϕ([bm1 ], . . . , [bml ]) ≥ r. The
case of ≤ is handled similarly. �

Remark 3.11. One can remove the word “almost” from the above if the lan-
guage only has constant symbols and relation symbols, regardless of the number of
constant symbols.

We conjecture that, in full generality, the notions of pseudofiniteness and pseudo-
compactness always agree. We will see in the next section (Example 4.5), however,
that the strong versions are not equivalent.
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4. Injectivity-surjectivity of endofunctions

The equivalence of injectivity and surjectivity of definable endofunctions is a
direct consequence of pseudofiniteness in classical logic. Here, we experiment with
the straightforward translation of that property in metric structures (although the
“right” corresponding property may be very different of course).

Explicitly, in classical logic, if M is pseudofinite and f : M → M is definable,
then f is injective if and only if f is surjective. The natural question is to ask
whether this holds in the continuous setting. Already in the simplest case this
seems to require a few more assumptions. Suppose that M is a metric structure:

Definition 4.1. Say that f : M →M is formula-definable if there is an L-formula
ϕ(x, y, z), where z is a tuple of variables, and there is a tuple a from M such that
d(f(x), y) = ϕ(x, y, a) for all x, y ∈M .

Proposition 4.2. Suppose that M is an ω-saturated strongly pseudofinite metric
structure. Suppose that f : M → M is a formula-definable function. Then f being
injective implies that f is surjective.

Proof. Suppose that f is injective but not surjective. By ω-saturation, there is
y ∈ M and an ε > 0 such that d(f(x), y) ≥ ε for all x ∈ M . Fix ϕ(x, y, z)
and a ∈ M such that d(f(x), y) = ϕ(x, y, a) for all x, y ∈ M . Note that, for all
x, y1, y2 ∈M , we have

max(ϕ(x, y1, a), ϕ(x, y2, a)) = 0⇒ d(y1, y2) = 0.

Since (M,a) is ω-saturated, there is an increasing continuous function α : [0, 1] →
[0, 1] satisfying α(0) = 0 and such that, for all x, y1, y2 ∈M , we have

d(y1, y2) ≤ α(max(ϕ(x, y1, a), ϕ(x, y2, a)).

Similarly, since f is injective, there is another increasing, continuous function
β : [0, 1] → [0, 1] satisfying β(0) = 0 and such that, for all x1, x2, y ∈ M , we
have

d(x1, x2) ≤ β(max(ϕ(x1, y, a), ϕ(x2, y, a))).

Consider the following formulae:

P (z) : sup
x

inf
y
ϕ(x, y, z),

Q(z) : sup
x,y1,y2

[d(y1, y2)−. α(max(ϕ(x, y1, z), ϕ(x, y2, z))],

R(z) : sup
x1,x2,y

[d(x1, x2)−. β(max(ϕ(x1, y, z), ϕ(x2, y, z)))],

Sε(z) : inf
y

sup
x

(ε−. d(f(x), y)).

Then
M |= inf

z
max(P (z), Q(z), R(z), Sε(z)) = 0.

Since M is strongly pseudofinite, there is a finite structure A such that

A |= inf
z

max(P (z), Q(z), R(z), Sε(z)) = 0.

Since A is finite, inf quantifiers are actually realized and thus there is a0 ∈ A such
that ϕ(x, y, a0) defines an injective function A→ A which is not surjective, leading
to a contradiction. �
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Proposition 4.3. Suppose that M is an ω-saturated strongly pseudofinite metric
structure. Suppose that f : M → M is a formula-definable function. Then f being
surjective implies that f is injective.

Proof. Suppose that f is surjective but not injective. Let P (z) and Q(z) denote
the same formulae as in the previous proof. Since f is not injective, we can find
b1, b2 ∈ M such that d(b1, b2) =: ε > 0 and f(b1) = f(b2). Consequently, there is
an increasing continuous function γ : [0, 1]→ [0, 1] satisfying γ(0) = 0 and so that,
for all w1, w2 ∈M , we have

d(w1, w2) ≤ γ(max(ϕ(b1, w1, a), ϕ(b2, w2, a))).

Consider the formulae

Rε(z) : inf
x1,x2

max
(
|d(x1, x2)− ε|, g(x1, x2, z)

)
where g(x1, x2, z) = sup

w1,w2

[d(w1, w2)−. γ(max(ϕ(x1, w1, z), ϕ(x2, w2, z)))],

and
S(z) : sup

y
inf
x
ϕ(x, y, z).

Then
M |= inf

z
max(P (z), Q(z), Rε(z), S(z)) = 0.

Thus this is true in a finite structure A, implying that there is a surjective definable
function A→ A which is not injective, contradiction. �

Remark 4.4. The above propositions only required that M was almost strongly
pseudofinite.

Example 4.5. Let S1 = {z ∈ C : |z| = 1} have the metric which is half the one
induced by the canonical metric in C (so it has values in [0, 1]), and consider the
ternary predicate P (u, v, w) = d(uv,w), where the usual product in C is used.
Consider also f : S1 → S1, f(z) = z2, which is surjective, but not injective. Then
the relational structure (S1, P ) (in the minimal adequate language with the right
modulus of uniformity for P ) is compact, hence pseudofinite. Because of the total
categoricity of compact models, (S1, P ) is saturated. Also, f is formula-definable in
(S1, P ): we have d(f(z), w) = P (z, z, w). Therefore, by the results above, (S1, P )
is not strongly pseudofinite.

Example 4.6. Let [0, 1] have the usual metric, and consider f : [0, 1] → [0, 1],
f(x) = x/2, which is injective, but not surjective. Similarly to the previous example,
one obtains a compact, pseudofinite, but not strongly pseudofinite structure.

Note that those examples show that the injective-surjective phenomena do not
necessarily hold for pseudofiniteness in the continuous sense, even for compact
structures.

Question 4.7. Is there a natural property of endofunctions in continuous logic
corresponding to injectivity-surjectivity, and which holds in pseudofinite structures?
We confess our failure in detecting any such property; for example, the function
f : [0, 1] → [0, 1] defined thus: f(x) = 2x if 0 ≤ x ≤ 1

2 and f(x) = 1 otherwise, is
surjective, yet f−1(1) is huge by any metric or topological standard.
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It would be interesting to know if we could strengthen our injectivity-surjectivity
results to hold for arbitrary definable functions in strongly pseudofinite structures.
Let us mention a few remarks towards proving this. Suppose that M is an L-
structure and P : Mn → [0, 1] is a predicate definable in M (over some countable
parameterset). Let LP be the language obtained by adding a predicate symbol for
P and let (M,P ) be the natural expansion of M to an LP -structure. Given an
LP -formula ψ(y) without parameters and an L-formula ϕ(x, a) with parameters a,
where |x| = n, one naturally gets an L(a)-formula ψϕ by replacing every occurrence
of P (x) with ϕ(x, a).

Lemma 4.8. If M is ω1-saturated, then (M,P ) is ω1-saturated.

Proof. Suppose that {ψi(y) = 0: i ∈ I} is a finitely satisfiable collection of LP -
conditions in countably many parameters. By replacing ψi(y) = 0 by ψiϕi

n
(y) ≤ 1

n ,
where ϕin is an L-formula approximating ψi within 1

n , we obtain a finitely satisfiable
collection of L-conditions in countably many parameters. Then use ω1-saturation
of M . �

Proposition 4.9. Suppose that f : M → M is a definable function in an ω1-
saturated structure M , let P (x, y) = d(f(x), y), and suppose further that (M,P ) is
almost strongly pseudofinite. Then f is injective if and only if it is surjective.

Proof. We have that f becomes formula-definable in the almost strongly pseudofi-
nite ω1-saturated structure (M,P ). �

Question 4.10. If M is strongly pseudofinite, is (M,P ) almost strongly pseudofi-
nite?

Of course, if the answer to the above question is positive, then the extra as-
sumption in the previous result is superfluous. We were only able to answer a
corresponding question positively for pseudofinite structures:

Lemma 4.11. Given any LP -formula ψ(y) and ε > 0, there are parameters a in
M and an L(a)-formula ϕ(x, a) such that |ψ(M,P )(b)−ψMϕ (b)| ≤ ε for every b ∈M .

Proof. Induct on the complexity of ψ. First assume that ψ is an atomic LP -formula.
If ψ is actually an L-formula, then there is nothing to do. Otherwise, ψ(y) is
P (t1(y), . . . , tn(y)), where t1, . . . , tn are L-terms. Choose ϕ(x, a) such that |P (x)−
ϕ(x, a)| ≤ ε for all x ∈ Mn. Then ϕ(t1(y), . . . , tn(y), a) is the desired formula.
Connectives are handled as usual and the case of quantifiers is also immediate. �

Lemma 4.12. If M is pseudofinite, then (M,P ) is almost pseudofinite.

Proof. Suppose that σ is an LP -sentence such that σ(M,P ) = 0. By Lemma 4.11,
given ε > 0, there is ϕ(x, a) such that (M,a) |= σϕ ≤ ε

2 . Thus, M |= infy σϕ(y) ≤ ε
2 .

By pseudofiniteness of M , we have that A |= infy σϕ(y) ≤ ε for some finite structure
A. Let b ∈ A be such that (A, b) |= σϕ(b) ≤ ε. Then make A into an almost LP -
structure by interpreting P as ϕ(x, b). Then (A,PA) |= σ ≤ ε. �

Appendix: Compact structures

As mentioned in the introduction, compact structures have no proper ultrapow-
ers; indeed, since any sequence from a compact space has a unique ultralimit, the
diagonal embedding M →MU of a compact structure M into any of its ultrapowers
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is surjective. From this it follows that M is totally categorical, that is, if N ≡ M
then N ∼= M . To see this, we use the Keisler–Shelah theorem for continuous logic:
if N ≡ M then NU ∼= MU for some ultrafilter U , hence NU is compact. By  Loś’s
theorem, we see that N is compact, whence we have N ∼= NU ∼= MU ∼= M .

Since we used the Keisler–Shelah theorem for continuous logic, we prefer to give
a more elementary proof that compact structures are totally categorical.

Proposition 4.13. Suppose that M is a compact L-structure. Then for any L-
structure N , if N ≡M , then N ∼= M .

Proof. Without loss of generality, we may assume that N is ω-saturated. Indeed,
if U is an nonprincipal ultrafilter on N, then NU ≡ M and NU is ω1-saturated. If
further NU ∼= M , then again N ∼= M by  Loś’s theorem.

For ease of notation, we assume that L = {P, F}, where P is a unary predicate
symbol and F is a unary function symbol. The proof that we give below immediately
extends to arbitrary finite languages. For arbitrary languages, one needs to replace
single conditions by partial types.

For m ≥ 1, let {am1 , . . . , amn(m)} be a finite 1
m -net for M . For i ∈ {1, . . . , n(m)},

let r(i,m) := PM (ami ) and fix j(i,m) ∈ {1, . . . , n(m)} such that

d(F (ami ), amj(i,m)) ≤ 1
m .

For i, j ∈ {1, . . . , n(m)}, set s(i, j,m) := d(ami , a
m
j ). Let ψm(x1, . . . , xn(m)) be the

formula supx(min1≤i≤n(m)(d(x, xi)−. 1
m )). Let χm(x1, . . . , xn(m)) be the formula

max
1≤i≤n(m)

(
max

(
|P (xi)− r(i,m)|, d(F (xi), xj(i,m))−. 1

m

))
.

Let τm(x1, . . . , xn(m)) be the formula max1≤i,j≤n(m) |d(xi, xj) − s(i, j,m)| and let
ϕm(x1, . . . , xn(m)) be the formula max(ψm, χm, τm).

Since N ≡ M and N is ω-saturated, we have that there exists, for each m ≥ 1,
bm1 , . . . , b

m
n(m) ∈ N such that ϕm(b1, . . . , bn(m)) = 0. Set Am := {am1 , . . . , amn(m)}

and Bm := {bm1 , . . . , bmn(m)}. It remains to observe that A :=
⋃
mAm is dense in M

and B :=
⋃
mBm is dense in N . �

Our proof shows that, unlike finite structures in finite languages in classical logic,
compact structures in a finite language are not finitely axiomatizable, but rather,
countably axiomatizable.

References

[1] J. Ax, The elementary theory of finite fields, Annals of Math. 88 (1968), pp. 239–271.

[2] I. Ben Yaacov, On Theories of Random Variables, preprint.
[3] I. Ben Yaacov, A. Berenstein, C. W. Henson, A. Usvyatsov, Model theory for metric struc-

tures, in Model theory with applications to algebra and analysis, vol. 2, pp. 315–427, London

Math. Soc. Lecture Note Ser., 350. Cambridge Univ. Press, Cambridge, 2008.
[4] I. Ben Yaacov and H. J. Keisler, Randomizations of models as metric structures, Confluentes

Math. 1 (2009), no. 2, pp. 197–223.

[5] I. Ben Yaacov and A. Usvyatsov, Continuous first order logic and local stability, Trans. Amer.
Math. Soc. 362 (2010), no. 10, pp. 5213-5259.

[6] I. Ben Yaacov, A. Usvyatsov, M. Zadka, Generic automorphism of a Hilbert space, preprint.

Available at http://ptmat.fc.ul.pt/~alexus/papers.html

[7] A. Berenstein, A. Villaveces, Hilbert spaces with generic predicates, preprint. Available at

http://pentagono.uniandes.edu.co/~aberenst/publications.html

[8] S. Carlisle, Model theory of real-trees and their isometries. Ph.D. thesis, University of Illinois

at Urbana-Champaign, 2009.



PSEUDOFINITE AND PSEUDOCOMPACT METRIC STRUCTURES 19

[9] C. C. Chang, H. J. Keisler, Model Theory. Third edition. Studies in Logic and the Foundations

of Mathematics, 73. North-Holland Publishing Co., Amsterdam, 1990.

[10] L. van den Dries, Vinicius C. L., Division rings whose vector spaces are pseudofinite, J. Sym-
bolic Logic 75 (2010), no. 3, pp. 1087–1090.

[11] C. Ealy, I. Goldbring, Thorn-forking in continuous logic, J. Symbolic Logic, to appear.

[12] U. Felgner, Pseudo-endliche Gruppen (German), Jbuch. Kurt Gödel Ges. 1990 (1991), pp. 94–
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